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Abstract: A Boolean ring satisfies the identity x2 = x which, of course, implies the identity
x2y − xy2 = 0. With this as motivation, we define a subBoolean ring to be a ring R which satisfies
the condition that x2y−xy2 is nilpotent for certain elements x, y of R. We consider some conditions
which imply that the subBoolean ring R is commutative or has a nil commutator ideal.

Throughout, R is a ring, not necessarily with identity, N the set of nilpotents, C the

center, and J the Jacobson radical of R. As usual, [x, y] will denote the commutator xy−yx.

Definition. A ring R is called subBoolean if

(1) x2y − xy2 ∈ N for all x, y in R \ (N ∪ J ∪ C).

The class of subBoolean rings is quite large, and contains all Boolean rings, all commutative

rings, all nil rings, and all rings in which J = R. On the other hand, a subBoolean ring need

not be Boolean or even commutative. Indeed, the ring

R =

{(
0 0
0 0

)
,

(
1 1
1 1

)
,

(
0 1
0 1

)
,

(
1 0
1 0

)
: 0, 1 ∈ GF (2)

}
is subBoolean but not Boolean and not commutative. Theorem 6 below gives a characteri-

zation of commutative subBoolean rings.

In preparation for the proofs of the main theorems, we need the following two lemmas.

Lemma 1 ([1]) Suppose R is a ring in which each element x is central, or potent in the

sense that xk = x for some integer k > 1. Then R is commutative.

Lemma 2 If R is a subBoolean ring with central idempotents, then the set N of nilpotents

is contained in the Jacobson radical J of R.



Proof. Suppose a ∈ N , x ∈ R. Suppose for the momenet that ax ∈ (N ∪ J ∪ C). If

ax ∈ N , then ax is right quasiregular (r.q.r.). Also, ax ∈ J implies that ax is r.q.r. Now

suppose ax ∈ C (the center of R). Then (ax)m = amxm for all positive integers m, and

hence ax ∈ N (since a ∈ N), which again implies that ax is r.q.r. Next, consider the

case (ax)2 ∈ (N ∪ J ∪ C). Again, (ax)2 ∈ N implies that ax is r.q.r., while (ax)2 ∈ C

implies (ax)2k = (ax)2(ax)2 · · · (ax)2 = akt for some t ∈ R, which implies that ax ∈ N (since

a ∈ N), and hence ax is r.q.r. Finally, if (ax)2 ∈ J , then (ax)2 is r.q.r., and hence ax is r.q.r.

Combining the above facts, we have:

(2) If ax ∈ (N ∪ J ∪ C) or (ax)2 ∈ (N ∪ J ∪ C), then ax is r.q.r.

Now, suppose ax 6∈ (N ∪ J ∪ C) and (ax)2 6∈ (N ∪ J ∪ C). Then, by (1),

(3)
(
(ax)2

)2
(ax)− (ax)2(ax)2 ∈ N.

In view of (3), we see that

(ax)q = (ax)q+1g(ax) ; g(λ) ∈ Z[λ] ; q ≥ 1.

Let e = [(ax)g(ax)]q. Then e2 = e, and (ax)q = (ax)qe. Hence,

(4) (ax)q = (ax)qe; e = [(ax)g(ax)]q ; e2 = e; (a ∈ N).

Suppose am = 0 (recall that a ∈ N). Since the idempotents are central, (4) readily implies

e = ee = e [(ax)g(ax)]q = eat = aet, for some t in R,

and thus e = aet = a2et2 = · · · = ametm = 0. Hence, by (4), ax ∈ N , and thus ax is r.q.r.

The net result is:

(5) If ax 6∈ (N ∪ J ∪ C) and (ax)2 6∈ (N ∪ J ∪R), then ax is r.q.r.

Combining (2) and (5), we conclude that ax is r.q.r. for all x in R, and hence a ∈ J , which

proves the lemma.

We are now in a position to prove our main theorems.

