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A New Look at Sums of Squares
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Let R be an integral domain. Among the most basic problems in the theory
of quadratic forms over R is the determination of which nonzero elements in R
can be expressed as a sum of n squares in R, where n is a positive integer. When
R = Z, the classics of this genre are the two-square, four-square, and three-square
theorems of Fermat, Lagrange, and Gauss, respectively (listed here in chronological
order). Of more recent vintage (1964) is this theorem of Cassels: If k is a field of
characteristic not 2, then a polynomial in k[x] is a sum of n squares of polynomials
if and only if it is a sum of n squares of rational functions in k(x). (In slightly more
general form this result is known as the Cassels–Pfister theorem, a cornerstone of
the algebraic theory of quadratic forms.) My first goal in this paper is to present a
unified approach to all these results. Having done this, I will begin the process of
extending this approach to a wider class of problems on representations by quadratic
forms. At the end of the paper I will raise some questions that arise naturally along
the way.

For a ring R, the symbol �n will denote the set of nonzero elements in R that
can be written as a sum of n squares of elements of R.

From now on we will assume R is a principal ideal domain whose quotient field
F has characteristic not 2. (In fact our main rings of interest will be Z and k[x].)
We now sketch a bit of background; for more details see [G2] or [O]. Let V be a
regular quadratic F -space with B : V × V → F its symmetric bilinear form, and
let Q : V → F defined by Q(v) = B(v, v) be its associated quadratic form. An
R-lattice L in V is a free R-module of finite rank; and L is said to be on V if it
spans V . Given a basis B = {v1, . . . , vn} for L, the matrix A = (B(vi, vj)) is the
Gram matrix of L with respect to B. An expression of the form X ∼= Y will have
one of several meanings, depending on the context: if X and Y are both spaces
or both lattices, it means X and Y are isometric; if X is a space or lattice and Y
is a matrix, it means Y is the Gram matrix of X with respect to a suitable basis;
if X and Y are both matrices, it means X and Y are congruent over the relevant
ring—that is, X = tTY T for some invertible matrix T . The determinant det A is
the discriminant of L, denoted dL; it is well-defined up to squares in R∗. The
fractional R-ideal vL := (dL) is the volume of L. Two other important fractional
ideals associated with L are the scale sL and the norm nL, which are generated
respectively by

{B(x, y) | x, y ∈ L} and {Q(x) | x ∈ L}.
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We will say L is integral if sL ⊆ R. The inclusions 2sL ⊆ nL ⊆ sL hold, and hence
nL = sL if 2 ∈ R∗. Also, from the definition of the determinant it follows that
vL ⊆ (sL)n; moreover, if I is a fractional ideal and Q(L) ⊆ I, then vL ⊆ ( 1

2I)n.
Lattice volumes increase in accord with inclusions; that is, L ⊂ L′ ⇒ vL ⊂ vL′.
If I = (α), a lattice L is I-modular if L ∼= αU , with U a unimodular R-matrix;
and L is said to be unimodular if it is R-modular. A lattice M is I-maximal
if Q(M) ⊆ I and M is maximal (among the lattices on the space spanned by M)
with respect to this property. From the several inclusions stated in this paragraph,
it follows that every lattice L in a space V satisfying Q(L) ⊆ I is contained in an
I-maximal lattice on V .

Each nontrivial prime spot (equivalence class of valuations) p on F yields a
completion Fp, and then V extends (via tensor product) to a quadratic Fp-space
Vp ⊃ V ; again B is a basis. If p is determined by a nonzero prime ideal of R,
then Rp denotes the closure of R in Fp, and then Lp is the Rp-lattice RpL in Vp.
Similarly, if I is a fractional R-ideal, we write Ip for the fractional Rp-ideal RpI
in Fp. It can be shown—with the help of the invariant factor theorem—that an
R-lattice L on V is I-maximal if and only if for all p the lattice Lp is Ip-maximal
on Vp.

