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Geometric types of twisted knots

Mohamed Aït-Nouh
Daniel Matignon
Kimihiko Motegi

Abstract

Let K be a knot in the 3-sphere S3, and ∆ a disk in S3 meeting K transversely
in the interior. For non-triviality we assume that |∆ ∩K| ≥ 2 over all isotopies of
K in S3 − ∂∆. Let K∆,n(⊂ S3) be a knot obtained from K by n twistings along
the disk ∆. If the original knot is unknotted in S3, we call K∆,n a twisted knot.
We describe for which pair (K, ∆) and an integer n, the twisted knot K∆,n is a
torus knot, a satellite knot or a hyperbolic knot.

1. Introduction

Let K be a knot in the 3-sphere S3 and ∆ a disk in S3 meeting K trans-
versely in the interior. We assume that |∆ ∩K|, the number of ∆ ∩K, is
minimal and greater than one over all isotopies of K in S3 − ∂∆. We call
such a disk ∆ a twisting disk for K. Let K∆,n(⊂ S3) be a knot obtained
from K by n twistings along the disk ∆, in other words, an image of K
after a − 1

n -Dehn surgery on the trivial knot ∂∆. In particular, if K is a
trivial knot in S3, then we call (K, ∆) a twisting pair and call K∆,n a
twisted knot, see Figure 1.

K KD,1D

twisting pair (K, )D twisted knot

1-twist

along D

Figure 1
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Let K be the set of all knots in S3 and K1 the set of all twisted knots. In
[23, Theorem 4.1] Ohyama demonstrated that each knot in K2 = K −K1

can be obtained from a trivial knot by twisting along exactly two properly
chosen disks.

On the other hand, following Thurston’s uniformization theorem ([20,
28]) and the torus theorem ([14, 15]), every knot in S3 has exactly one of
the following geometric types:
a torus knot, a satellite knot (i.e., a knot having a non-boundary-parallel,
incompressible torus in its exterior), or a hyperbolic knot (i.e., a knot
admitting a complete hyperbolic structure of finite volume on its comple-
ment).

Let k be a knot in K1, then k = K∆,n, for some twisting pair (K, ∆)
and an integer n. Let c be the boundary of the twisting disk, c = ∂∆ and
E(K, c) = S3− intN(K∪c). Since E(K, c) is irreducible and ∂-irreducible,
E(K, c) is Seifert fibered, toroidal or hyperbolic ([14, 15, 20, 28]). Thus
each twisting pair (K, ∆) has also exactly one of the following geometric
types: is Seifert fibered type, toroidal type or hyperbolic type according to
whether E(K, c) is Seifert fibered, toroidal or hyperbolic, respectively.

In the present paper, we address:

Problem 1.1. Describe geometric types of twisted knots with respect to
geometric types of the twisting pairs and the twisting numbers.

Actually, we shall prove:

Theorem 1.2. Let (K, ∆) be a twisting pair and n an integer. If | n |> 1
then K∆,n has the geometric type of (K, ∆).

For hyperbolic twisting pairs, the result is a consequence of Proposi-
tion 1.3 below, [19] and [2, Theorem 1.1]. It should be mentioned that
Proposition 1.3 can be deduced from a more general result [12, Appendix
A.2] established by Gordon and Luecke; notice that their proof is based on
good and binary faces, whereas our proof is based on primitive or binary
faces; see the end of Section 3 for more details.

Proposition 1.3. Let (K, ∆) be a hyperbolic, twisting pair. If K∆,n is a
satellite knot for some integer n with |n| ≥ 2, then K∆,n is a cable of a
torus knot and |n| = 2.

Proof of Theorem 1.2 for hyperbolic twisting pairs. Let (K, ∆) be
a hyperbolic twisting pair. Assume that |n| > 1. By [19], K∆,n is not a
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torus knot. If K∆,n is a satellite knot, then by Proposition 1.3, it would
be a cable of a torus knot. This contradicts [2, Theorem 1.1] which asserts
that K∆,n (|n| > 1) cannot be a graph knot. Thus K∆,n is a hyperbolic
knot. �

If (K, ∆) is a Seifert fibered pair, then S3− intN(∂∆) is a (1, p)-fibered
solid torus in which K is a regular fiber. Hence K∆,n is a (1+np, p)-torus
knot in S3. Thus we have:

Proposition 1.4. Let (K, ∆) be a Seifert fibered twisting pair. Then K∆,n

is a torus knot for any integer n.

For toroidal twisting pairs, we have the following precise description.

Theorem 1.5. Let (K, ∆) be a toroidal twisting pair.

(1) (i) If (K, ∆) has a form described in Figure 2 (i) in which V −
intN(K) is Seifert fibered or hyperbolic, then K∆,n is a satellite
knot for any integer n 6= 0,−1; K∆,−1 is a torus knot or a hyper-
bolic knot, respectively.
(ii) If (K, ∆) has a form described in Figure 2 (ii) in which V −
intN(K) is Seifert fibered or hyperbolic, then K∆,n is a satellite
knot for any integer n 6= 0, 1; K∆,1 is a torus knot or a hyperbolic
knot, respectively.

(2) If (K, ∆) has a form other than those in (1), then K∆,n is a satel-
lite knot for any non-zero integer n.

c c

(i) (ii)

V V

K K

Figure 2
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Let us now give some examples of hyperbolic twisting pairs (K, ∆) such
that K∆,1 is not a hyperbolic knot. By taking the mirror image of the pair,
we can obtain a hyperbolic twisting pair (K̄, ∆̄) such that K̄∆̄,−1 is not a
hyperbolic knot.

Example 1 (Producing torus knots from hyperbolic pairs).

K K D,1

1-twist

D

trivial knot trefoil knot

Figure 3

In Figure 1, (K, ∆) is a hyperbolic pair, but K∆,1 is a trefoil knot. In
[5, Theorem 1.3], [29, p.2293], we find other examples of hyperbolic pairs
(K, ∆) such that K∆,1 is a torus knot.

Example 2 (Producing satellite knots from hyperbolic pairs).

1-twist

trivial knot T(2,3) �� T(2,5)

K K
D,1

D

K D

trivial knot

(1) (2)

Figure 4
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In Figure 4 (1) KD,1 is a connected sum of two torus knots [22]; we
found examples of composite twisted knots in [6, 27].

In Figure 4 (2), (K, ∆) is a hyperbolic pair ([18]), but K∆,1 is a (23, 2)-
cable of a (4, 3)-torus knot [5, Theorem 1.4], [29].

Every known satellite twisted knot has a special type: a connected sum
of a torus knot and some prime knot, or a cable of a torus knot. So we
would like to ask:

Question. Let (K, ∆) be a hyperbolic, twisting pair. If the resulting twisted
knot is satellite, then is it a connected sum of a torus knot and some prime
knot, or a cable of a torus knot?

In the proof of Proposition 1.3, we will use the intersection graphs,
which come from a meridian disk of the solid torus S3 − intN(K) and
an essential 2-torus in S3 − intN(KD,n). In Section 3 we will define the
pair of graphs and prepare some terminologies. The sketch of the proof
of Proposition 1.3 will be given there. The results of this paper has been
announced in [1].

2. Twistings on non-hyperbolic twisting pairs

In this section we prove Theorem 1.5.

Proof. Let T be an essential torus in S3 − intN(K ∪ c), where c = ∂∆.
Then there are two possibilities:

• T does not separate ∂N(K) and ∂N(c),

• T separates ∂N(K) and ∂N(c).

Case 1 – T does not separate ∂N(K) and ∂N(c).
Let V be a solid torus bounded by T ([24, p.107]). Since T is essential in
S3 − intN(K ∪ c), K and c are contained in V and V is knotted in S3.
Furthermore, since K (resp. c) is unknotted in S3, there is a 3-ball BK

(resp. Bc) in V which contains K (resp. c) in its interior; but there is no
3-ball in V which contains K ∪ c.

Since c ⊂ Bc ⊂ V , we have a meridian disk DV of V such that c∩DV =
∅. Then the algebraic intersection number of K∆,n and a meridian disk
DV of V coincides with that of K and DV , which is zero, because that
K ⊂ BK . Therefore, K∆,n is not a core of V .
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Since V is knotted in S3, the claim below shows that K∆,n is a satellite
knot with a companion knot ` (the core of V ) for any non-zero integer n.

Lemma 2.1. K∆,n is not contained in a 3-ball in V for any non-zero
integer n.

Proof. Let M be a 3-manifold V − intN(K). Then M − intN(c) = V −
intN(K ∪ c) is irreducible and boundary-irreducible. Assume for a contra-
diction that K∆,n is contained in a 3-ball in V for some non-zero integer
n. Then M(c;− 1

n) ∼= V −K∆,n is reducible. Then from [26, Theorem 6.1],
we see that c is cabled and the surgery slope − 1

n is the slope of the cabling
annulus, which is an integer p such that | p |≥ 2, a contradiction. Thus
K∆,n is not contained in a 3-ball in V for any non-zero integer n. �

Case 2 – T separates ∂N(K) and ∂N(c).
The torus T cuts S3 into two 3-manifolds V and W . Without loss of
generality, we may assume that K ⊂ V , c ⊂ W . Now we show that V
is an unknotted solid torus in S3. The solid torus theorem [24, p.107]
shows that V or W is a solid torus. Suppose first that V is a solid torus.
Since T is essential in S3 − intN(K ∪ c), K is not contained in a 3-ball
in V and not a core of V . Furthermore, since K is unknotted in S3, V is
unknotted in S3. If W is a solid torus, then since c is also unknotted in
S3, the above argument shows that W is unknotted in S3, and hence V
is also an unknotted solid torus. Let ` be a core of V . Since T is essential
in S3 − intN(K ∪ c) (because T is not parallel to ∂N(c)), ` intersects the
twisting disk ∆ more than once: (`,∆) is also a twisting pair.

If `∆,n is knotted in S3, then K∆,n is a satellite knot with a companion
knot `∆,n. Assume that `∆,n is unknotted in S3 for some non-zero integer
n. Then from [17, Corollary 3.1], [16, Theorem 4.2], we have the situation
as in Figure 2 (i) and n = −1, or Figure 2 (ii) and n = 1.

In either case, we have:

Lemma 2.2. For any toroidal pair (K, ∆), K∆,n is a satellite knot if
|n| > 1.

Suppose that (K, ∆) is a pair shown in Figure 2 (i) (resp.(ii)). Since
`∆,−1 (resp. `∆,1) is also unknotted in S3 and the linking number of ` and
∂∆ is two, we see that K∆,−1 (resp. K∆,1) can be regarded as the result
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of −4-twist (resp. 4-twist) along the meridian disk DV of V :

K∆,−1 = KDV ,−4 (resp. K∆,1 = KDV ,4).

If V−intN(K) is neither Seifert fibered nor hyperbolic, i.e., V−intN(K)
is toroidal, then by Lemma 2.2, K∆,−1 = KDV ,−4 (resp. K∆,1 = KDV ,4)
is a satellite knot. This completes the proof of Theorem 1.5 (2).

