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On Commutativity of Semiperiodic Rings

Howard E. Bell and Adil Yaqub

Abstract. Let R be a ring with center Z, Jacobson radical J , and set N of all
nilpotent elements. Call R semiperiodic if for each x ∈ R\ (J ∪Z), there exist
positive integers m, n of opposite parity such that xn − xm ∈ N . We inves-
tigate commutativity of semiperiodic rings, and we provide noncommutative
examples.
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1. Introduction

Let R be a ring with center Z = Z(R), Jacobson radical J = J(R), and set
N = N(R) of all nilpotent elements; and let Z and Z

+ denote the ring of integers
and the set of positive integers. Define R to be periodic if for each x ∈ R, there
exist distinct positive integers m, n such that xn = xm. It is known that R must
be periodic if each x ∈ R satisfies the Chacron criterion [5]:

there exists m ∈ Z
+ and p(t) ∈ Z[t] such that xm = xm+1p(x) . (∗)

It follows that R is periodic if for each x ∈ R there exist distinct m,n ∈ Z
+ for

which xn − xm ∈ N .
In this paper we study rings in which an appropriate subset of elements of R

satisfy the Chacron criterion. Specifically, we define R to be semiperiodic if for
each x ∈ R \ (J ∪ Z) there exist m,n ∈ Z

+, of opposite parity, such that xn −
xm ∈ N . Clearly, the class of semiperiodic rings contains all commutative rings,
all Jacobson radical rings, and certain non-nil periodic rings; and it contains the
generalized periodic-like rings discussed in [4]. We shall be principally concerned
with commutativity and near-commutativity of semiperiodic rings.
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2. Preliminaries

We begin with a bit of additional terminology. A ring R is called reduced if N =
{0}, and R is called normal if all idempotents are central. An element x ∈ R is
periodic if there exist distinct m,n ∈ Z

+ for which xn = xm; and x is potent if
there exists n ∈ Z

+, n > 1, such that xn = x. It is easy to show that if R is
reduced, every periodic element is potent.

As usual, if x, y ∈ R, the symbol [x, y] represents the commutator xy−yx; and
extended commutators [x, y]k, k ≥ 1, are defined inductively by taking [x, y]1 =
[x, y] and [x, y]k = [[x, y]k−1, y]. It is easily verified that

[x, y]k =
k∑

i=0

(−1)i

(
k

i

)
yixyk−i . (2.1)

The symbol C(R) denotes the commutator ideal of R, and 〈x〉 denotes the subring
generated by x. Finally, the symbol ((m,n)) represents an ordered pair of positive
integers of opposite parity.

We now state two lemmas which apply to rings which are not necessarily
semiperiodic, followed by several lemmas dealing with elementary properties of
semiperiodic rings.

Lemma 2.1 ([2, Lemma 2]). If R is any ring in which each element is central or
potent, then R is commutative.

Lemma 2.2. If R is a ring containing an ideal I such that both I and R/I are
commutative, then the commutator ideal C(R) is nil and N is an ideal.

Proof. Since R/I is commutative, [x, y] ∈ I for all x, y ∈ R; and since I is com-
mutative, R satisfies the identity [[x, y], [u, v]] = 0. The conclusion now follows by
Theorem 1 of [1]. �
Lemma 2.3. Let R be any semiperiodic ring.

(i) Every epimorphic image of R is semiperiodic, and every ideal of R is semiperi-
odic.

(ii) If e is any idempotent with additive order not a power of 2, then e ∈ Z.
(iii) If x �∈ J ∪ Z, there exists q ∈ Z

+ and g(t) ∈ tZ[t] such that e = g(x) is
idempotent and xq = xqe.

Proof. (i) This is immediate, once we recall that if σ : R → S is a ring epimorphism,
then σ(J(R)) ⊆ J(S), and that J(I) = I ∩ J(R) for every ideal I of R.
(ii) If e is a noncentral idempotent, then −e �∈ J ∪ Z, hence there exists ((m,n))
for which (−e)n − (e)m ∈ N . Since m and n are of opposite parity, 2e ∈ N and
hence there exists k ∈ Z

+ such that 2ke = 0.
(iii) If x /∈ J ∪Z, there exists ((m,n)) such that xn − xm ∈ N and therefore there
exist q ∈ Z

+ and f(t) ∈ Z[t] such that xq = xq+1f(x). It is easily verified that
e = (xf(x))q is an idempotent with xq = xqe. �
Lemma 2.4. If R is a normal semiperiodic ring, then N ⊆ J .
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Proof. Let a ∈ N with ak = 0, and let x ∈ R. If ax ∈ J , then ax is right quasi-
regular; and if ax ∈ Z, then ax is nilpotent and again ax is right quasi-regular.
Suppose, then, that ax �∈ J ∪ Z, in which case Lemma 2.3 (iii) gives q ∈ Z

+

and a central idempotent e of form ay such that (ax)q = (ax)qe. Since e ∈ Z,
e = e2 = eay = aey = a2ey2 = · · · = akeyk = 0; hence (ax)q = 0 and ax is right
quasi-regular. Thus a ∈ J . �

Lemma 2.5. If R is a normal semiperiodic ring and σ : R → S is a ring epimor-
phism, then N(S) ⊆ Z(S) ∪ σ(J).