We will say that R-lattices L and L′ on V are in the same genus if there
is an isometry Lp

∼= L′
p for all nonzero prime ideals p of R. It was shown by

Eichler in 1952 that for a given fractional R-ideal I, all I-maximal R-lattices on a
given quadratic F -space V are in the same genus. In particular, if one R-maximal
R-lattice on V is unimodular, then they all are.

From now on, if p is the p-adic spot for some prime p of R, we will usually
subscript with p instead of p.

Now we turn our attention to Z-lattices and k[x]-lattices. It has long been
known that every positive definite unimodular Z-lattice of rank n ≤ 7 has an or-
thonormal basis. When n ≤ 5 this result was a consequence of Hermite’s inequality
(from 1850) bounding the minimum of a lattice: the smallest absolute value of a
nonzero element represented by the lattice. We state the inequality here, first for
Z-lattices, as Hermite did it; and then we state its adaption to k[x]-lattices, when
the “minimum” means the smallest degree of a nonzero element represented by the
lattice. (So over k[x] “size” is measured by degree instead of absolute value.) The
proofs in the two settings are similar, the main difference being the nonarchimedian
behavior of the degree function. See [G2, §7.2] for the details.

Hermite’s Inequalities. (i) Let V be an anisotropic Q-space of dimension
n, and let L be an integral Z-lattice on V . Then

minL ≤
(

4
3

)n−1
2

|dL| 1n .

(ii) Let L be an integral k[x]-lattice on an anisotropic quadratic k(x)-space V of
dimension n. Then

minL ≤ 1
n

∂(dL).

We now have two corollaries for k[x]-lattices. The proof of the first one is imme-
diate in the anisotropic case; the isotropic case needs a short additional argument,
which we omit.
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Corollary 1 (Harder’s Theorem). Let L be a unimodular k[x]-lattice of rank
n. Then there exist α1, . . . , αn ∈ k∗ such that L ∼= 〈α1, . . . , αn〉.

(Here we have used the bracket notation 〈. . . . . . . . . 〉 for a diagonal matrix.)

Corollary 2 (Cassels–Pfister Theorem). Let f ∈ k[x] and suppose α1, . . . , αn ∈
k. If f =

∑
i αir

2
i for some ri ∈ k(x), then f =

∑
i αip

2
i for some pi ∈ k[x]. In

particular,
f ∈ �n over k[x] ⇐⇒ f ∈ �n over k(x).

Proof. Only “⇐=” requires proof. Let V ∼= 〈α1, . . . , αn〉 with respect to some
basis {v1, . . . , vn}. We’re given f ∈ k[x] and the assumption that Q(v) = f for some
v ∈ V . Then v is contained in a k[x]-maximal lattice M on V . The k[x]-lattice

L = k[x]v1 ⊥ · · · ⊥ k[x]vn

is unimodular, and it is also k[x]-maximal. (Here we use the fact that 2 ∈ k[x]∗.)
By Eichler’s Theorem Lp

∼= Mp for all primes p. Therefore M is unimodular, and
so L ∼= 〈α1, . . . , αn〉 by Harder’s Theorem. �

Now let’s turn to the theory over Z. Here, since 2 is not a unit, more is required
than for the proof of Cassels–Pfister, because in general a unimodular Z-lattice need
not be Z-maximal. But the main idea of the present proof is is to show that the
particular unimodular lattices under scrutiny in the theorem are in fact Z-maximal.

Theorem. Let 1 ≤ n ≤ 4, and let m ∈ N. Then

m ∈ �n over Z ⇐⇒ m ∈ �n over Q

Proof sketch of “⇐=”. The case n = 1 is trivial, so we will assume that
2 ≤ n ≤ 4. Let L ∼= 〈1, . . . 1〉 on a Q-space V , and suppose v ∈ V satisfies
Q(v) = m. Then v is contained in a Z-maximal lattice M . If we can show that
L is also Z-maximal, then by Eichler we would know that Mp

∼= Lp for all p, and
hence that M is unimodular. Therefore we would know by Hermite’s inequality
that M ∼= 〈1, . . . 1〉, from which the result would follow. Thus it is enough to prove
that the lattice L ∼= 〈1, . . . , 1〉 is Z-maximal; equivalently, that for all primes p the
Zp-lattice Lp = ZpL is Zp-maximal. (Here Zp denotes the ring of 2-adic integers.)

