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Abstract

In this paper we define asymptotically conic convergence in which a family of smooth
Riemannian metrics degenerates to have an isolated conic singularity. For a conic met-
ric (My, go) and an asymptotically conic (scattering) metric (Z, g,) we define a non-
standard blowup, the resolution blowup, in which the conic singularity in Mj is resolved
by Z. Equivalently, the resolution blowup resolves the boundary of the scattering met-
ric using the conic metric; the resolution space is a smooth compact manifold. This
blowup induces a smooth family of metrics {g.} on the compact resolution space M,
and we say (M, g.) converges asymptotically conically to (Mg, go) as € — 0.

Let A, and Ag be geometric Laplacians on (M, g.) and (Mo, go), respectively. Our
first result is convergence of the spectrum of A, to the spectrum of Ay as € — 0. Note
that this result implies spectral convergence for the k-form Laplacian under certain
geometric hypotheses. This theorem is proven using rescaling arguments, standard
elliptic techniques, and the b-calculus of [26]. Our second result is technical: we con-
struct a parameter (¢) dependent heat operator calculus which contains, and hence
describes precisely, the heat kernel for A, as ¢ — 0. The consequences of this result
include: the existence of a polyhomogeneous asymptotic expansion for H. as ¢ — 0,
with uniform convergence down to t = 0. To prove this result we construct manifolds
with corners (heat spaces) using both standard and non-standard blowups, on which
we construct corresponding heat operator calculi. A parametrix construction modeled
after the heat kernel construction of [26] and a maximum principle type argument
complete this proof.

1 Introduction

Cheeger and Colding wrote a series of three papers between 1997 and 2000 on the Gromov-
Hausdorff limits of families of smooth, connected Riemannian manifolds with lower Ricci
curvature bounds [5], [6], [7]. They proved Fukaya’s conjecture of 1987 [10]: on any pointed
Gromov-Hausdorff limit space of a family {M"} of connected Riemannian manifolds with
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Ricci curvature bounded below, a self adjoint extension of the scalar Laplacian can be
defined, with discrete spectrum and Lipschitz eigenfunctions in the compact case, so that
the eigenvalues and eigenfunctions of the scalar Laplacians on M;* behave continuously
as i — oo. An example, provided by Perelman, showed that the results of Cheeger and
Colding do not extend to the k-form Laplacian or to more general geometric Laplacians.
In 2002, Ding proved convergence of the heat kernels and Green’s functions in the same
setting [8]. The estimates are uniform for time bounded strictly away from zero. These
results are impressive; the only hypothesis is a lower Ricci curvature bound! It would be
useful to prove a more general spectral convergence result for geometric Laplacians and to
obtain uniform estimates on the heat kernels for all time. In order to obtain such results,
it becomes necessary to impose more structure on the manifolds and the way in which they
converge to a singular limit space.

Let M be a fixed compact manifold with Riemannian metric and let H be an embedded
orientable hypersurface with defining function x and smooth metric gz, and let

ge :=da? + (€ +xh)gy €€ [0,1).

As e — 0, g. — x?gy +dx?, which has an isolated conic singularity at z = 0. Geometrically,
M is pinched along the hypersurface H as ¢ — 0, and the resulting metric has a conic
singularity as  — 0. The study of this metric collapse is the content of the 1990 thesis of
McDonald [25].

In 1995, Mazzeo and Melrose [24] developed pseudodifferential techniques to describe
the behavior of the spectral geometry under another specific type of metric collapse known
as analytic surgery. As e — 0 the metrics

|da|? |da|?
ge = x2 + €2 th— x2

+ h = go;

go is an exact b-metric on the compact manifold with boundary M obtained by cutting M
along H and compactifying as a manifold with boundary, hence the name, analytic surgery.
Under certain assumptions on the associated Dirac operators,® [24] proved
lim 7(0e) = 1 (0yz)

where 7,(0y;) is the b-version of the eta invariant introduced by Melrose. These results
were proven by analyzing the resolvent family of the Dirac operators 0. uniformly near
zero. This led to a precise description of the behaviour of the small eigenvalues. We obtain
here similarly uniform results for the heat kernels and expect similar applications.

The convergence we consider, asymptotically conic (ac) convergence, is more restrictive
than that of [5], [6], [7] and [8], but more general than the conic degeneration of [25]. We
note, however, that ac convergence does not require Ricci curvature bounds. The conic

'In a later collaboration with Hassel [15] these hypotheses were removed.



collapse of [25], the analogous smooth collapse of a higher codimension submanifold and
the collapse of an open neighborhood of the manifold with some restrictions on the local
geometry all fit this new definition. Before stating our spectral convergence results for
geometric Laplacians, we recall their definition.

Definition 1. Let (E, V) be a Hermitian vector bundle over a Riemannian manifold (M, g)
with metric-compatible connection V. A geometric Laplacian is an operator A acting on
sections of E which has the form

A=V'V+R,

where R is a non-negative self-adjoint endomorphism of E. By the Weitzenbock Theorem
[28], the Laplacian on k-forms is a geometric Laplacian, as is the Hodge Laplacian and the
conformal Laplacian; any geometric Laplace-type operator is a geometric Laplacian.

Our results are the following.

Spectral Convergence: Theorem 1. Let (M, go) be a compact Riemannian n-manifold
with isolated conic singularity, and let (Z, g,) be an asymptotically conic space, with n > 3.
Assume (M, ge) converges asymptotically conically to (Mo, go). Let (Eo, Vo) and (E,, V)
be Hermitian vector bundles over (My,go) and (Z,g.), respectively, so that each of these
bundles in a neighborhood of the boundary is the pullback from a bundle over the cross
section (Y, h). Let Ao, A, be the corresponding Friedrich’s extensions of geometric Lapla-
cians, and let A be the induced geometric Laplacian on (M, g.). Assume A, has no L?
nullspace. Then the accumulation points of the spectrum of A. as € — 0 are precisely the
points of the spectrum of Ao, counting multiplicity.

The setting for our next result is the acc heat space, a manifold with corners constructed
in section 7.

Heat Kernel Convergence: Theorem 2. Let (Mo, go) be a compact Riemannian n-
manifold with isolated conic singularity, and let (Z,g.) be an asymptotically conic space,
with n > 2. Assume (M, gc) converges asymptotically conically to (Mo, go). Let (Eg, Vo)
and (E,, V) be Hermitian vector bundles over (My,go) and (Z,g.), respectively, so that
each of these bundles in a neighborhood of the boundary is the pullback from a bundle over
the cross section (Y, h). Let Ao, A, be the corresponding Friedrich’s extensions of geometric
Laplacians, and let A, be the induced geometric Laplacian on (M, g.). Then the associated
heat kernels H. have a full polyhomogeneous expansion as € — 0 on the asymptotically
conic convergence (acc) heat space with the following leading terms:

o At the conic front face, Fyi01, H(z,7',t,€) — Ho(z,2',t), the heat kernel for (Mg, go)-

o At the rescaled b front face, Fioi02, H(z,2',t,€) — (pio10,2)Hp(7), the b heat kernel
with rescaled time variable T.



o At the exact conic front face, Fii11,2, H(z,2',t,€) — (p111172)2H0(T), the heat kernel
for the exact cone with rescaled time variable T.

o At the side faces Figo1, Foi10 and the residual b face Fio1g, the heat kernel vanishes
to infinite order.?

This convergence is uniform in € for all time and moreover, the error term is bounded
by Cnet) ast — 0, for any N € N.

Remarks:
e This theorem immediately implies the uniform convergence
H(z,2' t,e) — Ho(z,2',t), T >t>0,
as well as the convergence
H(z,2',t,e) — Hy(z,2',t) + O(e), t,e— 0,

with explicit error given by the leading terms above in the polyhomogeneous expan-
sion of H(z,2',t,€) on the acc heat space as € — 0.

e We have dropped the half density factor,

(p1111.2)" L (p10102)™ (P1010)" 2 (pa2) " T2/2 (1001 p0110) V2V,

since it includes extra vanishing factors as a result of the blowups in the acc heat
space.

These theorems are proven in sections 5 and 7, respectively. In section 2 we define the
resolution blowup and ac convergence. Sections 3 and 4 contain a brief review of geometric
and analytic results and terminology on manifolds with corners. In section 6 we construct
the heat spaces and heat operator calculi that will be used to prove the main theorem in
section 7.

This work is based on the author’s doctoral dissertation completed at Stanford Univer-
sity in June, 2006 under the supervision of Rafe Mazzeo. The author wishes to thank Rafe
Mazzeo for excellent advising, Andras Vasy for many helpful conversations and suggestions,
and Richard Melrose for insightful comments.

2Above, Pwazy- 15 the defining function for boundary face Fuay-.



2 Asymptotically Conic Convergence

The definition of asymptotically conic convergence involves three geometries: a family of
smooth metrics on a compact manifold, a conic metric on a compact (incomplete) manifold,
and an asymptotically conic or ac scattering metric on a compact (complete) manifold with
boundary.

First, we define ac scattering metric.

Definition 2. An ac scattering metric (Z,g.) is a smooth metric on a compact n-manifold
with boundary, 0Z = (Y, h) a smooth compact (n — 1) manifold. Z has a product decom-
position (0,71), X Y in a neighborhood of the boundary defined by r = 0, so that on this
neighborhood,

B dr? . h(r)

g = —
z /)"4 ”"2 b

h(r) — h asr — 0,

in other words, h extends to a C* tensor on [0,71). Uniquely associated to the ac scattering
metric (Z,g,) is the complete non-compact manifold Z with asymptotically conic end; Z is
1

known as an ac space.® Letting p = =, there is a compact subset K, C Z so that

Z—-K.=(1/r,0),xY, g.lz-k. = dp* + p*h(1/p).

We will frequently identify a neighborhood U C Z which is diffeomorphic to (0,1), x Y’
with (0,1), x Y and we will identify the metric on U with dTLf + hg). A familiar example
of an ac scattering metric is the standard metric on the radial compactification of R™ with
boundary S"~! at infinity.

Next, we define the conic metric on a compact manifold.

Definition 3. Let M, be a compact metric space with Riemannian metric g. Then, (M., g)
has an isolated conic singularity at the point p and g is called a conic metric if the following

hold.
1. (M. —{p},g) is a smooth, open manifold.

2. There is a neighborhood N of p and a function x : N —{p} — (0, x1] for some x1 > 0,
such that N — {p} is diffeomorphic to (0,71], x Y with metric g = dx? + 2%h(x)
where (Y, h) is a compact, smooth n — 1 manifold and {h(x)} is a smooth family of
metrics on Y converging to h as x — 0, in other words, h extends to a C* tensor on
[0, xl)x xXY.

3Note that asymptotically conic spaces are sometimes called “asymptotically locally Euclidean,” or ALE.
However, that term is often used for the more restrictive class of spaces that are asymptotic at infinity to a
cone over a quotient of the sphere by a finite group, so to avoid confusion, we use the term asymptotically
conic.



Associated to a manifold with isolated conic singularity is the manifold with boundary
obtained by blowing up the cone point, adding a copy of (Y, h) at this point. Then, z is a
boundary defining function for the boundary, (Y, h). We use M{ = M. — {p} to denote the
smooth incomplete conic manifold, M, to denote the metric space closure of M(()), and My to
denote the associated manifold with boundary. We will frequently identify a neighborhood
U C My which is diffeomorphic to (0,1), x Y with (0,1); x Y and we will identify the
metric on U with da? + 22h(z).

In the definition of resolution blowup we use the notation MUy N for a smooth manifold
constructed from the smooth manifolds M and N with a diffeomorphism ¢ from V C N
to U C M that gives the equivalence relation, V' 3 p ~ ¢(p) € U. M Uy N is the disjoint
union of M and N modulo the equivalence relation of ¢. The smooth structure on M Uy N
and the topology is induced by that of M and V.

Definition 4. Let (My, go) be a compact n manifold with isolated conic séngularity and let
(Z,g.) be an asymptotically conic space of dimension n, so that OMy = 0Z = (Y, h). Then,

Mg = Ko U Vg,
where Vo = (0,21), X Y, and Ky is compact. With this diffeomorphism
go = dz* + 2%h(x)  on (0,z1) X Y.

We may assume the boundary of Ko in MY is of the form 0Ky = {z = 21} 2 Y, and we
may extend x smoothly to Ky so that 2x1 > x > x1 on Ky. Similarly,

Z=K,uUV,,
where V, = (p1,00), x Y, and K, is compact. With this diffeomorphism
9. = dp*> + p°h(p,y)  on (p1,00) x Y.

