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A New Look at Sums of Squares

Larry J. Gerstein

Let R be an integral domain. Among the most basic problems in the theory
of quadratic forms over R is the determination of which nonzero elements in R
can be expressed as a sum of n squares in R, where n is a positive integer. When
R = Z, the classics of this genre are the two-square, four-square, and three-square
theorems of Fermat, Lagrange, and Gauss, respectively (listed here in chronological
order). Of more recent vintage (1964) is this theorem of Cassels: If k is a field of
characteristic not 2, then a polynomial in k[z] is a sum of n squares of polynomials
if and only if it is a sum of n squares of rational functions in k(z). (In slightly more
general form this result is known as the Cassels—Pfister theorem, a cornerstone of
the algebraic theory of quadratic forms.) My first goal in this paper is to present a
unified approach to all these results. Having done this, I will begin the process of
extending this approach to a wider class of problems on representations by quadratic
forms. At the end of the paper I will raise some questions that arise naturally along
the way.

For a ring R, the symbol [J,, will denote the set of nonzero elements in R that
can be written as a sum of n squares of elements of R.

From now on we will assume R is a principal ideal domain whose quotient field
F has characteristic not 2. (In fact our main rings of interest will be Z and k[z].)
We now sketch a bit of background; for more details see [G2] or [O]. Let V be a
regular quadratic F-space with B : V x V — F' its symmetric bilinear form, and
let Q@ :V — F defined by Q(v) = B(v,v) be its associated quadratic form. An
R-lattice L in V is a free R-module of finite rank; and L is said to be on V if it
spans V. Given a basis B = {v1,...,v,} for L, the matrix A = (B(v;,v;)) is the
Gram matrix of L with respect to B. An expression of the form X =Y will have
one of several meanings, depending on the context: if X and Y are both spaces
or both lattices, it means X and Y are isometric; if X is a space or lattice and Y
is a matrix, it means Y is the Gram matrix of X with respect to a suitable basis;
if X and Y are both matrices, it means X and Y are congruent over the relevant
ring—that is, X = 'TYT for some invertible matrix 7. The determinant det A is
the discriminant of L, denoted dL; it is well-defined up to squares in R*. The
fractional R-ideal vL := (dL) is the volume of L. T'wo other important fractional
ideals associated with L are the scale sL and the norm nL, which are generated
respectively by

{B(z,y) |z,y € L} and {Q(z) |z € L}.
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We will say L is integral if sL. C R. The inclusions 2sL C nL C sL hold, and hence
nL = sL if 2 € R*. Also, from the definition of the determinant it follows that
vL C (sL)™; moreover, if I is a fractional ideal and Q(L) C I, then vL C (3I)".
Lattice volumes increase in accord with inclusions; that is, L ¢ L' = vL C vL'.
If I = (), a lattice L is I-modular if L & U, with U a unimodular R-matrix;
and L is said to be unimodular if it is R-modular. A lattice M is I-maximal
if QM) C I and M is maximal (among the lattices on the space spanned by M)
with respect to this property. From the several inclusions stated in this paragraph,
it follows that every lattice L in a space V satisfying Q(L) C I is contained in an
I-maximal lattice on V.

Each nontrivial prime spot (equivalence class of valuations) p on F yields a
completion Fy,, and then V extends (via tensor product) to a quadratic Fy-space
Ve D V; again B is a basis. If p is determined by a nonzero prime ideal of R,
then R, denotes the closure of R in Fy, and then L, is the Ry-lattice RpL in Vj,.
Similarly, if I is a fractional R-ideal, we write I, for the fractional Rp-ideal Ry
in F,. It can be shown—with the help of the invariant factor theorem—that an
R-lattice L on V is I-maximal if and only if for all p the lattice L, is I,-maximal
on V,.

We will say that R-lattices L and L’ on V are in the same genus if there
is an isometry L, = L;J for all nonzero prime ideals p of R. It was shown by
Eichler in 1952 that for a given fractional R-ideal I, all I-maximal R-lattices on a
given quadratic F-space V are in the same genus. In particular, if one R-maximal
R-lattice on V' is unimodular, then they all are.

From now on, if p is the p-adic spot for some prime p of R, we will usually
subscript with p instead of p.