This is clear for all p 6= 2, since then nLp = sLp = vLp = Zp, and a lattice
J on Vp containing Lp would necessarily have nJ ⊃ Zp. (Here we have used the
several inclusions of scale, norm, and volume listed earlier in the paper.) Therefore
it suffices to show that the lattice L2 = Z2L is Z2-maximal in V2.

In each dimension the arguments involve discriminants and Hasse symbols. We
illustrate with the case n = 3. Lattices over Z2 with biggest possible volume and
norm ⊆ Z2 on a Q2-space of discriminant 1 would have the form(

0 1
2

1
2 0

)
⊥ 〈−1〉 or

(
1 1

2
1
2 1

)
⊥ 〈3〉

But in both of these cases the underlying Q2-space would have Hasse symbol −1,
hence no such lattice is on Q2L2. Therefore L2 is Z2-maximal.

Now we get the classical theorems over Z as immediate corollaries.

Corollary 1 (Lagrange’s Four-Square Theorem). In Z,

�4 = N.
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Proof. Apply the preceding theorem and the Hasse–Minkowski theorem. �

Corollary 2 (Fermat’s Two-Square Theorem). If m ∈ N, then in Z

m ∈ �2 ⇐⇒ ordp m ≡ 0 (mod 2) for all p ≡ 3 (mod 4).

Proof. From the theorem, we can (and will) assume m is square-free. We
must determine which m satisfy m−→〈1, 1〉 over Q; equivalently, m−→〈1, 1〉 over
Qp for all primes p. Such a representation is clear if p is an odd prime not dividing
m or if p ≡ 1(mod 4), since in these cases there is an isometry 〈1, 1〉 ∼= 〈m,m〉
over Qp. (Recall: If p ≡ 1(mod 4) then −1 ∈ Q∗2

p .) If p ≡ 3(mod 4) and p | m
(giving ordp m = 1), a representation m−→〈1, 1〉 over Qp would force an isometry
〈1, 1,−m〉 ∼= 〈1,−1,−m〉; but a Hasse symbol calculation shows this to be impossi-
ble. So no such prime exists. Therefore, either m ≡ 1(mod 4) or m = 2k with k ≡ 1
(mod 4). In both these cases a Hasse symbol calculation shows that 〈1, 1〉 ∼= 〈m,m〉
over Q2. �

Corollary 3 (Gauss’s Three-Square Theorem). Let m ∈ N. Then

m ∈ �3 ⇐⇒ m 6= 4νk with k ≡ 7 (mod 8).

Proof sketch. First note that 〈1, 1, 1〉 is universal over Qp for all p 6= 2. And
m −→ 〈1, 1, 1〉 over Q2 if and only if 〈1, 1, 1,−m〉 is isotropic; equivalently (since
〈1, 1, 1, 1〉 is the unique 4-dimensional anisotropic Q2-space), −m 6∈ Q2

2. Finally,
this is equivalent to m 6= 4ν(7 + 8a). �

What about nonunimodular representations? Our results on sums of squares
have centered on showing that a given lattice L of interest represents all the el-
ements of its coefficient ring R represented by the ambient quadratic space. We
did this by showing that L was R-maximal and belonged to a genus containing
only one isometry class. Since in each case L was unimodular, the Rp-lattice Lp

was automatically Rp-maximal whenever 2 ∈ R∗
p, so there was extra work proving

R-maximality only when R = Z and p = (2). From the local theory it is easy to
show that if the discriminant dL is square-free then Lp is Rp-maximal whenever p
is nondyadic. For example, if dL is square-free and R = k[x] then L is R-maximal.

In the material that follows, we will have several occasions to compute the Hasse
symbol of a quadratic space over a local field. In this computation we follow [S] in
computing the Hasse invariant of the space 〈α1, . . . , αn〉 as the product

∏
i<j

(αi, αj)p.