Proof. Suppose w ∈ N(S) \ (Z(S)∪σ(J)) with wq = 0, and let u ∈ σ−1(w). Since
u �∈ Z(R) ∪ J , there exists k > 1 such that u − uk ∈ N ; and by Lemma 2.4,
u − uk ∈ J . It follows that (u − uk) + uk−1(u − uk) + u2(k−1)(u − uk) + · · · +
uq(k−1)(u − uk) ∈ J – i.e., u − u(q+1)(k−1)+1 ∈ J . Thus, by applying σ, we get
w − w(q+1)(k−1)+1 = w ∈ σ(J) – a contradiction. �

Lemma 2.6. If R is a semiperiodic ring with 1, then J ⊆ N or J ⊆ Z.

Proof. Suppose j ∈ J \ Z. Then 1 + j and −1 + j are not in J ∪ Z, hence there
exist ((m1, n1)) and ((m2, n2)) such that

(1 + j)n1 − (1 + j)m1 ∈ N and (−1 + j)n2 − (−1 + j)m2 ∈ N .

It follows that

(m − n)j + j2f(j) ∈ N for some f(t) ∈ Z[t] (2.2)

and
2 + jg(j) ∈ N for some g(t) ∈ Z[t] . (2.3)

The latter condition implies that

2j + j2g(j) ∈ N ; (2.4)

and from (2.2) and (2.4), together with the fact that sums of commuting elements
of N are in N , we get h(t) ∈ Z[t] such that j + j2h(t) ∈ N . Arguing as in the
proof of Lemma 2.3(iii), we obtain k ∈ Z

+ for which jk = jke for some idempotent
e ∈ J . Thus jk = 0.

We have now shown that J ⊆ Z ∪ N . If J �⊆ Z and j ∈ J \ Z, then j ∈ N .
For any c ∈ J ∩ Z, j + c ∈ J \ Z, hence c = j + c− j is a difference of commuting
elements of N , and therefore c ∈ N . Thus J ⊆ Z or J ⊆ N . �

3. Near-commutativity theorems

Theorem 3.1. If R is a normal semiperiodic ring, then R/J is commutative. If in
addition J is commutative, then N is an ideal and R/N is commutative.
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Proof. Let R̄ = R/J . Since N ⊆ J by Lemma 2.4, R̄ has the property that

for each x ∈ R̄ , either x ∈ Z(R̄) or xn = xm for some ((m,n)) .
(3.1)

Let S be a primitive image of R̄. Since (3.1) is inherited by epimorphic images
and subrings, and since 2× 2 matrix rings over division rings do not satisfy (3.1),
we conclude that S must be a division ring. But a division ring satisfying (3.1)
has the property that each element is central or potent, hence is commutative
by Lemma 2.1. Therefore, by the density theorem, R̄ is commutative. If J(R) is
commutative, then by Lemma 2.2, N is an ideal and R/N is commutative. �

Corollary 3.2. If R is a reduced semiperiodic ring with J commutative, then R is
commutative.

Proof. It is well-known that reduced rings are normal, hence the result follows at
once from Theorem 3.1. �

Theorem 3.3. If R is a normal semiperiodic ring with 1, then N is an ideal and
R/N is commutative.

Proof. Since N ⊆ J by Lemma 2.4, it follows by Lemma 2.6 that J = N or J ⊆ Z.
In the first case, it is obvious that N is an ideal; and R/N is commutative because
each of its elements is central or potent. In the second case the conclusion follows
immediately by Theorem 3.1. �

4. Some commutativity theorems

A well-known theorem of Herstein [8] asserts that a periodic ring with N ⊆ Z
must be commutative. We begin this section by presenting similar theorems for
semiperiodic rings.

Theorem 4.1. If R is a normal semiperiodic ring with J ⊆ Z, then R is commu-
tative.

Proof. By Lemma 2.4, N ⊆ J and therefore N ⊆ Z. Since J ⊆ Z, for each
x ∈ R \ Z there exists ((m,n)) with n > m for which xn − xm ∈ N . It follows
easily that xn−m+1−x ∈ N ⊆ Z, hence R is commutative by a well-known theorem
of Herstein [7]. �

Corollary 4.2. If R is a semiperiodic ring with 1 in which N ⊆ Z, then R is
commutative.