Now we turn our attention to Z-lattices and k[z]-lattices. It has long been
known that every positive definite unimodular Z-lattice of rank n < 7 has an or-
thonormal basis. When n < 5 this result was a consequence of Hermite’s inequality
(from 1850) bounding the minimum of a lattice: the smallest absolute value of a
nonzero element represented by the lattice. We state the inequality here, first for
Z-lattices, as Hermite did it; and then we state its adaption to k[z]-lattices, when
the “minimum” means the smallest degree of a nonzero element represented by the
lattice. (So over k[x] “size” is measured by degree instead of absolute value.) The
proofs in the two settings are similar, the main difference being the nonarchimedian
behavior of the degree function. See [G2, §7.2] for the details.

HERMITE’S INEQUALITIES. (i) Let V' be an anisotropic Q-space of dimension
n, and let L be an integral Z-lattice on V. Then

n—1

4\ 2 1
min L < (3) |[dL|™.

(ii) Let L be an integral k[x]-lattice on an anisotropic quadratic k(x)-space V' of
dimension n. Then

1
min L < —9(dL).
n
We now have two corollaries for k[xz]-lattices. The proof of the first one is imme-

diate in the anisotropic case; the isotropic case needs a short additional argument,
which we omit.
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COROLLARY 1 (Harder’s Theorem). Let L be a unimodular k[x]-lattice of rank

n. Then there exist aq,...,a, € k* such that L = {aq,...,ap).
(Here we have used the bracket notation (......... ) for a diagonal matrix.)
COROLLARY 2 (Cassels—Pfister Theorem). Let f € klx] and suppose aq, ..., oy €

k. If f =5, a;r? for some r; € k(x), then f = Do a;p? for some p; € klz]. In
particular,
f e, over klz] <= f € O, over k(z).

PROOF. Only “<=" requires proof. Let V = {(«,. .., a,) with respect to some
basis {v1,...,v,}. We're given f € k[z] and the assumption that Q(v) = f for some
v € V. Then v is contained in a k[z]-maximal lattice M on V. The k[z]-lattice

L =klzJvy L -+ L k[z]v,

is unimodular, and it is also k[z]-maximal. (Here we use the fact that 2 € k[x]*.)
By Eichler’s Theorem L, = M), for all primes p. Therefore M is unimodular, and
so L 2 {ay,...,a,) by Harder’s Theorem. O

Now let’s turn to the theory over Z. Here, since 2 is not a unit, more is required
than for the proof of Cassels—Pfister, because in general a unimodular Z-lattice need
not be Z-maximal. But the main idea of the present proof is is to show that the
particular unimodular lattices under scrutiny in the theorem are in fact Z-maximal.

THEOREM. Let 1 <n <4, and let m € N. Then
m € O, over Z <— m € 0, over Q

PROOF SKETCH OF “<=". The case n = 1 is trivial, so we will assume that
2 <n<4 Let L = (1,...1) on a Q-space V, and suppose v € V satisfies
Q(v) = m. Then v is contained in a Z-maximal lattice M. If we can show that
L is also Z-maximal, then by Eichler we would know that M, = L, for all p, and
hence that M is unimodular. Therefore we would know by Hermite’s inequality
that M = (1,...1), from which the result would follow. Thus it is enough to prove
that the lattice L = (1,...,1) is Z-maximal; equivalently, that for all primes p the
Zy-lattice L, = Z,L is Z,-maximal. (Here Z, denotes the ring of 2-adic integers.)

This is clear for all p # 2, since then nL, = sL, = vL, = Z,, and a lattice
J on V, containing L, would necessarily have nJ D Z,. (Here we have used the
several inclusions of scale, norm, and volume listed earlier in the paper.) Therefore
it suffices to show that the lattice Ly = ZsL is Zo-maximal in V5.

In each dimension the arguments involve discriminants and Hasse symbols. We
illustrate with the case n = 3. Lattices over Zy with biggest possible volume and
norm C Zsy on a Qy-space of discriminant 1 would have the form

(4 ) (] 1)

But in both of these cases the underlying Qs-space would have Hasse symbol —1,
hence no such lattice is on Q2 Ls. Therefore Lo is Zs-maximal.

Now we get the classical theorems over Z as immediate corollaries.

COROLLARY 1 (Lagrange’s Four-Square Theorem). In Z,
04 =N.



4 LARRY J. GERSTEIN

PrOOF. Apply the preceding theorem and the Hasse-Minkowski theorem. [

COROLLARY 2 (Fermat’s Two-Square Theorem). If m € N, then in Z
m € Oy <= ord,m =0 (mod 2) for allp=3 (mod 4).