We may assume that 0K, is of the form 0K, = {p = p1} =Y, and we similarly extend p
smoothly to K, so that p1 > p > p1/2 on K,.
Let 6 = min {x1,1/p1}. Then for 0 < e <4, and R > p1, let

Mye={(z,y) e My:xz>¢€}, Zrp={(p,y) € Z:p <R}
The resolution blowup of (Mo, g0) by (Z,g.) is,
M, = Mo’e U¢E Zl/ea

where the joining map ¢ is defined for each € by

x
¢e :MO,G_MO,(SHZl/e_Zl/(Sa ¢6($7y) = (&a?/) .
For § > ¢ > ¢ > 0, the manifolds M, and My are diffeomorphic, and so the resolution
blowup of My by Z which we call M is unique up to diffeomorphism.



Remark: The resolution blowup resolves the singularity in a conic manifold using an
ac scattering space. Instead of resolving the singularity in My using Z, we may equivalently
define the resolution blowup to resolve the boundary of Z using M.t

The ac single space, analogous to the analytic surgery single space in [24], is the setting
for the definition of ac convergence.

Definition 5. Let (Mo, go) be a conic metric and let (Z,g,) be a scattering metric; assume
both are dimension n with the same cross section (Y,h) at the boundary, and assume
§ = 1 (definition 4). Then, My = ((0,1), x Y)U Ko and Z = ((0,1), x Y) U K, with
0Ky 2Y =2 0K,. The asymptotically conic convergence (acc) single space S is

S:=[0,1) x [0,1)y x YU (Ko x {z=1,r £1) U (K, x {r =1,z £ 1}).

The smooth structure of S is induced by that of My and Z. Namely, smooth functions
on § are functions which are smooth jointly in = and r on (0,1), x (0,1), x Y, smoothly
extend to a smooth function on Ky at + =1, on K, at » = 1, on My at r = 0, and on Z
at z = (0. To give a precise description of the metrics considered here, we define below the
acc tensor, a smooth, polyhomogeneous, symmetric 2-cotensor on the acc single space.

Definition 6. Let S be the acc single space associated to My and Z as in definition 5.
Let e(p) = z(p)r(p) : S — [0,1), where z,r are extended to Ko and K, respectively to be
identically 1. We define the acc tensor G as follows:

3 (dx2 +a? <h($) +r? (‘%2 + %))) z,r € (0,1)

G=19 (@)(g:lx.) r=1
9ol K, r=1

For 0 < e < 1, let Me = {xr = €} C S; note that this M, is diffeomorphic to the
resolution blowup M of My by Z.5 Assume the h(z) has a smooth expansion in x,

h(:Z})Nh0+:Eh1+l‘2h2+...

which is valid for x > 0, where hg, h1,... are smooth symmetric 2-cotensors on Y. This
is to ensure G s polyhomogeneous at the codimension 2 corner in S. Then, the family of
metrics {ge = G|p.} on M is said to converge asymptotically conically to (My, go)-

4Let 7 = 1/p be the defining function for 8Z. The resolution blowup of Z by My is

= €d
MO Uwe Z? UJe(%y) = <;7y> )

where the patching map . is defined on My — Ko with image (0,6), x Y a neighborhood of 8Z. The
resulting smooth compact resolution space is diffeomorphic to M.

5In the definition of the acc single space we have assumed § from the definition of resolution blowup is
1. This is to simplify calculations. On {xr = ¢} we then have r = £, equivalently = £, so letting 6 = 1 in
the definition of resolution blowup the identification of {zr = ¢} C § and the resolution blowup M. follows

immediately.



Remarks

1. The acc single space has two boundary hypersurfaces at ¢ = 0; these are diffeomorphic
to Mg at r = 0 and Z at z = 0, and they meet in a codimension 2 corner diffeomorphic
to Y. There are also boundary hypersurfaces at ¢ = 1 which we ignore since we are
interested in € — 0. With the metric G, (0,1); x Y x (0, 1), contains a submanifold
diffeomorphic to a cone over (0,1), x Y C Z with radial variable z.

2. Since gp is a smooth metric on My = ((0,1), x Y) U Ky and g, is a smooth metric
on Z = ((0,1), x Y)U K, G is a smooth symmetric 2-cotensor on S which extends
smoothly across neighborhoods where it is piecewise defined and is polyhomogeneous
at all boundary faces of S.

3. At r =0, G restricts to Q|{T:0} = go; as * — 0, G vanishes to order 2 in the tangential
directions.

4. On M, C § where 0 < r(p),z(p) < 1,

r=S = d?= 6—4d:c2,
x T
SO J 9 h( )
T r
ge = de,'2 + $2h<$) = 62 (7"4 7"2>

5. On M, when £ = ¢, » = 1 and this subset is diffeomorphic to K, with metric
ge = €2g.|k.. Similarly, when 2 = 1, r = € and this subset is diffeomorphic to Ky
with metric g. = go + O(e)?.

The following lemma is useful for visualizing ac convergence and for proving spectral
convergence.

Lemma 1. Let (My,go) and (Z,g,) be as in definitions 4, 5, 6 and let (M, gc) converge
asymptotically conically to (Mo, go). Then, there exists a family of diffeomorphisms {¢pc}
Jrom a fized open proper subset U C M to increasing neighborhoods Zy,. C Z such that

Jelu = (62(¢6)*Q‘Zl/é> |u. Moreover, on M — U, g. — go smoothly as ¢ — 0 and any

K cc M is diffeomorphic to some fived K' C M so that g — go smoothly and uniformly
on K'.

Proof

The existence of ¢. and U C M follows immediately from the definition of resolution
blowup and the diffeomorphism between the resolution blowup M and {zr =€} C S. By
the above remarks, on the neighborhood U C M where this diffeomorphism is defined,

gl = (52)(¢6)*92‘Z1/e'



Since g. = go+O(€?), the smooth convergence of g. to gg on M —U follows immediately.
Any compact subset K CC My is contained in M . for some € > 0 and so is diffeomorphic
to K CC M, and to K’ cC (M —U). Conversely, any K CC (M —U) is diffeomorphic to
K. C M, and to K/ CC My, C M.

Q©

3 Geometric Preliminaries

This section is a brief review of the theory and terminology of manifolds with corners, b
maps, and blowups. A complete reference is [26], see also [23].

3.1 Manifolds with Corners

Let X be a manifold with corners. This means that near any of its points, X is modeled on
a product [0, o0)* x R"* where k depends on the point and is the maximal codimension
of the boundary face containing that point. We also assume that all boundary faces of
X are embedded so they too are manifolds with corners. The space V(X) of all smooth
vector fields on X is a Lie algebra under the standard bracket operation. It contains the
Lie subalgebra

Wo(X) :={V € V(X); V is tangent to each boundary face of X.} (1)
Then V,(X) is itself the space of all smooth sections of a vector bundle,
Vy(X) = C%(X; 'TX),

where *T'X is the bundle defined so that the above holds and is called the b-tangent bundle.

3.1.1 Blowing Up

An embedded codimension k£ submanifold Y of a manifold with corners X is called a p-
submanifold (p for product) if near each point of Y there are local product coordinates
so that Y is defined by the vanishing of some subset of them. In other words, X and Y
must have consistent local product decompositions. Then one can define a new manifold
with corners [X; Y] to be the normal blowup of X around Y. This is obtained by replacing
Y by its inward-pointing spherical normal bundle. The union of this normal bundle and
X — Y has a unique minimal differential structure as a manifold with corners so that the
lifts of smooth functions on X and polar coordinates around Y are smooth. One can also
consider iterated blowups, written [[X;Y1]; Y2]], where Y; is a p-submanifold of X and Y»
is a p-submanifold of Y;. We may consider any finite sequence of such blowups. If we have
such a sequence of embedded p-submanifolds,

XDOY1DY,DY3;...0Y,



then the iterated blowup
[X; Y1) Yals. .5 Yo

can be performed in any order with the same result [24]. Blowups may also be defined
using equivalence classes of curves [26]. Let r be a defining function for the p submanifold
and consider the family of curves y(t) = (r(¢), y(t)) such that

yt)eY «— t=0,
r(t) = O(t).
Let E be the set of equivalence classes of all such curves with
v = (Y =)0 = 0(), (r—1')(t) = O(t?).
There is a natural RT action on E given by
RY 3 a:v(t) — y(at).

Then E modulo this equivalence relation is naturally diffeomorphic to N*(Y), the inward
pointing spherical normal bundle of Y, so we can define [X;Y] by

[X:Y] = (X - Y)UE/([RT —{0}).

We can also define parabolic blowups in certain contexts [9]. Let Y be a p-submanifold of
codimension k so that there exist local coordinates (r,y) = (ri,..., 7k, Y1, -+, Yn—k) i &
neighborhood of Y with r; vanishing precisely at Y, and so that dr; induces a sub-budle
of the tangent bundle T'X. Instead of the above equivalence classes of curves we consider
~(t) such that

7<t) = (rl(t)7 SRR rk(wv yl(t>7 e ynfk@)) €Y < t=0,
ri(t) = O(t), i # 1, r1(t) = O(t?).
Two such curves are equivalent if
v~ = (- yp)() = 0@), (i —ri)(t) = O(t%) i # 1, (r1(t) — 1 (t)) = O(F).

Since dry is a sub-bundle of TX there is a natural RT action on the set of equivalence
classes E5 of all such curves,

R > a:v(t) — (r1(at),ri(at),. .., y;(at)).

The set of equivalence classes of all such curves modulo this RT action is naturally diffeo-
morphic to the inward pointing ri-parabolic normal bundle of Y,

E,/(RY —{0}) = PN} (Y).

10



We define the ri-parabolic blowup of X around Y as the union of X —Y and this inward
pointing ri-parabolic bundle,

[X;Y,dr1] == (X —Y)UPN(Y).

The union of this ri-parabolic bundle and X — Y again has a unique minimal differential
structure as a manifold with corners so that the lifts of smooth functions on X and ;-
parabolic coordinates around Y are smooth. By ri-parabolic coordinates around Y, we
mean the coordinates,

p=(r24ri4 T, 0= (01,...0,) €S,
with local coordinates (r1,...7%, Y1, -, Yn—k) in a neighborhood of Y satisfying
T’LZPHZvZ?éla 7”1:/02917 yj:pej

For any parabolic or spherical blowup there is a natural blow-down map G, : [X;Y] — X
and corresponding blow-up map #* : X — [X;Y], so that the image of Y under g*
is a boundary hypersurface of [X;Y] diffeomorphic to the inward pointing spherical (or
parabolic) normal bundle of Y. As such,

[(X;V] = (X =Y)upi(Y).

3.1.2 b-Maps and b-Fibrations

Definition 7. Let My be a manifold with boundary hypersurfaces, {Nj}le, and defining
functions r;. Let Ma be a manifold with boundary hypersurfaces, {Li}ézl, and defining
functions p;. Then f : My — My is called a b-map if for every i there exist nonnegative

integers e(i,j) and a smooth nonvanishing function h such that f*(p;) = h]_[f:1 rj(i’j).

The image under a b-map of the interior of each boundary hypersurface of M; is either
contained in or disjoint from each boundary hypersurface of Ms and the order of vanishing
of the differential of f is constant along each boundary hypersurface of M;. The matrix
(e(i,7)) is called the lifting matrix for f.

In order for the map, f, to preserve polyhomogeneity, stronger conditions are required.

Associated to a manifold with corners are the b-tangent and cotangent bundles, *TM (1)
and ®T*M.% The map f may be extended to induce the map bf, > TM; —° TM,.

Definition 8. The b-map, f : My — My, is called o b-fibration if the associated maps °f,
at each p € OM; are surjective at each p € OM; and the lifting matriz (e(i, 7)) has the
property that for each j there is at most one i such that (e(i,7)) # 0. In other words, f
does mot map any boundary hypersurface of My to a corner of M.

SThese are also called the totally characteristic tangent and cotangent bundles.

11



3.1.3 b-manifolds and the b-blowup

A b-manifold is a manifold with corners that is closely related to conic manifolds and ac
scattering metrics.

Definition 9. Let (X, g) be a smooth Riemannian manifold with boundary (Y,h) and
boundary defining function x such that in a collared neighborhood N of the boundary X
has a product decomposition, N = [0,x1); X Y and in this neighborhood

dz?
g= pey + h(z),

where h(x) is a smoothly varying family of metrics on Y that converges smoothly to h as
x — 0. Then (X, g) is said to be a b-manifold.

Equivalently, a b-manifold is a complete manifold with asymptotically cylindrical ends.
The Schwartz kernels of operators on a b-manifold with reasonable regularity lift to a blown
up manifold called the b-double space. This space is obtained from X? by performing a
radial blowup called the b-blowup along the codimension 2 corner at the boundary in each
copy of X and it is written Xg ,

X=X xX;0X x0X]=[X x X;Y xY]. (2)

For any manifold M with boundary having a product structure in a neighborhood of the
boundary, we may define the b-blowup in the analogous way, ]\41)2 = [M x M;0M x OM].

