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Abstract

Let Ω0 be a polygon in R2, or more generally a compact surface with
piecewise smooth boundary and corners. Suppose that Ωε is a family
of surfaces with C∞ boundary which converges to Ω0 smoothly away
from the corners, and in a precise way at the vertices to be described
in the paper. Both Kac [3] and McKean-Singer [7] recognized that
certain heat trace coefficients, in particular the coefficient of t0, are not
continuous as ε↘ 0. We describe this anomaly using renormalized heat
invariants of an auxiliary smooth domain Z which models the corner
formation.

1 Introduction

Let Ω ⊂ R2 be a domain with smooth boundary, or more generally, any two
dimensional compact Riemannian manifold with smooth boundary. The
Laplace operator with Dirichlet boundary conditions has discrete spectrum
{λi} and corresponding eigenfunctions {φi}. The fundamental solution for
the Cauchy problem for the heat equation has Schwartz kernel

HΩ(t, z, z′) =
∞∑
i=1

e−λitφi(z)φi(z′);

this converges in C∞((0,∞)× Ω× Ω) and is even smooth up to t = 0 away
from the diagonal of Ω× Ω. The so-called heat trace is the function

TrHΩ =
∞∑
i=1

e−λit =
∫

Ω
HΩ(t, z, z) dz; (1.1)
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this has an asymptotic expansion as t↘ 0 of the form

TrHΩ ∼
∞∑

j=0

ajt
−1+ j

2 . (1.2)

Each coefficient aj is a sum of two terms: an integral over Ω of some uni-
versal polynomial in the Gauss curvature K of the metric and its covariant
derivatives, and an integral over ∂Ω of another universal polynomial in the
geodesic curvature κ of the boundary and its derivatives. Precise formulæ for
these polynomials are extremely complicated (and mostly unknown) when
j is large, but the first few are quite simple:

a0 =
1
4π

∫
Ω

1 dA =
1
4π
|Ω|, a1 = − 1

8
√
π

∫
∂Ω

1 ds = − 1
8
√
π
|∂Ω|

and

a2 =
1

12π

(∫
Ω
K dA+

∫
∂Ω
κ ds

)
=

1
6
χ(M). (1.3)

Here and elsewhere, | · | refers to either area of a domain or length of its
boundary, as appropriate.

Almost all of this remains true if the boundary of Ω is piecewise smooth.
More precisely, assume that ∂Ω is a finite union of smooth arcs, γi, i =
1, . . . , k, where (counting indices mod k) γi meets γi+1 at the vertex pi with
an interior angle αi ∈ (0, 2π). In fact, the only modification in the state-
ments above is that the heat trace coefficients may now include contributions
from the vertices. The formulæ for a0 and a1 are the same as before, but
now

a2 =
1

12π

∫
Ω
K dA+

k∑
j=1

∫
γj

κ ds

+
k∑

j=1

π2 − α2
j

24παj
. (1.4)

The term in parentheses on the right now equals 2πχ(Ω) −
∑k

j=1 αj . That
the coefficient a2 contains an extra contribution from the vertices was al-
ready known to Kac [3], although the precise simple expression here was
obtained by Dan Ray (this is referenced by Kac and also later by Cheeger
[2], but apparently Ray did not publish his result). A particularly transpar-
ent derivation of this corner term appears in a paper by van den Berg and
Srisatkunarajah [1].

The heat trace anomaly in the title of our paper is the discrepancy
between the heat coefficients in the smooth and polgonal settings. More
specifically, it refers to the fact that at least one heat invariant is not con-
tinuous with respect to Lipschitz convergence of domains. To phrase this
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more precisely, let Ωε be a family of surfaces with smooth boundary which
converge to a piecewise smoothly bounded domain Ω0 as ε → 0. We think
of Ωε as Ω0 with each corner ‘rounded out’ slightly, but will give a precise
formulation in the next paragraph. Denoting the heat trace coefficients for
Ωε by aj(ε), it will be clear from this definition that

lim
ε→0

a2(ε) = lim
ε→0

1
12π

(∫
Ωε

Kε dAε +
∫

∂Ωε

κε ds

)
−→

1
12π

(∫
Ω0

K0 dA0 +
k∑

i=1

∫
γi

κ0 ds+
k∑

i=1

αi

)
,

where Kε and κε are the Gauss curvatures of gε and the geodesic curvatures
of ∂Ωε for every ε ≥ 0, respectively. The anomaly is simply that this formula
does not agree with the expression (1.4). The goal of this paper is to provide
a simple explanation for the disagreement between these two expressions.