Suppose that (K, ∆) is a pair shown in Figure 2 (i) (resp. (ii)) in which
V − intN(K) is Seifert fibered or hyperbolic. As we mentioned above,
except for n = −1 (resp. n = 1) `∆,n is knotted and K∆,n is a satellite
knot. To finish the proof we consider the exceptional cases. If V −intN(K)
is Seifert fibered, then K∆,−1 = KDV ,−4 (resp. K∆,1 = KDV ,4) is a torus
knot by Proposition 1.4. If V −intN(K) is hyperbolic, then by Theorem 1.2
(for hyperbolic twisting pairs), K∆,−1 = KDV ,−4 (resp. K∆,1 = KDV ,4) is
a hyperbolic knot. �

3. Twistings on hyperbolic twisting pairs

Assume that (K, ∆) is a hyperbolic twisting pair and K∆,n is non-hyperbolic.
Then K∆,n is a torus knot or a satellite knot. If K∆,n is a torus knot, then
[21, Theorem 3.8] (which was essentially shown in [19]) shows that |n| ≤ 1.

So in the following, we assume that K∆,n is a satellite knot.
For notational convenience, we set c = ∂∆ and Kn = K∆,n. Let M be

the exterior S3− intN(K∪c), and M(r) the manifold obtained by r-Dehn
filling along ∂N(c). Then we have M(1/0) ∼= S3 − intN(K) ∼= S1 × D2

and M(−1/n) ∼= S3 − intN(Kn). We denote the image of c in M(−1/n)
by cn, so that c0 = c ⊂ M(1/0) and cn ⊂ M(−1/n).

Let D̂ be a meridian disk of M(1/0). Isotope D̂ so that the number of
components |D̂ ∩N(c)| = q is minimal among meridian disks of M(1/0).
If q = 0, then K ∪ c would be a split link contradicting the hyperbolicity
of K ∪ c. If q = 1, then K ∪ c is a Hopf link contradicting again the
hyperbolicity of K ∪ c. Henceforth we assume that q ≥ 2.

Put D = D̂ ∩ M , which is a punctured disk, with q inner boundary
components each of which has slope 1/0 on ∂N(c), and a single outer
boundary component ∂D̂.

Since Kn is a satellite knot, the exterior S3 − intN(Kn) = M(−1/n)
contains an essential torus T̂ . By the solid torus theorem [24, p.107] T̂
bounds a solid torus V in S3 containing Kn in its interior. The core of V
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is denoted by `, which is a non-trivial companion knot of Kn. Note that
since M = S3 − intN(K ∪ c) is assumed to be hyperbolic, T̂ ∩ cn 6= ∅. We
choose T̂ so that T̂ ∩N(cn) is a union of meridian disks and |T̂ ∩N(cn)| = t

is minimal. Since T̂ is separating, t(6= 0) is an even integer.
Let T = T̂ ∩ M be a punctured torus, with t boundary components

each of which has slope −1/n on ∂N(c).
We assume further that D and T intersect transversely and ∂D and ∂T

intersect in the minimal number of points so that each inner boundary
component of D intersects each boundary component of T in exactly |n|
points on ∂N(c).

Lemma 3.1. The surfaces D and T are essential in M .

Proof. The minimality of q implies that D is essential in M . Since T̂ is
essential in M(−1/n) and t is minimal, T is also essential in M . �

Let us define two associated graphs GD and GT on D̂ and T̂ respectively,
in the usual way (see [7] for more details). We recall some definitions. The
(fat) vertices of GT (resp. GD) are the disks T̂ − intT (resp. D̂ − intD).
The edges of GT (resp. GD) are the arc components of D ∩ T in T̂ (resp.
in D̂). We number the components of ∂T by 1, 2, . . . , t in the order in
which they appear on ∂N(c). Similarly, we number 1, 2, . . . , q the inner
boundary components of D. This gives a numbering of the vertices of
GD and GT . Furthermore, it induces a labelling of the endpoints of the
edges: the label at one endpoint of an edge in one graph corresponds to
the number of the boundary component of the other surface (the vertex of
the other graph) that contains this endpoint. We next give a sign, + or −,
to each vertex of GD (resp. GT ), according to the direction on ∂N(c) ⊂ M
of the orientation of the corresponding boundary component of D (resp.
T ), induced by some chosen orientation of D (resp. T ). Two vertices on
GD (resp. GT ) are said to be parallel if they have the same sign, in other
words, the corresponding boundaries of D (resp. T ) are homologous on
∂N(c); otherwise the vertices are said to be antiparallel.

To prove Proposition 1.3, in what follows, we assume that the twisted
knot Kn is a satellite knot for some n with |n| ≥ 2. Since M(1/0) is a solid
torus and M(−1/n) = E(Kn) is a toroidal manifold, from Theorems 1.1
and 6.1 in [11] we may assume that |n| = ∆(−1

n , 1
0) = 2, and that t = 2.
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Let V1 and V2 be the two vertices of GT ; they have opposite signs,
because T is separating. Since T is incompressible, by cut and paste argu-
ments, we may assume that there is no circle component of T ∩D, which
bounds a disk in D. Therefore we can divide the faces of GD into the
black faces and the white faces, according to the face is in V or S3 − V ,
respectively.

Definition (great web) A connected subgraph Λ of GD is a web if
(i) all the vertices of Λ have the same sign,
(ii) there are at most two edge-endpoints where the fat vertices of Λ are
incident to edges of GD that are not edges of Λ. (We refer to such an edge
as a ghost edge of Λ and the label of such an endpoint as a ghost label. )

Furthermore, if the web Λ satisfies the following condition, then we call
Λ a great web.
(iii) Λ is contained in the interior of a disk DΛ ⊂ D̂ with the property
that Λ contains all the edges of GD that lie in DΛ. See Figure 5.

1

2 1

2

1
2

1 2

1

2 1

2

2
1

2
1

D
L

GD

L

great web

f
0

Figure 5

We recall the following fundamental result established by Gordon and
Luecke.

Lemma 3.2 ([11]). GD contains a great web.

Proof. Since H1(M(1/0)) ∼= H1(S1 × D2) does not have a non-trivial
torsion, GT does not represent all types ([11, Theorem 2.2]) and therefore
GD contains a great web [11, Theorem 2.3]. �

Let us take an innermost great web Λ in GD and a disk DΛ whose
existence are assured by Lemma 3.2. Since Λ is connected, its faces are
some disk faces and an annulus face f0 (f0 ⊃ ∂D̂).
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A vertex v is called a boundary vertex if v∩f0 6= ∅; otherwise v is called
an interior vertex. An edge e is called a boundary edge if e ⊂ f0; otherwise
e is called an interior edge. A disk face f of Λ is called an interior face if
every vertex of f is an interior vertex.

A Scharlemann cycle is a cycle σ which bounds a disk face f (called a
Scharlemann disk) whose vertices have the same sign and all the edges of
σ have the same pair of consecutive labels {i, i + 1}, so we refer to such a
Scharlemann cycle as an {i, i + 1}-Scharlemann cycle. Any Scharlemann
cycle of GD have the same labels {1, 2}. The number of the edges in σ
is referred to as the length of the Scharlemann cycle σ or the length of
the Scharlemann disk f . A trivial loop is an edge which bounds a disk
face; i.e., a Scharlemann cycle of length one. By Lemma 3.1 GD does not
contain a trivial loop. In the following, a Scharlemann cycle is assumed to
be of length at least two.

We recall the following from [10, Lemma 8.2]. Although the proof of
[10, Lemma 8.2] works in our situation without changes, for convenience,
we give a proof.

Lemma 3.3. The graph GD contains a black Scharlemann disk and a
white Scharlemann disk; furthermore at least one of them has length 2 or
3.

Proof. Since t = 2 and all the vertices of Λ have the same sign, the bound-
ary of each disk face of Λ is a Scharlemann disk. Thus it is sufficient to
show that there exist black and white disk faces in Λ. Let d be the num-
ber of vertices of Λ and E the number of edges of Λ. Since Λ has at most
two ghost labels, E ≥ 1

2(4d − 2) = 2d − 1. Therefore an Euler-Poincaré
characteristic calculus gives:

F =
∑

f : face of Λ

χ(f) = E − d + 1 ≥ d

Note that since χ(f0) = 0, F coincides with number of disk faces of Λ.
Since GD contains no trivial loop, each disk face has at least two edges in
its boundary. Each edge of Λ has two sides with distinct colors (black and
white), because T̂ is separating in S3.

Now assume for a contradiction that there are only white faces. Then
E ≥ 2F = 2E−2d+2, and hence E ≤ 2d−2. This contradicts E ≥ 2d−1.
It follows that there exists a black disk face. Similar argument shows that
there exists a white disk face.
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To prove the second part, suppose for a contradiction that each disk
face of Λ has length at least four. Then we have 4F < 2E. On the other
hand, since E ≥ 2d−1, we have 1

2E > F = E−d+1 ≥ E− E+1
2 +1 = E+1

2 ,
a contradiction. �

In the following, a black (resp. white) Scharlemann disk is referred to
as a black (resp. white) disk face.

Let H12 be the 1-handle N(C)∩V and H21 the 1-handle N(C)∩(S3−V );
∂V1 and ∂V2 give a partition of ∂N(C) into two annuli ∂H12 − T̂ in the
black side and ∂H21 − T̂ in the white side.

Let f be a disk face bounded by a Scharlemann cycle σ of GD. Then the
subgraph of GT consisting of the two vertices V1, V2 and the corresponding
edges of ∂f = σ in GT is called the support of f and denoted by f∗.
Lemma 3.4. If f is a disk face in GD, then its support f∗ cannot be
contained in a disk in T̂ .
Proof. Assume that there exists a disk Z in T̂ which contains the support
f∗. Consider a regular neighborhood M = N(Z ∪ H ∪ f) of (Z ∪ H ∪
f), where H is H12 or H21 according to whether f lies in V or S3 −
V , respectively. Then M is a punctured (non-trivial) lens space in S3, a
contradiction (see [3] or [25] for more details). �

Definition 3.5. Two edges in GT are said to be parallel, if they cobound
a disk in T̂ . Let GT (Λ) be the subgraph of GT consisting of the two
vertices V1, V2 and all the corresponding edges of Λ. Since all the vertices
in Λ have the same sign, the edges in GT (Λ) join V1 to V2 by the parity
rule [3]. Therefore there are at most four edge classes in GT , i.e., isotopy
classes of non-loop edges of GT in T̂ rel {V1, V2}, which we call α, β, γ, θ as
illustrated in Figure 6 (after some homeomorphism of T̂ ). Representatives
of distinct edge classes are not parallel.

Let µ ∈ {α, β, γ, θ}. Such a label µ is referred to as the edge class label
of e. An edge e in GD (not necessarily in Λ) is called a µ-edge if the
corresponding edge e in GT belongs to µ-edge class.

Similarly, an edge e is said to be a (µ, λ)-edge if e is a µ-edge or a
λ-edge, for two distinct edge class labels µ, λ. A cycle in GD is called a
µ-cycle, if it consists of only µ-edges.

Let f be a disk face of Λ. We define ρ(f) to be the sequence (which is
defined up to cyclic premutation) of edge class labels around ∂f , in the
anti-clockwise direction, see Figure 7.

41



M. Aït-Nouh, D. Matignon and K. Motegi
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Figure 7

Let f be a disk face in GD. If ρ(f) = µn for some edge class label
µ ∈ {α, β, γ, θ}, then the support f∗ lies in a disk in T̂ , contradicting
Lemma 3.4. We say that f is primitive if ρ(f) = µxλ (up to cyclic permu-
tation) for some µ, λ ∈ {α, β, γ, θ} (µ 6= λ) and x a positive integer.