Theorem 1 If R is a subBoolean ring with central idempotents, then R/J is commutative.

Proof. By Lemma 2, N ⊆ J , and hence by (1),

(6) x2y − xy2 = 0 for all noncentral elements x, y in R/J .



Since the semisimple ring R/J is isomorphic to a subdirect sum of primitive rings Ri (i ∈ Γ),

each of which satisfies (6), we have

(7) x2y − xy2 = 0 for all noncentral elements x, y in Ri, (i ∈ Γ).

Case 1. Ri is a division ring. Suppose Ri is not commutative. Let xi be a noncentral

element of Ri. Then, by (7), x2
i (xi + 1) − xi(xi + 1)2 = 0, and hence xi = 0 or xi = −1, a

contradiction which proves that Ri is commutative.

Case 2. Ri is a primitive ring which is not a division ring. In this case, by Jacobson’s

density theorem [3, p.33], there exists a division ring D and an integer k > 1 such that

the complete matrix ring Dk satisfies (7). This, however, is false, as can be seen by taking

x = E12, y = E12 +Ik; x, y in Dk. This contradiction shows that Case 2 nevers occurs, which

forces Ri to be a division ring, and hence Ri is commutative (see Case 1). This proves the

theorem.

Theorem 2 Suppose R is a reduced (N = {0}) ring and R is a subBoolean ring. Suppose,

further, that J is commutative. Then R is commutative.

Proof. Since R is reduced, all idempotents are central, and hence by Theorem 1, R/J is

commutative. Therefore, since J is commutative,

(8) [[x, y], [z, t]] = 0 for all x, y, z, t in R.

Note that (8) is a polynomial identity which is satisfied by all elements of R. However, (8)

is not satisfied by any 2 × 2 complete matrix ring over GF (p) for any prime p, as can be

seen by taking [x, y] = [E11, E12], [z, w] = [E22, E21]. Hence, by [2], the commutator ideal of

R is nil, and thus R is commutative (since N = {0}).

Corollary 1 A Boolean ring is commutative.

This follows at once from Theorem 2, since the Jacobson radical of a Boolean ring is {0}.

Corollary 2 Suppose R is a ring with identity, and suppose R is reduced and subBoolean.

Then R is commutative.

Proof. Let j, j′ ∈ J and suppose [j, j′] 6= 0. Then, by (1),

(1 + j)2(1 + j′)− (1 + j)(1 + j′)2 ∈ N = {0},

and hence (1 + j){(1 + j)− (1 + j′)}(1 + j′) = 0, which implies that (since 1 + j and 1 + j′

are units in R), j = j′, contradiction. This contradiction proves that J is commutative, and

the corollary follows from Theorem 2.



Theorem 3 Suppose R is a subBoolean ring with central idempotents, and suppose J ⊆ C.

Then R is commutative.

Proof. By Lemma 2, N ⊆ J and hence N ⊆ J ⊆ C, which, when combined with (1),

yields

(9) x2y − xy2 ∈ N for all x, y in R \ C.

Suppose x 6∈ C. Setting y = −x in (9) yields 2x3 ∈ N , and hence 2x ∈ N ⊆ C (see above).

Thus,

(10) 2x ∈ C for all x in R.

Next, we prove that

(11) x2 ∈ C for all x in R.

To see this, recall that by Theorem 1, [x, y] ∈ J ⊆ C, and hence [x, y] is central for all x, y

in R. Using this fact and (10) yields

[x2, y] = x[x, y] + [x, y]x = 2x[x, y] = x[2x, y] = 0,

which proves (11). We prove Theorem 3 by contradiction. Suppose x 6∈ C for some x ∈ R.

Then x + x2 6∈ C (see (11)), and hence by (9),

(12) x2(x + x2)− x(x + x2)2 ∈ N , and thus x3(x + x2) ∈ N .

Therefore, for some polynomial g(λ) ∈ Z[λ], we have

(13) (x + x2)4 = (x + x2)3(x + x2) = (x3g(x))(x + x2) = x3(x + x2)g(x).