PRrOOF. From the theorem, we can (and will) assume m is square-free. We
must determine which m satisfy m——(1,1) over Q; equivalently, m—(1,1) over
Q, for all primes p. Such a representation is clear if p is an odd prime not dividing
m or if p = 1(mod 4), since in these cases there is an isometry (1,1) = (m,m)
over Q. (Recall: If p = 1(mod 4) then —1 € Q?.) If p = 3(mod 4) and p | m
(giving ord, m = 1), a representation m—(1, 1) over Q, would force an isometry
(1,1,—m) = (1,—1,—m); but a Hasse symbol calculation shows this to be impossi-
ble. So no such prime exists. Therefore, either m = 1(mod 4) or m = 2k with k =1
(mod 4). In both these cases a Hasse symbol calculation shows that (1,1) & (m,m)

over Qs. O

COROLLARY 3 (Gauss’s Three-Square Theorem). Let m € N. Then
m € O3 <= m # 4"k with k=7 (mod 8).

PROOF SKETCH. First note that (1,1,1) is universal over Q, for all p # 2. And
m — (1,1,1) over Qq if and only if (1,1,1,—m) is isotropic; equivalently (since
(1,1,1,1) is the unique 4-dimensional anisotropic Qg-space), —m ¢ Q3. Finally,
this is equivalent to m # 4¥(7 + 8a). O

What about nonunimodular representations? Our results on sums of squares
have centered on showing that a given lattice L of interest represents all the el-
ements of its coefficient ring R represented by the ambient quadratic space. We
did this by showing that L was R-maximal and belonged to a genus containing
only one isometry class. Since in each case L was unimodular, the Ry-lattice L,
was automatically Rp-maximal whenever 2 € Ry, so there was extra work proving
R-maximality only when R = Z and p = (2). From the local theory it is easy to
show that if the discriminant dL is square-free then L, is Ry-maximal whenever p
is nondyadic. For example, if dL is square-free and R = k[z] then L is R-maximal.

In the material that follows, we will have several occasions to compute the Hasse
symbol of a quadratic space over a local field. In this computation we follow [S] in
computing the Hasse invariant of the space (a1, ..., ay,) as the product H(O‘i’ Q;)p-

i<j
Here (-, -), is the associated Hilbert symbol with respect to the prime p, and it can
be calculated by formulas in [S, p. 20] or [G2, pp. 82-83] over Q,; and, since all
nontrivial spots on Fy(z) are nondyadic, over completions of F,(x) Hilbert symbols
can be computed essentially as over Q, when p is odd.

We begin our consideration of nonunimodular representations by considering
some results on lattices over F,[z].

PROPOSITION. Let L be an integral Fy[x]-lattice on a regular quadratic Fq(z)-
space, and suppose the discriminant dL has degree < 1. Then L is F4[z]-mazimal
and has class number 1.

ProOF. Write R = F,[z], F = F,(z), and “0” for degree. If J(dL) = 0 then
L is unimodular, and the result follows immediately from Harder’s theorem and
the classification of F,-spaces. If 9(dL) = 1, say dL = a(z + 3), with o, 8 € Fy,
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then L is R-maximal, from our earlier discussion. Write pyg = = + 5. By Hermite’s
inequality (ii) there is a splitting

L= <17717>\> 1 <:U“p0>
with A, u € F7. If J € gen L then dJ = dL, so there is also a splitting
J = <15"'a15Al> 1 </’[’,p0>

with ', u/ € F;. Now L and J are on the same quadratic F-space, so there is a
Hilbert symbol equality (X, upo), = (N, 'po), for all primes p. In particular, when
p = po it follows from this that A and X" are in the same square class in F,. Hence,
since dL. = dJ, the same is true of p and p’. O

REMARK. The case 9(dL) = 0 in the preceding proposition is just a restatement
of the Cassels—Pfister theorem when k = TF,.

When 9(dL) > 2, the determination of class numbers is a more cumbersome
process, even when dL is irreducible, as the following two-part example shows.

EXAMPLE. In this example we will usually write R for Fs[z] and F' for Fs(z).