Lemma 3.6. If f is a Scharlemann disk of length at most three, then f
is primitive.

Proof. This follows from [10, Lemma 3.7] and Lemma 3.4. �

We conclude this section with a sketch of the proof of Proposition 1.3.

Sketch of the proof of Proposition 1.3
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Suppose that Kn = K∆,n is a satellite knot for some hyperbolic, twist-
ing pair (K, ∆) and n with |n| > 1. We keep this assumption through
Sections 4–7.

By Lemma 3.3 we have a disk face f of length at most three, which is
primitive (Lemma 3.6) and hence its support is in an annulus in T̂ . The
existence of such a disk face f assures the assumption of Propositions 3.7
or 3.8 below depending on whether f is black or white.

Proposition 3.7 (see Section 4 for its proof). If Λ contains a black face
whose support lies in an annulus in T̂ , then KD,n is a non-trivial cable of
`.

Proposition 3.8 (see Section 5 for its proof). If Λ contains a white
primitive face, then the companion knot ` is a non-trivial torus knot.

To complete a proof of Proposition 1.3, we need another disk face g
with the opposite colour of f . More precisely, if f is white, then we need
g to be black whose support lies in an annulus in T̂ ; if f is black, then
we need g to be white and primitive. This is given by the following two
propositions.

Proposition 3.9 (see Section 6 for its proof).
(i) All black faces of Λ are isomorphic, i.e., if g, h are black faces of Λ
then ρ(g) = ρ(h);
(ii) If the disk face f is black, then Λ contains a white primitive face.

Proposition 3.10 (see Section 5 for the proof of (i) and Section 7 for
that of (ii)).
(i) Λ cannot contain two white primitive faces with exactly one edge class
label in common.
(ii) If the disk face f is white, then Λ contains a black face whose support
lies in an annulus in T̂ .

Note that the proof of Proposition 1.3 in [12, Appendix A.2] is based
on good and binary faces, which are disk faces with only two edge class
labels, and such that one of them never appears successively twice around
its boundary.
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4. Topology of black disk faces supported by annuli

Recall that we have assumed that Kn = K∆,n is a satellite knot for some
hyperbolic, twisting pair (K, ∆) and n with |n| > 1. The goal in this
section is to prove Proposition 3.7

Let fb be a black disk face with the support f∗
b in an annulus A in T̂ .

Let M1 = N(A ∪ H12 ∪ fb) be a regular neighbourhood of A ∪ H12 ∪ fb.
Push M1 slightly inside V so that M1 ∩ ∂V = A; put T1 = ∂M1 and
B = T1 − intA. Note that A is an essential annulus in T̂ by Lemma 3.4.
Put A′ = T̂ − intA, T2 = A′∪B, and let M2 be a 3-manifold in V bounded
by T2, see Figure 8. Thus V = M1 ∪B M2 and Kn lies in intM2.

fb
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First we show that A is not a meridional annulus of V . Suppose that
A is a meridional annulus (whose core bounds a meridian disk DA), then
we have the following two possibilities depending on whether B ∩DA = ∅
or B ∩DA 6= ∅, see Figure 9 below.
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A D
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In the former case, Kn is contained in a 3-ball in V , a contradiction.
So assume that the latter happens. Note that T2 ∩ cn = ∅ and M2 is a
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solid torus. Since M2 is knotted in S3 (because that V is knotted in S3)
and there is no 3-ball in M2(⊂ V ) containing Kn, T2 is incompressible
in S3 − intN(Kn), and hence, in S3 − intN(Kn ∪ cn). This then implies,
together with the hyperbolicity of S3− intN(Kn∪c), that T2 is parallel to
∂N(Kn), i.e., Kn is a core of M2. If the annulus B is parallel to A, then
it turns out that T̂ is also parallel to ∂N(Kn) contradicting the choice of
V . Hence M1 is a non-trivial knot exterior in a solid torus, as shown in
Figure 10.
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B

V

V’

A’

M1

Figure 10

It follows that Kn is a composite knot. Then from [6, 13] we see that
|n| = 1, contradicting the initial assumption.

Hence A is not a meridional annulus in V . Thus A is incompressible
in V , and hence B (∂B = ∂A) is also incompressible in V . This implies
that B is a boundary-parallel annulus in V . If B is parallel to A, then M2

(which is disjoint from cn) is isotopic to V and T2 is an essential torus
in S3 − intN(Kn), and hence in S3 − intN(Kn ∪ cn), contradicting the
hyperbolicity of S3 − intN(Kn ∪ cn).

Therefore B is parallel to A′; B and A′ cobounds the solid torus M2

(which is disjoint from cn).
Thus the core of M2 is a cable of ` (a core of V ). If T2 is not parallel to

∂N(Kn), then T2 is an essential torus in S3− intN(Kn∪cn), contradicting
the hyperbolicity of S3 − intN(Kn ∪ cn) = S3 − intN(K ∪ c). Hence T2 is
parallel to ∂N(Kn), i.e., Kn is a core of M2. It follows that Kn is a cable
of ` (B wraps more than once in longitudinal direction of V ).

5. Topology of white primitive disk faces

In this section we prove Proposition 3.8 and Proposition 3.10 (i).
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5.1. Proof of Proposition 3.8

Let fw be a white primitive disk face of Λ, satisfying ρ(fw) = µxλ for two
distinct edge class labels µ, λ and x > 0. Note that the support f∗

w lies in
an essential annulus Aw in T̂ .

Let Mfw = N(Aw ∪ H21 ∪ fw), which is a regular neighborhood of
Aw ∪H21 ∪ fw pushed slightly outside V , so that T3 = ∂Mfw = Aw ∪Bw,
where BW is an annulus properly embedded in S3− intV (see Figure 11).
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Put A′
w = T̂ − intAw, T4 = A′

w ∪Bw. Denote by Nfw the 3-manifold in
S3 − intV bounded by T4; S3 − intV = Mfw ∪Bw Nfw .

Claim 5.1. Mfw is a solid torus. Furthermore, the core of Aw wraps p
times the core of the solid torus Mfw , where p = x + 1.

Proof. This was shown in [10, Lemma 3.7]. For convenience of readers, we
give a proof here.

Note that N(Aw)∪H21 is a genus two handlebody and Mfw is obtained
from N(Aw) ∪ H21 by attaching a 2-handle N(fw). Let m1 be a co-core
of H21 intersecting ∂fw p (= x + 1) times in the same direction. Since
σ = ∂fw has exactly one edge with the edge class label λ, we can choose
a meridian disk m2 of N(Aw) intersecting ∂fw once. Then m1,m2 form a
set of meridional disks for the genus two handlebody N(Aw)∪H21. Since
∂fw intersects m2 once, ∂fw is primitive and Mfw is a solid torus. (This
is the reason why we call f a primitive disk face.) Furthermore since the
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core of Aw intersects m2 once and misses m1, the core of Aw is homotopic
to p times the core of the solid torus Mfw . �

Claim 5.2. Nfw is a solid torus.

Proof. Assume for a contradiction that Nfw is not a solid torus. Then, by
the solid torus theorem [24, p.107], Y = S3 − intNfw = V ∪Aw Mfw is a
(knotted) solid torus in S3. Note that Y contains Kn and cn in its interior.
If there is a 3-ball in Y = V ∪Aw Mfw containing Kn, then using the
incompressibility of Aw in S3− intV , we can find a 3-ball in V containing
Kn, a contradiction. Thus ∂Y is incompressible in S3 − intN(Kn), hence
in S3 − intN(Kn ∪ cn). Clearly ∂Y is not parallel to ∂N(cn). It follows
from the hyperbolicity of S3 − intN(Kn ∪ cn), ∂Y is parallel to ∂N(Kn),
i.e., Kn is a core of the solid torus Y .

Let DY be a meridian disk of Y = V ∪Aw Mfw intersecting Kn exactly
once. Assume further, by an isotopy, that DY intersects Aw transversely.
Let D be a closure of a component of DY − (DY ∩ Aw) intersecting Kn.
Then D is a meridian disk of V intersecting Kn exactly once. Since V is a
knotted solid torus and Kn is not a core of V , Kn is a composite knot (of
the form `]k for some non-trivial knot k, where ` is a core of V ). Applying
[6, 13], we can conclude that |n| = 1, contradicting the initial assumption.
It follows that Nfw is a solid torus. �

From Claims 5.1 and 5.2, we see that S3 − intV is the union of two
solid tori Mfw and Nfw such that Mfw ∩ Nfw is the annulus Bw. Since
Aw(= ∂Mfw − intBw) wraps p times in the longitudinal direction of Mfw ,
the annulus Bw wraps also p times in the longitudinal direction of Mfw .
If Bw is a meridian of Nfw , then the knot exterior S3 − intV = Mfw ∪Bw

Nfw contains a (non trivial) punctured lens space, a contradiction. Thus
Bw wraps q ≥ 1 times in longitudinal direction of Nfw , and hence S3 −
intV = Mfw ∪Bw Nfw is a Seifert fiber space over a disk with at most
two exceptional fibers of indices p ≥ 2 and q. Since V is knotted in S3,
S3 − intV = Mfw ∪Bw Nfw is not a solid torus. Hence q ≥ 2 and ` (a core
of V ) is a non-trivial torus knot Tp,q in S3.

5.2. Proof of Proposition 3.10 (i)

Let us now prove Proposition 3.10 (i) in the following formulation.
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Proposition 5.3. Assume that Λ contains two white primitive disk faces
f and g. Let f1, f2, g1, g2 ∈ {α, β, γ, θ} such that ρ(f) = f1f

m
2 and ρ(g) =

g1g
n
2 , where m,n are positive integers. Then {f1, f2} = {g1, g2} or {f1, f2}∩

{g1, g2} = ∅.

Proof. We suppose for a contradiction that {f1, f2}∩{g1, g2} = {δ}, where
δ = f1 or f2. We repeat the construction and arguments in the proof of
Proposition 3.8.

Let Af , Ag be annuli in T̂ which contains the support of f and g, re-
spectively. Let af , ag be the cores of the annuli Af , Ag, respectively. Then
the minimal geometric intersection number between af and ag is one:
|af ∩ ag| = 1.

Let us recall the argument in Proposition 3.8; we use the analogous
notations.
Mf = N(Af ∪H21 ∪ f),
Bf = ∂Mf − intAf ,
Nf = S3 − int(V ∪Mf ) ⊂ S3 − intV ,
A′

f = ∂Nf − intBf .
So T̂ = Af ∪A′

f and S3 − intV = Mf ∪Bf
Nf .

By the proof of Proposition 3.8, Mf , Nf are solid tori and S3 − intV is
a Seifert fiber space over a disk with two exceptional fibers which are the
core of Mf and Nf . The annulus Bf is essential in S3 − intV . We repeat
the analogous construction of Proposition 3.8 for the white disk face g:
Mg = N(Ag ∪H21 ∪ g),
Ng = S3 − int(V ∪Mg) ⊂ S3 − intV ,
Bg = ∂Mg − intAg, and A′

g = T̂ −Ag. Then S3 − intV = Mg ∪Bg Ng.
In the same way as for f (see the proof of Proposition 3.8) we show

that Ng and Mg are solid tori and Bg is an essential annulus properly
embedded in S3 − intV .