Here (·, ·)p is the associated Hilbert symbol with respect to the prime p, and it can
be calculated by formulas in [S, p. 20] or [G2, pp. 82-83] over Qp; and, since all
nontrivial spots on Fq(x) are nondyadic, over completions of Fq(x) Hilbert symbols
can be computed essentially as over Qp when p is odd.

We begin our consideration of nonunimodular representations by considering
some results on lattices over Fq[x].

Proposition. Let L be an integral Fq[x]-lattice on a regular quadratic Fq(x)-
space, and suppose the discriminant dL has degree ≤ 1. Then L is Fq[x]-maximal
and has class number 1.

Proof. Write R = Fq[x], F = Fq(x), and “∂” for degree. If ∂(dL) = 0 then
L is unimodular, and the result follows immediately from Harder’s theorem and
the classification of Fq-spaces. If ∂(dL) = 1, say dL = α(x + β), with α, β ∈ Fq,
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then L is R-maximal, from our earlier discussion. Write p0 = x + β. By Hermite’s
inequality (ii) there is a splitting

L ∼= 〈1, . . . , 1, λ〉 ⊥ 〈µp0〉

with λ, µ ∈ F∗
q . If J ∈ gen L then dJ = dL, so there is also a splitting

J ∼= 〈1, . . . , 1, λ′〉 ⊥ 〈µ′p0〉

with λ′, µ′ ∈ F∗
q . Now L and J are on the same quadratic F -space, so there is a

Hilbert symbol equality (λ, µp0)p = (λ′, µ′p0)p for all primes p. In particular, when
p = p0 it follows from this that λ and λ′ are in the same square class in Fq. Hence,
since dL = dJ , the same is true of µ and µ′. �

Remark. The case ∂(dL) = 0 in the preceding proposition is just a restatement
of the Cassels–Pfister theorem when k = Fq.

When ∂(dL) ≥ 2, the determination of class numbers is a more cumbersome
process, even when dL is irreducible, as the following two-part example shows.

Example. In this example we will usually write R for F3[x] and F for F3(x).

(i) Suppose L ∼=
(

x + 1 1
1 x + 2

)
in the basis {v1, v2} over R. We claim that L is

maximal and has class number 1. Because dL = x2+ 1 = p0, a prime in R, we know
from our previous discussion that L is R-maximal. An orthogonally split lattice in
gen L would have form J1 = 〈1, x2 + 1〉 or J2 = 〈2, 2(x2 + 1)〉. For both of these
possibilities, when localized at p0 the Hasse symbol of the ambient Fp0-space would
be +1, because 2 ∈ F ∗2

p0
; while meanwhile the space FL ∼= 〈x + 1, (x + 1)(x2 + 1)〉

has Hasse symbol −1 at p0, because x + 1 /∈ F ∗2
p0

. Therefore genL contains no
split lattices, so (by binary reduction) any J ∈ gen L must have a Gram matrix of

the form A =
(

ax + b c
c ex + f

)
for some a, b, c, e, f ∈ F3 with ace 6= 0. Because

dJ = dL = x2 +1, elementary arithmetic tells us that for J ’s Gram matrix we need
to consider only the matrices

A1 =
(

x + 1 1
1 x + 2

)
, A2 =

(
x + 1 2

2 x + 2

)
, A3 =

(
2x + 1 1

1 2x + 2

)
,

A4 =
(

2x + 1 2
2 2x + 2

)
.

But if J ∼= A1 in {v1, v2}, then J ∼= A2 in {v1, 2v2}, and similarly A3
∼= A4. And if

J ∼= A3 in {w1, w2} then J ∼= A1 in {w′
1 = 2w1 + w2, w

′
2 = w1 + w2}. Therefore in

all cases J ∼= A1
∼= L, so L has class number 1, as claimed.