(i) Suppose L = (ac ‘1" 1 . i 2) in the basis {v1,v9} over R. We claim that L is

maximal and has class number 1. Because dL = 22+ 1 = py, a prime in R, we know
from our previous discussion that L is R-maximal. An orthogonally split lattice in
gen L would have form J; = (1,22 + 1) or Jo = (2,2(2? + 1)). For both of these
possibilities, when localized at py the Hasse symbol of the ambient F}, -space would
be 41, because 2 € Fj:2; while meanwhile the space FL = (z + 1, (x + 1)(2® + 1))
has Hasse symbol —1 at pg, because x + 1 ¢ F;OQ Therefore gen L contains no
split lattices, so (by binary reduction) any J € gen L must have a Gram matrix of
ar+b c
theformA_< c e+ f
dJ = dL = 22+ 1, elementary arithmetic tells us that for J’s Gram matrix we need
to consider only the matrices

_(x+1 1 _(r+1 2 {2z +1 1
Al_( 1 m+2)’ AQ_( 2 x+2)’ A3_( 1 2x+2>’

{2z +1 2
A4_( 2 2x+2>'

But if J = A in {v1,v9}, then J = As in {v1, 2092}, and similarly A5 = A4. And if
J 2 Az in {wy, w2} then J = A; in {w] = 2wy + wa, wh = wy + wa}. Therefore in
all cases J =2 A1 = L, so L has class number 1, as claimed.

(ii) One might suspect, based on the proposition and part (i) of this example, that
an integral R-lattice with prime discriminant must have class number 1 (as well as
being R-maximal). But the lattices

Ji= 1,22 +1) and Jy=(2,2(2* + 1))

) for some a,b,c,e, f € F3 with ace # 0. Because

mentioned in part (i) are R-maximal and in the same genus, yet J; 2 Jo by Corol-
lary 2 in [G1]. (In brief: J; does not represent 2.) In fact the class of the lattice L
discussed in part (i) is the only other class of binary integral definite (i.e., anisotropic
at 0o) R-lattices of discriminant x% + 1, and it is on a different space from FJ; and
F'J;. Therefore J; and Jy belong to a genus of class number 2.
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For nonunimodular representations over Z, we give new proofs of two results
of Fermat cited on the first page of Cox’s book [C].

THEOREM (Fermat). Let ! be an odd prime number. Then in Z
(I) I = 2% + 2y? is solvable if and only if L=1 or 3 (mod 8).
(IT) I = 2% + 3y? is solvable if and only if | =3 or I =1 (mod 3).

ProOOF. (I) Consider a Z-lattice L = (1,2) on a quadratic Q-space V', and let

m € Z. We claim
m-—L <+ m—V

Only “<=" requires proof. Whenever p # 2, the lattice L,, is unimodular and hence
Z,-maximal; and the Zs-lattice Lo is Zp-maximal because any Zs-lattice properly
containing it will have a Jordan component (\) with A ¢ Zy. Therefore L is Z-
maximal. Now (and here we are imitating our Cassels—Pfister argument) if v € V
and Q(v) = m then v is contained in a Z-maximal lattice M on V. By Eichler’s
theorem, M and L are in the same genus, and hence dM = dL = 2. So Hermite’s
inequality (or the reduction theory of binary quadratic forms) gives M = (1,2) = L,
and hence a representation m — L, as claimed.

To finish the proof of (I), we must determine for which odd primes [ the isometry

<1a 27 7Z> = <17 71a 2l>

holds over Q, for every prime p. Existence of such an isometry over Q, is clear if
p ¢ {2,1}, by the triviality of the Hilbert symbol on p-adic units.

(“=") Suppose | = 1 (mod 8). Then [ € Z3? by the local square theorem,
and so [ — (1,2) (and the equivalent isometry) holds over Q2. And the desired
isometry holds over Q; because the Q;-space on the left has Hasse symbol

(2, ~1) = (2.1 = (?) - () o,

while the space on the right has Hasse symbol

(—1,20); = (=1,1); = <11> -1

Now suppose [ = 3 (mod 8). Then I € 3Q4? by the local square theorem; and since
trivially 3 — (1,2) over Qo, so also I — (1,2) over Qq. Finally, the reader can
check that the isometry (1,2, —1) = (1,—1,2l) holds over Q; by a Hasse symbol
computation similar to that in the case I =1 (mod 8).

(“<=") If | = 5 or 7 (mod 8), then the Hasse symbols of the two spaces of
interest are different when p = [, hence the essential representation over Q; fails,
so the required representation over Q fails as well.