Then Bg is isotopic to Bf in S3 − intV , because that S3 − intV is a
Seifert fiber space over a disk with two exceptional fibers and any essential
annulus is isotopic to Bf . Hence a component of ∂Bf (which is isotopic
to af on T̂ ) and a component of ∂Bg (which is isotopic to ag on T̂ ) are
isotopic on T̂ , contradicting |af ∩ ag| = 1. �
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6. Existence of white primitive disk faces

This section is devoted to prove Proposition 3.9.

6.1. Proof of Proposition 3.9 (i)

Put M = V − intN(Kn) and W = M −H12. Then ∂W has two boundary
components: ∂W+ = T ∪ (∂H12− T̂ ), which is a surface of genus two, and
∂W− = ∂N(Kn).

Let fb be a black disk face of Λ bounded by a Scharlemann cycle σb.
Since all the vertices of σb have the same sign, ∂fb is a non-separating
(essential) simple closed curve on ∂W+. Consider Z = N(T̂ ∪H12 ∪ fb) ⊂
M . Then ∂Z has two tori T̂ and TZ . Let V ′ be the 3-manifold in V bounded
by TZ , which contains Kn in its interior.

Claim 6.1. TZ is parallel to ∂N(Kn).

Proof. If TZ is compressible in V ′ − intN(Kn), then there would be a 3-
ball in V ′ ⊂ V containing Kn, a contradiction. If TZ is compressible in
S3 − intV ′, then S3 − intV ′ is a solid torus. Since T̂ is incompressible in
S3 − intN(Kn), it is also incompressible in the solid torus S3 − intV ′, a
contradiction. Therefore TZ is incompressible in S3 − intN(Kn), hence in
S3−intN(Kn∪cn) and TZ is not parallel to ∂N(cn). The initial assumption
of the hyperbolicity of S3 − intN(Kn ∪ cn) ∼= S3 − intN(K ∪ c) implies
that TZ is parallel to ∂N(Kn). �

From Claim 6.1, we see that W can be regarded as a manifold obtained
from ∂N(Kn)× [0, 1] by attaching N(fb) as a 1-handle (i.e., W is a com-
pression body). Then fb is the unique non-separating disk in W , up to
isotopy.

Now we follow the argument in [11, Lemma 5.6] to show that all the
black disk faces of Λ are isomorphic. Let gb be another black disk face of
Λ. Since fb and gb are isotopic in W , ∂fb and ∂gb are isotopic in ∂W+,
and hence freely homotopic in T̂ ∪H12.

We re-label edge class labels by γ = 1, θ = αβ. Then π1(T̂ ∪ H12) ∼=
π1(T̂ ) ∗ Z, where, taking as base-“point" a disk neighborhood in T̂ of an
edge in GT in edge class 1, π1(T̂ ) ∼= Z×Z has basis {α, β}, represented by
edges in the correspondingly named edge classes, oriented from V2 to V1,
and Z is generated by x represented by an arc in H12 going from V1 to V2.
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Then if ρ(fb) = γ1 · · · γm, then ∂fb represents γ1xγ2x · · · γmx ∈ π1(T̂ ) ∗Z.
Similarly if ρ(gb) = λ1 · · ·λn, then ∂gb represents λ1xλ2x · · ·λnx ∈ π1(T̂ )∗
Z. Since ∂fb and ∂gb are homotopic in T̂ ∪ H12, we conclude that the
corresponding sequences γ1 · · · γn and λ1 · · ·λm are equal, up to cyclic
permutation, i.e., fb and gb are isomorphic.

6.2. Proof of Proposition 3.9 (ii)

A disk face of length two or three is called a bigon or a trigon, respectively.
Assume that the disk face f given by Lemma 3.3 is black, which has length
at most three. Then, by Proposition 3.9 (i), all the black disk faces of Λ are
isomorphic bigons or isomorphic trigons. Furthermore, they are primitive
by Lemma 3.6.

We begin by observing the following:

Claim 6.2. Let v be a vertex of Λ and e, e′ edges of Λ incident to v with
the same label. Then e and e′ have distinct edge class labels.

Proof. This follows from [11, Lemma 5.3]. If e and e′ have the same edge
class label, then they would be parallel in GT , and hence would cobound
a family of q + 1 parallel edges of GT . This then implies that M = S3 −
intN(K ∪ c) contains a cable space ([8, p.130, Case(2)]), contradicting the
hyperbolicity of M . �

Now assume that two isomorphic black bigons (resp. trigons) g1 and g2

of Λ, with ρ(gi) = µλ (resp. ρ(gi) = µ2λ) are incident to a same vertex v
of Λ. Then by Claim 6.2 the labels of the edges incident to v are λ, µ, µ, λ
in cyclic order around v as in Figure 12 below. We call this a property (∗).

vg g1 2

m

ll

m

12

1 2

Figure 12

The proof of Proposition 3.9 is divided into two cases depending on
whether the black disk faces are bigons or trigons.
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Lemma 6.3. If all the black disk faces of Λ are isomorphic bigons, then
there exists a white primitive disk face.

Proof. Assume that for each black bigon g, we have ρ(g) = µλ, for some
edge class labels µ, λ ∈ {α, β, γ, θ} (µ 6= λ). There are three cases to
consider: Λ has

(1) no vertex with ghost labels,
(2) exactly one vertex with ghost labels, and
(3) two vertices with ghost labels.

Case (1): Λ has no vertex with ghost labels.
If the annulus face f0 is white, then Λ has a unique white face f surrounded
by black bigons. By the property (∗) all the edges of ∂f have the same
label, say µ, see Figure 13.
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Then the support f∗ of the white Scharlemann disk f lies in a disk,
contradicting Lemma 3.4.

Hence f0 is black. Let v0 be a boundary vertex of Λ. Then there is a
black bigon b0, which joins v0 to another vertex v1. If v1 is an interior
vertex, then since the valence of v1 is four, v1 is incident to another black
bigon b1. Repeating this until we arrive at a boundary vertex, we obtain
a sequence of black bigons b0, b1, . . . , bn such that bi and bi+1 are incident
to the same interior vertices; see Figure 14. The sequences of black bigons
obtained in this manner (for all the boundary vertices) give a partition of
the disk bounded by boundary edges of Λ into several white disk faces.
Let f be an outermost white disk face (which has only one boundary
edge). From property (∗), we see that ρ(f) = µnδ or ρ(f) = λnδ, for some
δ ∈ {α, β, γ, θ}; (note that the boundary vertex v0 may not satisfy the
property (∗)). Thus f is a required white primitive disk face.
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Case (2): Λ has a unique vertex v0 with ghost edges.
Since each vertex of Λ except for v0 has valence four and the number of
edge endpoints of Λ is even, v0 has two ghost labels.

Let Λ′ ⊂ DΛ be a graph obtained from Λ by connecting two arcs incident
to v0 with ghost labels as shown in Figure 15; the additional edge obtained
in such a manner is called an extra edge. Then the annulus face f0 is
replaced by two faces: a disk face f−

0 and an annulus face f+
0 with distinct

colors. Then f+
0 contains all the boundary edges, see Figure 15.
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If f−
0 is black, then v0 is incident to a black bigon b0 of of Λ, which is

incident to another vertex v1. Since v1 has valence four and has no ghost
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labels, we have another black bigon incident to v1. By repeating this, we
obtain an infinite sequence of black bigons, contradicting the finiteness
of the graph Λ, see Figure 15 (i). Thus f+

0 is black. Applying the same
argument in Case (1), we can find a required white primitive disk face f
as in Figure 15 (ii).

Case (3): Λ has two vertices v1 and v2 each of which has a ghost label.
As in Case (2) we consider a graph Λ′ ⊂ DΛ which is obtained from Λ
by connecting two arcs incident to vi (i = 1, 2) with ghost labels, see
Figure 16.
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The annulus face f0 is replaced by a disk face f−
0 and an annulus face

f+
0 with distinct colors; the boundary vertices v1 and v2 are contained in

their boundaries.
First we assume that the disk face f−

0 is black (as in Figure 16). Then
since f+

0 is white, every edge in ∂f+
0 other than the extra edge is an edge

of a black bigon of Λ.
If ∂f−

0 has only two vertices v1 and v2, then Λ has a unique white disk
face surrounded by black bigons; except f−

0 each bigon is a bigon in Λ,
Figure 16 (i). By property (∗), the white disk face is primitive, see the
argument in Case (1).

So we assume that ∂f−
0 contains a vertex w0 other than v1, v2 as shown

in Figure 16 (ii). Then there is a black bigon b0 incident to w0. We follow
the argument in Case (1). The black bigon b0 connects w0 and another
vertex w1. Note that w1 is not in ∂f+

0 , because each vertex in ∂f+
0 has
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been already incident to two bigons each of which has an edge in ∂f+
0 .

If w1 is interior vertex, then we have a black bigon connecting w1 and
another vertex, and repeating this, we obtain a sequence of black bigons
b0, b1, . . . , bn such that bi and bi+1 are incident to the same interior vertex
and that b0 and bn are incident to distinct boundary vertices in ∂f−

0 . These
sequences give a partition of the disk bounded by boundary edges of Λ
into several white disk faces. Let f be an outermost white disk face (which
has only one boundary edge in ∂f−

0 ). By the property (∗), ρ(f) = µnδ or
ρ(f) = λnδ, for some δ ∈ {α, β, γ, θ}, see Figure 16 (ii). Thus f is a
required white primitive disk face.

Next suppose that the disk face f−
0 is white (i.e., f+

0 is black). If ∂f+
0

has exactly two vertices, then we have a required white primitive disk face
f as in Figure 17 (i) below. Assume that ∂f+

0 has more than two vertices.
Choose a vertex w0 in ∂f+

0 which is not in ∂f−
0 . Then we apply the same

argument as above (w1 may be in ∂f+
0 ) to find a required white primitive

disk face f , see Figure 17 (ii).
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�

Lemma 6.4. If all the black disk faces of Λ are isomorphic trigons, then
there exists a white primitive disk face.

Proof. By Lemma 3.6, we can assume that for each black trigon g of Λ,
ρ(g) = µ2λ for some µ, λ ∈ {α, β, γ, θ}.

We start with the following observation:
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Claim 6.5. Let g be a black trigon of Λ. Then at most two vertices of g
can be incident to black trigons of Λ.

Proof. Assume for a contradiction that a black disk face g is incident to
three black trigons. Without loss of generality, the edge class labels appear
around g as in Figure 18.
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Then at least one vertex, say v3 in Figure 18, fails to satisfy the property
(∗), a contradiction. �

Let us first assume that Λ has more than four boundary vertices. The
interior edges of Λ decompose the disk bounded by Λ into several disk
faces.

Claim 6.6. There exists an outermost disk face f which has a single
boundary edge e of Λ connecting two boundary vertices x and y to none
of which ghost edges are incident.

Proof. Assume that Λ − {boundary edges} is connected; then each out-
ermost disk face of Λ has only single boundary edge. Since the number
of outermost disk faces, which coincides with the number of boundary
vertices, is greater than four, we can find a required outermost disk face.
Next suppose that Λ− {boundary edges} is not connected. If some com-
ponent Λ′ of Λ− {boundary edges} has a single boundary vertex v, then
Λ′ consists of the single vertex v and two ghost labels (without edges of
Λ). Because if v has no ghost edges, then the component is also a great
web, contradicting the minimality of Λ (Figure 19 (i)); if v has only one
ghost edge, then the both (local) sides of the edge e incident to v have the
same color as shown in Figure 19 (ii), a contradiction.
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Case (1): There is a component with a single boundary vertex.
Then this vertex has two ghost labels as above. Let Λ0 be any other
component, which has at least two boundary vertices and none of which
has ghost labels. Then an outermost disk face cut off by Λ0 is the required
disk face.

