A Generalization of Boolean Rings

Adil Yaqub

Abstract: A Boolean ring satisfies the identity $x^2 = x$ which, of course, implies the identity $x^2y - xy^2 = 0$. With this as motivation, we define a *subBoolean* ring to be a ring R which satisfies the condition that $x^2y - xy^2$ is nilpotent for certain elements x, y of R. We consider some conditions which imply that the subBoolean ring R is commutative or has a nil commutator ideal.

Throughout, R is a ring, not necessarily with identity, N the set of nilpotents, C the center, and J the Jacobson radical of R. As usual, [x, y] will denote the commutator xy - yx.

Definition. A ring R is called *subBoolean* if

(1)
$$x^2y - xy^2 \in N \text{ for all } x, y \text{ in } R \setminus (N \cup J \cup C).$$

The class of subBoolean rings is quite large, and contains all Boolean rings, all commutative rings, all nil rings, and all rings in which J = R. On the other hand, a subBoolean ring need not be Boolean or even commutative. Indeed, the ring

$$R = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right) : 0, 1 \in GF(2) \right\}$$

is subBoolean but not Boolean and not commutative. Theorem 6 below gives a characterization of *commutative* subBoolean rings.

In preparation for the proofs of the main theorems, we need the following two lemmas.

Lemma 1 ([1]) Suppose R is a ring in which each element x is central, or potent in the sense that $x^k = x$ for some integer k > 1. Then R is commutative.

Lemma 2 If R is a subBoolean ring with central idempotents, then the set N of nilpotents is contained in the Jacobson radical J of R.

Proof. Suppose $a \in N$, $x \in R$. Suppose for the momenet that $ax \in (N \cup J \cup C)$. If $ax \in N$, then ax is right quasiregular (r.q.r.). Also, $ax \in J$ implies that ax is r.q.r. Now suppose $ax \in C$ (the center of R). Then $(ax)^m = a^m x^m$ for all positive integers m, and hence $ax \in N$ (since $a \in N$), which again implies that ax is r.q.r. Next, consider the case $(ax)^2 \in (N \cup J \cup C)$. Again, $(ax)^2 \in N$ implies that ax is r.q.r., while $(ax)^2 \in C$ implies $(ax)^{2k} = (ax)^2(ax)^2 \cdots (ax)^2 = a^k t$ for some $t \in R$, which implies that $ax \in N$ (since $a \in N$), and hence ax is r.q.r. Finally, if $(ax)^2 \in J$, then $(ax)^2$ is r.q.r., and hence ax is r.q.r. Combining the above facts, we have:

(2) If
$$ax \in (N \cup J \cup C)$$
 or $(ax)^2 \in (N \cup J \cup C)$, then ax is r.q.r.

Now, suppose $ax \notin (N \cup J \cup C)$ and $(ax)^2 \notin (N \cup J \cup C)$. Then, by (1),

(3)
$$((ax)^2)^2 (ax) - (ax)^2 (ax)^2 \in N.$$

In view of (3), we see that

$$(ax)^q = (ax)^{q+1}g(ax)\,;\quad g(\lambda)\in\mathbb{Z}[\lambda]\,;\;q\geq 1.$$

Let $e = [(ax)g(ax)]^q$. Then $e^2 = e$, and $(ax)^q = (ax)^q e$. Hence,

(4)
$$(ax)^q = (ax)^q e; \ e = [(ax)g(ax)]^q; \ e^2 = e; \ (a \in N).$$

Suppose $a^m = 0$ (recall that $a \in N$). Since the idempotents are central, (4) readily implies

$$e = ee = e [(ax)g(ax)]^q = eat = aet$$
, for some t in R

and thus $e = aet = a^2et^2 = \cdots = a^m et^m = 0$. Hence, by (4), $ax \in N$, and thus ax is r.q.r. The net result is:

(5) If
$$ax \notin (N \cup J \cup C)$$
 and $(ax)^2 \notin (N \cup J \cup R)$, then ax is $r.q.r.$

Combining (2) and (5), we conclude that ax is r.q.r. for all x in R, and hence $a \in J$, which proves the lemma.

We are now in a position to prove our main theorems.

Theorem 1 If R is a subBoolean ring with central idempotents, then R/J is commutative.

Proof. By Lemma 2, $N \subseteq J$, and hence by (1),

(6)
$$x^2y - xy^2 = 0$$
 for all *noncentral* elements x, y in R/J .