We now explain the desingularization more precisely. For simplicity,
suppose that Ω0 and Ωε all lie in some slightly larger ambient open surface
Ω̃, and that the metrics gε on Ωε are all extended to metrics (still denoted
gε) on this larger domain. We assume that this family of metrics converges
smoothly on Ω̃. Let p be a vertex of Ω0 and consider the portion of Ωε in
some ball of fixed size around p, Bc(p)∩Ωε. Our main assumption is that the
family of pointed spaces (Bc(p)∩Ωε, ε

−2gε, p) converges in pointed Gromov-
Hausdorff norm, and smoothly, to a noncompact region Z ⊂ R2 with smooth
boundary, such that at infinity, ∂Z is asymptotic to a cone with vertex at
0 and with opening angle α, the same angle as at the vertex p in (Ω0, g).
This is a slightly different usage of pointed Gromov-Hausdorff convergence
since the base point p does not necessarily lie in Ωε; we can think of this,
however, as pointed Gromov-Hausdorff convergence for (Ω̃, gε, p).

Note that this definition implies that the distance between p and ∂Ωε

is bounded above by a constant times ε, and that gε is a small perturba-
tion, which decreases with ε, of the rescaling of the standard flat metric on
Z ∩Bc/ε. For convenience we assume in the rest of this paper that the con-
stant c equals 1. Thus the basic assumption is the existence of a smoothly
bounded asymptotically conic region Z in the plane such that ε−1(Ωε∩B1(p))
converges to Z.

This definition is a very special case of a more general desingularization
construction explored carefully in [8] and [9] for the case of degeneration
to spaces with isolated conic singularities, and in greater generality in [5].
The goal in these first two papers, as here, is to analyze the behaviour
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of the heat kernel under this degeneration process. That analysis is quite
involved, although it yields much sharper results than can be obtained by
the present more naive methods. However, one motivation for the present
paper is to show how some very simple rescaling arguments, which are only
slight generalizations of ones used (in substantially more sophisticated ways)
by Cheeger [2], already yield some interesting results.

Now consider the function

G(t, ε) = TrHΩε =
∫

Ωε

HΩε(t, z, z) dz, (1.5)

which is smooth on the interior of the quadrant Q = {t ≥ 0, ε0 > ε ≥ 0};
our main theorem concerns its precise regularity at the corner t = ε = 0.
This will be decribed in terms of its regularity on the parabolic blowup of Q
which we denote Q0. This space is diffeomorphic to Q away from the origin,
but has an extra ‘front face’ F replacing the point (0, 0) which encodes all
the directions of approach to this point along parabolic trajectories. It is
described more carefully in §2 below. One of the goals of this paper, in fact,
is to advertise the utility and naturality of this blowup construction.

Theorem 1.6. Let (Ωε, gε) be a family of smooth surfaces with Riemannian
metrics which converge in the manner described above to a surface with
piecewise smooth boundary (Ω0, g0). Then the function G(t, ε) lifts to Q0 to
be polyhomogeneous conormal at all boundary faces and corners.

Recall that polyhomogeneity means simply that the lift of G has asymp-
totic expansions at all boundary faces and product type expansions at all
corners. The existence of such expansions somehow normalizes our problem.
Indeed, the heat trace anomaly is simply the fact that the limit as ε↘ 0 of
the second asymptotic coefficient a2(ε) in the expansion as t↘ 0 is not the
same as the second asymptotic coefficient of the heat expansion for Ω0. The
front face F of Q0 separates where these limits are taken (t→ 0 then ε→ 0
vs. the other way around), and this extra space allows for the existence of
a function which interpolates between these two values. Our second main
result describes this function.

