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Abstract: A Boolean ring satisfies the identity z?> = z which, of course, implies the identity
22y — xy? = 0. With this as motivation, we define a subBoolean ring to be a ring R which satisfies
the condition that x?y—xy? is nilpotent for certain elements x, 3 of R. We consider some conditions
which imply that the subBoolean ring R is commutative or has a nil commutator ideal.

Throughout, R is a ring, not necessarily with identity, N the set of nilpotents, C' the
center, and J the Jacobson radical of R. As usual, [z, y] will denote the commutator zy —yz.

Definition. A ring R is called subBoolean if
(1) v’y —axy*€ Nforalz,yin R\ (NUJUCQO).

The class of subBoolean rings is quite large, and contains all Boolean rings, all commutative
rings, all nil rings, and all rings in which J = R. On the other hand, a subBoolean ring need

not be Boolean or even commutative. Indeed, the ring

G ) () () (o) e

is subBoolean but not Boolean and not commutative. Theorem 6 below gives a characteri-
zation of commutative subBoolean rings.

In preparation for the proofs of the main theorems, we need the following two lemmas.

Lemma 1 ([1]) Suppose R is a ring in which each element x is central, or potent in the

sense that % = x for some integer k > 1. Then R is commutative.

Lemma 2 If R is a subBoolean ring with central idempotents, then the set N of nilpotents

1s contained in the Jacobson radical J of R.



Proof. Suppose a € N, x € R. Suppose for the momenet that az € (N U JUC). If
ax € N, then ax is right quasiregular (r.q.r.). Also, ax € J implies that az is r.q.r. Now
suppose ax € C (the center of R). Then (ax)™ = a™a™ for all positive integers m, and
hence ax € N (since a € N), which again implies that ax is r.q.r. Next, consider the
case (ax)®> € (NU JUC). Again, (ax)®> € N implies that az is r.q.r., while (ax)? € C
implies (az)?* = (az)?(az)?--- (ax)?* = a*t for some ¢t € R, which implies that az € N (since
a € N), and hence az is r.q.r. Finally, if (az)? € J, then (az)? is r.q.r., and hence az is r.q.1.

Combining the above facts, we have:
(2) If ax € (NUJUC) or (az)? € (NUJUC), then az is r.q.r.
Now, suppose az € (N U JUC) and (az)? ¢ (N U JUC). Then, by (1),
(3) ((ax)?)* (az) — (az)*(az)? € N.
In view of (3), we see that
(ax)? = (ax)™'g(ax); g(\) € Z[N]; ¢ > 1.
Let ¢ = [(ax)g(az)]?. Then e? = e, and (ax)? = (ax)%e. Hence,
(4) (az)? = (az)’e; e = [(az)g(az)]'; ¢* =e; (a € N).
Suppose a™ = 0 (recall that a € N). Since the idempotents are central, (4) readily implies
e =ee = e[(ax)g(ax)]! = eat = aet, for some t in R,

and thus e = aet = a’et?* = -+ = a™et™ = 0. Hence, by (4), ax € N, and thus az is r.q.1.

The net result is:
(5) If ax ¢ (NUJUC) and (az)? ¢ (N U J U R), then ax is r.q.r.

Combining (2) and (5), we conclude that ax is r.q.r. for all z in R, and hence a € J, which
proves the lemma.

We are now in a position to prove our main theorems.
Theorem 1 If R is a subBoolean ring with central idempotents, then R/J is commutative.
Proof. By Lemma 2, N C J, and hence by (1),

(6) 2%y — 2y* = 0 for all noncentral elements z, y in R/J.



Since the semisimple ring R/.J is isomorphic to a subdirect sum of primitive rings R; (i € I),

each of which satisfies (6), we have
(7) 2%y — zy* = 0 for all noncentral elements z, y in R;, (i € T).

Case 1. R; is a division ring. Suppose R; is not commutative. Let x; be a noncentral
element of R;. Then, by (7), 2?(z; + 1) — z;(z; + 1)> = 0, and hence z; = 0 or z; = —1, a
contradiction which proves that R; is commutative.

Case 2. R; is a primitive ring which is not a division ring. In this case, by Jacobson’s
density theorem [3, p.33], there exists a division ring D and an integer k& > 1 such that
the complete matrix ring Dy satisfies (7). This, however, is false, as can be seen by taking
r = Fio, y = E19+1;; x,y in D;. This contradiction shows that Case 2 nevers occurs, which
forces R; to be a division ring, and hence R; is commutative (see Case 1). This proves the

theorem.