Since the semisimple ring R/J is isomorphic to a subdirect sum of primitive rings R_i $(i \in \Gamma)$, each of which satisfies (6), we have

(7)
$$x^2y - xy^2 = 0$$
 for all *noncentral* elements x, y in $R_i, (i \in \Gamma)$.

Case 1. R_i is a division ring. Suppose R_i is not commutative. Let x_i be a noncentral element of R_i . Then, by (7), $x_i^2(x_i + 1) - x_i(x_i + 1)^2 = 0$, and hence $x_i = 0$ or $x_i = -1$, a contradiction which proves that R_i is commutative.

Case 2. R_i is a primitive ring which is not a division ring. In this case, by Jacobson's density theorem [3, p.33], there exists a division ring D and an integer k > 1 such that the complete matrix ring D_k satisfies (7). This, however, is false, as can be seen by taking $x = E_{12}, y = E_{12} + I_k; x, y$ in D_k . This contradiction shows that Case 2 nevers occurs, which forces R_i to be a division ring, and hence R_i is commutative (see Case 1). This proves the theorem.

Theorem 2 Suppose R is a reduced $(N = \{0\})$ ring and R is a subBoolean ring. Suppose, further, that J is commutative. Then R is commutative.

Proof. Since R is reduced, all idempotents are central, and hence by Theorem 1, R/J is commutative. Therefore, since J is commutative,

(8)
$$[[x, y], [z, t]] = 0$$
 for all x, y, z, t in R .

Note that (8) is a polynomial identity which is satisfied by all elements of R. However, (8) is *not* satisfied by any 2×2 complete matrix ring over GF(p) for any prime p, as can be seen by taking $[x, y] = [E_{11}, E_{12}], [z, w] = [E_{22}, E_{21}]$. Hence, by [2], the commutator ideal of R is nil, and thus R is commutative (since $N = \{0\}$).

Corollary 1 A Boolean ring is commutative.

This follows at once from Theorem 2, since the Jacobson radical of a Boolean ring is $\{0\}$.

Corollary 2 Suppose R is a ring with identity, and suppose R is reduced and subBoolean. Then R is commutative.

Proof. Let $j, j' \in J$ and suppose $[j, j'] \neq 0$. Then, by (1),

$$(1+j)^2(1+j') - (1+j)(1+j')^2 \in N = \{0\},\$$

and hence $(1+j)\{(1+j) - (1+j')\}(1+j') = 0$, which implies that (since 1+j and 1+j' are units in R), j = j', contradiction. This contradiction proves that J is commutative, and the corollary follows from Theorem 2.

Theorem 3 Suppose R is a subBoolean ring with central idempotents, and suppose $J \subseteq C$. Then R is commutative.

Proof. By Lemma 2, $N \subseteq J$ and hence $N \subseteq J \subseteq C$, which, when combined with (1), yields

(9)
$$x^2y - xy^2 \in N$$
 for all x, y in $R \setminus C$.

Suppose $x \notin C$. Setting y = -x in (9) yields $2x^3 \in N$, and hence $2x \in N \subseteq C$ (see above). Thus,

(10)
$$2x \in C$$
 for all x in R .

Next, we prove that

(11)
$$x^2 \in C \text{ for all } x \text{ in } R$$

To see this, recall that by Theorem 1, $[x, y] \in J \subseteq C$, and hence [x, y] is central for all x, y in R. Using this fact and (10) yields

$$[x^{2}, y] = x[x, y] + [x, y]x = 2x[x, y] = x[2x, y] = 0,$$

which proves (11). We prove Theorem 3 by contradiction. Suppose $x \notin C$ for some $x \in R$. Then $x + x^2 \notin C$ (see (11)), and hence by (9),

(12)
$$x^2(x+x^2) - x(x+x^2)^2 \in N$$
, and thus $x^3(x+x^2) \in N$.

Therefore, for some polynomial $g(\lambda) \in \mathbb{Z}[\lambda]$, we have

(13)
$$(x+x^2)^4 = (x+x^2)^3(x+x^2) = (x^3g(x))(x+x^2) = x^3(x+x^2)g(x)$$

Note that the right side of (13) is a sum of pairwise commuting nilpotent elements (see (12)), and hence by (13), $x + x^2 \in N \subseteq C$ (see above). Therefore, using (11), we conclude that $x \in C$, contradiction. This proves the theorem.

