International Journal of Algebra, Vol. 2, 2008, no. 14, 649 - 657

Generalized J-Rings and Commutativity

Hazar Abu-Khuzam

Department of Mathematics American University of Beirut, Lebanon hazar@aub.edu.lb

Adil Yaqub

Department of Mathematics University of California Santa Barbara, CA 93106, USA

Abstract

A J-ring is a ring R with the property that for every x in R there exists an integer n(x)>1 such that $x^{n(x)} = x$, and a well-known theorem of Jacobson states that a J-ring is necessarily commutative. With this as motivation, we define a generalized J-ring to be a ring R with the property that for all x, y in R₀ there exists integers n = n(x) > 1, m = m(y) > 1 such that $x^n y - xy^m$ is nilpotent, where R₀ is a certain subset of R. The commutativity behavior of such rings is considered.

Mathematics Subject Classification: 16U80, 16D70

Keywords: generalized J-ring, Jacobson radical, weakly periodic-like ring, commutator ideal

Throughout, R is a ring, N is the set of nilpotents, C is the center, J is the Jacobson radical of R, and Z denotes the ring of integers. As usual [x,y] will denote the commutator xy-yx.

Definition 1. A ring R is called a generalized J-ring if

(1) For all x, y, in $R \setminus (N \cup J \cup C)$, there exist integers n > 1, m > 1 such that $x^n y - xy^m \in N$.

The class of generalized J-rings is quite large and includes all commutative rings, all nil rings, all rings in which J=R, and all J-rings. On the other hand, a generalized J-ring need not be commutative, as can be seen by taking

$$R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} : 0, 1 \in GF(2) \right\}; m = n = 2.$$
 In

Theorem 5, we give a characterization of *commutative* generalized J-rings. We now introduce some basic definitions.

A ring is called *periodic* if for every x in R, $x^m = x^n$ for some distinct positive integers m and n. The ring R is called *weakly periodic* if every x in R can be written as a sum of a nilpotent element a and a "potent" element b in the sense that $b^k = b$ with k>1. R is called *weakly periodic-like* if (here C denotes the center of R)

(2) For all $x \in R \setminus C$, x = a + b, a nilpotent, b potent $(b^k = b, k>1)$.

We are now in a position to prove our main theorems.

Theorem 1 Suppose R is a generalized J-ring with identity and with central idempotents. Then the set N of nilpotents is contained in the Jacobson radical J of R.

Proof. Let $a \in N, x \in R$. We claim that

(3) ax is right quasi-regular (r.q.r.).

The proof is by contradiction. Suppose $a \in N, x \in R$, ax is not r.q.r. If $ax \in J$, then ax is r.q.r., contradiction. Thus, $ax \notin J$. If $ax \in N$, then ax is r.q.r., and hence again $ax \notin N$. Now, if $ax \in C$, then $(ax)^q = a^q x^q$ for all positive integers q, which implies $ax \in N$ (since $a \in N$) and hence ax is r.q.r., contradiction. So $ax \notin C$, and hence

(4) $ax \notin (N \cup J \cup C)$.

Next, consider 1+ax. If $1+ax \in C$, then $ax \in C$ and hence again ax is r.q.r., contradiction. So $1+ax \notin C$. Now suppose $1+ax = a_0 \in N$. Then $ax = a_0 - 1 = u$, where u is a *unit* in R. Let k_0 be the exponent of nilpotency of a. Clearly $k_0 > 1$, and hence $a^{k_0}x = a^{k_0-1}(ax) = a^{k_0-1}u$, which implies $a^{k_0-1}u = 0$, and hence $a^{k_0-1} = 0$ (since u is a unit), contradiction. Therefore, $1+ax \notin N$. Finally, if $1+ax \in J$, then 1+ax is r.q.r., and hence for some $b \in R$, we have (1+ax)+b-(1+ax)b=0. Again, let k_0 be the exponent of nilpotency of a. Since $a \neq 0$, $k_0 > 1$, and hence the above equation implies that

 $0 = a^{k_0 - 1}[(1 + ax) + b - (1 + ax)b] = a^{k_0 - 1} \text{ (since } a^{k_0} = 0\text{), contradiction. So } 1 + ax \notin J \text{ . The net result is:}$

(5) $1 + ax \notin (N \cup J \cup C)$.

Combining (4), (5), (1), we see that

 $(1+ax)^n(ax) - (1+ax)(ax)^m \in N$, for some n > 1, m > 1, which implies that

(6) $(ax)^q = (ax)^{q+1}h(ax)$ for some $h(\lambda) \in \mathbb{Z}[\lambda]$.