3.2 Asymptotically conic convergence double space

The acc double space is an instructive model for the more complicated acc heat space in

section 7. Let
St = [S%Y x Y],

The acc double space D is the submanifold of S? defined by the vanishing set of f(p) =
z(p)r(p) — 2'(p)r'(p) = e(p) — €(p) :

D={peS;: f(p) =z(p)r(p) —2'(p)r'(p) =0} ={p €S : e(p) = € ()}

The acc double space has various boundary faces but we are only interested in those at
€ = 0. There are four boundary faces at ¢ = 0, described in the following table. Here and
throughout, we label each face F,;,. where the subscript indicates the order to which each
of the scalar variables z,r, z’, 7" vanishes at that face.

Arising from | face | geometry
$:0,$,:0, F1010 [ZXZ,YXY]
(L‘ZO,T/:O F1001 [ZXMO;YXY]
r=0,2"=0 | For1o | [Mo x Z;Y x Y]
r= 0,7"/ =0 F0101 [Mg X Mo;Y X Y]

12



To see that D is a smooth submanifold of SI? we consider the function

f(p) = z(p)r(p) — 2’ (p)r' (p). (3)

Away from the boundary faces f is smooth with non-vanishing differential. In a neighbor-
hood of 511 — F1001, let

z(p) r'(p)
Joro(p) = - :
z'(p)  r(p)
Since z'rfo110 = f, we see that fp110 is smooth near the ¢ = 0 boundary faces away

from where those faces meet Fyi119. Moreover, wherever defined, fg1190 has nonvanishing
differential and the zero set of fy119 coincides with that of f away from Fpi19. Similarly, let

z(p)  2'(p)
r'(p)  r(p)

flool(p) =

f1001 is smooth with nonvanishing differential and has the same vanishing set as f in a
neighborhood of {€ = 0} — Fiog1. This shows that D is a smooth submanifold of S7. While
the acc double space will not be used here, we note that the acc double space, with an
additional blowup along the diagonal for € > 0, would be the natural space on which to
study the resolvent behavior under ac convergence.

4 Analytic Preliminaries

Since we are working on manifolds with singularities, corners and boundaries, we briefly
review some key features of the analysis in these settings.

4.1 Polyhomogeneous conormal functions

On manifolds M with corners having a consistent local product structure near each bound-
ary and corner, a natural class of functions (or sections) with good regularity near the
boundary and corners are the polyhomogeneous conormal functions (or sections). For a
complete reference on polyhomogeneity on manifolds with corners, see [23]. In a neighbor-
hood of a corner, we have coordinates (x1,..., Tk, Y1, ., Yn_k) Where x1,..., 2, vanish at
this corner and (yi,...,yn—k) are smooth local coordinates on a smooth compact n — k
manifold Y. The edge tangent bundle V. in a neighborhood of this corner is spanned over
C>(M) by the vector fields,
{xiaﬂfiv aya}'

The basic conormal space of sections is

AY(My) = {¢: V1..Vip € L®(My),VV; € Ve, and Vi}.
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Let o and p be multi indices with a; € C and p; € Ng. Then we define
AP (M) = 2%(log x)P.A°.

The space A™ is the union of all these spaces, for all a and p. The space A}, g(M(]) consists
of all conormal distributional sections which have an expansion of the form

bj
¢~ Z Zxo‘j(log x)Pa;,(z,y), ajp € C.

Re(aj)—o00 p=0
We define an index set to be a discrete subset £ C C x Ny such that
(oj,pj) € B, |(ay,pj)| = 00 = Re(ay) — oo.

Then, the space Afh s(Mo) consists of those distributional sections ¢ € A7, = having poly-
homogeneous expansions with (a;,p;) € E.

4.2 Conic differential operators and b-operators

Let (My, go) be a Riemannian manifold with isolated conic singularity, defined by x = 0,
so that in a neighborhood of the singularity,

MO = (nyl):c X Y, go = d$2 + x2h(a:)

with h(x) — h, where (Y, h) is a smooth, n — 1 dimensional compact manifold. A conic
differential operator of order m is a smooth differential operator on M, such that in a
neighborhood of the singularity it can be expressed

m

A=2""> " By(z)(—20,)"

k=0

with By, € C°((0,z1), Diff " *(Y)), where Diff/(Y") denotes the space of differential oper-
ators of order j € Ny on Y with smooth coefficients. The cone differential operators are
elements of the cone operator calculus; for a detailed description, see [19]. These cone op-
erators are closely related to b-operators. A b-operator of order m is a smooth differential
operator such that near the boundary it can be expressed

m

A=>"By(x)(—z0,)"

k=0

with By, € C*((0,z;), Diff " *(Y)). We see that a cone differential operator of order m
is equal to a rescaled b-differential operator of order m. In other words, if A is an order
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m cone differential operator then ™A is a b-differential operator. In local coordinates

(z,y1,...,Yn—1) near the boundary of My, a b-operator may be expressed as
A= Z aj.0(, y)(—x&r)j(ﬁya).
J+lalsm

The b-symbol of A is
bom(A) = > ajalzy)Nn.

jtlal=m

Here \ and 7 are linear functions on *T*Mj defined by the coordinates so that a generic
element of °T* M is

The b-operator is b-elliptic if the symbol ®c,,(A) # 0 on *T* My — {0}.
The scalar Laplacian on M is

2 H{(=20,)" + (n o+ 1+ eH T (O H)(=20,)) + A} = 2L

where L is an elliptic order 2 b-operator and H is a smooth function depending on the
metric. Similarly, a geometric Laplacian Ay on Mj is also of the form

Ag = xiQLb,

for an elliptic order two b-operator acting on sections of the vector bundle. The Schwartz
kernel of L; is a distribution on the b-double space M&b. By the b-calculus theory, (see
[26]) Ly has a parametrix Gy, such that Gy is a b-operator of order —2 with

GyLy=I—-R

where [ is the identity operator and R is a b-operator with polyhomogeneous Schwartz ker-
nel on the b-double space. Then, for any u € £2(z" Ldxdy) with Agu = f € L2(2" Ldxdy)

(2%Gy)(x 2 Lyu) = (2*Gy)f =u— Ru = u=2°Gyf + Ru=a+ 3.

The first term, o € 2?Hf C 2?L%(2" 'dady). The second term 3 € L2(z" 'dzdy) has a
polyhomogeneous expansion as x — 0,

oo Nj
B> N i hei(y).

§=0 k=0
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Above v; is an indicial root for the operator L; and ¢; is an eigensection for the induced
geometric Laplacian on (Y, h). Then,

oo Nj
u:a+22x7j+kg@j(y) (4)

§=0 k=0

where o € 22L2 (2" 'dxdy). This decomposition plays a key role in the proof of spectral
convergence.

4.3 Friedrich’s domain of the conic Laplacian

A geometric Laplacian Ag on a conic manifold is an unbounded operator on £? sections of
the bundle. It can be extended to various domains in £2; the minimal domain Dy, is the
L2 closure of the graph of Ag over Ci°. The largest domain Dy,ax is the L£? closure of the
graph of Ag over £2. Each of these domains are dense in £2(Mp), and the extension of the
Laplacian to either domain is a closed operator. On complete manifolds Dpyin = Dmax by
the Gaffney-Stokes Theorem [11]. However, My is incomplete and so for a general geometric
Laplacian these domains will not be equal. The Friedrich’s domain Dr lies between Diyin
and Dpax and is the closure of the graph of Ay in £? with respect to the densely defined
Hermitian form,

Qu,v) = /M0<vu, Vo).

The extension of the Laplacian to the Friedrich’s domain, known as the Friedrich’s extension
of the Laplacian, preserves the lower bound and is essentially self adjoint. Here, we work
exclusively with the Friedrich’s extension of the Laplacian.

For elements of Dyqz, with u € £2 and Agu = f € L2, we have the expansion (4) from
the preceding section,

o Nj
U=+ ZZxVﬁk”goj(y).

§=0 k=0

The volume form on My near the singularity is asymptotic to 2" 'dady. Therefore, the
exponents ; must all be strictly greater than —%. For v € Dyin C Dpae the decomposition
(4) and the definition of D, imply that Dy, C 22L2. The equality of Dy and Dpax
then depends on the indicial roots of L, = £2Aq. For further discussion of domains of the

conic Laplacian, see [13], whose results include:
Dp={fecL?: Aof €L?and f = O(J:Q_QH) as x — 0, for some § > 0}.
We will use this characterization of the domain of the (Friedrich’s extension of the) Lapla-

cian in the proof of the first theorem.
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5 Spectral Convergence

We now have all the necessary ingredients to prove spectral convergence.

Theorem 1. Let (My, go) be a compact Riemannian n-manifold with isolated conic sin-
gularity, and let (Z,g.) be an asymptotically conic space, with n > 3.7 Assume (M, g.)
converges asymptotically conically to (Mo, go). Let (Fo, Vo) and (E,,V.) be Hermitian
vector bundles over (Mo, go) and (Z,g.), respectively, so that each of these bundles in a
neighborhood of the boundary is the pullback from a bundle over the cross section (Y, h).
Let Ag, A, be the corresponding Friedrich’s extensions of geometric Laplacians, and let A
be the induced geometric Laplacian on (M, gc). Assume A, has no L£? nullspace. Then the
accumulation points of the spectrum of Ac as € — 0 are precisely the points of the spectrum
of Ag, counting multiplicity.

The theorem follows from the following three statements: the inclusion accumulation
o(A¢) C o(Ag), the reverse inclusion accumulation o(A.) D o(Ag), and correct multiplic-
ities.

5.1 Accumulation o(A.) C o(Ag)

We extract a smoothly convergent sequence of eigensections corresponding to a converging
sequence of eigenvalues as € — 0, and show that the limit section of this sequence is
an eigensection for the conic metric and its eigenvalue is the accumulation point. For
this argument, we work with sequences of metrics {gc,} which we abbreviate {g;} with
Laplacians Aj.

Let A(e;) be an eigenvalue of A;, with eigensection f;. Assume that A(e;) — A. Over
any compact set K C M), the metric gj = ge; converges smoothly to go by Lemma 1, thus
so do the coefficients of Aj — A(e;). Hence, normalizing f; by sup,,|f;| = 1, it follows
using standard elliptic estimates and the Arzela-Ascoli theorem that f; converges in C* on
any compact subset of Mg . Furthermore the limit section f satisfies the limiting equation

Nof = M.
However, we do not know yet that f % 0, nor, even if this limit is nontrivial, that it lies in
the domain of the Friedrichs extension of Ag. This is the content of the arguments below.
5.1.1 Weight Functions

Let ¢e : Mo — Mos — Zi/e — Z1)5 as in definition 4. We identify Z;,; with a fixed
K CcU C M so that Mg — Mys = (U-K), K= Zl/&-

“In this theorem, unlike the main theorem with heat kernel convergence, we require the dimension be
at least 3 due to the £2 regularity of the Friedrich’s domain of the Laplacian on the conic manifold.
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Let

c on M —U.
we=1<{ e(p-)*p onU - K.
ce on K.

Above, c is a constant and no generality is lost by assuming ¢ = 1. Let w; = w,;. For

some 0 > 0 to be chosen later, replacing f; by W we assume the supremum of | fjw§|
jJillee

is 1 on M. Since M is compact, |f;| attains a maximum at some point p; € M, and we

may assume p; converges to some p € M. The argument splits into three cases depending
on how and where p; accumulates in M.

5.1.2 Case 1: w;(p;) —c >0 as j — oo.

In this case, the points {p;} accumulate in a compact subset of M — U which we may
identify with a compact subset of MJ by the lemma. So, we may assume that these points
converge to some point p # p (the singularity). The maximum of | fngl on M is 1 and
occurs at p; so

)

]fjjgwj_é on M for each j = |fj(pj)| = ¢ ° as j — oc.

The locally uniform C*° convergence of f; to f implies that | f| satisfies a similar bound,
Ifl<a®asz—0,

and clearly | f(p)| = ¢ # 0. By the dimension assumption n > 3 and the characterization
of the Friedrich’s Domain of the Laplacian, we may choose ¢ so that

2—n
2

< -6 <0.

Then f lies in the Friedrich’s domain of the Laplacian and satisfies

so \ is an eigenvalue of Ag.

5.1.3 Case 2: |w;(p;j)| < c(e;) as j — oo.

Analysis on Z in this case leads to a contradiction. Let ¢; = ¢, f] = fj(¢j_1). Let
pj = ¢;(pj). Because |fjw?| attains its maximum value of 1 at p;, | f;(5;)| = (w;(p;))~°.
Rescale f; andfj, replacing them respectively with (w;(p;))? f; and (w;(p;))? f; so that the
maximum of |f;p’| occurs at the point p; € Z; and is equal to 1. Since w;(p;) = O(e;),

e Z.

p(p;) = € 1wj(pj) stays bounded for all j, and so we assume p; converges to p
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By Lemma 1, (Z;, ej_QgZ);fgj]U) converges smoothly to (Zj,gz). This implies the following

equation is satisfied by f; on Zj,
Azf; = Ae) ]+ O(e)).
Since the A(e;) are converging to A and |fjp?| <1 on Z;, we have
Azfj — 0 as j — o0, on any compact subset of Z.