Theorem 4 Suppose R is a subBoolean ring with identity and with central idempotents. Suppose, further, that J is commutative. Then R is commutative.

Proof. By Lemma 2, $N \subseteq J$. We claim that

$$(14) J \subseteq N \cup C.$$

Suppose not. Let $j \in J$, $j \notin N$, $j \notin C$. Since $N \subseteq J$, (1) implies

(15)
$$x^2y - xy^2 \in N \text{ for all } x, y \in R \setminus (J \cup C)$$

Note that $1+j \notin J \cup C$, and $J^2 \subseteq C$ (since J is commutative). Therefore, $1+j+j^2 \notin J \cup C$, and hence by (15),

$$(1+j+j^2)^2(1+j) - (1+j+j^2)(1+j)^2 \in N,$$

which implies $j^2(1+j+j^2)(1+j) \in N$. Since $(1+j+j^2)^{-1}$ and $(1+j)^{-1}$ are units in R, and since they both commute with j, it follows that $j^2 \in N$, and hence $j \in N$, contradiction. This contradiction proves (14). In view of (14) and (1), we have

(16)
$$x^2y - xy^2 \in N \text{ for all } x, y \text{ in } R \setminus (N \cup C).$$

Now, suppose $x \notin N$, $x + 1 \notin N$, $x \notin C$ (and hence $x + 1 \notin C$). Then, by (16), we see that $x^2(x+1) - x(x+1)^2 \in N$, and thus $x(x+1) \in N$. Since $x \in N$ or $x + 1 \in N$ implies that $x(x+1) \in N$, we conclude that

(17)
$$x + x^2 = x(x+1) \in N \text{ for all } x \in R \setminus C.$$

Since $x \in C$ implies $-x \in C$, we may repeat the above argument with x replaced by (-x) to get (see (17))

$$(17)' x - x^2 \in N \text{ for all } x \in R \setminus C.$$

As is well-known,

 $R \cong$ a subdirect sum of subdirectly irreducible rings $R_i \ (i \in \Gamma)$.

Let $\sigma : R \to R_i$ be the natural homomorphism of R onto R_i , and let $\sigma : x \to x_i$. We claim that

(18) The set N_i of nilpotents of R_i is contained in $\sigma(N) \cup C_i$,

where C_i denotes the center of R_i . To prove this, let $d_i \in N_i$, $d_i \notin C_i$, and let $\sigma(d) = d_i$, $d \in R$. Then $d \notin C$, and hence by (17)', $d - d^2 \in N$. Since d_i is nilpotent, let $d_i^k = 0$, and observe that (since $d - d^2 \in N$),

$$d - d^{k+1} = (d - d^2)(1 + d + d^2 + \dots + d^{k-1}) \in N,$$

which implies that $\sigma(d - d^{k+1}) \in \sigma(N)$. Thus $d_i - d_i^{k+1} \in \sigma(N)$, and hence $d_i \in \sigma(N)$, which proves (18). Our next goal is to prove that

(19) Every element of R_i is nilpotent or a unit or central.

To prove this, let $x_i \in R_i \setminus C_i$, and suppose $\sigma(x) = x_i, x \in R$. Then $x \notin C$, and hence by (17)', $x - x^2 \in N$, and thus $x^q = x^{q+1}g(x)$ for some $g(\lambda) \in \mathbb{Z}[\lambda]$. The last equation implies that $x^q = x^q [xg(x)]^q$ and $[xg(x)]^q = e$ is idempotent. Therefore

(20)
$$x^q = x^q e; e = [xg(x)]^q; e^2 = e.$$

This reflects in R_i as follows:

(21)
$$x_i^q = x_i^q e_i; e_i = [x_i g(x_i)]^q; e_i^2 = e_i.$$

Since, by hypothesis, the idempotents of R are central, it follows that $e_i = \sigma(e)$ is a *central* idempotent in the subdirectly irreducible ring R_i , and hence $e_i = 1$ or $e_i = 0$. If $e_i = 0$, then by (21), x_i is nilpotent. On the other hand, if $e_i = 1$, then again by (21), x_i is a unit in R, which proves (19). Next, we prove that

(22) Every unit u_i in R_i is central or $u_i = 1 + a_i$ for some nilpotent element a_i in N_i .