(IT) Paralleling the argument in part (i), we begin by considering a lattice
L = (1, 3) with respect to a basis {v1,v2} on a Q-space V, with the goal of showing
that for all m € Z the equivalence m — L <= m — V holds. Hermite’s inequality
and binary reduction shows that every integral lattice of discriminant 3 on V' must

2 1 . .
1 9] These are in different genera, since over Z, the
latter lattice represents no odd integers. Therefore L has class number 1. But now
V1 + V2

be isometric to (1, 3) or

and consider the lattice

define wy =

M—Zv1+Zw2N<

N[ =
— N
\/
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Then L ¢ M (in fact, L, = M, for all p # 2, but Ly C M>), and Q(M) C Z.
So L is not Z-maximal; but M is, and M has class number 1. It follows that
m — M < m — V. At first glance it may seem that the determination of the
numbers represented by L is no longer in sight; but fortunately it turns out that L
and M represent the same integers, as we now show. Let v € M; say v = avy +bwa,
with a,b € Z. If 2| b then v € L. But now suppose b is odd (and so v ¢ L). Then

Q(—avi + (a+bwy) ifa=1 (mod 2)

Qlavtbua) = {Q(bm +awp)ifa=0 (mod 2)

Therefore in all cases Q(v) € Q(L), as claimed. To sum up the argument in part
(IT) up to here: L and V represent exactly the same integers. Of course 3 is one
of those integers. So to complete the proof of Fermat’s theorem it remains to
determine which odd primes [ # 3 satisfy the Hilbert symbol equality

(3,-1), = (-1,3l), for all primes p;

equivalently,
(1,-3), =1 for all primes p.

Now, if this condition holds, then in particular (I, —3)s = 1, and therefore [ = 1
(mod 3).

Conversely, suppose [ =1 (mod 3). Then (I, —3), =1 for all p ¢ {2,1}, by the
triviality of the Hilbert symbol on p-adic units when p is odd. Therefore by Hilbert
reciprocity it suffices to show that (I, —3)2 = 1 or (equivalently) that (I, —3); = 1.
Since I =1 (mod 3) and [ is odd, we actually have [ = 1 (mod 6); say [ = 1 + 6k.

If k=0 (mod 4) then ! =1 (mod 8) and hence (I, —3)2 = 1 by the local square
theorem.

If k=2 (mod 4) then I =1 (mod 4), and then (since also [ =1 (mod 3))

0, =3 =-1)(,3)=(,3), = (?) = (;) =1

Finally, suppose k is odd, and so { = 3 (mod 4). We have (I,-3); = (1,3);(l, =1);.
And now

(1,3) = (‘?) _ (;) — 1 and (I,—1) = <‘ll) _ 1

Therefore (I, —3); = 1, as desired. O
Problems.

(1) Our example in which we discuss class numbers of lattices over F3[z] is painfully
ad hoc. Is there a more systematic approach to class numbers of F,[z]-lattices; and,
in particular, is there a way to efficiently identify the lattices of class number 1 with
a given discriminant?

(2) Under what conditions on a quadratic Q-space V is there an integral lattice L
on V that represents all the integers represented by V7 Clearly a lattice on V' that
is Z-maximal and also has a one-class genus will have this property. But, as we
have seen in the lattice (1, 3), this pair of properties is not essential.

(3) Let us call two Z-lattices on the same Q-space spectrally similar if they
represent exactly the same elements. For example, we have seen that (1,3) and
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1 3 - . .

1 i) are spectrally similar. It would be interesting to develop tests for spectral
2

similarity of lattices. Note that spectrally similar matrices need not be “isospectral”

in the sense of Conway and Sloane [C—-S]. For instance, the lattice (1,3) represents
1

. . 1 3 L
1 only twice, while ( 1 i) represents 1 six times.
2

(4) For which Z lattices L is there a completely decomposable lattice (that is, a
lattice with an orthogonal basis) spectrally similar to L ?

(5) Given a Z-lattice L, how can we determine a minimal lattice spectrally similar
to L 7 If we restrict the search to sublattices of L, does it make the problem easier?

(6) Go beyond the reproof of Fermat’s theorem given here to consider representa-
tions by a broader range of lattices, including lattices of higher rank.

(7) Reconsider the preceding questions over more general rings; e.g., over the rings
of integers of algebraic number fields or global function fields.
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