This implies f; — f on M and correspondingly, fj — f locally uniformly C* on Z and f
satisfies . .
Azf=0, |fpfI<1,

where equality holds in the second equation at the point p. This shows that f is not
identically zero on Z and f = O(p~%) as p — oo. Since f is smooth on any compact subset
of Z and is therefore in £ (Z), choosing § > n — 2 contradicts the assumption that Z has
no £2 nullspace.

5.1.4 Case 3: w;(p;) — 0, — 0 as j — oo.

2
w; (p;)
In this case, the points ¢;(p;) — oo in Z, so we rescale and derive a contradiction on the
complete cone over (Y,h). Consider the coordinates (p,y) on Z defined for p > p;. In
€j

these coordinates g, = dp? + p>h(p). Let r; = T,)p and g; on Z; be defined by
J

w;(
€5 2
~ j
o 9.
! (wj(pj)> z

(Zj,9;) = <<Wil(2€9é)’ wj(lpj)> XY, dr? +T?h(rj€j/wj(Pj)> :

As j — o0, h(rjej/w;(pj)) converges smoothly to h, and

Then,

g; — go = dr* +r°h

on the complete cone C over (Y, h). Let f; = w; (pj)éfj(qﬁj_l). Since ]fjw?\ < 1 with equality
at pj, ~
|fjr?| <1 on (Zj, g;) with equality at p; = ¢;(p;).

Let Aj on Z; be the Laplacian induced by g; on Z;,

2
~ wi(ps
Aj: 3(6229]) AZy
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SO

CF oo 2wim)?y s -
Ajfj=e 362] A(€j) fj + O(e;) on (Zj, gj).
j
Since wj(p;) — 0 as j — oo, there is a locally uniform C* limit f. of {f]} on C which
satisfies
1fer®| <1, Acfe=0.

Since the points p; stay at a bounded radial distance with respect to the radial variable r;
on Z;, we may assume p; — p. for some p. € C. At this point, | fe(pe)r(pe)®] = 1 s0 f. is
not identically zero. By separation of variables (see, for example, [22]), f. has an expansion
in an orthonormal eigenbasis {¢;} of L2(Y,h),

fe= Z a;+777 0 (y) + aj 17 ¢ (y)

5>0

where ; , /_ are indicial roots corresponding to ¢; and a;,_ € C. In order for | for® <1
globally on C', we must have only one term in this expansion, f. = ajr*‘sgbj(y). Because
the indicial roots are discrete, we may choose ¢ so that —d is not an indicial root. This is
a contradiction.

5.2 0(Ap) C Accumulation o(A,)

We use the Rayleigh-Ritz characterization of the eigenvalues [2]. Let A(e;) be the 1"
eigenvalue of A; and let

(. VYT
B =57,

The subscript j indicates that the inner product is taken with respect to the £2 norm
on M with the g; metric. The eigenvalues are characterized using Mini-Max by

Ai(€5) = infgim 1 — 1, Leer () SUPer, f20 B (f)-

Similarly this characterization holds for the eigenvalues of the (Friedrich’s extension of the)
conic Laplacian which are known to be discrete (see [4], for example). Because C§°(Mo)
is dense in £2(My) we may restrict to subspaces contained in C$°(Mp). Then, the [t
eigenvalue of Ay is

A= infgim 7 = 1, LCCE°(Mo) SUPfeL, f+#0 Ro(f).

Let \; be the [** eigenvalue in the spectrum of Ag. Fix € > 0. Then there exists L C Cy°
with dim(L) = [ and B
SupfeLJ#O Ro(f) < )\l + €.
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Since any f € L is also in C§°(M) and because L is finite dimensional, by the local
convergence of g; to go, for large j

IRy(f) — Ro(f)| < ¢ for any f € L.
Since A;(€;) is the infimum )
Ai(€5) < A+ 2e.

This shows {);(€;)} is bounded in j, and so we extract a convergent subsequence and a cor-
responding convergent sequence of eigensections which exists by the preceding arguments.
For each [ we take

Ai(ej) = < N,

fig — w,  Aouy = .

These limit eigensections u; are seen to be orthogonal as follows. Fix [, k, with f;, — uy
and fj; — w. Since C§°(Mp) is dense in £2(Mj) we may choose a smooth cutoff function
x vanishing identically near the singularity in My such that

|Ixuk — ul|L2(am) <€
||XUl - U’ZHLQ(M()) <€,

Volj(M — supp(x)) < e.

Then on the support of x, g; — go uniformly so for large j,
| (ugs u)o — (xur, xur)ol < €,

|(xuk, Xur)o — (xur, xu) ;| < e,
| O, xur); — (xur, X fi005] <€
|(xur, X fi0)5 — (X firs X Ji)il < e

Since the eigensections for A; were chosen to be orthonormal and the volume of (M — support(x))
is small with respect to g;,

(X s X Si0)5] < 2e.

Thus, (ug,u;)o can be made arbitrarily small and wug,u; are orthogonal for [ # k. We
complete this basis to form an eigenbasis of £?(Mg). Let f; be an arbitrary element of
this eigenbasis, with eigenvalue ;. We wish to show that this f; is actually the u; above,
defined to be the limit of (a subsequence of) {f;;}, and hence the corresponding 4 is equal
to ;. Again, assume the smooth cut-off function y is chosen so that

Ixfi — JEZHL2(M0) < €.
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For each j we expand Y f; in eigensections of Ay,

o0
Xfi=>_ajrfir where ajr = (xfi, fir);-
k=0

Now, fix k£ and choose y such that

Ixur — urllL2 () < €

Then, - B
(X fis fikdo — (xfis fik)il <

\Ofis Fie)s — (T ue)s] < e,
[(Ocfisun)y — (O ukdol < e
|1y ukdo — (fisui)o| < e

By the orthogonality (fi,ug)o = 0 if f; # ug, and otherwise is 1, so for each k, ajr — 0
as j — oo, for all k with u;, # f;. Because f; is not identically zero there must be some k
with u, = f;. This shows that every eigensection of Ay is the limit of (a subsequence of)
{fjx} and the corresponding eigenvalue Ak is the limit of the corresponding eigenvalues.

5.3 Correct Multiplicities

We argue here by contradiction. Let A be an eigenvalue for Ag with & dimensional
eigenspace spanned by uq,...,ur. Assume A occurs as an accumulation point of multi-
plicity less than k, without loss of generality assume multiplicity £ — 1. However, preceding
arguments imply the existence of a subsequence {fj ;} of A; with fi ; — ws, which shows
that )\ is achieved as an accumulation point of multiplicity at least k. Conversely, assume A
occurs as an accumulation point of multiplicity k4 1. By preceding orthogonality argument,
the limit section 41 of the converging sequence fj1 ; is orthogonal to {u1,...,ux}. This
is a contradiction.

Q©

6 Heat Kernels

The heat kernels for each of the geometries in ac convergence are elements of a pseudod-
ifferential heat operator calculus that is defined on the corresponding heat space. For the
details in the construction of these heat calculi, kernels and spaces, see [29].
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6.1 b-heat kernel

Let (M, g) be a b-manifold with local coordinates z = (x,y) in a neighborhood of M so
that near the boundary
dx?
9= +hzy)
Let (z,2’) be coordinates on M x M and let A, be a geometric Laplacian on M. The b-heat
kernel H(z,2',t) is the Schwartz kernel of the fundamental solution of the heat operator
O + Ayp. The heat kernel is a distributional section that acts on smooth sections of M and

satisfies
(at + Ab)H(Z, Z/,t) =0,t>0,

Hli—g = 6(z — 2').

By self adjointness since we work with the Friedrich’s extension of Ay,
H(z, 2, t) = H(,z,t)".

For a smooth section u on M,

u(z,t) == /M<u(z/),H(z,z/,t)>dz'

satisfies
(O + Ap)u(z,t) =0 for t >0, wu(z,0)=u(z).

Physically, u(z,t) describes the heat on M at time ¢ > 0 where the initial heat applied to
M is given by u(z).
Recall the Euclidean heat kernel,

2
G(z,72,t) = (47t)" 2 exp <_]z2tz|) .
For a compact manifold without boundary, the heat kernel can be constructed locally
using the Euclidean heat kernel and geodesic normal coordinates [28]. On the interior of
a manifold with boundary (or singularity) the Euclidean heat kernel is also a good model,
however, near the boundary (singularity) a different construction is required.

6.1.1 b-heat space

It is convenient to study the heat kernel on a manifold with boundary (or singularity) as an
element of a heat operator calculus defined on a corresponding heat space. This space is a
manifold with corners constructed from M x M x R™ by blowing up along submanifolds at
which the heat kernel may have interesting or singular behavior. For example, the diagonal
is always blown up at ¢ = 0, since away from the boundary the heat kernel behaves like the
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Euclidean heat kernel which is singular along the diagonal at ¢ = 0. For the b-heat space
we first blow up the codimension 2 corner at the boundary in both copies of M. The b-heat
space Mb2h is then,

Mb%h = [M} xR} ; A(M x M) x {t =0}, dt],

where A(M x M) is the diagonal in M x M and M is the b-double space (2). The b-heat
space has five boundary faces, two of which result from blowing up. The remaining three
boundary faces are at t = 0 off the diagonal and at the boundary in each copy of M. More
precisely, we have the following.®

Face | Geometry of face Defining function in local coordinates
F110 SN+(Y X Y) X R+ P110 = (.CC2 + (:C/)2)%

Fpn | PN (A(M x M)) par = (|2 — 2/[* +12)1

F100 YX(]W—@]\J)X]R+ P100 = T

Foro | Y x (M —0M) x Rt po10 = '

Foor (M — 8M)2 — A(M X M) poor =t

Above PNtJr denotes the inward pointing ¢ parabolic normal bundle while SN denotes
the inward pointing spherical normal bundle. Note that the local coordinates x,z’,t lift
from M x M x Rt to M7, as follows,

5*(53) = P110P100, 5*@/) = P110P010, ﬂ*(t) = P§2,0001,

so these coordinates are only local defining functions.

6.1.2 b-heat calculus

The b-heat calculus consists of distributional section half density kernels on M2 = M x M x
R* which are smooth on the interior and lift to be polyhomogeneous on Mb2 », With specified
leading orders at the boundary faces. By constructing the b-heat kernel as an element of
the b-heat calculus, it is polyhomogenous on Mb% 5. and we know the leading order terms.
Consequently, the b-heat kernel is polyhomogeneous at the boundaries and corners of M_%
with specified leading orders. Once the calculus is defined and the composition rule is
proven, construction of the heat kernel as an element of the heat calculus is similar to
solving an ordinary differential equation using Taylor series. The following definition is
from [26].

Definition 10. For any k € R and index set F119, A is an element of the b-heat calculus,
UPOR Gf the following hold.

—3+E
1. Ac ph2g 110(F110).

8The subscript “d” indicates a face created by blowing up along the diagonal, so for example Fys is the
face created by blowing up along the diagonal parabolically in the ¢ direction.
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2. A wanishes to infinite order at Fop1, Fioo, and Fyio.

n+3
nts

5. A€ p, C>®(Fp).

Because the heat calculus is defined with half densities, the normalizing factors at Fjig
and Fjyo simplify the composition rule. An element A of the b-heat calculus is the Schwartz
kernel of an operator acting on a smooth half density section f of M by

Af(z.1) = /M<A(z,z’,t), F())de

Furthermore, A acts by convolution in the ¢ variable so for a smooth half density section
fof M xR/,

t
Af(z,t) = / / (A2, 2t —5), f(2,8))dZ ds.
0 JM
Two elements of the b-heat calculus compose as follows.

Technical Theorem 1. Let A € \IIIZ?IA and let B € \Iflg”l’f. Then the composition, Ao B

. ko+ky, A+B
is an element of Wy .

The proof of this composition rule is in [26].7

6.1.3 Construction of the b-heat kernel

First we construct a model heat kernel H; as an element of the b-heat calculus that solves
the heat equation up to an error vanishing to positive order at the boundary faces of ]\Ib2 he
On the interior of Mth restricting to a coordinate patch with coordinates (z,2’,t), we

locally define 2
H1(27 Zlyt) = (47['t)7n/2@(|zfz lg) /Qt’

where |z — 2’|, is the distance from z to 2’ with respect to the metric g. As t — 0 away
from the diagonal this construction immediately implies infinite order vanishing at Fpo;.
At Fyo we solve exactly: for each p € M and for each point z € Fyo in the fiber over
(p,p,0) the heat kernel at that point is determined by the coefficients of the metric (and
its derivatives) at p.