Theorem 1.7. There is a function C2(τ) defined along the front face of Q0,
which is smooth in the rescaled time variable τ = t/ε2, and satisfies

lim
τ↘0

C2(τ) =
χ(Ω0)

6
, and

lim
τ↗∞

C2(τ) =
χ(Ω0)

6
+

k∑
j=1

π2 − α2
j

24παj
− 1

12π

k∑
j=1

αj .
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Its explicit form includes the finite part of a divergent expansion:

C2(τ) =
χ(Ω0)

6
+

k∑
j=1

f.p.
ε=0

∫
{z∈Zj :|z|<1/ε}

HZj (τ, z, z) dz − 1
12π

k∑
j=1

αj ,

where Zj models the collapse at the jth corner.

Remark 1.8. When Ω0 is a triangle (or indeed, any simply connected poly-
gon in the plane), then χ(Ω0) = 1, so the first and third terms in the formula
for limτ→∞C2(τ) cancel, and we obtain Ray’s original formula

lim
τ→∞

C2(τ) = a2(0) =
k∑

j=1

π2 − α2
j

24παj
.

This interpolating function C2(τ) therefore ‘explains’ the heat trace
anomaly, or alternately, the anomaly is caused by the renormalized heat
trace on the complete space Zj . We also discuss some of the other coeffi-
cients in the asymptotic expansions for the lift of G at the various boundary
faces and corners of Q0.

This paper is organized as follows. In §2, we recall some preliminary
facts about parabolic blowups and scaling properties of heat kernels and the
standard parametrix construction for heat kernels. The proofs of the two
theorems are then presented in §3.

The authors wish to thank Lennie Friedlander for bringing this problem
to their attention, and the first author is also grateful to Gilles Carron and
Andrew Hassell for some helpful comments.

2 Preliminaries

In this section we collect the requisite facts and tools: the behaviour of
the heat kernel under scaling of the underlying space, a review of parabolic
blowups and polyhomogeneity, and a slight modification of the standard
parametrix construction for heat kernels.

2.1 Heat kernels and dilations

The heat kernel transforms naturally under dilations of the domain, or equiv-
alently, of the metric. Let (M, g) be any complete Riemannian manifold with
smooth (or piecewise smooth) boundary, and denote byHM (t, z, z′) the min-
imal heat kernel for the Laplacian with Dirichlet boundary conditions on M .
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This is a smooth function on the interior of R+ ×M ×M with well-known
regularity properties at the various boundaries and corners.

We seek to relate this heat kernel with the one for the same manifold
M but with rescaled metric gλ = λ2g, λ ∈ R+. This will be applied when
M ⊂ R2, g is the induced Euclidean metric, and we relate its heat kernel to
the one for λM , the image of M under the dilation Dλ : R2 → R2, z 7→ λz.
The pullback of the Euclidean metric from λM to M is simply λ2 g.

Proposition 2.1. The heat kernels on M and λM are related by the formula

HλM (λ2t, λz, λz′)λ2 = HM (t, z, z′).

Implicit in this formula, we are parametrizing points in λM with points
in M via Dλ. To prove this, observe that the heat operator ∂t − ∆z

on M transforms homogeneously with respect to the parabolic dilation
(t, z) 7→ (λ2t, λz). Hence, the expression on the left satisfies the heat equa-
tion; the additional λ2 is the Jacobian factor accounting for the fact that
HλM (0, w, w′) = δ(w − w′) is homogeneous of order −2 in two dimensions.

2.2 Parabolic blowup

The parabolic dilation Dλ(t, ε) = (λ2t, λε) motivates the introduction of
parabolic blowup Q0 of the quadrant Q := [0,∞)t × [0, ε0)ε at (0, 0). This
space is defined as follows. As a set, Q0 is the disjoint union of Q \ {(0, 0)}
and the orbit space F = Q \ {(0, 0)}/ ∼, where (t, ε) ∼ (t′, ε′) if (t′, ε′) =
Dλ(t, ε) for some λ > 0. More concretely, F is diffeomorphic to a closed
quarter-circle; it is also identified with the set of all equivalence classes of
parametrized curves γ(s) = (t(s), ε(s)) with lims↘0 γ(s) = (0, 0), ε(s) =
O(t(s)2), and where

γ ∼ γ̃ ⇐⇒ lim
s→0

ε(s)2

t(s)

/
ε̃(s)2

t̃(s)
= 1.