Theorem 2 Suppose R is a reduced (N = {0}) ring and R is a subBoolean ring. Suppose,

further, that J is commutative. Then R is commutative.

Proof. Since R is reduced, all idempotents are central, and hence by Theorem 1, R/J is

commutative. Therefore, since J is commutative,
(8) [z, ], [2,t]] =0 for all z,y,z,tin R.

Note that (8) is a polynomial identity which is satisfied by all elements of R. However, (8)
is not satisfied by any 2 x 2 complete matrix ring over GF(p) for any prime p, as can be
seen by taking [z,y| = [F11, E12], [z, w] = [Ea2, F2]. Hence, by [2], the commutator ideal of
R is nil, and thus R is commutative (since N = {0}).

Corollary 1 A Boolean ring is commutative.

This follows at once from Theorem 2, since the Jacobson radical of a Boolean ring is {0}.

Corollary 2 Suppose R is a ring with identity, and suppose R is reduced and subBoolean.

Then R is commutative.
Proof. Let j,j' € J and suppose [j, '] # 0. Then, by (1),
(1+5)2(1+4) -1 +5)(1+4) e N={0},

and hence (14 j){(1+j) — (1 +4')}(1 + ') = 0, which implies that (since 1+ j and 1+ j'
are units in R), 7 = j', contradiction. This contradiction proves that J is commutative, and

the corollary follows from Theorem 2.



Theorem 3 Suppose R is a subBoolean ring with central idempotents, and suppose J C C.

Then R is commutative.

Proof. By Lemma 2, N C J and hence N C J C C, which, when combined with (1),
yields

9) 2?y—ay>€ N forall x,yin R\ C.

Suppose = € C. Setting y = —z in (9) yields 223 € N, and hence 2z € N C C (see above).
Thus,

(10) 2x € C for all z in R.
Next, we prove that
(11) r? € C for all z in R.

To see this, recall that by Theorem 1, [z,y] € J C C, and hence [z,y] is central for all z, y
in R. Using this fact and (10) yields

(2%, y] = xlx,y] + [z, ylo = 2z[z,y] = z[22,y] = 0,

which proves (11). We prove Theorem 3 by contradiction. Suppose x ¢ C for some = € R.
Then z + 2* ¢ C (see (11)), and hence by (9),

(12) 22(x + 2?) — 2(x + 2%)? € N, and thus 23(z + 2?) € N.
Therefore, for some polynomial g(\) € Z[\], we have
13) (o)) = (@t 2P+ 2?) = (Pele)) (o +22) = 2o+ 2D)g ()

Note that the right side of (13) is a sum of pairwise commuting nilpotent elements (see (12)),
and hence by (13), z + 2> € N C C (see above). Therefore, using (11), we conclude that

x € C, contradiction. This proves the theorem.

Theorem 4 Suppose R is a subBoolean ring with identity and with central idempotents.

Suppose, further, that J is commutative. Then R is commutative.
Proof. By Lemma 2, N C J. We claim that

(14) JCNUC.



Suppose not. Let j € J, j € N, j € C. Since N C J, (1) implies
(15) 22y —ay> € N forall z,y € R\ (JUC).

Note that 1+j & JUC, and J? C C (since J is commutative). Therefore, 1+j+ 52 & JUC,
and hence by (15),

I+ +7°0+)) —(1+7+)0+j) €N,

which implies j2(1+j +5%)(1+7j) € N. Since (1+j+5%)"! and (1+7)~! are units in R, and
since they both commute with j, it follows that j2 € N, and hence j € N, contradiction.
This contradiction proves (14). In view of (14) and (1), we have

(16) v’y —xy? € N for all z, y in R\ (NUC).

Now, suppose t € N, z+1¢ N, x ¢ C (and hence z + 1 ¢ C'). Then, by (16), we see that
2?(x +1) —x(x+1)> € N, and thus z(x + 1) € N. Since z € N or # + 1 € N implies that
xz(x + 1) € N, we conclude that

(17) r+a’=z(x+1)eNforallz e R\ C.

Since z € C implies —z € C, we may repeat the above argument with x replaced by (—x)
to get (see (17))

(17) r—z2*€ Nforallze R\ C.
As is well-known,
R = a subdirect sum of subdirectly irreducible rings R; (i € I').