(ii) One might suspect, based on the proposition and part (i) of this example, that
an integral R-lattice with prime discriminant must have class number 1 (as well as
being R-maximal). But the lattices

J1 = 〈1, x2 + 1〉 and J2 = 〈2, 2(x2 + 1)〉

mentioned in part (i) are R-maximal and in the same genus, yet J1 � J2 by Corol-
lary 2 in [G1]. (In brief: J1 does not represent 2.) In fact the class of the lattice L
discussed in part (i) is the only other class of binary integral definite (i.e., anisotropic
at ∞) R-lattices of discriminant x2 +1, and it is on a different space from FJ1 and
FJ2. Therefore J1 and J2 belong to a genus of class number 2.
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For nonunimodular representations over Z, we give new proofs of two results
of Fermat cited on the first page of Cox’s book [C].

Theorem (Fermat). Let l be an odd prime number. Then in Z
(I) l = x2 + 2y2 is solvable if and only if l ≡ 1 or 3 (mod 8).
(II) l = x2 + 3y2 is solvable if and only if l = 3 or l ≡ 1 (mod 3).

Proof. (I) Consider a Z-lattice L ∼= 〈1, 2〉 on a quadratic Q-space V , and let
m ∈ Z. We claim

m −→ L ⇐⇒ m −→ V.

Only “⇐=” requires proof. Whenever p 6= 2, the lattice Lp is unimodular and hence
Zp-maximal; and the Z2-lattice L2 is Z2-maximal because any Z2-lattice properly
containing it will have a Jordan component 〈λ〉 with λ /∈ Z2. Therefore L is Z-
maximal. Now (and here we are imitating our Cassels–Pfister argument) if v ∈ V
and Q(v) = m then v is contained in a Z-maximal lattice M on V . By Eichler’s
theorem, M and L are in the same genus, and hence dM = dL = 2. So Hermite’s
inequality (or the reduction theory of binary quadratic forms) gives M ∼= 〈1, 2〉 ∼= L,
and hence a representation m −→ L, as claimed.

To finish the proof of (I), we must determine for which odd primes l the isometry

〈1, 2,−l〉 ∼= 〈1,−1, 2l〉
holds over Qp for every prime p. Existence of such an isometry over Qp is clear if
p /∈ {2, l}, by the triviality of the Hilbert symbol on p-adic units.

(“=⇒”) Suppose l ≡ 1 (mod 8). Then l ∈ Z∗2
2 by the local square theorem,

and so l −→ 〈1, 2〉 (and the equivalent isometry) holds over Q2. And the desired
isometry holds over Ql because the Ql-space on the left has Hasse symbol

(2,−l)l = (2, l)l =
(

2
l

)
= (−1)

l2−1
8 = 1,

while the space on the right has Hasse symbol

(−1, 2l)l = (−1, l)l =
(
−1
l

)
= 1.

Now suppose l ≡ 3 (mod 8). Then l ∈ 3Q∗2
2 by the local square theorem; and since

trivially 3 −→ 〈1, 2〉 over Q2, so also l −→ 〈1, 2〉 over Q2. Finally, the reader can
check that the isometry 〈1, 2,−l〉 ∼= 〈1,−1, 2l〉 holds over Ql by a Hasse symbol
computation similar to that in the case l ≡ 1 (mod 8).

(“⇐=”) If l ≡ 5 or 7 (mod 8), then the Hasse symbols of the two spaces of
interest are different when p = l, hence the essential representation over Ql fails,
so the required representation over Q fails as well.

(II) Paralleling the argument in part (i), we begin by considering a lattice
L ∼= 〈1, 3〉 with respect to a basis {v1, v2} on a Q-space V , with the goal of showing
that for all m ∈ Z the equivalence m → L ⇐⇒ m → V holds. Hermite’s inequality
and binary reduction shows that every integral lattice of discriminant 3 on V must

be isometric to 〈1, 3〉 or
(

2 1
1 2

)
. These are in different genera, since over Z2 the

latter lattice represents no odd integers. Therefore L has class number 1. But now

define w2 =
v1 + v2

2
and consider the lattice

M = Zv1 + Zw2
∼=

(
1 1

2
1
2 1

)
.
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Then L ( M (in fact, Lp = Mp for all p 6= 2, but L2 ⊂ M2), and Q(M) ⊆ Z.
So L is not Z-maximal; but M is, and M has class number 1. It follows that
m → M ⇐⇒ m → V . At first glance it may seem that the determination of the
numbers represented by L is no longer in sight; but fortunately it turns out that L
and M represent the same integers, as we now show. Let v ∈ M ; say v = av1 +bw2,
with a, b ∈ Z. If 2 | b then v ∈ L. But now suppose b is odd (and so v /∈ L). Then