Case (2): There is no component with a single boundary vertex.
Then each component has at least two boundary vertices. If we have more
than two components, then since there are at most two ghost edges, some
component has no ghost edges, which cuts off a required disk face. If we
have exactly two components, since we have at most two ghost edges, there
are two possibilities: each component has a ghost edge, or exactly one of
them has two ghost edges. In the former case, there would exsist an edge
whose both sides have the same color (Figure 20 (i)), a contradiction. In
the latter case, let Λ0 be a component having no ghost edges (Figure 20
(ii)). Then as above Λ0 cuts off a required disk face. �

Let us choose an outermost disk face f with a single boundary edge e
as in Claim 6.6. Suppose that f is a black disk face with the third vertex
z. If the vertex z is an interior vertex, then f is incident to three trigons
at x, y and z, contradicting Claim 6.5. Thus z is also a boundary vertex.
Since x (resp. y) has no ghost edges and it has valence four, we can take
another black trigon fx (resp. fy) incident to x (resp. y); denote the other
two vertices of fx by v, w, see Figure 21. We choose v so that the edge in
fx connecting x and v is an interior edge of Λ. Since both vertices x and
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y satisfy the property (∗), e has the edge class label λ and two edges of
fx incident to x have distinct edge class label µ, λ as in Figure 21. This
then implies that the edges of fx incident to v both have the same edge
class label µ (because ρ(fx) = µ2λ). Thus v cannot satisfy the property
(∗) and hence it is a boundary vertex of Λ. If there is no boundary vertex
between z and v, then three vertices x, z and v determines a white trigon,
which is primitive, see Figure 21.
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Let us suppose that there is another boundary vertex between z and v,
see Figure 22. By Claim 6.5, each black trigon contains a boundary vertex.
This then implies that there is a white bigon or trigon (Figure 22), which
is primitive by Lemma 3.6.
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Suppose that f is a white disk face. Then by the property (∗) all the
edges of f , except for the boundary edge e, have the same label µ or λ.
Thus f is a required white primitive disk face, see Figure 23.

f

DL

l

m

m
m

l

white primitive
disk face

l

m

d
e

Figure 23

It follows that if Λ has more than four boundary vertices, there is a
desired white primitive disk face.

If the number of boundary vertices of Λ is less than four, then it is not
difficult to show that we can find a required white primitive disk face or
there would be a black trigon whose three vertices are incident to black
trigons, contradicting Claim 6.5.

Assume that Λ has exactly four boundary vertices. If there is a boundary
edge incident to two vertices without ghost labels (Figure 24 (i)), then
we consider the disk face f , which contains the boundary edge e as in
Figure 24 (i).

We apply the previous argument to show that Λ contains a white prim-
itive disk face as desired. So we may suppose that each boundary edge has
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a vertex with a ghost label as in Figure 24 (ii). Then up to symmetry Λ
has a form described in Figure 24 (ii), because each black trigon is incident
to at most two black trigons (Claim 6.5).

l

m

l

m

white primitive disk face

(i) (ii)

f

Figure 24

So we have a required white primitive disk face f as in Figure 24 (ii).
This completes a proof of Lemma 6.4. �

7. Existence of black disk faces supported by annuli

This section is devoted to a proof of Proposition 3.10 (ii). Notice that the
arguments are close to those in [12].

Assume that the disk face f given by Lemme 3.3 is white, which has
length ≤ 3. Then by Lemma 3.6, we assume throughout this section (if
necessary changing the edge class labels) that ρ(f) = αnβ with n = 1 or
2.

Claim 7.1. Let g be a primitive disk face of Λ with ρ(g) = µmλ for some
µ, λ ∈ {α, β, γ, θ} such that {µ, λ} 6= {α, β} and {µ, λ} ∩ {α, β} 6= ∅, e.g.
{µ, λ} = {α, γ}. Then g is a black disk face whose support is lying in an
annulus in T̂ .

Proof. Proposition 3.10 (i) shows that g cannot be white, i.e., g is black.
Since g is primitive, its support lies in an annulus in T̂ . �

In the following, we assume, if necessary changing the notations γ, θ,
that the γ-family (i.e., the set of γ-edges) is adjacent to the α-family
around ∂V1 (Figure 6). Consequently, the θ-family is adjacent to the β-
family.
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7.1. Oriented dual graphs

Let us construct an oriented dual graph Γ ([10, p. 633]), which has an
essential role in the proof of Proposition 3.10. For each face f of Λ, choose
a dual vertex v so that v ∈ intf . Each edge e of Λ has two sides, i.e., black
side and white side, each of which has a unique dual vertex. An edge ε
of Γ is an edge transverse to e which joins the above two dual vertices.
We call ε a dual edge of e and e an associated edge of ε. Finally we put
an orientation on each edge of Γ according to the following rule: For each
edge ε of Γ which is a dual edge of e with edge class label δ ∈ {α, β, γ, θ},
we fix an orientation WB or BW, say as indicated in Figure 25.

a b g q

e e e e

e e e e

BW BWWB WB

Figure 25

For later convenience, we say that an edge e of Λ is a BW-edge (resp.
WB-edge) if its dual edge ε of Γ has an orientation BW (resp. WB). Let
us denote the dual graph with dual orientation defined in Figure 25 by
Γα,γ

β,θ . Similarly if the dual orientation is chosen as indicated in Figure 26,
then the dual graph with such a dual orientation is denoted by Γα

β,γ,θ.

a b g q

e e e e

e e e e

BW WBWB WB

Figure 26

For each vertex v of Γ, let s(v) be the number of switches (i.e., changes
in orientation of successive edges) around v, and for each face f of Γ, let
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s(f) be the number of switches (i.e., same orientation of successive edges)
around ∂f ; see Figure 27.
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s(v) = 2 s(f) = 2

Figure 27

Define the index of a vertex v or face f by

I(v) = χ(fv)−
s(v)
2

, I(f) = 1− s(f)
2

,

where fv denotes the face of Λ containing the dual vertex v. We say that
a vertex v of Γ is a positive vertex if I(v) > 0. We say that a face f of Γ is
a cycle-face if I(f) > 0. (By definition I(f) ≤ 1, so f is a cycle face if and
only if I(f) = 1.) A fat vertex X of Λ is a cycle-vertex if the corresponding
face of Γ is a cycle-face, see Figure 28.

X
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a,

12

1 2

b,g
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12
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Figure 28
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In the following, we say that an edge of Λ is an (α, γ)-edge (resp. a
(β, θ)-edge) if it is an α-edge or a γ-edge (resp. a β-edge or a θ-edge).
Similarly an edge e of Λ is said to be a (β, γ, θ)-edge if e is not an α-edge.

Let us denote ∂Λf0 = ∂f0 ∩ Λ; recall that f0 is the single annulus-face
of Λ. After fixing an oriented dual graph Γ, we say that a cycle of Λ is a
BW-cycle (resp. WB-cycle) if it consists of BW-edges (resp. WB-edges).

Lemma 7.2. Let Γ be an oriented dual graph such that the BW-edges
(resp. WB-edges) of Λ are adjacent families around ∂V1.

Assume that Γ does not contain a positive vertex, then we have the
following:

(1) Λ has exactly two cycle-vertices X1 and X2. Furthermore, both of
them have one ghost label.

(2) ∂Λf0 is a BW-cycle (resp. WB-cycle) and both X1, X2 are incident
to an interior WB-edge (resp. BW-edge).

(3) For each disk face h of Λ, there exist positive integers m,n such
that

ρ(h) = δ1
1δ

2
1 . . . δm

1 δ1
2δ

2
2 . . . δn

2 (up to cyclic permutation),

where the δi
1’s are BW-edges and the δj

2’s are WB-edges.

(4) ∂Λf0 is not a δ-cycle, for δ ∈ {α, β, γ, θ}.

Proof. Following [4] or [9] we have:

Claim 7.3.
∑

I(v)+
∑

I(f) = 1 (summed over all vertices v and all faces
f of Γ).

Proof. Recall that all faces of Λ in DΛ, except the outermost annulus face
f0, are disk faces, and that d (the number of vertices of Λ) coincides with
the number of faces of Γ.

Let V , E be the number of vertices, edges of Γ, respectively.
Then we have:

(1)
∑

I(v) =
∑

χ(fv)−
∑ s(v)

2 = (V − 1)−
∑ s(v)

2 , and
(2)

∑
I(f) = d−

∑ s(f)
2 =

∑
χ(f) + 1−

∑ s(f)
2 .
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Each corner between adjacent edges at a vertex contributes exactly 1
to

∑
s(v) +

∑
s(f), the Euler formula, together with (1), (2), gives

1 = V − E +
∑

χ(f)

= V − the number of corners

2
+

∑
χ(f)

= V −
∑

s(v) +
∑

s(f)
2

+
∑

χ(f)

=
∑

I(v) +
∑

I(f).

�

Assume that there is no positive vertex of Γ.

(1) By Claim 7.3, there exists a cycle-face f in Λ. We denote by X an
associated cycle-vertex, and x the corresponding label in GT .

Claim 7.4. A cycle-vertex X cannot have valence four.

Proof. Assume for a contradiction that X has valence four. Then the edges
around ∂X incident to the label 1 are BW-edges (resp. WB-edges) and the
edges around ∂X incident to the label 2 are WB-edges (resp. BW-edges),
see Figure 28.

Without loss of generality, we may assume that the BW-edges have label
1 at ∂X; and that the WB-edges have label 2 at ∂X. Thus ∂V1 contains
the label x twice at the adjacent families of BW-edges; and similarly, ∂V2

contains the label x twice at the adjacent families of WB-edges.
If Λ has no ghost edge, then there are at least d+1 BW-edges of GT (Λ)

and the same is true for the WB-edges. On the other hand, there are only
2d edges in Λ, a contradiction.

If Λ has ghost edges, then there are two possibilities: we have a boundary
vertex incident to two ghost edges, or we have two boundary vertices each
of which has a single ghost edge (see the proof of Lemma 6.3). In either
case, ghost labels are distinct and there are at least d BW-edges and d
WB-edges. However there are only 2d− 1 edges in Λ, a contradiction. �

Let v0 be the dual vertex which corresponds to the annulus face f0

of Λ. Then I(v0) = −s(v0)/2. By Claim 7.4 the valence of X is two or
three, in particular, X is a boundary vertex (with ghost edges). Therefore,
there is a switch at v0 and thus I(v0) ≤ −1, see Figure 29. Consequently
I(f)+I(v0) ≤ 0. Thus by Claim 7.3 there is another cycle-face. Since Λ has
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at most two ghost edges, by Claim 7.4 there are exactly two cycle-vertices,
and both of them have valence three.
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�
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BW

BW
BW

WB

WBWB XX
12

Figure 29

(2) Let us denote X1, X2 the two cycle-vertices, and x1, x2 their cor-
responding labels in GT . Without loss of generality, we may assume that
the ghost label at X1 is 2. Then the two edges of Λ incident to X1 at the
label 1 are BW-edges or both of them are WB-edges; we may assume that
these edges are BW-edges. Note that if there is a WB-edge in ∂Λf0, then
s(v0) ≥ 4 and so I(v0) ≤ −2, see Figure 30. By Claim 7.3,∑

v 6=v0

I(v) +
∑

f 6=f1,f2

I(f) ≥ 1.