The curves t = τε2 (parametrized by s 7→ (τs2, s)), τ ≥ 0, provide represen-
tatives of each equivalence class except the one represented by the t axis.
There is a unique minimal C∞ structure on Q0 for which the lifts of smooth
functions from Q and the parabolic polar coordinates r =

√
t+ ε2, t/r2 and

ε2/r2 are all smooth. We label the faces of Q0 as follows: F is the new
front face, and L and R are the left and right side faces (the lifts of t = 0
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and ε = 0, respectively). There is a smooth ‘blowdown’ map β : Q0 −→ Q
defined in the obvious way.

It is usually more convenient to use projective rather than polar coordi-
nates. There are two such systems,

(τ, ε), τ = t/ε2, and (t, η), η = ε/
√
t,

which are valid away from R and L, respectively. Thus, for example, τ is
an ‘angular’ variable which vanishes on L, and in this coordinate system
F = {ε = 0}.

Parabolic blowups are described in detail and much greater generality in
[6].

2.3 Polyhomogeneous conormal functions

Let M be a manifold with corners. A class of functions which is the natural
replacement for (or at least just as good as) the class of smooth functions
is the class of polyhomogeneous conormal functions. We refer to [4] for a
detailed exposition, but review a few facts about these here.

First recall the space Vb of all smooth vector fields on M which are
tangent to all boundaries of M . If H1, . . . ,Hk are boundary hypersurfaces
of M meeting at a corner of codimension k, with boundary defining func-
tions x1, . . . , xk, respectively, and local coordinates y = (y1, . . . , yn−k) on
the corner, then Vb is spanned over C∞(M) locally near this corner by
{x1∂x1 , . . . , xk∂xk

, ∂y1 , . . . , ∂yn−k
}.

A function (or distribution) u is said to be conormal if it has stable
regularity with respect to Vb. In other words, there exists a k-tuple of real
numbers µ1, . . . , µk so that

V1 . . . V` u ∈ xµ1
1 . . . xµk

k L∞(M), ∀ ` and ∀Vj ∈ Vb.

(In particular, the µi are independent of ` and the Vj .) Examples include
monomials xs1

1 . . . xsk
k for sj ∈ C, as well as products of arbitrary powers

of | log xj |. The special subclass with which we are interested consists of
the functions with asymptotic expansions in terms of powers of the bound-
ary defining functions and nonnnegative integer powers of the logs of these
defining functions, with coefficients which are smooth in all other variables.
The expansions are formalized using the notion of an index set I. This
consists of a countable sequence of pairs (α,N) ∈ C × {N ∪ {0}} such that
for each A ∈ R, Reα > A for all but a finite number of these pairs. Now,
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the conormal function u has a polyhomogeneous expansion near a corner of
codimension k if there are k index sets I1, . . . , Ik so that

u ∼
∑

(αj ,Nj)∈Ij

∑
`j≤Nj

xα1
1 (log x1)`1 . . . xαk

k (log xk)`kaα,`(y),

where each coefficient function aα,` is C∞. Note that since u is already
assumed to be conormal, this expansion may be differentiated.

The polyhomogeneous functions on Q and Q0 with which we shall be
concerned are quite simple. None of them will have log terms in their expan-
sions, and the exponents are (not necessarily nonnegative) integers. Thus,
for example, near L a polyhomogeneous function u will have expansion in
powers of t with coefficients smooth in ε; near F in terms of either of the
projective coordinate systems, it has an expansion in powers of ε with coef-
ficients smooth in τ , or equivalently, in powers of t with coefficients smooth
in η; near the corner L ∩ F it will have an expansion in powers of τ and ε,
with coefficients now simply numbers.