Let $e = [(ax)h(ax)]^q$. Then

(7) $(ax)^q = (ax)^q e$, $e = [(ax)h(ax)]^q$, $e^2 = e$. Thus,

$$e = ee = e[(ax)h(ax)]^q = eat = aet$$
 (since $e \in C$).

So $e = aet = a^2 et^2 = ... = a^k et^k$ for all $k \ge 1$, and hence e = 0 (since $a \in N$). Therefore, by (7), $ax \in N$, and thus ax is r.q.r., contradiction. This contradiction proves (3), and hence ax is r.q.r. for all $a \in N, x \in R$. Thus, $N \subseteq J$.

Theorem 2 Suppose R is a generalized J-ring with identity and with central idempotents. Then, we have

- (i) R/J is commutative.
- (ii) If, further, J is commutative, then the commutator ideal of R is nil.

Proof (i) By Theorem 1, $N \subseteq J$, and hence by (1)

(8) For all $x, y \in R \setminus (J \cup C)$, $x^n y - xy^m \in J$ for some integers n > 1, m > 1.

This reflects in R/J as follows:

(9) For all *noncentral* elements x, y of R/J, $x^n y - xy^m = 0$, n > 1, m > 1.

Let x be any *noncentral* element of R/J. Then, by (9),

(10) $x^{n}(1+x) - x(1+x)^{m} = 0, n > 1, m > 1, (x \text{ any noncentral element of } R/J).$

Therefore, by (10), $x - x^2 f(x) \in C$ for some $f(\lambda) \in \mathbb{Z}[\lambda]$, where x is any element of R/J, which implies by a theorem of Herstein [3] that R/J is commutative.

(ii) By part (i), $[x, y] \in J$ for all x, y in R. Since, by hypothesis, J is commutative, we have

(11) [[x, y], [z, w]] = 0 for all x, y, z, w in R.

Note that (11) is a polynomial identity which is satisfied by all elements of R. However, (11) is not satisfied by any 2×2 complete matrix ring over GF(p) for any prime p. (To see this, take $[x, y] = [E_{11}, E_{12}], [z, w] = [E_{22}, E_{21}]$.) Hence, by a theorem of Bell [2], the commutator ideal of R is nil.

Corollary 1. Suppose R is a reduced ring $(N=\{0\})$ and suppose R is a generalized J-ring with identity. Suppose, further, that J is commutative. Then R is commutative.

Proof. Let $e^2 = e \in R$, $x \in R$. Then $(ex - exe)^2 = 0 = (xe - exe)^2$, and hence all idempotents are central (since N={0}). Hence, by Theorem 2(ii), the commutator ideal of R is nil, which implies that R is commutative (since N=[0]).

Theorem 3. Suppose R is a generalized J-ring with identity and with central idempotents. Suppose, further, that $J \subseteq N \cup C$. Then the commutator ideal of R is nil.

Proof. By hypothesis,

(12)
$$J \subseteq N \cup C$$
.

We claim that

(13)
$$J \subseteq N \text{ or } J \subseteq C$$
.

Suppose not. Then J is not a subset of N and J is not a subset of C. Let $x \in J, x \notin N$, and let $y \in J, y \notin C$. By (12), $x \in C$ and $y \in N$. Let x + y = u, and hence x = u - y. Since $x \in C$, u - y commutes with y, and hence u commutes with y. If $u \in N$, then u and y are commuting nilpotents, and hence $u - y \in N$, which implies that $x \in N$, contradiction. On the other hand, if $u \in C$, then $x + y \in C$ and $x \in C$, which implies that $y \in C$, contradiction. Therefore, $u \notin N$ and $u \notin C$; yet $u \in J \subseteq N \cup C$ (by (12)). This is a contradiction, and (13) is proved. Recall that, by Theorem 1, $N \subseteq J$, which when combined with (13) yields

(14) $N = J \text{ or } N \subseteq J \subseteq C.$

If N = J, then N is an ideal and R/N = R/J is indeed commutative, by Theorem 2(i), which implies that the commutator ideal of R is nil, and the theorem is proved in this case. Next, consider the case $N \subseteq J \subseteq C$. Then (1) now implies that

(15) For all $x, y \in R \setminus C$, $x^n y - xy^m \in N$ for some n > 1, m > 1.