This then implies that there is a face with positive index, i.e., cycle-vertex
other than X1, X2, contradicting (1). It follows that all the edges in ∂Λf0

are BW-edges. Furthermore, the interior edges incident to X1 and X2 are
WB-edges, since they are cycle-vertices.

(3) Let h be a disk face of Λ. It is sufficient to observe that, up to
cyclic permutation, all the BW-edges are successive. Assume not, then
there are at least four switches at vh and I(vh) < −1, where vh is the dual
vertex of h. Furthermore, from (1) we see that v0 has at least two switches
and I(v0) ≤ −1. Since we have assumed that there is no positive vertex,
I(v) ≤ 0 for v 6= v0, vh. Hence Claim 7.3 shows that∑

I(f) ≥ 1− (I(v0) + I(vh) +
∑

v 6=v0,vh

I(v)) ≥ 3.
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This is impossible, because that only X1, X2 are cycle-vertex (by (1)) and∑
I(f) ≤ 2.

(4) Let δ ∈ {α, β, γ, θ}. If ∂Λf0 is a δ-cycle, then there would be two
δ-edges incident to X1 at label 1 (or 2), contradicting Claim 6.2. �

Let h be a disk face of Λ and δ1, δ2 in {α, β, γ, θ}. The boundary of h is
an alternative sequence of edges of Λ and corners. Let C be a corner on
∂h. Then C is an arc on the boundary of a fat vertex X of Λ; we say that
C is an X-corner. Furthermore, we say that C is a < δ1, δ2 >-corner if
the edge incident to C with label 1 (resp. 2) has edge class label δ1 (resp.
δ2), see Figure 31.

X

12

1 2

C
1 2� �

Figure 31

When δ1 = δ2 = δ, we say simply that C is a < δ >-corner. Note that
∂h has a < δ >-corner if and only if there are two successive δ-edges on
∂h.

Recall that f is a white disk face of Λ such that ρ(f) = αnβ (n = 1
or 2). Thus there are an < α, β >-corner and a < β,α >-corner : see
Figure 32, where the α-family is adjacent to the β-family around ∂V1.
Notice that in such a figure, the edges are corners; in this one they are
(α, β)-corners. Note that if we put edge class labels as in Figure 6, then
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for an orientation of ∂V1 and ∂V2, edges class labels appear in cyclic order
α, β, θ, γ around ∂V1 and α, γ, θ, β around ∂V2.

}
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}
}
}
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Figure 32

We divide the proof of Propositions 3.10 (ii) into two cases according
to whether the θ-family and the γ-family are non-empty (Case 1) or at
least one of them is empty (Case 2).

7.2. Proof of Proposition 3.10 (ii)–Case 1

In this subsection, we assume that: The γ-family and the θ-family are
non-empty.

Recall that Γα,γ
β,θ is the oriented dual graph, for which α, γ are BW-edges

and β, θ are WB-edges.

Lemma 7.5. If there is no black disk face whose the support lies in an
annulus in T̂ , then there exists a positive vertex in Γα,γ

β,θ .

Proof. Assume for a contradiction that Γα,γ
β,θ does not have a positive ver-

tex. Then applying Lemma 7.2, we see that ∂Λf0 is a BW-cycle (i.e., a
(α, γ)-cycle) or a WB-cycle (i.e., a (β, θ)-cycle). Whithout loss of general-
ity, we may assume that ∂Λf0 is a (α, γ)-cycle.

Claim 7.6. All the vertices of Λ, except for X1 and X2, are incident to
(α, γ)-edges with both labels 1 and 2.

Proof. There is a sequence of edges (i.e., a subgraph homeomorphic to a
simple arc when vertices are considered as points) in ∂Λf0 that joins the
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cycle vertices X1 and X2; we assume that the ghost label at X1 is 2 and
that of X2 is 1. Then the two edges of Λ incident to X1 (resp. X2) at the
label 1 (resp. 2) are both (α, γ)-edges. Thus, in GT (Λ), the vertex V1 has
two labels x1 at endpoints of (α, γ)-edges; and simlilarly, the vertex V2

has two labels x2 at endpoints of (α, γ)-edges. Therefore all the vertices
of Λ, except for X1 and X2, are incident to (α, γ)-edges with both labels
1 and 2. �

Let us choose an (α, γ)-cycle τ as follows. If there is no interior (α, γ)-
edge, then τ is ∂Λf0. If there are interior (α, γ)-edges, then τ is the union
of a sequence of (successive) boundary (α, γ)-edges e1, . . . , em connecting
boundary vertices Y1 and Y2 and a sequence of (successive) interior (α, γ)-
edges ε1, . . . , εn connecting Y1 and Y2; the sequence of interior edges is
oriented in the sense that for some orientation of the sequence, each edge
in the sequence is oriented from the label 1 to the label 2, see Figure 33. A
cycle is said to be oriented if for some orientation of the cycle, each edge
in the cycle is oriented from the label 1 to the label 2.

e e
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1

2
1 2 1 2 1 2 1 2

1

2
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(i)
e

YY1 2

D t

0LD f

Figure 33

Claim 7.7. If Γα,γ
β,θ does not contain a positive vertex, then Λ does not

contain an oriented (α, γ)-cycle.

Proof. Assume that we have an oriented (α, γ)-cycle. Let τ be an inner-
most one which bounds a disk Dτ in DΛ.

If there are vertices in intDτ , one can find an oriented sequence σ of
(α, γ)-edges in Dτ , which joins two vertices of τ (otherwise σ is an oriented
(α, γ)-cycle). This sequence divides Dτ into two subdisks; the boundary
of one of them is an oriented (α, γ)-cycle, contradicting the minimality of
τ . Thus there is no vertex in intDτ .
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We call a diagonal edge in Dτ an edge of GT in Dτ which is not in τ .
If there is a diagonal (α, γ)-edge e, then e divides Dτ into two subdisks;
the boundary of one of them is an oriented (α, γ)-cycle, contradicting the
minimality of τ . Hence there is no diagonal (α, γ)-edge in intDτ . If there
is no diagonal edge then the vertex vτ of Γ corresponding to Dτ satisfies
I(vτ ) = 1, i.e. vτ is a positive vertex of Γ.

Note that each vertex in τ is incident to no diagonal edges or exactly
two diagonal edges, because the cycle is oriented, see Figure 34.
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Figure 34

Therefore, if there is a diagonal edge then GT contains a cycle in Dτ

consisting of diagonal edges, each of which is a (β, θ)-edge. This then
implies that the disk face bounded by this cycle corresponds to a dual
vertex v with I(v) = 1, i.e., v is a positive vertex of Γα,γ

β,θ . �

In particular, τ is not an oriented (α, γ)-cycle. We assume that τ is
an innermost (α, γ)-cycle as above, which bounds a disk Dτ . Since τ is
innermost, there are no vertices in intDτ , for otherwise, we can find a
smaller (α, γ)-cycle in Dτ . An edge of GT in Dτ which is not in τ is called
a diagonal edge in Dτ . Since τ is innermost, every diagonal edge is a (β, θ)-
edge. If n 6= 0, we denote by Y1 (resp. Y2) the vertices in τ incident to e1

and ε1 (resp. em and εn). If n = 0 (i.e., τ = ∂Λf0), then we put Yi = Xi

(i = 1, 2).
Since ∂Λf0 is a (α, γ)-cycle, a β-edge and a θ-edge appear only as an

interior edge. Furthermore, since the θ-family is assumed to be non-empty,
each black disk face contains a β-edge and a θ-edge on its boundary (be-
cause the black disk faces all are isomorphic).
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Claim 7.8. Λ has neither a white < γ, θ >-corner nor a white < θ, γ >-
corner. In particular, Λ does not contain a disk face bounded by a (γ, θ)-
cycle.

Proof. Suppose first that the α-family is successive to the θ-family. Recall
that ∂f contains < α, β >-corner and a < β, α >-corner. Then as in
Figure 35, there is neither a white < θ, γ >-corner nor a white < γ, θ >-
corner.
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So we assume that the α-family is successive to the β-family.
Let pi (i = 1, 2) be the endpoint of the ghost edge incident to Xi.

Exchanging X1 by X2, if necessary, we may assume that pi lies in ∂Vi.
Following [12], we say that an edge of Λ is extremal if the corresponding

edge of GT does not lie strictly between parallel edges of GT (edges are
parallel if they lie in the same isotopy class relative to ∂T ). By Theorem
[12, Theorem 2.1], GD contains a great web Λ such that all ghost edges
are extremal. The fact that Λ is innermost is self-contained in the proof
of [12, Theorem 2.1]. In all the following, we assume that we choose such
an innermost and extremal great web.

Recall that ∂Λf0 is a (α, γ)-cycle, and the interior edges incident to X1

and X2 are (β, θ)-edges (Figure 36 (i)). On the other hand the boundary
edges incident to X1 (resp. X2) are (α, γ)-edges both labeled by 2 (resp.
1). Therefore all the labels appear on ∂V2 (resp. ∂V1) among the successive
(α, γ)-edges; in particular the label x2 corresponding to X2 (resp. the label
x1 corresponding to X1) which is precisely p2 (resp. p1). Furthermore Λ
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is extremal, thus the endpoints pi lie between the α-family and the γ-
family around ∂Vi, possibly in their boundary : see (Figure 36 (ii)). To be
more precise, consider the corner around ∂Vi between the α-family and
the γ-family ; then pi lies in the closure of this family.

x1 V1

(a, g) (a, g)
a

b

q

g

(b, q)

-family

-family

-family

-family

p
1

p
1

1

2

1

2

(i) (ii)

Figure 36

There is an alternating sequence of corners and edges in ∂Λf0 joining
p1 to p2 which is a part of the boundary of the white face in GD just
outside of Λ. Thus we have a white corner connecting p1 and an endpoint
of (α, γ)-edge (< p1, α or γ >-corner) and a white corner connecting an
endpoint of (α, γ)-edge and p2 (< α or γ, p2 >-corner). An existence of
white < p1, α or γ >-corner is an obstruction to an existence of white
< γ, θ >-corner, and similarly an existence of white < α or γ, p2 >-corner
is an obstruction to an existence of white < θ, γ >-corner, see Figure 37.

Assume that Λ contains a disk face h bounded by a (γ, θ)-cycle. Since
each black disk face should have a β-edge, h is a white disk face. Then ∂h
contains white (< γ, θ > and < θ, γ >)-corners, a contradiction. �

From Claim 7.8, we see that there is no θ-edge parallel to a boundary
edge. If we have such a θ-edge, then we have a bigon bounded by an (α, θ)-
cycle or a (γ, θ)-cycle. In either case the bigon would be white (because it
has no β-edge). However the former possibility contradicts Claim 7.1 and
the latter possibility contradicts Claim 7.8.