The final point to describe here is that if u is polyhomogeneous conormal
on Q, then its lift β∗u to Q0 is also polyhomogeneous conormal, and

u ∼
∑

ajkt
jεk =⇒ β∗u ∼

∑
ajk(τε2)jεk =

∑
ajkτ

jε2j+k.

(On the other hand, if w is polyhomogeneous on Q0, then its pushforward
to Q is always conormal, but rarely polyhomogeneous.)

2.4 Parametrix construction

We conclude this section by reviewing a parametrix construction for the heat
kernel, which is useful because it accurately captures the asymptotics of the
true heat kernel as t ↘ 0. The construction here is slightly nonstandard,
but is well suited for our calculations below.

Let M be a complete Riemannian manifold, possibly with boundary,
and suppose that M = M1 ∪ M2 where M1 and M2 are two manifolds
with boundary with M1 ∩ M2 = Σ a hypersurface. If M has boundary,
assume that Σ intersects ∂M transversely, and M1 and M2 are manifolds
with corners of codimension two. Suppose further that Mj lies in a slightly
larger complete manifold M ′

j , again possibly with boundary, such that for
some neighbourhood U of Σ, M ′

j ∩ U = M ∩ U .
Taking the heat kernels on each M ′

j as given, define

H̃M (t, z, z′) =
2∑

j=1

χj(z)HM ′
j (t, z, z′)χj(z′),
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where χj is the characteristic function of Mj in M . In the more customary
parametrix construction, the Mj are relatively open in M, and M1 ∩M2

is also open; the HM ′
j are pasted together using cutoff functions {ψj} and

{ψ̃j} with ψ1 + ψ2 = 1, where suppψj ⊂ {ψ̃j = 1}, and supp ψ̃j ⊂ M ′
j . We

are using sharp (discontinuous) cutoffs rather than smooth ones, however,
so that we can identify certain asymptotic coefficients in the calculations to
follow.

Lemma 2.2. Let HM (t, z, z′) denote the true heat kernel on M , and set

K(t, z) = H̃M (t, z, z)−HM (t, z, z).

Then K(t, z) = O(t∞) as t↘ 0.

Proof. Rewrite

H̃M (t, z, z) = χ1(z)
(
HM ′

1(t, z, z)−HM (t, z, z)
)

+ χ2(z)
(
HM ′

2(t, z, z)−HM (t, z, z)
)

+HM (t, z, z).

By assumption, M ′
j agrees with M in a neighbourhood of Mj , so that

HM ′
j (t, z, z) − HM (t, z, z) = O(t∞) on the support of χj (remember that

the small t expansions of these operators are local), and this proves the
claim.

3 Proofs of main theorems

We have now assembled all the requisite facts and can proceed with the
proofs of the main theorems.

As in the introduction, let G(t, ε) = TrHΩε . If β : Q0 → Q is the
blowdown map, then let G = β∗G. We need to analyze the behaviour of
G near each of the faces and corners of Q0, and for that we shall use the
coordinates (τ, ε) introduced in §2.2.

We shall make a simplifying assumption about the geometry in order to
elucidate the proof. For each i, let Sαi denote the sector in R2 with opening
angle αi. Choose a smoothly bounded region Zi in the plane which coincides
with Sαi outside B1/2(0), and let Zε

i = B1/ε(0) ∩ Zi. Then we assume that
near each vertex pi, the restriction of the metric gε to B1(pi)∩Ωε is isometric
to the dilation by the factor ε of the region Zε

i , which obviously lies in the
unit ball. The result remains true in the generality with which it was stated
earlier, but the proof requires a few more technical steps which are both
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standard and not particularly germane to the main ideas here. Furthermore,
for notational convenience only, we assume that there is only a single vertex
p and denote the corresponding smooth model region and sector by Z and
S, respectively.