Suppose $x \in R, x \notin C$. Then $1 + x \notin C$, and hence by (15), $x^{n}(1+x) - x(1+x)^{m} \in N \subseteq C$ (since $N \subseteq J \subseteq C$ is the present case). Therefore, $x - x^2 f(x) \in C$ for some $f(\lambda) \in Z[\lambda]$, where x is *any* element of R. It follows, by a Theorem of Herstein [3], that R is commutative in the present case, and the theorem readily follows.

Theorem 4. Suppose R is a weakly periodic-like ring and suppose R is a generalized J-ring with identity and with central idempotents. Then, we have

- (*i*) The commutator ideal of R is nil.
- (ii) For any $x \in R \setminus C$, $x x^m \in N$ for some integer m > 1.

Proof. (i) In view of Theorem 3, it suffices to show that

(16) $J \subseteq N \cup C$.

Suppose $j \in J, j \notin C$. Then, since R is weakly periodic-like, $j = a + b, a \in N, b^m = b$ with m>1. Hence,

$$j - a = b = b^m = (j - a)^m$$
, and thus $j - a = (j - a)^{m^q}$ for all $q \ge 1$.

Since $a \in N$, $a^{m^q} = 0$ for some $q \ge 1$, and hence the above equation implies that $j - a \in J$. Therefore, $b \in J$, and thus b^{m-1} is an idempotent element of J, which implies $b^{m-1} = 0$, and hence $b = b^m = 0$. Thus, $j = a + b = a + 0 \in N$, which proves (16), and part (i) follows (see Theorem 3).

(ii) Let $x \in R$, $x \notin C$. Then, since R is weakly periodic-like, x = a + b, $a \in N$, $b^m = b$ with m > 1. Therefore,

(17)
$$x-a = b = b^m = (x-a)^m, m > 1, (a \in N).$$

By part (i), N is an ideal, and hence by (17), $x - x^m \in N$, m > 1. This proves the theorem.

We are now in a position to prove our main theorem, which gives a characterization of *commutative* generalized J-rings.

Theorem 5. Suppose R is a generalized J-ring and suppose R is weakly periodiclike. Suppose that $(N \cap J)$ is commutative and, furthermore, suppose that every element which squares to zero is central $(a^2 = 0 \text{ implies } a \in C)$. Then R is commutative (and conversely).

Proof. To begin with, if $e^2 = e \in R$ and $x \in R$, then $(ex - exe)^2 = 0 = (xe - exe)^2$. Therefore, by hypothesis, $ex - exe \in C$ and $xe - exe \in C$, and hence all idempotents are central. We now distinguish two cases.

Case 1. $1 \in R$. In this case, since all idempotents are central, it follows by Theorem 1 that $N \subseteq J$, and hence $N = N \cap J$. Since, by hypothesis, $N \cap J$ is commutative,

(18) N is commutative.

Moreover, by Theorem 4 (i), since the idempotents are central, the commutator ideal of R is nil and hence N is an ideal. Combining this with (18), we conclude that N is a commutative ideal of R. This fact implies that $(ax - xa)^2 = 0$ for all $a \in N$, $x \in R$, and hence by hypothesis, ax - xa is central. Thus,

(19) ax - xa is central for all $a \in N, x \in R$.

Also, by Theorem 4(ii), we have

(20) For every $x \in R \setminus C$, $x - x^m \in N$ for some integer m > 1.

It was proved by the authors that any ring which satisfies (18), (19), (20) is commutative [1], and hence the ground ring R is commutative (if $1 \in R$).

We now consider the general case (where we no longer assume that R has an identity). Let P be the set of potent elements of R; that is,

(21) $P = \{x : x \in R, x^k = x \text{ for some } k > 1\}.$

We now distinguish two cases.

Case A: $P = \{0\}$. In this case, since R is weakly periodic-like, we see that $R = N \cup C$. The argument used in the proof of Theorem 3 (namely, (12) implies (13)) shows that R = N or R = C. If R = N, then N is an ideal of R and hence $N \subseteq J$. So $N = N \cap J$ is commutative, which implies that $R = N \cup C$ is commutative.

Case B: $P \neq \{0\}$. In this case, we claim that

(22) All potent elements of R are central.

To prove this, let $b \in P, b \neq 0$, and suppose $b^k = b, k > 1$. Let $e = b^{k-1}$. Then e is a nonzero central idempotent element of R, and hence eR is a ring with identity. It is readily verified that eR is a ring which satisfies all the hypotheses imposed on the ground ring R (keep in mind that the Jacobson radical of eR is eJ(R)). Since eR also has an identity, it follows by *Case* 1 that

(23) eR is a commutative ring.