A vertex of τ incident to an εi edge is called interior vertex of τ . Since
the sequence of interior edges of τ is oriented we have the following prop-
erty:

The interior vertices of τ are incident to no diagonal edges or exactly
two diagonal edges, and the boundary vertices other than {Y1, Y2, X1, X2}
are incident to exactly two diagonal edges. If Xi lies between Y1 and Y2,
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Figure 37

then exactly one interior edge is incident to Xi (i = 1 or 2). For simplicity,
we call this Property (τ).

We may assume that there is no (β, θ)-cycle in Dτ , because it rep-
resents a positive vertex of Γα,γ

β,θ , contradicting the initial assumption of
Lemma 7.5.

Since τ is not an oriented (α, γ)-cycle (Claim 7.7), τ contains at least
two boundary vertices, and hence a boundary edge.

Claim 7.9. There is a θ-edge in Dτ .

Proof. Since τ is not an oriented cycle, there is a diagonal edge in Dτ .
Thus Dτ contains a black disk face, which has a β-edge and θ-edge in its
boundary. �

Let e0 be a θ-edge in Dτ joining two vertices. Then e0 divides Dτ

into two subdisks D1
τ and D2

τ . At least one of them, say D1, contains a
boundary edge. If D1 contains an interior θ-edge e1, then e1 divides D1

τ

into two subdisks D1
1 and D1

2; one of them (say D1
1) contains a boundary
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edge. We repeat the process until we get an outermost θ-edge e. Then
e divides Dτ into two subdisks; say D1 and D2 for convenience. First,
we want to show that both contain a boundary edge. Assume that D1

does not contain a boundary edge. By Property (τ) if one interior vertex
in D1 is incident to a diagonal edge (distinct to e) then D1 contains a
(β, θ)-cycle; a contradiction. Then D1 is a disk face. Since all black disk
faces are isomorphic and contain a β-edge, D1 is white. By Claim 7.8,
the edges adjacent to e around D1 are α-edges. By Proposition 3.10 (i)
ρ(D1) 6= αpθ (where p is an integer); thus ∂D1 contains a γ-edge. Since all
black disk faces are isomorphic, all black disk faces contain an α-edge and
a γ-edge on their boundaries. Consider now the black disk face incident
to e. By Property (τ), its boundary contains at most one edge which is
not a diagonal edge; this is a contradiction because diagonal edges are
(β, θ)-edges and there is no (β, θ)-cycle.

Then, by an outermost argument, we may assume that an outermost
θ-edge e divides Dτ into two subdisks D1 and D2, such that D1 contains a
boundary edge, but does not contain another θ-edge. By the isomorphism
of black disk faces, either D1 is a white disk face, or D1 contains a single
black disk face (which contains the θ-edge e on its boundary) and possible
white disk faces.

Claim 7.10. If h is a disk face of τ , then ∂h contains at most one bound-
ary edge.

Proof. Let h be a disk face of τ . Assume for a contradiction that ∂h
contains two distinct boundary edges e1 and e2. By the Property (τ) they
are not successive around ∂h. Therefore h does not satisfy Lemma 7.2 (3);
which is a contradiction. �

Claim 7.11. The disk D1 is not a white disk face.

Proof. Let e′ be a boundary edge on ∂D1. Assume for a contradiction
that D1 is a white disk face. By Claim 7.10 D1 contains a single boundary
edge e′. Since the θ-edge e is not parallel to the boundary edge e′, ∂D1

has length at least three. If neither endpoint of e is incident to a boundary
vertex, then it turns out that τ is oriented, a contradiction. Thus exactly
one endpoint of e is incident to a boundary vertex U ; U is incident to both
e and e′. Hence ∂D1 consists of successive family of edges e, e′ and interior
edges ε1, . . . , εk (or εk, . . . , εm). By Claim 7.8 both edges successive to e
are α-edges. Thus ∂D1 contains an interior α-edge. Since black disk faces
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of Λ are isomorphic, this then implies that each black disk face has an
α-edge on its boundary.

Let h be the black disk face having e on its boundary. Let η1, . . . , ηk be
the sequence of the successive edges around ∂h such that both η1 and ηk

are successive to e and that η1 is incident to the boundary vertex U and
ηk is incident to the interior vertex V (where V is the vertex incident to
e and distinct to U , see Figure 38).

If η1, . . . , ηk are diagonal edges, then ∂h is a (β, θ)-cycle, a contradiction.
Hence ηi is not a diagonal edge for some i (so lies in τ). Note also that
since V is an interior vertex, ηk is an interior edge, and hence η1 joins U
to a boundary vertex, otherwise ∂h consists of only diagonal edges (by
Property (τ)) a contradiction; see Figure 38.
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Suppose first that η1 is a boundary edge (Figure 38 (i)). Then by
Claim 6.2 η1 is a γ-edge and U is X1 or X2.

Note that η2 cannot be a boundary edge (Claim 7.10). Since (β, θ)-edges
are successive on ∂h (Lemma 7.2 (3)), η2, . . . , ηk are diagonal (β, θ)-edges.
Hence ∂h has no α-edge, a contradiction.

Next suppose that η1, . . . , ηi−1 are diagonal (β, θ)-edges and ηi is a
boundary edge (Figure 38 (ii)). Let D3 be a subdisk of D2 cut off by η1

which does not contain h. We want to show that D3 is a bigon. Assume
that the length of ∂D3 is greater than two. Since ni is a boundary edge
(i > 1) then ηj joins boundary vertices, for 1 ≤ j ≤ i; by Property
(τ) and the fact that V is an interior vertex. Then the vertices on D3

all are boundary vertices. Now we look at the Property (τ). According
to whether some of these vertices lies in {X1, X2} or not, either we can
find a (β, θ)-cycle inside D3, or, D3 contains a black bigon adjacent to
boundary edge (recall that a black bigon implies the required result, the
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existence of a black face with the support in an annulus). In both cases,
we get a contradiction. Hence D3 is a (white) bigon consisting of η1 and a
boundary edge b1. Since a θ-edge is not parallel to a boundary edge, η1 is a
β-edge. If b1 is a γ-edge, then D3 is a primitive disk face with ρ(D3) = βγ.
Then Claim 7.1 shows that D3 would be black, a contradiction. Thus b1

is an α-edge, see Figure 38 (ii). Similarly ηj (for 1 ≤ j < i) cobounds
a bigon with a boundary edge bj ; ηj is a β-edge and bj is an α-edge.
This then implies that ηi is a γ-edge (Claim 6.2). By Property (τ), V has
two diagonal edges, then ηk is a diagonal edge which joins V to another
vertex (because ηi is the single boundary edge of h). Repeating the same
argument to this vertex, we conclude the same result for ηk−1, and so on
until ηi+1. Hence, ηi+1, . . . , ηk are (β, θ)-edges. Therefore ∂h does not have
an α-edge, a contradiction. It follows that D1 is not a white disk face. �

Thus D1 contains a single black disk face h and possible white disk
faces.

Let us denote η1, η2, . . . , ηk the successive edges on ∂h; η1 is the outer-
most θ-edge e connecting two vertices U and V , η2 is incident to U and
ηk is incident to V .

Claim 7.12. ∂h has a boundary edge.

Proof. Assume for a contradiction that ∂h does not have a boundary edge.
Recall that diagonal edges are (β, θ)-edges, and that there is no (β, θ)-

cycle in Dτ .
Assume first that both U and V are interior vertices. Then Dτ contains

a cycle σ consisting of e and additional interior edges. This cycle bounds a
disk Dσ inside Dτ . By Property (τ) if one interior vertex in Dσ is incident
to a diagonal edge then Dσ contains a (β, θ)-cycle; a contradiction. Then
Dσ is a disk face. Since all black disk faces are isomorphic and contain
a β-edge, Dσ is white. Therefore (Property (τ)) U is incident to another
diagonal edge e1 (distinct to e) in ∂h; similarly for V . Now, we apply
successively the Property (τ) to the vertices incident to the edges around
∂h from e, e1, . . . to get that ∂h contains only diagonal edges (because we
assume that ∂h does not contain a boundary edge).

Similarly, if both U and V are boundary vertices, then from Property
(τ), we see that ∂h is a (β, θ)-cycle or we have another black disk face in
D1.
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So we assume U is a boundary vertex and V is an interior vertex. Then
there are two possibilities: ηk (incident to V ) is a diagonal edge, or ηk is
lying on ∂Dτ .

Now we show that the latter case cannot happen. For otherwise, V is
incident to another diagonal edge e′ in Dτ − D1 by Property (τ). Let
g(⊂ Dτ −D1) be the white disk face containing e and e′ on its boundary.
By Claim 7.10 g has a single boundary edge e′′ incident to U . Again by
Property (τ), ∂g is the union of e′′ and diagonal edges (because e, e′ are
diagonal edges, we repeat the same argument as above). If ∂g does not
have a β-edge, then by Claim 7.8 ρ(g) = αθx for some positive integer x.
Then Claim 7.1 shows that g would be black, a contradiction. Thus ∂g has
a β-edge, and hence, ∂g contains an < α, θ >-corner and a < θ, β >-corner
(or a < β, θ >-corner and a < θ, α >-corner). However Figures 35 and 37
show that it is impossible.

Thus ηk is a diagonal edge. Then since ∂h has no boundary edge, we
see (Property (τ)) that ∂h is a (β, θ)-cycle; a contradiction. �

Claim 7.13. ρ(h) = θβaγβb, up to orientation and cyclic permutation,
for some integers a > 0 and b ≥ 0.

Proof. By the previous claim, ∂h has a boundary edge. Then by Claim 7.10
it has exactly one boundary edge; in particular, it has at least two bound-
ary vertices.

Let Wi be the vertex incident to ηi and ηi+1 so that W1 = U and
Wk = V .

Recall that diagonal edges in D1 other than e are β-edges and ∂h is the
union of a sequence of successive (β, θ)-edges and a sequence of successive
(α, γ)-edges (Lemma 7.2 (3)). Since ∂h has a β-edge and the boundary
edge is an (α, γ)-edge, η2 or ηk is a β-edge. We may assume (if necessary
by taking the opposite order of η2, . . . , ηk so that the roles of η2 and ηk

is exchanged) η2 is a diagonal β-edge. Let us assume that η2, η3, . . . , ηi

be successive diagonal β-edges (possibly i = 2). Since ∂h is not a (β, θ)-
cycle, there exists i such that ηi+1 is not a diagonal edge. If Wi is an
interior vertex, then by Property (τ) D1 contains another black disk face.
So Wi is a boundary vertex and ηi+1 is a boundary edge. Then Wi+1 is
also a boundary vertex and ηi+2 is not a boundary edge (there is a single
boundary edge on ∂h). Suppose that ηi+2 is not a diagonal edge, then it
lies on ∂Dτ . The absence of black disk faces other than h and Property
(τ) imply that ηi+2, ηi+3, . . . , ηk are lying on ∂Dτ , see Figure 39.
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Then since ηk ⊂ ∂Dτ , V is incident to another diagonal edge e′ 6= e and
a white disk face g(⊂ Dτ − D1) as above. Applying the same argument
in the proof of Claim 7.12, we have a contradiction. Therefore ηi+2 is a
diagonal edge; thus this is a β-edge.

Hence by Lemma 7.2 (3), ηi+3, . . . , ηk are β-edges. Note that ηi+2 is
possibly η1 = e.

If ηi+1 is shown to be a γ-edge, then ρ(h) = θβaγβb for some positive
a > 0 and b ≥ 0.