Proof of Theorem 1.6: We first construct a particular family of parametrices
for the heat kernel on Ωε. For any 0 ≤ ε < ε0, decompose

Ωε = Ωε,1 ∪ Ω′

where Ωε,1 = Ωε ∩ B1(p), and Ω′ = Ωε \ (Ωε ∩ B1(p)). Note that Ω′ is
independent of ε. Lemma 2.2 shows that

HΩε(t, z, z) = χ1(z)HεZ(t, z, z) + χ2(z)HΩ0(t, z, z) +K(t, z), (3.1)

where χ1 is the characteristic function of |z| ≤ 1, χ2 = 1− χ1, and K is the
error term from Lemma 2.2, hence

G(t, ε) =
∫
|z|≤1

HεZ(t, z, z) dz +
∫

Ω′
HΩ0(t, z, z) dz +

∫
Ωε

K(t, z, z) dz.

We denote the sum on the right side by I + II + III, and analyze the lifts of
these terms successively.

By Proposition 2.1, HεZ(t, z, z′) = ε−2HZ(t/ε2, z/ε, z′/ε), so setting z =
z′ = εw, we see that

β∗I =
∫
|w|≤1/ε

HZ(τ, w,w) dw.

This will be the principal term, and we defer its analysis for the moment.
Next, II is independent of ε, and it is polyhomogeneous as t ↘ 0, with

expansion given by integrating the standard heat coefficients aj(z) over this
restricted domain. Hence its lift to Q0 is clearly polyhomogeneous.

Finally, by Lemma 2.2, III depends on ε but decays rapidly in t uniformly
in ε.

We now examine β∗I more closely. Choose a smoothly bounded compact
region W which agrees with Z in |w| ≤ 2, so that Z = (W ∩B1)∪ (S \B1).
Using Lemma 2.2 again, write

HZ(t, z, z) = χ1(z)HW (t, z, z) + χ2(z)HS(t, z, z) +K1(t, z) (3.2)

where K1 is the corresponding error term. Then

β∗I =
∫
|w|≤1

HW (τ, w,w) dw +
∫

1≤|w|≤1/ε
HS(τ, w,w) dw

+
∫
|w|≤1/ε

K1(τ, w,w) dw,
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which we write as I′ + II′ + III′.
We first prove polyhomogeneity of these terms away from the right face

R of Q0. The term I′ has an expansion as τ ↘ 0 and is independent of ε, so
β∗I′ is certainly polyhomogeneous in this region. By Lemma 2.2 again, K1

decreases rapidly as τ → 0, so this term is also polyhomogeneous there. Note
too that by the explicit form of the error term in the proof of that lemma,
and using the dilation properties of HZ and HS again, K1(τ, z) = O(|z|−∞)
uniformly for τ in any bounded set, so its integral over |z| ≤ 1/ε is also
bounded independently of ε.

To analyze the remaining term, set

D(R) :=
∫
|w|≤R

HS(1, w, w) dw.

By Proposition 2.1, II′(ε, τ) = D(1/ε
√
τ) − D(1/

√
τ), so it will suffice to

show that D has an expansion in powers of 1/R as R → ∞. For this, we
appeal to a calculation by van den Berg and Srisatkunarajah [1], who prove
that

D(R) =
αR2

8π
− R2

2π

∫ 1

0
e−R2y2√

1− y2 dy +
π2 − α2

24πα
+O(e−cR2

) (3.3)

for some c > 0 independent of R. Only the polyhomogeneous structure
of the second term on the right is nonobvious. For that, we may as well
replace the upper limit of integration by 1/2 since the integral from 1/2 to 1
decreases exponentially in R. Using the Taylor series for

√
1− y2 at y = 0,

we find that

R2

2π

∫ 1/2

0
e−R2y2

(1− 1
2
y2 − 1

4
y4 − . . .) dy ∼ R

4
√
π
− 1

16
√
πR

+O(R−3),

and this completes the proof of polyhomogeneity of β∗I for τ in any bounded
set.