Note that the right side of (13) is a sum of pairwise commuting nilpotent elements (see (12)),

and hence by (13), x + x2 ∈ N ⊆ C (see above). Therefore, using (11), we conclude that

x ∈ C, contradiction. This proves the theorem.

Theorem 4 Suppose R is a subBoolean ring with identity and with central idempotents.

Suppose, further, that J is commutative. Then R is commutative.

Proof. By Lemma 2, N ⊆ J . We claim that

(14) J ⊆ N ∪ C.



Suppose not. Let j ∈ J , j 6∈ N , j 6∈ C. Since N ⊆ J , (1) implies

(15) x2y − xy2 ∈ N for all x, y ∈ R \ (J ∪ C).

Note that 1+j 6∈ J ∪C, and J2 ⊆ C (since J is commutative). Therefore, 1+j +j2 6∈ J ∪C,

and hence by (15),

(1 + j + j2)2(1 + j)− (1 + j + j2)(1 + j)2 ∈ N,

which implies j2(1+ j + j2)(1+ j) ∈ N . Since (1+ j + j2)−1 and (1+ j)−1 are units in R, and

since they both commute with j, it follows that j2 ∈ N , and hence j ∈ N , contradiction.

This contradiction proves (14). In view of (14) and (1), we have

(16) x2y − xy2 ∈ N for all x, y in R \ (N ∪ C).

Now, suppose x 6∈ N , x + 1 6∈ N , x 6∈ C (and hence x + 1 6∈ C). Then, by (16), we see that

x2(x + 1)− x(x + 1)2 ∈ N , and thus x(x + 1) ∈ N . Since x ∈ N or x + 1 ∈ N implies that

x(x + 1) ∈ N , we conclude that

(17) x + x2 = x(x + 1) ∈ N for all x ∈ R \ C.

Since x ∈ C implies −x ∈ C, we may repeat the above argument with x replaced by (−x)

to get (see (17))

(17)′ x− x2 ∈ N for all x ∈ R \ C.

As is well-known,

R ∼= a subdirect sum of subdirectly irreducible rings Ri (i ∈ Γ).

Let σ : R → Ri be the natural homomorphism of R onto Ri, and let σ : x → xi. We claim

that

(18) The set Ni of nilpotents of Ri is contained in σ(N) ∪ Ci,

where Ci denotes the center of Ri. To prove this, let di ∈ Ni, di 6∈ Ci, and let σ(d) = di,

d ∈ R. Then d 6∈ C, and hence by (17)′, d − d2 ∈ N . Since di is nilpotent, let dk
i = 0, and

observe that (since d− d2 ∈ N),

d− dk+1 = (d− d2)(1 + d + d2 + · · ·+ dk−1) ∈ N,

which implies that σ(d−dk+1) ∈ σ(N). Thus di−dk+1
i ∈ σ(N), and hence di ∈ σ(N), which

proves (18). Our next goal is to prove that

(19) Every element of Ri is nilpotent or a unit or central.



To prove this, let xi ∈ Ri \ Ci, and suppose σ(x) = xi, x ∈ R. Then x 6∈ C, and hence by

(17)′, x − x2 ∈ N , and thus xq = xq+1g(x) for some g(λ) ∈ Z[λ]. The last equation implies

that xq = xq[xg(x)]q and [xg(x)]q = e is idempotent. Therefore

(20) xq = xqe; e = [xg(x)]q; e2 = e.

This reflects in Ri as follows:

(21) xq
i = xq

i ei; ei = [xig(xi)]
q; e2

i = ei.

Since, by hypothesis, the idempotents of R are central, it follows that ei = σ(e) is a central

idempotent in the subdirectly irreducible ring Ri, and hence ei = 1 or ei = 0. If ei = 0, then

by (21), xi is nilpotent. On the other hand, if ei = 1, then again by (21), xi is a unit in R,

which proves (19). Next, we prove that

(22) Every unit ui in Ri is central or ui = 1 + ai for some nilpotent element ai in Ni.