Let $y \in R$. Then, e[b, y] = [eb, ey] = 0. Recalling that $e = b^{k-1} \in C$ and $b^k = b$, we see that

$$0 = e[b, y] = b^{k-1}[b, y] = b^k y - b^{k-1} yb = b^k y - yb^k = by - yb$$
, and hence $by = yb$ for all $y \in R$, which proves (22).

Our next goal is to prove that

$$(24) \quad N \subseteq J .$$

(Incidentally, it should be pointed out that Theorem 1 cannot be applied here, since R is not assumed to have an identity.) To prove (24), let $a \in N, x \in R$. If $ax \in C$, then $(ax)^m = a^m x^m$ for all m, and hence $ax \in N$ (since $a \in N$), which implies that ax is r.q.r. (if $ax \in C$). Next, suppose $ax \notin C$. Then, since R is weakly periodic-like,

(25)
$$ax = a_0 + b_0$$
, $a_0 \in N$, b_0 potent $(b_0^{q_0} = b_0, q_0 > 1)$.

In view of (22), b_0 is central and hence $[ax, a_0] = 0$. Combining this with (25), we see that

(26)
$$ax - a_0 = b_0 = b_0^{q_0} = (ax - a_0)^{q_0}, [ax, a_0] = 0, a_0 \in N, q_0 > 1.$$

A close look at (26) shows that $ax - (ax)^{q_0}$ is a sum of pairwise commuting nilpotent elements, and hence such a sum is indeed nilpotent, which implies that

$$(27) \quad ax - (ax)^{q_0} \in N \,.$$

In view of (27), we see that

 $(ax)^q = (ax)^{q+1}h(ax)$ for some $h(\lambda) \in \mathbb{Z}[\lambda]$.

The argument used at the end of the proof of Theorem 1 (beginning with (6)) shows that ax is r.q.r. in the present case. The net result is that ax is r.q.r. for all $a \in N$, $x \in R$, and hence $N \subseteq J$, which proves (24). Recall that, by hypothesis, $(N \cap J)$ is commutative. Also by (24), $N = N \cap J$, and hence

(28) N is commutative.

To complete the proof, suppose $x \notin C$, $y \notin C$. Then, x = a + b, $a \in N, b \in P$ and y = a' + b', $a' \in N$, $b' \in P$. Hence by (22) and (28), we have

[x, y] = [a+b, a'+b'] = [a, a'] = 0.

Thus, R is commutative, and the theorem is proved.

Jacobson's Theorem, namely that a J-ring is commutative [4, p.217], is a corollary of Theorem 5. Another corollary of Theorem 5 is the special case in which the exponents n and m in Definition 1 are always chosen to be equal (see [5]).

We conclude with the following remark.

Example 1 : Let

$$R = \left\{ \begin{bmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{bmatrix} : a, b, c \in GF(4) \right\}.$$

Keeping an eye on the diagonal entries, it can be shown that every element of R is nilpotent or invertible, and, moreover $x^8 = x^2$ for all x in R. Furthermore, the set N of nilpotents is an ideal and, in fact, $N^2 = (0)$. Also,

- (i) For all $x \in R$, $x = (x x^7) + x^7$ shows that every element of R is a sum of a nilpotent and a potent element.
- (ii) For all $x, y \in R$, $x^7 y xy^7 \in N$.
- (iii) N is commutative
- (iv) The idempotents of R are precisely $\{0,1\}$.
- (v) However, " $a^2 = 0$ implies $a \in C$ " is false.

Thus, all the hypotheses of Theorem 5 with the exception stated in (v) are satisfied. But R is not commutative, as can be seen by considering the elements of R, namely, E_{12} and $diag[u, u^2, u]$, where u is a generator of the multiplicative group of units of GF(4).

References

[1] H. Abu-Khuzam and A. Yaqub, A commutativity theorem for rings with constraints involving nilpotent elements, Studia Sci. Math. Hungar. 14(1979), 83-86.

[2] H. E. Bell, On some commutativity theorems of Herstein, Arch. Math. 24(1973), 34-38.

[3] I. N. Herstein, *A generalization of a theorem of Jacobson* III, Amer. J. Math. 75(1953), 105-111.

[4] N. Jacobson, *Structure of rings*, Amer. Math. Soc. Colloq. Publications, vol. 37, Providence, RI, 1964.

[5] A. Yaqub, *On weakly periodic-like rings and commutativity*, Results in Mathematics, 49(2006), 377-386.

[6] A. Yaqub, A generalization of Boolean rings, International Journal of Algebra, 1(2007), 353-362.

Received: January 19, 2008