To prove this, suppose u_i is a *unit* in R_i , which is *not* central, and suppose $\sigma(d) = u_i$, $d \in R$. Then $d \in R \setminus C$, and hence by (17)', $d - d^2 \in N$, which implies that $u_i - u_i^2 \in \sigma(N)$. Therefore, $u_i^2 - u_i$ is nilpotent; say, $(u_i^2 - u_i)^m = 0$. Hence, $(u_i - 1)^m = 0$, and thus $u_i - 1 = a_i$, a_i nilpotent; that is, $u_i = 1 + a_i$, $a_i \in N_i$, and (22) is proved.

Returning to (18), note that since $N \subseteq J$ (Lemma 2) and J is commutative (by hypothesis), N itself is a commutative set, and hence by (18), the set N_i of nilpotents of R_i is commutative also. Moreover, by (19) and (22), the ring R_i is generated by its nilpotent and central elements, and hence R_i is commutative, which implies that the ground ring R itself is commutative. This completes the proof.

Theorem 5 A subBoolean ring with identity and with central nilpotents is necessarily commutative.

Proof. First, we prove that

(23) The set U of units of R is commutative.

Suppose not. Let u, v be units in R such that $[u, v] \neq 0$. Then, by (1), $u^2v - uv^2 \in N$. Also, since $N \subseteq C$, N is an ideal of R, and hence

$$u^{-1}(u^2v - uv^2)v^{-1} \in N,$$

which implies that $u - v \in N \subseteq C$. Thus, [u, v] = 0, contradiction. This contradiction proves (23). Let $j, j' \in J$. Then by (23), [1 + j, 1 + j'] = 0, and hence [j, j'] = 0; that is, J is commutative. Furthermore, since all nilpotents are central, the idempotents of R are all central. Therefore, by Theorem 4, R is commutative.

In preparation for the proof of our next theorem, recall that an element x of R is called potent if $x^k = x$ for some integer k > 1. The ring R is called *subweakly periodic* if every element x in $R \setminus (J \cup C)$ can be written as a sum of a nilpotent and a potent element of R.

We are now in a position to state and prove the next theorem, which characterizes all *commutative* subBoolean rings (compare with Theorem 3.1 of [4]).

Theorem 6 Suppose R is a subBoolean ring. Suppose, further, that the idempotents of R are central and J is commutative. If, in addition, R is subweakly periodic, then R is commutative (and conversely).

Proof. To begin with, if zero is the only potent element of R, then (by definition of a subweakly periodic ring), $R = N \cup J \cup C = J \cup C$ (since $N \subseteq J$, by Lemma 2), and hence R is commutative, since J is commutative. Thus, we may assume that R has a nonzero potent element. Let a be any nonzero potent element of R, and let $a^k = a$ with k > 1. Let $e = a^{k-1}$. Then e is a nonzero idempotent which, by hypothesis, is central. Hence, eR is a ring with identity. Moreover, eR is a subBoolean ring (keep in mind that the Jacobson radical of eR is eJ, where J is the Jacobson radical of R). Also, the idempotents of eR are central, and the Jacobson radical of eR (namely, eJ) is commutative. Hence, by Theorem 4, eR is commutative. Let $y \in R$. Then e[a, y] = [ea, ey] = 0. Recalling that $e = a^{k-1} \in C$ and $a^k = a$, it follows that

$$0 = e[a, y] = a^{k-1}[a, y] = a^k y - a^{k-1} ya = a^k y - ya^k = ay - ya,$$

for all y in R, and hence

(24) All potent elements of
$$R$$
 are central.

To complete the proof, let $x, y \in R \setminus (J \cup C)$ for the moment. Then

(25)
$$x = a + b, \quad y = a' + b'; \quad a, a' \in N; \quad b, b' \text{ potent.}$$

By Lemma 2, $N \subseteq J$, and hence by (25),

(25)'
$$x = a+b, \quad y = a'+b'; \quad a, a' \in J; \quad b, b' \text{ potent.}$$

Therefore, by (24) and the hypothesis that J is commutative,

$$[x, y] = [a + b, a' + b'] = [a, a'] = 0 \qquad (\text{see } (25')).$$

By a similar argument, [x, y] = 0 also if $x \in J \cup C$ or $y \in J \cup C$. This completes the proof.