To prove this, suppose ui is a unit in Ri, which is not central, and suppose σ(d) = ui,

d ∈ R. Then d ∈ R \C, and hence by (17)′, d− d2 ∈ N , which implies that ui − u2
i ∈ σ(N).

Therefore, u2
i −ui is nilpotent; say, (u2

i −ui)
m = 0. Hence, (ui−1)m = 0, and thus ui−1 = ai,

ai nilpotent; that is, ui = 1 + ai, ai ∈ Ni, and (22) is proved.

Returning to (18), note that since N ⊆ J (Lemma 2) and J is commutative (by hy-

pothesis), N itself is a commutative set, and hence by (18), the set Ni of nilpotents of Ri is

commutative also. Moreover, by (19) and (22), the ring Ri is generated by its nilpotent and

central elements, and hence Ri is commutative, which implies that the ground ring R itself

is commutative. This completes the proof.

Theorem 5 A subBoolean ring with identity and with central nilpotents is necessarily com-

mutative.

Proof. First, we prove that

(23) The set U of units of R is commutative.

Suppose not. Let u, v be units in R such that [u, v] 6= 0. Then, by (1), u2v−uv2 ∈ N . Also,

since N ⊆ C, N is an ideal of R, and hence

u−1(u2v − uv2)v−1 ∈ N,

which implies that u − v ∈ N ⊆ C. Thus, [u, v] = 0, contradiction. This contradiction

proves (23). Let j, j′ ∈ J . Then by (23), [1 + j, 1 + j′] = 0, and hence [j, j′] = 0; that is, J



is commutative. Furthermore, since all nilpotents are central, the idempotents of R are all

central. Therefore, by Theorem 4, R is commutative.

In preparation for the proof of our next theorem, recall that an element x of R is called

potent if xk = x for some integer k > 1. The ring R is called subweakly periodic if every

element x in R \ (J ∪C) can be written as a sum of a nilpotent and a potent element of R.

We are now in a position to state and prove the next theorem, which characterizes all

commutative subBoolean rings (compare with Theorem 3.1 of [4]).

Theorem 6 Suppose R is a subBoolean ring. Suppose, further, that the idempotents of

R are central and J is commutative. If, in addition, R is subweakly periodic, then R is

commutative (and conversely).

Proof. To begin with, if zero is the only potent element of R, then (by definition of a

subweakly periodic ring), R = N ∪ J ∪ C = J ∪ C (since N ⊆ J , by Lemma 2), and hence

R is commutative, since J is commutative. Thus, we may assume that R has a nonzero

potent element. Let a be any nonzero potent element of R, and let ak = a with k > 1. Let

e = ak−1. Then e is a nonzero idempotent which, by hypothesis, is central. Hence, eR is

a ring with identity. Moreover, eR is a subBoolean ring (keep in mind that the Jacobson

radical of eR is eJ , where J is the Jacobson radical of R). Also, the idempotents of eR are

central, and the Jacobson radical of eR (namely, eJ) is commutative. Hence, by Theorem

4, eR is commutative. Let y ∈ R. Then e[a, y] = [ea, ey] = 0. Recalling that e = ak−1 ∈ C

and ak = a, it follows that

0 = e[a, y] = ak−1[a, y] = aky − ak−1ya = aky − yak = ay − ya,

for all y in R, and hence

(24) All potent elements of R are central.

To complete the proof, let x, y ∈ R \ (J ∪ C) for the moment. Then

(25) x = a + b, y = a′ + b′; a, a′ ∈ N ; b, b′ potent.

By Lemma 2, N ⊆ J , and hence by (25),

(25)′ x = a+b, y = a′+b′; a, a′ ∈ J ; b, b′ potent.

Therefore, by (24) and the hypothesis that J is commutative,

[x, y] = [a + b, a′ + b′] = [a, a′] = 0 (see (25′)).