The normal operator of 0y + Ay is the restriction to Fiig of the lift of 0; + Ay to Mth.
H; is defined at Fiqp to be the kernel of a first order parametrix of this normal operafor
and is smooth at this face. At Figg, Fo10, and Fyo1 the model kernel vanishes to infinite
order. As constructed, Hp satisfies

(&5 + A)Hl = Kl, H, € \1112_720

9Note that in order for the composition to be defined A and B must satisfy certain compatibility
conditions. In our all our applications these conditions are a priori satisfied.
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where K1 now vanishes to positive order at the boundary faces of Mb2 p- Then, define
ngHl—Hl*Kl,

where now the error term

Ky = (0; + A)H,

vanishes to one order higher on each of the boundary faces of ]\4172 5 by the composition

rule. This construction is iterated and Borel summation (see [30]) gives Hy, € \Ilgi}o with
3

Ho — Hy = O(tN_%), for N > 0, so that
(at —|—A)HOO = K,

where K vanishes to infinite order on the boundary faces of M, b% 5, 50 we may push K forward
to M x M x RT. We solve away the residual error term using the action of elements of the
b-heat calculus as t-convolution operators. As a t-convolution operator, the heat kernel is
the identity. Above, K as a t-convolution operator is of the form K = Id — A where A is
a Volterra operator and Id is the identity. An operator of this form has an inverse of the
same form so defining

H:=H,(Id— A)!

solves away this residual error term. By construction the leading order behavior of the
b-heat kernel is that of the model heat kernel and is summarized below.

Face | Leading order

Fii0 | 05 O(tié) as t — oo.
Fyo —”7*'3 —(-2)

Fipo | 00
Foip | o0
Foor | o0

6.2 Conic heat kernel

Let (Mp, go) be a compact manifold with isolated conic singularity and let (Ey, Vy) be a
Hermitian vector bundle over (Mg, go). Let Ag be the Friedrich’s extension of a geometric
Laplacian on (Mg, go) and let Y be the smooth n — 1 dimensional cross section of My so
that My = Y. The conic heat kernel is constructed analogously to the b-heat kernel.
6.2.1 The conic heat space

This construction comes from [27]. The conic heat space Mg, is a manifold with corners

obtained from My x My x RT = M& + by blowing up along two submanifolds,

Mg, := [[Mo x Mo x R*;0My x OMy x {t = 0}, dt]; A(Mg x Mg) x {t = 0},dt] .
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The conic heat space has five boundary faces described in the following table in which
z = (z,y) and 2/ = (2/,y') are local coordinates in a neighborhood of the singularity in
each copy of My so that z = 0,2’ = 0 define the singularity as well as the boundary of Mj.

Face | Geometry of face Defining function in local coordinates
Fiis | PN (Y xY) pri2 = (zh + (/) +2)1

Fpp | PN (A(MS x M) par = (|2 — 21 +42)7

Figo | Y x R p100 = T

Foio | RY xY poto = '

Foor | MY x MJ — A(M§J x MJ) | poor =t

Note that the coordinates x, 2/, ¢ lift from My x My x R to M02h as follows,

B*(x) = proop112, B*(z") = poropr1z, B5(t) = piiapapoot,

so again these are only local defining functions.

6.2.2 The conic heat calculus

Let u be a conic half density on M& 1 We may assume

= (xz’)nT_l\/dzdz’dt = /dV.dt.

Fix also a smooth, nonvanishing half density, v, on M(i ;- Elements of the conic heat calculus

are distributional section half densities on M027 I which are smooth on the interior and lift

to be polyhomogeneous on Mg}h.

Definition 11. Let k£ € R and E109 Eoio E112 be index sets. Then A € \Ilg’flwo’Eow’Em if
the following hold.

1. Ae AElOO at Floo.

phg

2. Aec .AEOlO at Foio.

phg

3. Ac AE112 at Fi12.

phg

4. A vanishes to infinite order at Fyor.

n+37k

5. A€ py? C®(Fp).

With this normalization the conic heat kernel has order Kk = —2 and the composition
rule is the following.
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Technical Theorem 2. Let A € \1164}100”4010”4”2’]6”, and B € \11(1]3}30’]3010’3112’kb with the
leading index terms satisfying

Bii2 + 10 > 0, ar12 + Bioo > 0, —kg >0, —kp > 0, Bioo + o0 > —1.

Then, the composition B o A is an element of \1164}(}0’3010’F112’k with T'112 = A112 + Bri2
and k = (kq + k).

The proof of this theorem is in [29], and is originally due to [27], see also [22], [12].

The conic heat kernel is constructed analogously to the b-heat kernel first using a
model heat kernel and then using the composition rule to iteratively solve away the error
term. Away from Fiio, Figo and Fpig the model heat kernel comes from the standard
local construction using the Euclidean heat kernel. At Fji2 the model heat kernel comes
from an explicit construction of the heat kernel for an exact cone transplanted to Fj12 and
extended smoothly to Figp and Fpig. See, for example [3] and [27] or for the case of the
scalar Laplacian, [29].

The most interesting behavior of the conic heat kernel is at the front face Fiis, so we
briefly review the construction of the model heat kernel at this face. At Fj19 the coordinates
x,2’,t are not good. Instead, consider the projective coordinates

s=x/z' s =2, T =t/(a))2
In these coordinates the heat operator
dh+A— (5/)_2(67' + (35)2 + S_2Ah)a

where Ay, is the Laplacian for (Y, h). Then, we see that the model heat kernel at Fiio
should be

(p112)2H0(87 8/7 Y, yla 7_)7
where Hj is the heat kernel for the ezact cone over (Y, h). Using the scaling properties of
the heat kernel for an exact cone, we see this is equivalent to

(P112)27HH0(57 ]-7 Y, y/J T)a

which is well defined away from Fy1g, and by the symmetry in space variables we may then
use this to define the model heat kernel on all of F}15. By the properties of the heat kernel
for the exact cone, (see [3]) this implies the existence of a full polyhomogeneous expansion
at the side faces Figo, Fo10-

6.3 Ac scattering heat kernel

A summary of the ac scattering heat kernel, space and calculus is given here; for the details,
see the appendix. Let Z be a compactified ac scattering space with boundary defined by
{z = 0} and local coordinates (z,y) near the boundary. Let A, be the Friedrich’s extension
of a geometric Laplacian on Z.
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6.3.1 The ac scattering heat space

First, we construct the ac scattering double space,
ch = [[Z X Z,é)Z X 82], AY xY)n F11()]

where Fjjp is the face created by the first blowup. This construction comes from [14].
Then, the ac scattering heat space is

22, = 2L x RT;A(Z x Z) x {t =0}, dt] .

The ac scattering heat space has six boundary faces described in the following table.

Face | Geometry of face Defining function in local coordinates
Fao | NT(A(Y xY)) x RT pazo = (22 + ()2 + ly — ' P)2

Foso | NT(Y xY) = A(Y xY)) x R* | p11o = (22 + (2/)2)2

Fio | ZxY xRt p100 =

Foio | Y x Z x RT poio = '

Fin | PN (A(Z x 2)) par = (|2 — 21 +12)2

Foor | (Zx Z) — A(Z x Z) poor =1

6.3.2 Ac scattering heat calculus

Elements of the ac scattering heat calculus are distributional section half densities of Z_%

which are smooth on the interior and lift to be polyhomogeneous on Zgah. Let p be a
smooth, non-vanishing half density on Zi and let v be a smooth, non-vanishing half density
on Z2,.

Definition 12. For any k € R and index sets F119, E999, A € \IfsEcl}g’Em’k if the following
hold.

S o)
1. Ae Aphzg+ MOt Fi1o.

— 224 Faoo

2. Ae A, at Fazp.

3. A wvanishes to infinite order at Foo1, Fioo, and Fpig.

n+3

—nt3_ g
4 Acpy® C(En).
Two elements of the ac scattering heat calculus compose as follows.

Technical Theorem 3. Let A € \Iffclﬁ’A”O’k“, and B € \Ifil}g’B”O’kb.

. : A110+B110,A220+Bao,ka+k
Then, the composition B o A is an element of \Ilscl}f}Jr 110,4220+5220,Katkp
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The ac scattering heat kernel is constructed analogously to the b and conic heat kernels.
The model heat kernel in this case is the lift of the Euclidean heat kernel to ch,h and by
construction the leading orders of the ac scattering heat kernel are that of the model kernel

at the boundary faces of ch,h- This is stated in the following theorem.

Technical Theorem 4. Let (Z,g,) be an asymptotically conic manifold with cross section
(Y, h) at infinity. Let (E,V) be a Hermitian vector bundle over (Z,g,) which induces a
compatible bundle over (Y,h). Let A be a geometric Laplacian on (Z,g,) associated to the
bundle (E,V). Then there exists H € \I/SEC{}?’E”O’_z satisfying:
(O + A)H(z,2',t) =0, > 0,
H(z,2',0)=6(z —2).

Moreover, H vanishes to infinite order at Fi19 and is smooth up to Fao.

The proof of this theorem is in the appendix.

7 Heat Kernel Convergence

The interaction of the heat kernels will be studied on the asymptotically conic convergence
(acc) heat space.

7.1 The acc heat space

The acc heat space construction is similar to the heat space constructions of section 6 and
the double space construction in section 3. First, let

Ho:={e=¢€}CcSxS.

Next, let
Hy = [Ho x R; Y x Y x {t = 0}, dt].

This blowup must be done first to create the Fj12 face in the conic heat space. The scalar
variables on S x S x R, are (x,r,2',7',t),!? so by our notation the face created by this
b]OWllp is F111172. Let

Ho := [Ho; Z x Z x {t = 0}, dt].

This blowup is not obvious: in the calculations to follow in which we lift the heat operator
to the acc heat space and calculate its behavior as € — 0, we see a b heat operator with
rescaled time variable. This blowup is necessary to create a compactified b-heat space at

Note that these variables are not independent; they are related by zr = z'r’ = e.
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t,e = 0. The resulting face is Fio10,2. Finally, the acc heat space results from blowing up
the lift of the diagonal in S x S at the lift of {t = 0} away from Fii11 2.

H = [Hg,ﬁ*(A(s X S) — (Y X Y)) N FOOOO,l]-

The face created by this last blowup is Fyo.
The € = 0 boundary faces of H are summarized below.

S x S x R/ corner ‘H face | geometry

m':O,.’L'/:O,T':O,T/:O,t:O F1111’2 PN+(YXY)

r=0,2"=0,t =0, Fiowgz | [Z x ZxREY xY];A(Z x Z) x {0}, d7]

x:O,x':O, F1010 [ZXZXR+—{t:0}]

r=0,7"=0 Foin | [[Mo x Mo x RY;Y x Y x {0}, dt]; A(M§ x M) x {0}, dt]
.1':0,7"/:0 F1001 [ZXMOXR+;YXYX{O},dﬂ

r=0,2'=0 Foio | [Mo x Z xRT;Y xY x {0}, dt]

A(S x S) x {t =0} Fyp PNT(A(SxS)-Y xY)

{t = 0} F000071 ({6 = 6/} C S x S) — (A(S X 8) UY x Y)

7.1.1 Acc half density calculations

We calculate the lift to H of dV g.dV g.dtde. The Jacobian determinant factors which result

from blowing up are

(p1111.2)* (P1010.2)° (Pa2)

n-—+2

1 Next, we calculate the lift of the variables z,2’, 7,7’ to H,

B*(x) = p1010£1010,2P1111,201001 5

/6* (x/) = £1010£1010,2P1111,2£01105

B*(r) = p1111,2P0101 0110,

B*(r'") = p1111.2P0101 01001 -

We calculate the volume form dV g, in a neighborhood of the faces of H at e = 0. At Fyio1,
dV ge ~ dVp, the conic density, consequently

dV gedV gl — (p1111,20101001010,2)°" (1001 p0110)"™ L 12

At Fio10, F1010,2, AV ge ~ €2dV,, the ac density, consequently

dV gedV gL — (p1111.201010.201010)>" (Po101) 2 (p1001p0110)" 1t

where p is a smooth nonvanishing spatial density on #.!?

HThe recipe for these exponents is: (codimension of space variables —1) + (codimension of parabolic

variables *2).

12We have used that dVy ~ 2™ 'dazdy and dV, ~ T,ﬁ%drdy and that e = zr = 27,
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Then, we arrive at the following half density calculation: at Fyio1,

B*(\/dV gedV gldtde) ~ (p1111,2)" " (p1010.2)" (P1010)" " (P1001p0110) "~/ 2/,

where v is a smooth nonvanishing density on H. At Fig19 and Fioio,2,

B*(\/dV gedV gldtde) ~ (p1111,2)" " (p1010.2)" ™ (p1010)™ (Po101) ~(p1001po110) " V2w

Note that these are not the same! In constructing the acc model heat kernel, we will correct
the discrepancy so that the model heat kernel is normalized as an element of the acc heat
calculus.

7.2 The acc heat calculus

The acc heat calculus is a parameter (¢) dependendent operator calculus incorporating the
smooth, conic, and b-heat calculi.'

Definition 13. The asymptotically conic convergence heat calculus of order k, written
\IJZfOI_}Ol’EwlO’27EIm’2 consists of kernels A such that the following hold.

1. For each € > 0, A restricts to an element of \IIIE“H, the smooth compact heat calculus

of order k.

