next up previous
Next: About this document ...

Math 119 A, Midterm


ODEs and Dynamical Systems

Solve the 2x2 ODE systems $\dot x = Ax$ by finding the eigenvalues and eigenvectors and exponentiating the matrix P-1AP,
1.

\begin{displaymath}A = {\left(\begin{array}{cc}
-4 &5\\
-1 &2
\end{array}\right)}.
\end{displaymath}

Solution:

\begin{displaymath}det {\left(\begin{array}{cc}
\lambda+4 &-5\\
1 &\lambda-2
\end{array}\right)}
\end{displaymath}


\begin{displaymath}= (\lambda-1)(\lambda+3)=0.
\end{displaymath}

The eigenvalues are $\lambda = 1, \: \: \lambda = -3.$The eigenvectors are found by solving the system

\begin{displaymath}{\left(\begin{array}{cc}
\lambda+4 &-5\\
1 &\lambda-2
\end{a...
...ay}\right)}= {\left(\begin{array}{c}0\\
0\end{array}\right)}.
\end{displaymath}

The eigenvector corresponding to $\lambda = 1$ is

\begin{displaymath}{\left(\begin{array}{c}1\\
1\end{array}\right)},
\end{displaymath}

and the eigenvector corresponding to $\lambda = -3 $ is

\begin{displaymath}{\left(\begin{array}{c}5\\
1\end{array}\right)}.
\end{displaymath}

The solution in y-space is

\begin{displaymath}y(t) = {\left(\begin{array}{cc}
e^{-3t} &0\\
0 &e^{t}
\end{array}\right)y_o}.
\end{displaymath}

The solution in x-space is

\begin{displaymath}x(t) = {\left(\begin{array}{cc}
\frac{5}{4}e^{-3t}-\frac{1}{4...
...}&-\frac{1}{4}e^{-3t}+\frac{5}{4}e^{t}
\end{array}\right)x_o}.
\end{displaymath}

The computations for the next two matricies are similar,
2.

\begin{displaymath}A = {\left(\begin{array}{cc}
1 &-4\\
1 &1
\end{array}\right)}.
\end{displaymath}

The eigenvalues are $ \lambda = 1 \pm 2i$ and the eigenvectors are

\begin{displaymath}{\left(\begin{array}{c}\pm 2i\\
1\end{array}\right)}.
\end{displaymath}

The solution in y-space is

\begin{displaymath}y(t) = {e^{t}\left(\begin{array}{cc}
cos(2t) & -sin(2t)\\
sin(2t) &cos(2t)
\end{array}\right)y_o}.
\end{displaymath}

The solution in x-space is

\begin{displaymath}x(t) = {\left(\begin{array}{cc}
cos(2t) & -2sin(2t)\\
\frac{1}{2}sin(2t) &cos(2t)
\end{array}\right)x_o}.
\end{displaymath}

3.

\begin{displaymath}A = {\left(\begin{array}{cc}
-1 &1\\
0 &-1
\end{array}\right)}.
\end{displaymath}

The eigenvalue is $ \lambda = -1$, with mulitplicity two, and the eigenvector is

\begin{displaymath}{\left(\begin{array}{c}1\\
0\end{array}\right)},
\end{displaymath}

whereas

\begin{displaymath}{\left(\begin{array}{c}0\\
1\end{array}\right)},
\end{displaymath}

is a generalized eigenvector. The matrix is already in Jordan normal form. The solution in x-space is

\begin{displaymath}x(t) = {\left(\begin{array}{cc}
e^{-t} &te^{-t}\\
0 &e^{-t}
\end{array}\right)x_o}.
\end{displaymath}

Draw the phase portraits for the three ODEs above and classify the flow as sinks, sources, centers, etc.
4.

\begin{displaymath}A = {\left(\begin{array}{cc}
-4 &5\\
-1 &2
\end{array}\right)},
\end{displaymath}


  
Figure: A saddel.
\begin{figure}
\centerline{\epsfysize=3in
\epsfbox{saddle.eps}}
\end{figure}

see Figure [*].

5.

  
Figure: A source.
\begin{figure}
\centerline{\epsfysize=3in
\epsfbox{source.eps}}
\end{figure}


\begin{displaymath}A = {\left(\begin{array}{cc}
1 &-4\\
1 &1
\end{array}\right)},
\end{displaymath}

see Figure [*].
6.

  
Figure: A sink.
\begin{figure}
\centerline{\epsfysize=3in
\epsfbox{sink.eps}}
\end{figure}


\begin{displaymath}A = {\left(\begin{array}{cc}
-1 &1\\
0 &-1
\end{array}\right)},
\end{displaymath}

see Figure [*].
7.
Solve the IVP,

\begin{displaymath}\dot x = Ax, \: \: x(0) = x_o.
\end{displaymath}

with

\begin{displaymath}A = {\left(\begin{array}{cccc}
-1 &-2 &1 &0 \\
2 &-1 &0 &1 \\
0 &0 &-1 &-2\\
0 &0 &2 &-1
\end{array}\right)}.
\end{displaymath}

What happens to the solutions x(t) as $t \to \infty$?

The matrix is in Jordan normal form. The solution is,

\begin{displaymath}x(t)= {e^{-t}\left(\begin{array}{cccc}
cos(2t) &-sin(2t) &tco...
... & -sin(2t)\\
0 &0 &sin(2t) &cos(2t)
\end{array}\right)x_o},
\end{displaymath}

as $t \to \infty$ the solutions $x(t) \to 0$ because of the exponential decay.


 
next up previous
Next: About this document ...
Bjorn Birnir
2000-03-02