To finish the proof, we must analyze the behaviour of β∗I as τ ↗ ∞.
Switch to the coordinates t, η, so ε = η

√
t, and τ = η−2. It is now more

convenient to use the standard representation of the heat kernel in terms of
the resolvent:

HZ =
∫

Γ
e−τλRZ(λ) dλ, where RZ(λ) = (−∆Z − λ)−1. (3.4)

Here Γ is a path surrounding the spectrum of ∆Z , for example, the two
half-lines Imλ = ±(αReλ + β), α, β > 0, joined by the half-circle |λ| = β,

11



Reλ ≤ 0, traversed in the counterclockwise direction. In general it is a subtle
matter to deduce the fact that HZ has an expansion in powers of 1/τ at
large times since this depends on the fine structure of the resolvent near the
threshold λ = 0. However, in this case we already have sufficient information
about the heat kernel on S that this is not hard. Choose a partition of unity
{ψ1, ψ2} on Z such that ψ1 = 1 in |z| ≤ 3/4 and ψ2 = 1 in |z| ≥ 5/4, and that
both Z ∩W and Z ∩ S contain the region Z ∩ {3/4 ≤ |z| ≤ 5/4}. Choose
other cutoff functions ψ̃j such that ψ̃j = 1 on suppψj . Let RW and RS

denote the resolvents for ∆W and ∆S , with Dirichlet boundary conditions,
and define the parametrix

R̃Z(λ) = ψ̃1RW (λ)ψ1 + ψ̃2RS(λ)ψ2.

Then

(∆Z − λ)R̃Z(λ) = I + [∆Z , ψ̃1]RW (λ)ψ1 + [∆Z , ψ̃2]RS(λ)ψ2 := I + E(λ).

Since the singular supports of both RW and RS are on the diagonal, and
the support of [∆, ψ̃j ] is disjoint from that of ψj , we see that E(λ) is a
holomorphic family of operators (for λ ∈ C \ R+) which maps L2(Z) into
C∞0 (Z). Also, since ∆Z −λ is invertible for λ in this region, I +E(λ) is also
invertible there. We write its inverse as I + F (λ), so that

RZ(λ) = R̃Z(λ) + R̃Z(λ)F (λ). (3.5)

The relationships (I + E(λ))(I + F (λ)) = (I + F (λ))(I + E(λ)) = I imply
that

F (λ) = −E(λ) + E2(λ) + E(λ)F (λ)E(λ),

hence F (λ) is also smoothing and maps L2(Z) into C∞0 (Z); the second term
on the right in (3.5) has the same mapping properties.

Finally, the form of the expansion of F (λ) for λ near 0 (away from the
positive real axis) is the precisely the same as that of E(λ), which in turn
is the same as that of R̃Z(λ), and hence finally as that of RS(λ).
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The decay of each of term as |λ| → ∞ is straightforward, so we can write∫
|z|≤1/η

√
t
HZ(η−2, z, z) dz =

∫
|z|≤1/η

√
t

(∫
Γ
e−λ/η2

RZ(λ) dλ
)

(z, z) dz

=
∫
|z|≤2

(∫
Γ
e−λ/η2

ψ1RW (λ) dλ
)

(z, z) dz

+
∫

1/2≤|z|≤1/η
√

t

(∫
Γ
e−λ/η2

ψ2RS(λ) dλ
)

(z, z) dz

+
∫
|z|≤1/η

√
t

(∫
Γ
e−λ/η2

R̃Z(λ)F (λ) dλ
)

(z, z) dz.

The inner integrand in the first term on the right extends holomorphically
to a neighbourhood of λ = 0, so the contour can be moved to lie entirely
in the right half-plane, which shows that this term decreases exponentially
in 1/η. The second term is polyhomogeneous by the explicit analysis of the
function D(R) above. The fact that the final term has an expansion follows
from the existence of asymptotics of F (λ) for λ near 0. This completes the
proof of the polyhomogeneity of G on Q0. �

Proof of Theorem (1.7) This consists of examining the terms in the expansion
of G at the various boundary faces.

First, at L, away from F we may use the variables (t, ε), and

G(t, ε) ∼
∞∑

j=0

aj(ε)t−1+j/2.