2. In a neighborhood of Fip102, A has an asymptotic expansion in pioio,2 with index set
E1010,2 and coefficients in the b-heat calculus of order k. Such an expansion is of the
form

A~ Z Z (p1010,2)* (10 p1010,2)" Aj1

Jj=10<po<p<p;
‘ kB, . .
with Aj; € U,",''%. Above, if for some j, pj = 0, then there are no log terms.

3. In a neighborhood of Foip1, A has an asymptotic expansion in poio1 with index set
Eo101 and coefficients are elements of the conic heat calculus of order k.

4. In a neighborhood of Fii11.2, A has an asymptotic expansion in pi111,2 with index set
E1111,2 so0 that the coefficients in the conic heat calculus of order k for the exact cone
overY.

5. A wvanishes to infinite order at Figo1, Fio10, Fo110-

13The ac scattering heat calculus was expected to arise in the acc heat space and heat calculus, but after
calculating the behavior of the heat kernel as ¢ — 0, it is clear that the ac scattering heat space is not
needed for the acc heat space and the ac scattering heat kernel does not appear.
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The composition rule is not required for the proof of our main theorem, but we expect
it to follow from the composition rules for the smooth, b, and conic heat calculi, together
with the result for combining polyhomogeneous index sets as in [23]. In appendix B we
construct the acc triple heat space, the key technical tool for proving the composition rule.

Theorem 2. Let (My, go) be a compact Riemannian n-manifold with isolated conic sin-
gularity, and let (Z,g.) be an asymptotically conic space, with n > 2. Assume (M, ge)
converges asymptotically conically to (Mo, go). Let (Eo, Vo) and (E,,V;) be Hermitian
vector bundles over (Mo, go) and (Z,g.), respectively, so that each of these bundles in a
neighborhood of the boundary is the pullback from a bundle over the cross section (Y, h).
Let Aqg, A, be the corresponding Friedrich’s extensions of geometric Laplacians, and let A,
be the induced geometric Laplacian on (M, gc). Then the associated heat kernels H¢ have
a full polyhomogeneous expansion as € — 0 on the asymptotically conic convergence (acc)
heat space with the following leading terms:

o At the conic front face, Foi01, H(z,7',t,€) — Ho(z, 2, t), the heat kernel for (My, go).

o At the rescaled b front face, Fipi02, H(z,2',t,€) — (p1o102)Hp(T), the b heat kernel
with rescaled time variable T.

o At the exact conic front face, Fii11,2, H(z, 2 t,€) — (p1111’2)2H0(T), the heat kernel
for the exact cone with rescaled time variable T.

o At the side faces Figo1, Fo110 and the residual b face Fio1g, the heat kernel vanishes
to infinite order.

This convergence is uniform in € for all time and moreover, the error term is bounded
by Cnet" ast — 0, for any N € Ny.

7.3 Proof

This proof is modeled after the parametrix construction of [26]. First, we lift the operator
O¢ + A to H and construct the acc model heat kernel as an element of the acc heat calculus
which solves the leading terms of the lifted operator. We estimate the error term of this
solution kernel, use the b-heat calculus, introduce the acc conic triple heat space, use the
conic heat calculus and finally solve away the residual error term.

7.3.1 Lifted heat operator

We must carefully choose good coordinates in a neighborhood of each of the front faces
Fo101, Fi010,2 and Fii112 and calculate the leading term of d; + A, as € — 0. In a neigh-
borhood of Fy1p1, the ge is smoothly approaching the conic metric, so

O+ Ac — 0 + Ap.
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In a neighborhood of Fig19,2, the metric ge — € 2g,, so
O+ A — G+ e 2N, = ($)_2(8T + Ay),

where we have used xr = € and the relation between the ac scattering Laplacian and the
rescaled b Laplacian A, = r2A. Note that z lifts to define Fig10, Fio10,2, and F1111,2. This
indicates that the leading part of 0; + A at Fipig,2 is

(p1010,2p1010P1111,2)  2(0r + Ap).

In a neighborhood of Fi111 2, the scalar variables (z, 2/, r, 1/, t) are not good coordinates
since they all vanish. Better coordinates are the projective (s, s’,0,0’,7), where

s=z/r,s =2, o =r/r o = )2, T =1t/(2))°.
Note that
T2

(roy) = (00,), zr=€¢ = — ==

—2
€2

At Fi1112 we see both the conic metric gg near the singularity and the rescaled ac scat-
tering metric e?g. near the boundary. Using the projective coordinates around the conic
singularity we compute

O+ Ac — ()20 + (05)% + (5)"2(AR) = (55')72(05 + (s05)% + Ap),

where Ay, is the Laplacian on Y for h = h(z = 0) and 7 = @ Using the projective
coordinates near the boundary of Z we compute

A+Ac — (8720 4+(5) " 2((005)*+Ap) = (55) 205 +(00,)2+Ap) = (s5') 72(8:4(505)2+Ap),

where in the last equality we’ve used zr = e = 2/r’, which gives s05 = 00, Since (ss') = x
lifts to H to define F1111,2, Flo10 and Fip10,2 as does s, this indicates that the leading term
of 0y + A at F111172 is
(p1111.201010P1010,2) 2 (Or + Aos),
where Ag ¢ is the Laplacian for the exact cone over (Y, h).
These calculations together with the half density calculation tell us how to define the
acc model heat kernel as a parametrix for 9; + A as € — 0.

7.3.2 Acc model heat kernel, H;
o At Foio1, let Hi(z,2,t,€) ~ Hp, the heat kernel for (My, go).

o At Fyio1,2, let Hy(z,2',t,€) ~ (p1o10,2p1010)(po101)?(p1111,2)> Hp(T), the b heat kernel
with rescaled time variable.14

H4Ag Fio10,2 the density discrepancy requires a factor of (ploloqulolo)fl(p0101)2, and the opera-
tor calculation requires a factor of (p1010p101072p1111,2)2. To correct both, we then need a factor of

(01010,291010)(;7()101)2 (p1111,2)2-
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o At F111172, let Hy (Z,Z,,t, 6) ~ (p111172)2(p0101)2H0(T), where H()(T) is the heat kernel
for the exact cone over (Y, h) with rescaled time.

Note that we suppress the half density factor

(p1111.2)" T (p1010.2)" (£1010)™ L (Pr001p0110) " 2 (paz) W T2/2 /1

where v is a smooth nonvanishing density on H. We define Hy(z, 2/, t, €) to vanish to infinite
order at Fip10, Fioo1, Fo110, and define Hq(z,2',t,€) to be the heat kernel for 9, + A, for
€ > 0. This is consistent with the above, since the b heat kernel vanishes to infinite order
at both side faces and as t — oo away from the diagonal and front face. The b heat kernel
vanishes to positive order as t — oo along the diagonal and at the front face as well. The
above definition is consistent along the corners of H, as can be verified by calculation.

7.3.3 Acc model heat kernel construction along diagonal at t =0

In a neighborhood of the faces diffeomorphic to PN*(A) in ‘H we carry out a local con-
struction as in [26] chapter 7. Let X be a manifold; since this construction is the same
for X = M, X = My and X = Z we use X to simplify notation. Let Fx denote the
PNT(A(X)) face in ‘H, where A(X) is the diagonal in X x X. Let N(9; + Ax) be the
restriction to Fx of the lift of (0, + Ax) to H, where Ax is our geometric Laplacian on
X. With the heat calculus normalization at F'x, an element A of the acc heat calculus of
order —k restricts to Fx as follows

N(A) _ t(k+n+2)/2A|Fx~

As in [26] we observe that Fx is naturally diffeomorphic to a radial compactification of
the tangent space of X, with each fiber of Fx over (z,x,0) diffeomorphic to the tangent
space at x, fiber(z) = T,X. Then, from [26] 7.15,

N0+ Ax)A) = [o(Ax) (R+n+k+2)|N(A), (5)

1
2
where R is the radial vector field on the fibers of T'X. Note that if G satisfies
tO+Ax)Go=O(t>®) ast — 0, Go|t=0=0d(x—2),
then G also satisfies

(0 +Ax)Go=0(t*)ast — 0, Golt=0=5(x—2a). (6)

So, we may work with ¢(9; + Ax) as in [26]. Our initial parametrix Gy will have order
k = —2 at F'x. Then, from 5 we have the following equation for Gy

[0(Ax) = 5 (R +n)IN(Go) = 0.

1
2
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From [26] 7.13, in order for Gy to satisfy the initial condition it must satisty,

N(Go) = 1.
fiber

Since these conditions are fiber-by-fiber we introduce local coordinates so that
o(Ax)=D?+...+D? onT,X.

Then we have

[D%+...+Di—;(R+n)} N(Go) =0, (7)
SO 9
N(Go) = (2m)Fexp () )

is the desired solution, where X is a projective local coordinate on F,, X = ”’;1_/2/ (see [26]
(7.36)), and | * |, is the Riemannian norm on T'X induced by the metric at z. To see that

this is the desired solution, consider the Fourier transform of (7) with v = N(Go)|r, x,
(60 +2[¢)a =0, @(0) = 1.

Then by standard results in ordinary differential equations, the expression in (8) is the
unique decaying solution.
Now we may iterate this to solve up to higher order. Assume we have found Gy, ..., Gk
satisfying
t(0y + Ax)Gj = R;,

where R; is of order —3 — j at F'x. To find Gj41 = G, — T}, we wish to solve
t(0y + Ax )Ty, = Ry, + Ryy1,

where we have already found Ry of order —3 — k, and Ry1 will be of order —4 — k. Lifting
to T'X this becomes

o(8x) — (R~ 1| N(T) = N (R

which we may again solve via Fourier transform. Letting u = N(T}) and f = N(Ry) we
find

1
(€)= [ expl(r = DIEP)Fre)rar
0
is the desired solution. This completes the inductive construction for all k. Now the suc-
cessive T = G 41 — G give a formal power series at F'y which can be summed by Borel’s

Lemma so that G is order —2 at F'x and satisfies (6). We then set the acc model heat
kernel H; = GG in a neighborhood of Fx.
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7.3.4 Acc model heat kernel construction off diagonal at ¢t =0

Consider Fipi0,2 = th - This face has the following geometry.

Boundary Face | Geometry of Face Arising from

Foao PNT(A(Z x Z)) parabolic blowup of diagonal at 7 =10
Fyi1o SNT(Y xY)xR* | blowup of Y x Y for all 7

Fyi00 Y x Z xRt boundary in first copy of Z

Fro1o ZxY xRT boundary in second copy of Z

Fyoor (ZxZ)—A(Z x Z) | =0 away from diagonal

Since at this face H is asymptotic to Hy(z, 2/, 7), at the boundary face where 7 vanishes
away from the diagonal, H; vanishes to infinite order. Recall Hy vanishes to infinite order
at the side faces Fyigo and Fpg19. At the diagonal face Fypgo we’ve solved Hi up to error
vanishing to infinite order in ¢. So, we have at this point an approximation H; whose error
vanishes to infinite order on the interior of Fjgig and at all boundary faces except Fpi10.
The indicial operator for Ay, at Fpi10 is

(00,)* + A,
on R x Y. We would like to solve
(Or 4+ D) [Fy10u = =K By,

so that u is polyhomogeneous on Zl? »; then Hy +u would vanish identically at Fj119. Since
H is polyhomogeneous on Fig1g and smooth up to these boundary faces, the error term K
is also. Expanding K, where we use simply p for the projective defining function for Fyi1g,

K~ (p)kj, kjeC,
Jj=0
and expanding the desired solution w,
Yo
J=0

we may use either separation of variables expanding in eigenfunctions of A, or the Mellin
transform (see [26]) to find ug satisfying

(87- + I(Ab))uo = —k‘o,

with ug vanishing to infinite order as ¢ — 0,00 : at the side faces Fpig9, Fpo10. Since
Ay — I(Ap) = (p)(L1), where L; is also a b-differential operator, we may now iteratively
solve for wi,us,..., to solve the equation to increasingly higher order. Recall that in
the projective coordinates near this face, o’ defines Fj,119 and since the operator does not
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differentiate with respect to ¢/ = r’ the defining function commutes past the operator.
Using Borel summation we construct u so that

0y + Ap)u= —K + K>

where Ko vanishes to infinite order at Fj119. Using a smooth cutoff function y supported
in a neighborhood of these faces, the second approximation Hy = H; + yu now satisfies

(0r + Ap)Ha|py, = Ko

where Ky vanishes to infinite order on both the interior and all boundary faces of Figig.
A similar exact construction applies to F1111,2, since this face is the blown down heat
space for the ezact cone over (Y, h).

7.3.5 Error term approximation

For each € > 0, let E(z,2',t,¢) = H(z,2',t) — Hi(2,2',t,€). Let K be defined for each
e >0 by
(at + AE)E('Za Z/7t7 6) = K(Za Z/at7 6)‘

By construction of Hy, K = O(et™) as €,t — 0, so for anyN € N, there is C' > 0 such that
for any (z,2') € M x M,
K (z,2,t,€)| < Cet.