Now let us show that ηi+1 is a γ-edge.
All the vertices on ∂h are boundary vertices. Indeed, assume for a con-

tradiction that ∂h contains a vertex Y which is not a boundary vertex,
then Y 6∈ {Wi,Wi+1}. Hence the edges on ∂h incident to Y are (β, θ)-
edges. Since all the vertices but X1, X2 are incident to (α, γ)-edges with
both labels 1 and 2 (by Claim 7.6), Y is incident to a black face g such that
∂g contains at least two (α, γ)-edges; thus ρ(h) 6= ρ(g) a contradiction.

Therefore, all the ηi’s except e = η1 bound a white face of length two
on D1 (because D1 does not contain another black face).

Let h′(⊂ D1) be the white disk face whose boundary contains ηi. Let e′

be the edge around ∂h′, incident to Wi, and distinct from ηi. By Claim 7.1
e′ is a α-edge. Thus ηi+1 is a γ-edge by Claim 6.2, as desired. �

Claim 7.14. The α-family is adjacent to the β-family.

Proof. Assume for a contradiction that the α-family is adjacent to the
θ-family. As in the proof of Claim 7.8, we take a sequence of alternating
sequence of corners and edges of ∂Λf0 joining p1 to p2 which is a part of
the boundary of the disk face in GD just outside of Λ. (This black face
is the opposite side of the white face used in the the proof of Claim 7.8.)
Thus we have a black corner connecting p1 and an endpoint of (α, γ)-edge
(< p1, α or γ >-corner) and a black corner connecting an endpoint of
(α, γ)-edge and p2 (< α or γ, p2 >-corner). Hence Λ cannot contain the
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black corners given by the black disk face h (Claim 7.13), see Figure 40
(i) if ρ(h) = θβaγ (i.e., b = 0) and Figure 40 (ii) if ρ(h) = θβaγβb (i.e.,
b > 0). �

Figure 40

Claim 7.15. There exists a white corner which is either a < θ, β >-
corner, a < β, θ >-corner or a < θ >-corner.

Proof. Let g be the white face having e on its boundary; g is the opposite
side of h along e. Let eU , eV be the edges adjacent to e on ∂g, and incident
to U and V respectively. If one of them is a diagonal edge, then we obtain
the required result. So we may assume that they are both α-edges by
Claim 7.8. Since black disk faces are isomorphic (Proposition 3.9 (i)),
Claim 7.13 implies that the α-edges are boundary edges. By Claim 7.10
eU = eV , and hence g is a white primitive disk face with ρ(g) = αθ. Then
by Claim 7.1 g would be black; a contradiction. �
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By Claim 7.14 the α-family is adjacent to the β-family. Then from
Figure 37, we see that Λ cannot contain a white corner which is a < θ, β >-
corner, a < β, θ >-corner or a < θ >-corner. However this contradicts
Claim 7.15. This completes the proof of Lemma 7.5. �

If the family of θ-edges is adjacent to the family of the α-edges, then
we have the following result; the proof is identical by replacing notations.

Addendum 7.16. Assume that the family of θ-edges is adjacent to the
family of the α-edges. If there is no black disk face whose the support lies
in an annulus in T̂ , then there exists a positive vertex in Γα,θ

β,γ (for which
(α, θ)-edges are BW and (γ, β)-edges are WB).

Suppose for a contradiction that Λ does not have a black disk face
whose support is contained in an annulus in T̂ . Then by Lemma 7.5, we
have a positive vertex in Γα,γ

β,θ . Let g be the corresponding disk face of Λ,
which would be white. Then ∂g is either an (α, γ)-cycle or a (β, θ)-cycle.
We assume, if necessary changing α (resp. γ) with β (resp. θ), that ∂g is
an (α, γ)-cycle.

Claim 7.17. There exists a positive vertex in Γα
β,γ,θ (in which an α-edge

is BW and a (β, γ, θ)-edge is WB).

Proof. Assume for a contradiction that Γα
β,γ,θ does not contain a positive

vertex. Notice that the BW-edges are successive around ∂Vi (for i = 1 or
2) since they are α-edges, and similarly for the WB-edges (since they are
the edges which are not the α-edges); so we can apply Lemma 7.2. By
Lemma 7.2 (3) the α-edges (resp. γ-edges) are successive around ∂g. Thus
∂g = αmγn for some positive integers m,n. We may assume m,n ≥ 2, for
otherwise, g is primitive and Claim 7.1 shows that g would be black, a
contradiction. Thus we have an < α >-corner and a < γ >-corner in ∂g.
Hence the white corners are given as in Figure 41 (i) (ii) depending on
whether the β-family is adjacent to the α-family or not.

Then, for any edge class label δ, each white < δ, θ >-corner (resp.
< θ, δ >-corner) is an < α, θ >-corner (resp. < θ, α >-corner). Since there
is a θ-edge, we have a white face h so that ∂h contains a θ-edge e. Now
assume for a contradiction that h is not a disk face (i.e., h is the annulus
face f0); h is divided into a black disk and a white disk by two ghost
edges. Since ∂Λf0 is a (β, γ, θ)-cycle (Lemma 7.2(2) and (4)), e joins X1

and X2, for otherwise, we would have a white corner in h = f0 which
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Figure 41

is neither an < α, θ >-corner nor a < θ, α >-corner. This means that
there is a < p1, θ >-corner, where p1 is the endpoint of the ghost edge
incident to X1. However this is impossible; see Figure 41. It follows that
h is a white disk face with ρ(h) = · · ·αθα · · · . Then by Lemma 7.2 (3),
ρ(h) = α2θ, hence h is primitive. Thus Claim 7.1 shows that h would be
black, a contradiction. �

‘Let h be the disk face of Λ corresponding to the positive vertex in
Γα

β,γ,θ. Note that ∂h is a (β, γ, θ)-cycle by Lemma 3.4.

Claim 7.18. The disk face h is black.

Proof. Assume that h is white. Since the white disk face g gives white
< α, γ >-corners and white < γ, α >-corners in ∂g, we have white corners
as in Figure 41 with the < α >-corners and the < γ >-corners removed.
This then implies that if ∂h contains a γ-edge, then since ∂h is a (β, γ, θ)-
cycle and it does not have an α-edge, ∂h is a γ-cycle (i.e., there are only
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< γ >-corners in ∂h). This contradicts Lemma 3.4. Thus ∂h is a (β, θ)-
cycle, and hence there are white < β, θ >-corners and white < θ, β >-
corners. However it is impossible if the β-family is adjacent to the α-
family, see Figure 41 (i) with the < α >-corners and the < γ >-corners
removed. So we may assume that the θ-family is adjacent to the α-family,
see Figure 42 below.
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Let us recall from Addendum 7.16 that Γα,θ
β,γ has a positive vertex. We

may assume that the corresponding disk face h′ is white. Then ∂h′ con-
tains either a white < α, θ >-corner or a white < β, γ >-corner, which is
impossible, see Figure 42. �

Since the black disk face h is bounded by a (β, γ, θ)-cycle and the black
disk faces all are isomorphic (Proposition 3.9 (i)), the α-edges cannot be
interior edges, i.e., they are boundary edges. By Claim 7.10, ρ(g) = αγn

for some positive integer n, i.e., g is primitive. Then Claim 7.1 shows that
g would be black, a contradiction. This completes the proof of Proposi-
tion 3.10 (ii) in Case 1.

7.3. Proof of Proposition 3.10–Case 2

In this subsection, we prove Proposition 3.10 (ii) under the assumption:
The γ-family or the θ-family is empty.

If the γ-family and the θ-family are both empty, then the support of a
black disk face is in an annulus in T̂ . So we may assume that Λ contains
a γ-edge or a θ-edge. In the following, if necessarily changing θ with γ, we
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assume that there is no θ-edge in Λ. Note that in the present situation, any
two distinct families are adjacent around ∂V1. Now let us choose oriented
dual graphs Γα

β,γ (in which α-edge is BW, β, γ-edge is WB) and Γβ
α,γ (for

which a β-edge is BW and an (α, γ)-edge is WB).

Claim 7.19. Either Γα
β,γ or Γβ

α,γ contains a positive vertex. Moreover if
both Γα

β,γ and Γβ
α,γ have positive vertices, then Λ contains a required black

disk face whose support lies in an annulus in T̂ .

Proof. First assume for a contradiction that neither Γα
β,γ nor Γβ

α,γ contains
a positive vertex. By Lemma 7.2 (4), ∂Λf0 is not a δ-cycle for δ ∈ {α, β, γ}.
Furthermore (Lemma 7.2 (2)) ∂Λf0 is a (β, γ)-cycle and simultaneously a
(α, γ)-cycle, so it is a γ-cycle, a contradiction.

Next suppose that both Γα
β,γ and Γβ

α,γ contain positive vertices. Let g, h
be the corresponding disk faces in Λ respectively. Then we may assume
that g, h are not black, because their support are in an annulus in T̂ . Thus
the family of white corners contains:
an < α, β >-corner and a < β,α >-corner on ∂f ; and
a < β, γ >-corner and a < γ, β >-corner on ∂g; and
an < α, γ >-corner and a < γ, α >-corner on ∂h.
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This is impossible, see Figure 43. �

To prove Proposition 3.10 (ii) (in Case 2), we assume, without loss of
generality, that Γβ

α,γ has a positive vertex, but Γα
β,γ does not have a positive

vertex. Let h be the disk face of Λ corresponding to a positive vertex of
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Γβ
α,γ . Then ∂h is an (α, γ)-cycle (Lemma 3.4). Lemma 7.2 shows that

∂Λf0 is a (β, γ)-cycle and ρ(h) = αmγn for some positive integers m,n.
We may assume that m,n ≥ 2, for otherwise g is primitive and Claim 7.1
shows that g would be black, a contradiction. Therefore we have a white
< α >-corner, a white < α, γ >-corner, a white < γ >-corner and a white
< γ, α >-corner.

Recall that the edges of GD incident to the ghost labels at X1 and X2

divide f0 into a black disk DB and a white disk DW . The edges of ∂Λf0

in DB (resp. DW ) is said to be black (resp. white).

Claim 7.20. All the white edges in ∂Λf0 are γ-edges, or there exists a
black disk face whose support lies in an annulus in T̂ .

Proof. Recall that ∂Λf0 is a (β, γ)-cycle. Assume that ∂Λf0 contains a
white β-edge e. Then e joins X1 to X2, for otherwise we have a white
< β, δ >-corner or a white < δ, β >-corner in DW ⊂ f0 with δ = β or γ,
which is impossible, see Figure 44.
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Let h be the black disk face adjacent to e. Since the interior edges
incident to X1 and X2 are α-edges (Lemma 7.2 (2)) and β-edges and γ-
edges (WB-edges) are successive (Lemma 7.2 (3)), ρ(h) = βαn for some
integer n. Hence h is a black disk face whose support lies in an annulus in
T̂ . �

It follows that we may assume that all the white edges in ∂Λf0 are γ-
edges. Then there exists a white < p1, γ >-corner, where p1 is the endpoint
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of the ghost edge labeled by 1 on ∂X1 or ∂X2. Moreover by Claim 6.2, p1

is lying between the γ-family and the β-family (cf. Figure 36 with α and
β changed). However this is impossible, see Figure 44.

This completes the proof of Propositon 3.10 (ii) in Case 2.
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