A concept related to commutativity is the notion that the commutator ideal is nil. In this connection, we have the following theorem. **Theorem 7** Suppose R is a subBoolean ring with identity and with central idempotents. Then the commutator ideal of R is nil.

Proof. First we prove that

$$(26) J \subseteq N \cup C.$$

Suppose not. Let $j \in J$, $j \notin N$, $j \notin C$. Then $1 + j \notin J$, $1 + j \notin N$, $1 + j \notin C$. We now distinguish two cases.

Case 1. $j^2 \notin C$. In this case, $1 + j^2 \notin J$, $1 + j^2 \notin N$, $1 + j^2 \notin C$. Hence, by (1),

$$(1+j)^2(1+j^2) - (1+j)(1+j^2)^2 \in N,$$

and thus $j(1-j^4) \in N$. Since $(1-j^4)^{-1}$ is a unit in R which commutes with j, it follows that $j \in N$, contradiction.

Case 2. $j^2 \in C$. In this case, a similar argument shows that, since $1+j+j^2 \notin (N \cup J \cup C)$ and $1+j \notin (N \cup J \cup C)$,

$$(1+j)^2(1+j+j^2) - (1+j)(1+j+j^2)^2 \in N,$$

which implies $j^2(1+j)(1+j+j^2) \in N$. Since $[(1+j)(1+j+j^2)]^{-1}$ is a unit in R which commutes with j^2 , it follows that $j^2 \in N$, and hence $j \in N$, contradiction. This contradiction (in both cases) proves (26).

Next, we prove that

By Lemma 2, $N \subseteq J$, which when combined with (26) yields

$$(28) N \subseteq J \subseteq N \cup C.$$

Now, suppose $a \in N$, $b \in N$. Then, by (28), $a \in J$, $b \in J$, and hence $a - b \in J \subseteq (N \cup C)$ (see (28)), which implies $a - b \in N$ or $a - b \in C$, and thus $a - b \in N$ (in either case). Next, suppose $a \in N$, $x \in R$. Then, by (28), $a \in J$, and hence $ax \in J \subseteq (N \cup C)$, which implies $ax \in N$ or $ax \in C$. If $ax \in C$, then $(ax)^k = a^k x^k$ for all $k \ge 1$, and hence $ax \in N$ (since $a \in N$). So in either case, $ax \in N$. Similarly $xa \in N$, which proves (27).

Returning to (26), we see that $N \cup J \cup C = N \cup C$, which when combined with (1) shows that

(29)
$$x^2y - xy^2 \in N \text{ for all } x, y \in R \setminus (N \cup C).$$

Keeping (27) in mind, we see that (29) implies

(30)
$$x^2y - xy^2 = 0$$
 for all *noncentral* elements x, y in R/N

Suppose $x \in R/N$ is noncentral. Then $x + 1 \in R/N$ is noncentral also, and hence by (30), $x^2(x+1) - x(x+1)^2 = 0$. Therefore, x(1+x) = 0, which implies that x(1+x)(1-x) = 0; that is, $x^3 = x$ (if x is noncentral). The net result is:

(31) Every element of R/N is central or potent (satisfying $x^3 = x$).

It follows, by Lemma 1, that R/N is commutative, and hence the commutator ideal of R is nil. This completes the proof.

We conclude with the following:

Remark. If in the definition of a subBoolean ring (see (1)), we replace the exponent 2 by n, where n is a fixed positive integer other than 2, then neither Theorem 4 nor Theorem 6 is necessarily true. To see this, let

$$R = \left\{ \begin{bmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{bmatrix} : a, b, c \in GF(4) \right\}$$

It can be verified that R satisfies the condition

$$x^7y - xy^7 \in N$$
 for all x, y in R .

Furthermore, R satisfies all the hypotheses of both Theorems 4 and 6 (except, of course, the exponent 2 is now replaced by 7). But R is not commutative.

References

- [1] BELL, H.E.: A near-commutativity property for rings. Result. Math. 42 (2002), 28–31.
- [2] BELL, H.E.: On some commutativity theorems of Herstein. Arch. Math. 24 (1973), 34–38.
- [3] JACOBSON, N.: Structure of rings. Amer. Math. Soc. Colloq. Publications, Vol. 37, American Mathematical Society, Providence, RI, 1964.
- [4] YAQUB, A.: On weakly periodic-like rings and commutativity. Result. Math 49 (2006), 377– 386.