By a similar argument, [x, y] = 0 also if x ∈ J ∪ C or y ∈ J ∪ C. This completes the proof.

A concept related to commutativity is the notion that the commutator ideal is nil. In

this connection, we have the following theorem.



Theorem 7 Suppose R is a subBoolean ring with identity and with central idempotents.

Then the commutator ideal of R is nil.

Proof. First we prove that

(26) J ⊆ N ∪ C.

Suppose not. Let j ∈ J , j 6∈ N , j 6∈ C. Then 1 + j 6∈ J , 1 + j 6∈ N , 1 + j 6∈ C. We now

distinguish two cases.

Case 1. j2 6∈ C. In this case, 1 + j2 6∈ J , 1 + j2 6∈ N , 1 + j2 6∈ C. Hence, by (1),

(1 + j)2(1 + j2)− (1 + j)(1 + j2)2 ∈ N,

and thus j(1 − j4) ∈ N . Since (1 − j4)−1 is a unit in R which commutes with j, it follows

that j ∈ N , contradiction.

Case 2. j2 ∈ C. In this case, a similar argument shows that, since 1+j+j2 6∈ (N∪J∪C)

and 1 + j 6∈ (N ∪ J ∪ C),

(1 + j)2(1 + j + j2)− (1 + j)(1 + j + j2)2 ∈ N,

which implies j2(1 + j)(1 + j + j2) ∈ N . Since [(1 + j)(1 + j + j2)]−1 is a unit in R which

commutes with j2, it follows that j2 ∈ N , and hence j ∈ N , contradiction. This contradiction

(in both cases) proves (26).

Next, we prove that

(27) N is an ideal of R.

By Lemma 2, N ⊆ J , which when combined with (26) yields

(28) N ⊆ J ⊆ N ∪ C.

Now, suppose a ∈ N , b ∈ N . Then, by (28), a ∈ J , b ∈ J , and hence a− b ∈ J ⊆ (N ∪ C)

(see (28)), which implies a− b ∈ N or a− b ∈ C, and thus a− b ∈ N (in either case). Next,

suppose a ∈ N , x ∈ R. Then, by (28), a ∈ J , and hence ax ∈ J ⊆ (N ∪ C), which implies

ax ∈ N or ax ∈ C. If ax ∈ C, then (ax)k = akxk for all k ≥ 1, and hence ax ∈ N (since

a ∈ N). So in either case, ax ∈ N . Similarly xa ∈ N , which proves (27).

Returning to (26), we see that N ∪J ∪C = N ∪C, which when combined with (1) shows

that

(29) x2y − xy2 ∈ N for all x, y ∈ R \ (N ∪ C).



Keeping (27) in mind, we see that (29) implies

(30) x2y − xy2 = 0 for all noncentral elements x, y in R/N.

Suppose x ∈ R/N is noncentral. Then x + 1 ∈ R/N is noncentral also, and hence by (30),

x2(x + 1)− x(x + 1)2 = 0. Therefore, x(1 + x) = 0, which implies that x(1 + x)(1− x) = 0;

that is, x3 = x (if x is noncentral). The net result is:

(31) Every element of R/N is central or potent (satisfying x3 = x).

It follows, by Lemma 1, that R/N is commutative, and hence the commutator ideal of R is

nil. This completes the proof.

We conclude with the following:

Remark. If in the definition of a subBoolean ring (see (1)), we replace the exponent 2 by

n, where n is a fixed positive integer other than 2, then neither Theorem 4 nor Theorem 6

is necessarily true. To see this, let

R =


 a b c

0 a2 0
0 0 a

 : a, b, c ∈ GF (4)

 .

It can be verified that R satisfies the condition

x7y − xy7 ∈ N for all x, y in R.

Furthermore, R satisfies all the hypotheses of both Theorems 4 and 6 (except, of course, the

exponent 2 is now replaced by 7). But R is not commutative.
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