Near L ∩ F, we substitute t = ε2τ to get

G(τ, ε) ∼
∞∑

j=0

aj(ε)τ−1+j/2ε−2+j . (3.6)

The coefficients aj(ε) are polyhomogeneous as ε→ 0 by Theorem 1.6.
At R, away from t = 0,

G(t, ε) ∼
∞∑

j=0

Bj(t)εj ;

here B0(t) = TrHΩ0 . Near F ∩ R we use the coordinates t and η = ε/
√
t to

compute

G(t, η) ∼
∞∑

j=0

Bj(t)ηjtj/2.
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Again, the coefficients Bj(t) are polyhomogeneous in t.
Finally, near F, we use the coordinates (τ, ε), so the expansion is in

powers of ε, and by (3.6) it is

G(τ, ε) ∼
∞∑

j=0

Cj(τ)ε−2+j .

We shall identify the coefficients C0, C1 and C2.
By our analysis of the terms I′, II′, III′, II and III, we see that only II′ and

II contribute to the coefficients of ε−2 and ε−1. Substituting directly from
the expansions of these two terms (using the McKean-Singer asymptotics
on Ω′ for II and the first terms in the expansion of D(1/ε

√
τ) for II′), and

then using the definition of the finite part at ε = 0 of I, we have

G(τ, ε) ∼ 1
ε2τ

(
|Ω′|
4π

+
α

8π

)
− 1
ετ1/2

(
|∂Ω′|
8
√
π

+
1

4
√
π

)
+

1
12π

(∫
Ω′
K dA+

∫
∂Ω′

κ ds

)
+ f.p.

ε=0

∫
Z
HZ(τ, w,w) dw +O(ε).

In other words,

C0(τ) =
1
τ

(
|Ω′|
4π

+
α

8π

)
,

C1(τ) = − 1√
τ

(
|∂Ω′|
8
√
π

+
1

4
√
π

)
,

and

C2(τ) =
1

12π

(∫
Ω′
KdA+

∫
∂Ω′

κds

)
+ f.p.

ε=0

∫
Z
HZ(τ, w,w) dw.

This simplifies using the following observations: first, calculating the area
of a circular sector of opening α gives |Ω0 ∩B1| = α/2, so the coefficient of
ε−2τ−1 is just |Ω0|; second, the sides of this circular sector are straight lines,
so |∂Ω0 ∩ B1| = 2, which means that the next coefficient is −|∂Ω0|/8

√
π;

finally, since g0 is flat in Ω0∩B1, K ≡ 0 there, so using that the contribution
from ‘turning the corner’ at p in the boundary integral is α, we find that∫

Ω′
K dA+

∫
∂Ω′

κ ds = 2πχ(Ω0)− α.

This means that the first part of the coefficient of ε0 reduces to χ(Ω0)/6−
α/12π. In other words,

C2(τ) = f.p.
ε=0

∫
Z
HZ(τ, w,w) dw +

1
6
χ(Ω0)−

α

12π
. (3.7)
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We conclude by calculating its behaviour for small and large τ . Using
the small τ asymptotics, we see that∫

|w|<1/ε
HZ(τ, w,w) dw ∼

|Z ∩B1/ε|
4π

τ−1

−
|∂Z ∩B1/ε|

8
√
π

τ−1/2 +
1

12π

∫
∂Z
κ ds+O(ετ1/2),

which means that the finite part is equal to α/12π, so the limit of C2 as
τ → 0 is χ(Ω0)/6, as claimed.

Finally, we use the dilation one more time to calculate that∫
|w|≤1/ε

HZ(τ, w,w) dw =
∫
|w|≤1/ε

√
τ
HZ/

√
τ (1, w, w) dw.

Noting that ε
√
τ =

√
t, and since Z/

√
τ converges to the sector S as τ →

∞, we can use the expansion (3.3) to see that the finite part is indeed
(π2−α2)/24πα. Therefore, in general, with an arbitrary number of vertices,

lim
τ→∞

C2(τ) =
χ(Ω0)

6
+

k∑
j=1

π2 − α2
j

24παj
− 1

12π

k∑
j=1

αj ;

in particular, if Ω0 is a triangle, its Euler characteristic is 1, so the first and
third terms cancel.

This completes the proof.
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