Q(av1 + bw2) =

{
Q

(
− av1 + (a + b)w2

)
if a ≡ 1 (mod 2)

Q(bv1 + aw2) if a ≡ 0 (mod 2)

Therefore in all cases Q(v) ∈ Q(L), as claimed. To sum up the argument in part
(II) up to here: L and V represent exactly the same integers. Of course 3 is one
of those integers. So to complete the proof of Fermat’s theorem it remains to
determine which odd primes l 6= 3 satisfy the Hilbert symbol equality

(3,−l)p = (−1, 3l)p for all primes p;

equivalently,
(l,−3)p = 1 for all primes p.

Now, if this condition holds, then in particular (l,−3)3 = 1, and therefore l ≡ 1
(mod 3).

Conversely, suppose l ≡ 1 (mod 3). Then (l,−3)p = 1 for all p /∈ {2, l}, by the
triviality of the Hilbert symbol on p-adic units when p is odd. Therefore by Hilbert
reciprocity it suffices to show that (l,−3)2 = 1 or (equivalently) that (l,−3)l = 1.
Since l ≡ 1 (mod 3) and l is odd, we actually have l ≡ 1 (mod 6); say l = 1 + 6k.

If k ≡ 0 (mod 4) then l ≡ 1 (mod 8) and hence (l,−3)2 = 1 by the local square
theorem.

If k ≡ 2 (mod 4) then l ≡ 1 (mod 4), and then (since also l ≡ 1 (mod 3))

(l,−3)l = (l,−1)l(l, 3)l = (l, 3)l =
(

3
l

)
=

(
l

3

)
= 1.

Finally, suppose k is odd, and so l ≡ 3 (mod 4). We have (l,−3)l = (l, 3)l(l,−1)l.
And now

(l, 3)l =
(

3
l

)
= −

(
l

3

)
= −1 and (l,−1)l =

(
−1
l

)
= −1.

Therefore (l,−3)l = 1, as desired. �

Problems.

(1) Our example in which we discuss class numbers of lattices over F3[x] is painfully
ad hoc. Is there a more systematic approach to class numbers of Fq[x]-lattices; and,
in particular, is there a way to efficiently identify the lattices of class number 1 with
a given discriminant?

(2) Under what conditions on a quadratic Q-space V is there an integral lattice L
on V that represents all the integers represented by V ? Clearly a lattice on V that
is Z-maximal and also has a one-class genus will have this property. But, as we
have seen in the lattice 〈1, 3〉, this pair of properties is not essential.

(3) Let us call two Z-lattices on the same Q-space spectrally similar if they
represent exactly the same elements. For example, we have seen that 〈1, 3〉 and
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1 1

2
1
2 1

)
are spectrally similar. It would be interesting to develop tests for spectral

similarity of lattices. Note that spectrally similar matrices need not be “isospectral”
in the sense of Conway and Sloane [C–S]. For instance, the lattice 〈1, 3〉 represents

1 only twice, while
(

1 1
2

1
2 1

)
represents 1 six times.

(4) For which Z lattices L is there a completely decomposable lattice (that is, a
lattice with an orthogonal basis) spectrally similar to L ?

(5) Given a Z-lattice L, how can we determine a minimal lattice spectrally similar
to L ? If we restrict the search to sublattices of L, does it make the problem easier?

(6) Go beyond the reproof of Fermat’s theorem given here to consider representa-
tions by a broader range of lattices, including lattices of higher rank.

(7) Reconsider the preceding questions over more general rings; e.g., over the rings
of integers of algebraic number fields or global function fields.
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