Moreover, K has a polyhomogeneous expansion down to € = 0.

For each ¢ > 0, F is smooth on H for ¢ > 0 by parabolic regularity applied for each
e > 0 since K is O(t*). By construction E is smooth down to t = 0, so FE(z,2',t,€) is
smooth on the blown down space, M x M x RT x (0, §]c. The following maximum principle
argument on M X [0, T]; shows that F is also O(et*) as €,t — 0 in the same sense as K.

Fix € > 0, 2/ € M. Since K = O(et™), fix C > 1 and N 3 N >> 1 such that
|K (2,2, t,€)]? < C2t2N for all z € M. Let u(z,t) = |E(z,2,t,¢)|*>. Let A be the scalar
Laplacian for (M, g.). Then u satisfies

(0 + A)u=2((0; + V*V)E,E) — |VE|* = 2(K — RE, E) — |VE|?

< 2(K,E) <2|K||E| < |K|* + |E* = |K|* + u.

Above we have used the positivity of R and the compatibility of the bundle connection
with the metric. Now, let % = e *u. Then @ satisfies

(0 + A < eHK|? < Cet?V.

Let w = @ — Ce2t2N*1, Since F and hence u and @ vanish at t = 0, w|;—9 = 0 and w
satisfies
(0 + A)w < CE22N — C(2N + 1)é2*N < 0.
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Fix T' > 0 and consider w on M x [0, T)¢. If w has a local maximum for z € M and ¢t € (0,7
then
(&g + A)w > 0,

and this is a contradiction. If w has a maximum at ¢ = T then dyw > 0 and
(0 + A)w > 0,

which is again a contradiction. Therefore, the maximum of w occurs at ¢t = 0 and so
w < CePN+

This implies
u<elCet?™, for 0<t<T,

which in turn implies that £ = O(et") as ¢, — 0, for any N € N.

7.3.6 Acc conic triple heat space

Since the error now vanishes to infinite order at all boundary faces except Fpig1, we restrict
attention to this face. It is convenient to use the conic heat calculus composition rule, but
this requires the conic triple space so we construct a partial acc triple heat space, the acc
conic triple heat space, which contains the conic triple heat space so that we may use the
conic heat calculus composition rule. The acc conic triple heat space Hg is a submanifold
constructed from S x Rt x RT by eight blowups. Let X, X', X" denote the three copies of
the submanifold X in X3. Then the blowups are listed in the following table in the order
which the blowups are performed together with the name of the face created.

Blowup Face
Y xY' xY" x {t = O,t/ = 0},dt, dt’ F11122
Y xY' % {tIO},dt Fi1020
Y'xY" x {t/ = 0}, dt’ F01102
Y xY" x {t” = ’t — t/| = 0}, dt" Fiop199
A(SE x 8 x 8"y x{t=0,t' =0},dt,dt' | Fy3
A(S X Sl) X {t = O}, dt ng()
A(S/ X 8//) X {t/ = O}, dt’ Fd02
A(S x 8") x {t" = 0}, dt" Floo

Let 3*Hs be the lift of Hy to H2, and let 3* K3 be the lift of K3 to HZ. Then, 3*K»
vanishes to infinite order at all boundary faces except those arising from the lift of Fj191.
Now let

Hj := (,(8"Hy — f*H2 3" K>),

where (3, is the push forward to H from HJ. Since 3*K3 vanishes to infinite order at all
boundary faces except Fpio1, the push forward of (5*Hs)(5*K2) to H vanishes to infinite

39



order at all boundary faces except Fyig1, where the result is given by the conic heat calculus
composition rule. Consequently,

Hj3 = Hy — B(8*H2 3" K>)

vanishes to higher order at the boundary faces of Fyi91, by the conic heat calculus com-
position rule. Continuing this construction and using Borel summation, we arrive at Hoo
with expansion asymptotic to Ho, Hs, ... and satisfying

(aT+A0)HOO = Nooy

where K, now vanishes to infinite order on Fy1p1. Using a smooth cutoff function we now
have H defined on all of H satisfying

(O +Ac)Hoo = Ko

where K, vanishes to infinite order at all boundary faces of H.

7.3.7 Solving away the residual error term

To complete this construction we must remove the residual error term which vanishes to
infinite order at the boundary faces of H. It is now convenient to consider the elements of
the acc heat calculus as t-convolution operators acting on S x R™. For an element A which
vanishes to infinite order at the boundary faces of H and u a smooth half density section
of S x R, the t-action of A on u is

Au(t) = /0 (Au(t — s),u(s))ds, 9)

where the spatial variables have been suppressed. As a function of s, s > 0, [Au(s')](s)
vanishes to infinite order at s’ = 0. Restricting to s’ =t — s,

[Au(t — 8)](s) = s ¥/27Ht — s)uy ;(t — s, 5),

for any —k, j € Ng with u, ; a smooth half density, so for any —k > 1 this is integrable and
consequently, Au(t) as in (9) is smooth in ¢ and vanishes rapidly as ¢ — 0. So, an element
A of the acc heat calculus which vanishes to infinite order at all boundary faces of H gives
rise to a Volterra operator. Since as a t-convolution operator we have

(8, + A)Hoo = Id — Ko,

we would like to invert (Id — K). Formally, the inverse should be

(Id— Koo)' =) KL,
Jj=0

40



where K2, is the j-fold composition of K. To show that this Neumann series converges,
we estimate the kernel of KZ,. Since K., vanishes to infinite order at all boundary faces
of H we may restrict to submanifolds of H, estimating as in [26] and then combine these
estimates to estimate K2, on H. The kernel k%, of the restriction of K%, to M x M xR™ x {e}
is bounded by .

. J

k(2,2 t,0)] < Ce,j(jil)!, t<T.

This follows from the composition rule for the heat calculus on M and the analogous bound
in [26] 7.3, where we have taken k = —2, with k as above which we are free to choose since
A vanishes to infinite order. Similarly, by the composition rule for the heat calculus on
My and the same estimate of [26], the kernel of the restriction of K2, to My x My x R* is
bounded by

‘kéo(z7 Z/7t)|F0101 < CO,j(j_t:l)!, t<T.
Similarly, the kernel of the restriction of Kgo to Z x Z x R* is bounded by
ki (2,2 ) g0 < Czj.L, t<T.
T+ 1!

These three bounds imply that the constants Ce ; stay bounded as € — 0 and so we have

the following global bound for the kernel of K%, on both H and the blown-down space
{e=d} S xS xR

kI (2,7, t,€)| < C d t<T

2,2t e — !
o0 I » Yy — J (] + 1)'7
It follows that the Neumann series for (Id — K,)~! is summable and has an inverse which
as a t-convolution operator is also of the form (Id — A) where A is an element of the acc
heat calculus that vanishes to infinite order at the boundary faces of H. Then, the full acc
heat kernel is
H=H,(Id - K) '

As a consequence of this construction, H has a fully polyhomogeneous expansion down to
e = 0 with leading order terms given by the acc model heat kernel, Hj.

Q©

Remarks
A consequence of this theorem is the convergence for t > 0, ¢t < T

H. — Hy+ O(e)as € — 0.

This extends the convergence results of [8] for scalar heat kernels to heat kernels for geo-
metric Laplacians acting on vector bundles. Due to the rescaled time variable at the faces
contained in ¢€,¢ = 0, we expect to see something interesting when we compute the short
time asymptotic behavior of the heat trace.
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A Asymptotically conic scattering heat kernel

Let Z be a compactified ac scattering space with boundary defined by {x = 0} and local
coordinates (x,y) near the boundary. Let A, be the Friedrich’s extension of a geometric
Laplacian on Z. We motivate the definition of the acc heat space by lifting the Euclidean
heat kernel to Zi.

Recall the Euclidean heat kernel for R™,

7‘Z_Z/|2

G(z,2,t) = (4nt)"2e” =

Here the coordinate z = (7,y) has not been compactified. With the compactification of Z
given by © = % in the local coordinates (z,y, ',y t) on Zi near the boundary of Z the
FEuclidean heat kernel is

1_ 192 "2
n ==+ Yy —
G(x,y,2,y . t) = (47t) "2 exp (_(!x v a vy — Y| )) .

This motivates blowing up
SllO = {(x7y7x/7y/7t) P T = va/ = 0}
In the projective coordinates s = 7, s’ = 2’/ the Euclidean heat kernel is

(1522 + |y - y’|2)>

2t

G(87y7 Slaylyt) = (47Tt)7% exp (—

This motivates a second blowup at s = 1, along the submanifold where the diagonal in
Z X Z meets the first blown up face

SQ2O = {(x,y,x’,y',t) X = 0,1‘/ = Ovy = y,}'

A.1 The Ac scattering heat space

As motivated above, the ac scattering heat space is constructed from Z_% by performing
three blowups.
First, the scattering double space, Z2, is constructed:

2320 = [[Z X Z,(?Z X 82], A(Y X Y) N Fll(]]

where Fi1g is the face created by the first blowup. Including the time variable we perform
one more blowup to construct the ac scattering heat space,

Z2 =22 xRYA(Z x Z) x {t =0}, dt] .

42



The ac scattering heat space has six boundary faces described in the following table.

Face | Geometry of face Defining function in local coordinates
Fyo | N¥(A(Y x Y)) x RF pr = (@ + (@) + |y — y/*)?

Foso | NF(Y xY) = A(Y xY)) x R* | p11o = (22 + (2/)2)2

Fioo | ZxY xRt P00 = T

Foio | Y x Z x RT poto = '

Fin | PNf(A(Z x 2)) par = (|2 — 2'[* +12)2

F001 (Z X Z) — A(Z X Z) L0001 = t

A.2 Ac scattering heat calculus

Elements of the ac scattering heat calculus are distributional section half densities on Z_2Ir
which are smooth on the interior and lift to be polyhomogeneous on chyh. Let o be a
smooth, non-vanishing half density on Z x Z x R* and let v be a smooth, non-vanishing
half density on ch,h'

Definition 14. For any k € R and index sets F119, Fa20, A in\I/sEcl}g’E”O’k if the following
hold.

—3+E
1. Ae Aph2g MOt Fi1o.

—22 4 Fooo

2. Ac Aphg at Foop.

3. A wvanishes to infinite order at Foo1, Fioo, and Fpig.

n+3ik

4. A€ p;QT C(Fa2)-

Elements of the ac scattering heat calculus are Schwartz kernels of operators acting on
sections of Z in the usual way and on sections of Z x R, by t-convolution. The composition
rule is proven using the ac scattering triple heat space, Z :fc 5. This space has partial blow
down/projection maps to three identical copies of the ac séattering heat space as well as
full blow down/projection maps to three identical copies of Z_%; these are called the left,
right, and center. Formally, two elements of the ac heat calculus are composed by lifting
from the left and right copies of ZSQCJL to ch, ,» multiplying and blowing down/projecting
to the center copy of 252@ 5 It is key that the triple space be constructed so that these lifts
and push-forward maps are b-fibrations in order that polyhomogeneity be preserved.

A.2.1 The ac scattering triple heat space

We first construct the ac scattering triple space Z ;”c and later include the time variables. In a
neighborhood of the boundary in each copy of Z we have the local coordinates (z,y), which
provide the local coordinates (x,y, 2,9, 2", y") on Z3. First we blow up the codimension
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three corner defined by {x = 0,2’ = 0,2” = 0}. We call this face Fj1100 with defining
function locally given by

1
pri1oo = (2% + () + (2)%)2.
Next, we blow up the three codimension two corners corresponding to the Fjig faces in
each of the three copies of ch,h- These faces are as follows.

Face Submanifold to be blown up Defining Function
T
Fii000 | S11000 = {z = 0,2’ =0} — Fii100 | p11000 = (2% + (2/)?)2
For100 | Sor100 = {2/ = 0,2” = 0} — Fi1100 | por1oo = ((2)* + (2”)?)
1

T

Fio100 | S10100 = {z = 0,2" = 0} — Fi1100 | pro100 = (()* + (2”)?)2

Next we blow up the codimension 2n + 1 corner where the diagonals meet Fi1199. After
the Fi1100 blowup, we have coordinates (6,6',0",y,y',y", p11100), with

z = (p11100)0, 2 = (p11100)0, 2" = (p11100)0”, (0)*+ (¢')* + (6")* = 1.

N

Using these coordinates, we next blow up
Sozoo ={0=0"=0",y =y =9", ro =0}
The face created by this blowup is called Fs9909 with defining function
1
pazooo = (0 =07+ (0" = 0" + |y — /P + 1y — "> +75)=.