Proof. Since N ⊆ Z, R is normal; and by Lemma 2.6, J ⊆ Z. �

Our next theorem, which was a surprise, will be used in the proofs of the
final two theorems in this section.

Theorem 4.3. Let R be semiperiodic with 1. Then either R is commutative, or R
is periodic and (R,+) is a 2-group.
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Proof. Suppose that R is not commutative, so that by Corollary 4.2 we have an
element x ∈ N \ Z. Then −1 + x �∈ J ∪ Z, hence we have ((m,n)) for which
(−1 + x)n − (−1 + x)m ∈ N . It follows that 2 + u ∈ N for some u ∈ N , so that
2 is the difference of two commuting nilpotent elements, hence 2 ∈ N . Therefore,
(R,+) is a 2-group.

It is now clear that if x ∈ R \ (J ∪ Z), 〈x〉 is finite and hence x is periodic.
By Lemma 2.6, J ⊆ N or J ⊆ Z. If J ⊆ Z, each y ∈ R \ Z is periodic; and if
x ∈ Z, x = x + y − y is a sum of commuting periodic elements. Thus every power
of x has form

∑
ni(x + y)jyk, ni ∈ Z; and since there are only finitely many such

sums, x is periodic. Hence in every case J is periodic.
Finally, suppose x ∈ Z \ J . Since R has 1, R �= J ; and since R is not

commutative, R �= Z. Thus there exists y ∈ R \ (J ∪Z). Then either x + y ∈ J or
x+y ∈ R \ (J ∪Z), so x+y is periodic. Thus x = x+y−y is a sum of commuting
periodic elements, and we argue as above that x is periodic. We have now shown
that R is periodic. �
Theorem 4.4. If R is a reduced semiperiodic ring with R �= J , then R is commu-
tative.

Proof. If R = J ∪ Z, then R = Z and we are finished. Assume that R �= J ∪ Z,
in which case every element of R \ (J ∪Z) is potent. Let a be any nonzero potent
element, with an = a, n > 1 Then e = an−1 is a nonzero idempotent, necessarily
central since reduced rings are normal. By Lemma 2.3 (i), eR is a semiperiodic
ring with identity; hence by Lemma 2.6, J(eR) ⊆ Z(eR). Thus, by Theorem 4.1,
eR is commutative; and for each x ∈ R, [ea, ex] = 0 = [ea, x] = [a, x]. We have
shown that all potent elements are central, so we cannot have R �= J ∪ Z. �
Theorem 4.5. If R is a 2-torsion-free semiprime semiperiodic ring with R �= J ,
then R is commutative.

Proof. Since R is 2-torsion-free, R is normal by Lemma 2.3 (ii); hence N ⊆ J
by Lemma 2.4. If R is reduced, then R is commutative by Theorem 4.4. Assume,
then, that R is not reduced. Recalling that in a semiprime ring N ∩ Z = {0},
conclude that N �⊆ Z. Let u ∈ N \Z and suppose e is a nonzero idempotent. Then
−e+u ∈ R\(J∪Z), and there exists ((m,n)) for which (−e+u)n−(−e+u)m ∈ N .
It follows that 2e is a sum of commuting nilpotent elements, hence 2e ∈ N and
2ke = 0 for some k ∈ Z

+, contradicting our hypotheses that R is 2-torsion-free.
Thus, R has no nonzero idempotents; hence by Lemma 2.3 (iii) and our observation
that N ⊆ J , we get R = J ∪ Z, in which case R = Z. This contradicts our
assumption that N �⊆ Z, so R must in fact be reduced. �
Theorem 4.6. Let R be a semiperiodic ring with R �= J . If both R and R/J are
2-torsion-free, then R is commutative.

Proof. Since R is 2-torsion-free, R is normal; hence, if J ⊆ Z, R is commutative
by Theorem 4.1. Suppose that J �⊆ Z, let j ∈ J \ Z, and let e be any nonzero
idempotent. Then −e + j �∈ J ∪ Z, so there exists ((m,n)) such that (−e + j)n −
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(−e + j)m ∈ N . Therefore, 2e + u ∈ N for some u ∈ J , and hence 2ke + v = 0 for
some k ∈ Z

+ and v ∈ J .
Letting ē be the image of e in R/J , we see that 2kē = 0; and since R/J is

2-torsion-free, ē = 0. Thus e ∈ J , so that e = 0. As in the proof of Theorem 4.5,
this yields a contradiction; hence J ⊆ Z and we are finished. �

Theorem 4.7. Let R be a semiperiodic ring with 1 which satisfies the following two
conditions:

(i) For each a ∈ N and x ∈ R, there exists k ∈ Z
+ for which [a, x]k = 0;

(ii) N is commutative.
Then R is commutative.