Let 0 : R — R; be the natural homomorphism of R onto R;, and let o : © — x;. We claim
that

(18) The set N; of nilpotents of R; is contained in o(N) U C;

where C; denotes the center of R;. To prove this, let d; € N;, d; ¢ C;, and let o(d) = d;,
d € R. Then d ¢ C, and hence by (17)", d — d*> € N. Since d; is nilpotent, let d* = 0, and
observe that (since d — d? € N),

d—d"™ =(d-d*)(1+d+d*+---+d" ') €N,

which implies that o(d — d**') € o(N). Thus d; — d**' € o(N), and hence d; € o(N), which
proves (18). Our next goal is to prove that

(19) Every element of R; is nilpotent or a unit or central.



To prove this, let z; € R; \ C;, and suppose o(x) = x;, v € R. Then z ¢ C, and hence by
(17)',  — 2% € N, and thus 29 = 297 g(z) for some g()\) € Z[)\]. The last equation implies

that 29 = x%zg(z)]? and [zg(z)]? = e is idempotent. Therefore
(20) r? = 2l e = [xg(x)]%; € = e.
This reflects in R; as follows:

(21) zl = ale;; e; = [w9(x:)]9; €7

i = €.

Since, by hypothesis, the idempotents of R are central, it follows that e; = o(e) is a central
idempotent in the subdirectly irreducible ring R;, and hence e; = 1 or e¢; = 0. If ¢; = 0, then
by (21), z; is nilpotent. On the other hand, if e; = 1, then again by (21), z; is a unit in R,
which proves (19). Next, we prove that

(22)  Every unit u; in R; is central or u; = 1 + a; for some nilpotent element a; in ;.

To prove this, suppose u; is a wunit in R;, which is not central, and suppose o(d) = u,,
d € R. Then d € R\ C, and hence by (17), d — d*> € N, which implies that u; — u? € o(N).

Therefore, u?

7

u; is nilpotent; say, (u? —u;)™ = 0. Hence, (u;—1)™ = 0, and thus u; —1 = a;,
a; nilpotent; that is, u; = 1 + a;, a; € N;, and (22) is proved.

Returning to (18), note that since N C J (Lemma 2) and J is commutative (by hy-
pothesis), N itself is a commutative set, and hence by (18), the set IV; of nilpotents of R; is
commutative also. Moreover, by (19) and (22), the ring R; is generated by its nilpotent and
central elements, and hence R; is commutative, which implies that the ground ring R itself

is commutative. This completes the proof.

Theorem 5 A subBoolean ring with identity and with central nilpotents is necessarily com-

mutative.
Proof. First, we prove that
(23) The set U of units of R is commutative.

Suppose not. Let u, v be units in R such that [u,v] # 0. Then, by (1), u?*v —uv? € N. Also,
since N C (', N is an ideal of R, and hence

u (v —w?)v !t € N,

which implies that w — v € N C C. Thus, [u,v] = 0, contradiction. This contradiction
proves (23). Let j,5/ € J. Then by (23), [L + j,1 + j'] = 0, and hence [j, j'] = 0; that is, J



is commutative. Furthermore, since all nilpotents are central, the idempotents of R are all
central. Therefore, by Theorem 4, R is commutative.

In preparation for the proof of our next theorem, recall that an element = of R is called
potent if ¥ = x for some integer k¥ > 1. The ring R is called subweakly periodic if every
element z in R\ (JUC) can be written as a sum of a nilpotent and a potent element of R.

We are now in a position to state and prove the next theorem, which characterizes all

commutative subBoolean rings (compare with Theorem 3.1 of [4]).

Theorem 6 Suppose R is a subBoolean ring. Suppose, further, that the idempotents of
R are central and J is commutative. If, in addition, R is subweakly periodic, then R is

commutative (and conversely).