After this we blow up the three codimension n corners corresponding to the Fso faces
in the three copies of the double heat space. These are as follows.
Face Submanifold to be blown up Defining Function

Fy000 | S22000 = {0 =0,0' =0,y = ¢/} p22000 = (0% + (0)* + |y — y,P)%

Foooo | Soze00 = {0 =0,0" = 0,5’ = 4"} | poazoo = (¢)* + (0")* + v/ —¢"*)

Fa0200 | Sa0000 = {0 =0,0" = 0,y = 4"} | paoaoo = ((0)2+ (0")% + |y — v/'|?)2
We have now constructed the ac scattering triple space, Z2.. We next introduce the

time variables and perform the parabolic temporal diagonal blowups. We must first blow
up the codimension 2 corner of R™ x RT to preserve symmetry. Let

[SIE

TE=RT xR t=1¢=0].

The defining function for the blowup of {t = ¢’ = 0} is ppgo11, which we call ¢ because it
plays the role of the third time variable. We now take Z3, x ’262 and blow up the temporal
diagonal faces. First, we blow up the codimension 2n + 3 triple diagonal, Sy3, defined by

{z=7 =21t =0}
The defining function of this face is pgs,
pas = (|2 = 2/|" + [z = 2"+ (¢")?)1,
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Next, we blow up the three temporal diagonals corresponding to the diagonal faces in the
three copies of the double heat space. These are as follows.

Face | Submanifold to be blown up | Defining Function

Fao | Sazo = {2 = 2"} pazo = (|2 = #/|* + 7)1
Faoz | Saoz = {2 = 2"} paoz = (|2 = 2"* + (t,)2)%
Faop | Sao2 = {2z =2"} paza = (|2 = 2"[* + (")2)7

We have now constructed the ac scattering triple heat space and proceed with the
composition rule.

Technical Theorem 5. Let A € \Ilfcl}_?’A”O’k“, and B € \Ililﬁ’B”O’kb.

. : A110+Bi10,A220+ B
Then, the composition B o A is an element of b 110FB110,4220F 220,ka+kp

sc,H
A.2.2 Proof
Formally we have,
koav = (Bc)« ((Br)"(kav)(BL)" (kBV)) - (10)
Multiplying both sides of (10) by v and using the fact that (8.)«(8:)*(v) = v
kpoar? = (B0)« (Br)" (kav)(BL)* (kpv)(Be)*(v)) - (11)
Next we calculate the lifts of the defining functions and half densities from Zfah to
ch,h‘ A calculation gives the half density on the heat space v in terms of the half density
pon Z2

_1 _n _n+l
v = (61" ((p110) 7 (p220) "2 () ™% ).
The ac scattering triple heat space has partial blow down/projection maps (., Or, and
B¢ to three identical copies of chyh. If we denote the three copies of Z by Z, Z', Z”, and
the three time variables (¢,t',t"”) where t” is from the blowup of RT x R* then the three
copies of Z?C ;, are as follows.

Copy of ch,h Associated to in ch,h
Left Z x 7' xRf
Right Z'x Z" x R},
Center ZxZ" xR},

Next, we compute the lifts of the defining functions for the boundary faces of the heat
space to the triple heat space.
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Lifting map | Defining function on ZSQQ , | Lift to Z?c,h
(Br)* £100 £10000£10100
(BL)* po10 £01000£01100
(Br)* P110 £11100£11000
(Br)* £220 £22200£22000
(Br)* pa2 Pd3Pd20

(Br)* Po01 £00010000110d22
(Br)* £100 £01000£01100
(ﬂR)* £010 £00100£10100
(Br)* p110 £11100001100
(Br)* 0220 £22200002200
(Br)* Pa2 Pd3Pdo2

(Br)" Po01 £00001 200011 Pd22
(Be)* £100 £10000011000
(Be)* P010 £001000£01100
(Be)* p110 P11100£10100
(Be)* P220 £22200£20200
(Be)* pd2 Pd3Pd22

(Be)* Po01 £00022/00011 Pd22

Then,
(BL)*(v) = (BL)* ((p110) 2 (p220) "2 (puaz) "% o).

Next, we use the fact that
(BL) (1) (BR) () (Be)* (1) = 43
Here, 12 is a smooth density on Z x Z x Z x Rt x Rt so we may assume
p3 = dzdz'dz"dedt .
A Jacobian calculation gives the lift of ,u% to the triple heat space. First note

(83)"(x) = (p11100)(P11000)(PL10100)(P10000),

(B3)*(z") = (p11100) (P11000) (P01100) (PO1000)
(B3)*(2") = (p11100) (Po1100) (P10100) (P00100)-
This implies
(B3)*(123) = (p11100)%(P1100001100210100) (2200002200 920200) ™

)2n+1( n+1 2n+3 (t//)VQ

(p22200 pd20pd02Pd22)" " P 3
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Here, 1/§ is a smooth, nonvanishing density on the triple heat space. Combining this
with the above lifts, we arrive at the following formula

(BL)* (V) (Br)* (V)(Be)* (V) = (p11100) % (P10100P01100P10100) 2

2 (pas) 2 (pazopdozpazz) 2z (t")vs.

To use the push forward theorem of [23], we need to write each of these in terms of

b-densities. First, we have on the center copy of ZSQQ h

n n+1 n+3 n+1 2
(£22000£02200020200) 2 (p22200)

*v? = (p100po10p110P220P001 Pa2) V2.

Then, we have
0% = (B)«(Be)*((pr00po10P1100220P001 Pa2) /7).
We observe
(8)* ((pr00po10p110P220P001Pa2) ') =

-1
(plooooﬂoowoﬂl1000P01100P10100P11100P22200P02200P202oopd3/3d22/)00011) .

So now we multiply both sides of (11) by (3c)«(8:)* (p100P010011002200001Pa2) ") and
inside the right side of (11) we have

n—2

_1 n
(p11100£11000201100p10100) ~ 2 (p2200002200022200) 2 (P20200) 2

n+l ntl n —
(pas) 2 (pazopdoz) 2 (paz2)2 (proooopooton) V3.

To use the push forward theorem, we must change the density Vg to a b-density. We

observe

b, 2
Vg = (Pl1100P11000ﬂ01100Plo100P22200P22000P02200ﬂ20200

—1.2
pwooopomoopoo100Pd3ﬂd200d020d22000011,000010,000001) V3.

So, we now have for the composition formula

n+2

- 1
(Be)«(KakB(p1110011000£01100£10100) 2 (22200 022000£02200) 2
n+1

n n+3
(920200) 2 (Pazpazopdaoz) 2 (paz2) 2 Po1000£00011L00010P00001 (C13)).-

We observe the following orders of K4 on Z ?Qh.

Face K4 Index Set/Leading Order
Fi1100 —3 + A110

Fi1000 —5 + A2

Fo1100, F1o100, Fo2200, F20200, Fyo2 | o0

F22200, Fa22000 —1E2 4 Aoy

Fa3, Fago —nf3 _k,

F10000, Fo1000, F00100, FoO00105 FoO0011 | O
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Similarly, for Kp we have orders as follows.

Face kp Index Set/Leading Order
Fi1100 —5 + Biio

Fo1100 —35 + Bao

F11000, F1o100, F22000, F20200, Fa22 00

F22200, Fo2200 —222 4 Boog

Faz, Fao2 —nt3

F10000, Fo1000, F00100, FoO00105 FoO0011 | O

Now, recalling the formula:

n+2

o 1
(Be)«(KaKB(p11100£11000£01100£10100) 2 (£22200£22000£02200) 2

n nt3 ntl
(p20200) 2 (Pazpazopdoz) 2 (paaz) 2 Po1000£00011 200010200001 (P13))

We see that the quantity on the right hand side to be pushed forward by (5.). has the
following indices on the boundary faces.

Face Index Set/Leading Order
Fi1100 —%+ A0+ Bio

F11000, Fo1100, F10100, F22000, Fo2200, F20200 | 00

Fs2000 — 232 4 Agag + Bogo

Fas _nT—i_S_Ufa"i‘kb)

Fazo, Faoz, Fazz 00

F10000, F01000, F001005 Fo000105 Fo00001, FO0011 | OO

The push forward under (3.)* sends the boundary faces of Z3_, to Z2 , as follows.

Z ,i’ Face Boundary face of ch ;, or Interior
Fi1100 Fiio

Fio100 Fi1o

F22200, F20200 Faao

Fy3, Fazo Fao

F1o000 Fioo

Foo100 Fo1o

Fooo11 Foo1

Fi1000, Fo1100 F22000, Fo2200, Interior

Fa20, Fao2, Fo1000, Fooo10, Foooor | Interior

The quantity to be pushed forward is integrable with respect to bu§ at the faces that are
mapped to the interior, so we may apply the push forward theorem (see [23]) to arrive at the
result of the composition rule. The kernel, ko4 will have the following polyhomogeneous
index sets and leading orders on Z,%.
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Face of Z7 | Index Set/Leading Order
Fi1o —3 + A110 + Bino

Fao0 — 242 4 As90 + Bago

Fao — 253 — (ko + k)

Fioo 00

Foio 00

Foo 00

A110+B110,A220+B220,ka+kp

This concludes the proof of the composition rule: BoA is an element of ¥’ '

Q©

Technical Theorem 6. Let (Z,g.) be an asymptotically conic scattering space with cross
section (Y, h) at infinity. Let (E,V) be a Hermitian vector bundle over (Z,g,) so that near
the boundary E is the pullback of a bundle over (Y,h). Let A be a geometric Laplacian on
(Z,g.) associated to the bundle (E, V). Then there exists H € \Ilfcl}f}’Em’_Q satisfying:
(0 + AYH (2,2',t) =0, t > 0,
H(z,72',0)=4d(z—2).

Moreover, H vanishes to infinite order at Fi19 and is smooth up to Faag.

On the interior of ch,h the ac scattering model heat kernel is locally defined by the
Euclidean heat kernel and a partition of unity. At Fyo we construct the model heat kernel
explicitly using the jet of the metric at the base point of each fiber. At Fpyg; the model
heat kernel vanishes to infinite order. At F19 and Fyog the model heat kernel is the lift of
the Euclidean heat kernel. Then the ac scattering model heat kernel H; satisfies

(0 + A)H; = K,

where K7 vanishes to positive order on the boundary faces of ZSQ

1~ We now define

Hy = Hy — Hi Ky,

with
(8,5 + A)HQ = Ky

where K3 vanishes to one order higher on the boundary faces of ch,h- Similarly,
H3 = H2 — HQKQ.

Using Borel summation we construct H,, with expansion asymptotic to Hy, Ho, Hs, ... and
satisfying
(Or+A)Ho = K,
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where now K vanishes to infinite order on the boundary faces of ch 5 As a t-convolution
operator we wish to have
Hy, = 1d,

however, we currently have
H,=I1d+ K,

but this is not a problem since (Id + K) is invertible with inverse of the same form. Then
the ac scattering heat kernel
H=H,(Id-K)!

is an element of the ac scattering heat calculus with leading orders on the boundary faces
of ch ;, determined by those of the model kernel.

Q@

B Acc triple heat space
Let
T=[[[SxSExSY xY' xY";Y xY'];Y xY"];Y x Y],
where we have used Y, Y’ Y” to denote the three copies of Y in S3. Let
T:={peT: filp)=0,i=12}, filp) = z(p)r(p)—2'(p)r'(p), f2(p) = 2'(p)r"(p)—2" (p)r" (p)-
Like the acc double and heat space, 7 is a smooth manifold with corners. Let
RY, = [Rf x {0} x {0},

Then the acc triple heat space is constructed from 7 x ]RéF » by blowing up along twelve
submanifolds creating the following twelve boundary faces. 7Below, let tD be the lift to 7
of the diagonal in S x &' x 8", let Dq19 be the lift of the diagonal in S x &', Dy11 be the
lift of the diagonal in &’ x 8” and D1¢; be the lift of the diagonal in S x S”.

Submanifold blown up Face created
Y xY' xY" x {0} X {0}, dt, ds 511122
Y xY' x{t=0},dt S11020,
Y' xY" x {S = 0}, ds 501102
Y xY" x {t =5 = 0},ds, dt S10122
Y xY' xY” 5111
Y xY' 5110
Y' xY" 5011

Y xY” 5101
tD x {t,s =0},ds,dt Std
DllO X {t = 0}, dt Sd20
D011 X {S = 0},d$ Sd02
D101 X {8 =t= O}, dS, dt Sd22
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As constructed, the acc triple heat space has full and partial projection/blow down
maps to three identical copies, left, right and center, of the acc heat space and to three
corresponding copies of the blown down space {€ = €'} C S?xR™. To compose two elements
A and B we view the element A as acting from the left to the right while B acts from the
right to the center. Formally, the composition B o A is the pushforward from the acc triple
heat space of the product of the lifts of A and B. Compatibility assumptions on the leading
orders of A and B at boundary faces of the acc heat space are required so that we can push
forward. With these assumptions and with the possible inclusion of normalizing factors
at boundary faces of the acc heat space, two elements compose as one would expect. The
technical details in the proof of this composition rule are expected to be analogous to the
technical details in the proof of the ac scattering heat calculus composition rule (appendix

A).
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