Proof. We appropriate a method of proof used in [3]. Note first that if e ∈ R is
idempotent, the condition [ex−exe, e]k = 0 is just the statement that ex−exe = 0.
Similarly, xe − exe = 0, so R is normal. Therefore by Theorem 3.3, N is an ideal
and [x, y] ∈ N for all x, y ∈ R.

By Theorem 4.3, we may assume that R is periodic and (R,+) is a 2-group,
so that for each x ∈ R the subring Rx = 〈x〉 is finite. The ring Rx/N(Rx) is finite
and reduced, hence a direct sum of finite fields of characteristic 2. It follows that
there exists s ∈ Z

+ such that

x2st − x ∈ N for all t ∈ Z
+ . (4.1)

Since 2R ⊆ N , (ii) yields 2[a, x] = [a, 2x] = 0 for all a ∈ N and x ∈ R.
Suppose that a ∈ N and x is such that [a, x]k = 0, k > 1. Then [[a, x], x]k−1 = 0;
and choosing w ∈ Z

+ such that 2w ≥ k − 1, we have [[a, x], x]2w = 0. But by (2.1)
and the fact that 2[a, x] = 0, we have [[a, x], x]2w = [[a, x], x2w

], hence [[a, x], x2w

] =
0. Thus x2sw

= (x2w

)2
sw−w

commutes with [a, x]; and by (ii) and (4.1), so does
x2sw − x. It follows that [[a, x], x] = 0; therefore [a, x2s

] = 2sx2s−1[a, x] = 0, and
another appeal to (4.1) gives [a, x] = 0. We have now shown that N ⊆ Z, so R is
commutative by Corollary 4.2. �

If we strengthen condition (ii), we can drop the hypothesis that R has 1.
Specifically, we have:

Theorem 4.8. Let R be a semiperiodic ring satisfying the following conditions:
(i) For each a ∈ N and x ∈ R, there exists k ∈ Z

+ for which [a, x]k = 0;
(ii)’ J is commutative.
Then R is commutative.

Proof. Since (i) implies R is normal, Theorem 3.1 shows that [x, y] ∈ N for all
x, y ∈ R; and it follows from (i) that

for each x, y ∈ R there exists k ∈ Z
+ such that [x, y]k = 0 . (4.2)

Of course we need only show that subdirectly irreducible images of R are commu-
tative.
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Let S be any subdirectly irreducible image of R and let σ : R → S be an
epimorphism. If S has no nonzero central idempotents, it follows from Lemma 2.3
(iii) that σ(R\(J∪Z)) ⊆ N(S), so that S = σ(J)∪σ(Z)∪N(S). But by Lemma 2.5,
N(S) ⊆ Z(S)∪σ(J); hence S = Z(S)∪σ(J) and therefore S is commutative. Now
suppose S has a nonzero central idempotent – i.e. S has 1. It follows from (4.2)
that S inherits property (i), and by Lemma 2.5 N(S) is commutative. Thus, S is
commutative by Theorem 4.7. �

5. Examples

In this section we provide examples of noncommutative semiperiodic rings R with
1. Theorem 4.3 is very helpful; it says that (R,+) is a 2-group and R is periodic
(and therefore J is nil).

Probably the most accessible example is the ring R0 = M2(GF (2)) – i.e.
the ring of 2 × 2 matrices over GF (2). It is readily verified that R = R0 has the
property that

for each x ∈ R , there exists ((m,n)) such that xn − xm ∈ N . (5.1)

Of course J(R0) = {0}. For an example with J �= {0}, we may take the ring of
2 × 2 upper-triangular matrices over GF (2).

Consider the following example, discussed by Corbas in [6]. Let R1 =GF (2n)×
GF (2n), n > 1, with addition being componentwise and multiplication defined by
(a, b)(c, d) = (ac, ad + bφ(c)), where φ is a non-identity automorphism of GF (2n).
Clearly, R1 is semiperiodic with multiplicative identity (1, 0), J(R1) = N(R1) =
{(0, b) | b ∈ GF (2n)}, and x2n − x ∈ N for all x ∈ R1.

It is easy to see that the direct sum of two rings satisfying (5.1) is semiperi-
odic. Thus R2 = R0⊕R1 is a semiperiodic ring with 1 for which J(R2) is a proper
subset of N(R2) and J(R2) �⊆ Z(R2). Let S be an algebra over GF (2) obtained by
adjoining an identity to a commutative nil algebra, and let R3 = R0 ⊕S. Then R3

is semiperiodic with 1, J(R3) is a proper subset of N(R3), and J(R3) ⊆ Z(R3).
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