Proof. To begin with, if zero is the only potent element of R, then (by definition of a
subweakly periodic ring), R=NUJUC = JUC (since N C J, by Lemma 2), and hence
R is commutative, since J is commutative. Thus, we may assume that R has a nonzero
potent element. Let a be any nonzero potent element of R, and let a* = a with £ > 1. Let
e = a*'. Then e is a nonzero idempotent which, by hypothesis, is central. Hence, eR is
a ring with identity. Moreover, eR is a subBoolean ring (keep in mind that the Jacobson
radical of eR is eJ, where J is the Jacobson radical of R). Also, the idempotents of eR are
central, and the Jacobson radical of eR (namely, e.J) is commutative. Hence, by Theorem
4, eR is commutative. Let y € R. Then e[a,y] = [ea, ey] = 0. Recalling that e = a*~! € C
and a* = a, it follows that

k:—l[ k—1

0 =efa,y] = " [a,y] = a"y — a"'ya = a*y — ya* = ay — ya,
for all y in R, and hence
(24) All potent elements of R are central.
To complete the proof, let z,y € R\ (J U C) for the moment. Then
(25) r=a+b y=d+¥b; ade€N; bb potent.
By Lemma 2, N C J, and hence by (25),
(25)' r=oa+b, y=d+V; a,d €J; b potent.
Therefore, by (24) and the hypothesis that J is commutative,
[z,y] =[a+b,d +b]=[a,d] =0  (see (25)).

By a similar argument, [z,y] = 0 also if z € JUC or y € JUC. This completes the proof.
A concept related to commutativity is the notion that the commutator ideal is nil. In

this connection, we have the following theorem.



Theorem 7 Suppose R is a subBoolean ring with identity and with central idempotents.

Then the commutator ideal of R is nil.

Proof. First we prove that
(26) JCNUC.

Suppose not. Let j € J, j &€ N, j& C. Thenl+j & J,1+j¢& N,1+75 ¢ C. We now
distinguish two cases.
Case 1. 7> ¢ C. In this case, 1 + j2 ¢ J, 1+ j2 € N, 1 + 52 ¢ C. Hence, by (1),

1+ +5%) -1+ +4%)* €N,

and thus j(1 — j*) € N. Since (1 — j4)7! is a unit in R which commutes with j, it follows
that 7 € N, contradiction.

Case 2. 72 € C. In this case, a similar argument shows that, since 1+j+52 ¢ (NUJUC)
and 1+j ¢ (NUJUCQ),

I+)?A+j+) - A+)A+j+4°)* €N,

which implies j*(1+ j)(1+j + j%) € N. Since [(1 + 7)(1 + 7+ j*)]"" is a unit in R which
commutes with j2, it follows that j2 € N, and hence j € N, contradiction. This contradiction
(in both cases) proves (26).

Next, we prove that
(27) N is an ideal of R.
By Lemma 2, N C J, which when combined with (26) yields
(28) NCJCNUC.

Now, suppose a € N, b € N. Then, by (28), a € J, b € J, and hence a —b € J C (N UC)
(see (28)), which implies a —b € N or a —b € C, and thus a —b € N (in either case). Next,
suppose a € N, x € R. Then, by (28), a € J, and hence ax € J C (N U ('), which implies
ar € N or ax € C. If ax € C, then (ax)* = aF2* for all k > 1, and hence ax € N (since
a € N). So in either case, ax € N. Similarly za € N, which proves (27).

Returning to (26), we see that NUJUC = NUC, which when combined with (1) shows
that

(29) 2?y—ay* € Nforall z,y € R\ (NUCQC).



Keeping (27) in mind, we see that (29) implies
(30) 2%y — xy? = 0 for all noncentral elements z, y in R/N.

Suppose € R/N is noncentral. Then x + 1 € R/N is noncentral also, and hence by (30),
2?(x + 1) — z(z + 1)*> = 0. Therefore, (1 + z) = 0, which implies that (1 + z)(1 —z) = 0;

that is, 23 = x (if = is noncentral). The net result is:
(31) Every element of R/N is central or potent (satisfying 2® = x).

It follows, by Lemma 1, that R/N is commutative, and hence the commutator ideal of R is
nil. This completes the proof.

We conclude with the following:

Remark. If in the definition of a subBoolean ring (see (1)), we replace the exponent 2 by
n, where n is a fixed positive integer other than 2, then neither Theorem 4 nor Theorem 6
is necessarily true. To see this, let

b

a2

0

R= a,b,ce GF(4)

o O 2
QL OO

It can be verified that R satisfies the condition
2’y —ay” € N for all z, y in R.

Furthermore, R satisfies all the hypotheses of both Theorems 4 and 6 (except, of course, the

exponent 2 is now replaced by 7). But R is not commutative.
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