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Abstract

The minimal genus problem of connected sums of 4-manifolds and the minimal slice genus of
knots in CP? are treated. The approach used is twisting operations on knots in S3.

We give an upper bound of the smooth slice genus of left-handed torus knots in CP? and we
study the smooth slice genus of the family of (2, ¢)-torus knots in CP? for any ¢ > 3.

T. Lawson conjectured in [23] that the minimal genus of (m,n) € Hy(CP2#CP?) is given by
(571 + (31) -this is the genus realized by the connected sum of algebraic curves in each factor.

T. Lawson also conjectured in [23] that if X = X;#X» is the connected sum of two symplectic
4-manifolds with b5 > 3, and if (a,b) € Ha(X) = Ha(X1)® Ha(X>) satisfies a.a > 0 and b.b > 0,
then the minimal genus for this class is the sum of the minimal genus for the class a and the
minimal genus for the class b.

We answer these conjectures by the negative.

1 Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to
be oriented unless otherwise stated. In particular, all knots are oriented. Let X be a closed 4-manifold and
K a knot in (X — intB*) = 53, where B* is an embedded 4-ball in X. If K bounds a properly embedded
2-disk in X —intB*, then K is called a slice knot in X. We adopt here the terminology of Seifert surface for
K, for a properly embedded orientable compact surface S C X — intB* bounding K in 9(X — intB*) = S3.
We denote by ¢s(K) the minimal genus over all isotopy classes of smooth Seifert surfaces for K lying in
X — intB*.

A (p, q)-torus knot T'(p,q) (0 < p < q and p and ¢ are coprime) is a knot that wraps around the standard
solid torus in the longitudinal direction p times and the meridional direction ¢ times, where the linking
number of the meridian and longitude is equal to 1 (see D. Rolfsen [31]).
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Let K be a knot in the 3-sphere S2, and D? a disk intersecting K in its interior. Let n be an integer.
A —%—Dehn surgery along dD? changes K into a new knot K, in S3. Let w = Ik(0D?, L). We say that K,

is obtained from K by (n,w)-twisting (or simply twisting). Then we write K () K,, or K () K(n,w).

We say that K, is n-twisted provided that K is the unknot (see Figure 1). By Kirby’s calculus [19], we
can prove that a (—1)-twisted knot in S® is smoothly slice in CP? (see a proof in [25]). This motivates our
interest for studying surfaces in CP2 — intB* bounding torus knots in 9(CP? —intB*) = S3 in general, and
therefore the minimal genus problem in CP2#CP? by the gluing of surfaces techniques.

n,w
—

K. Motegi and K. Miyazaki proved that if a (p,q)-torus knot (¢ # kp + 1) is n-twisted, then n = £1
(see [27]). In addition, if 0 < p < ¢ then n = +1 (see [4]). Equivalentely, if T'(—p,q) (¢ # kp £ 1) is
n-twisted, then n = —1 and therefore smoothly slice in CP? ([2], [25]). Indeed, J. Song and H. Goda and
C. Hayashi proved that T'(2,5) and even the family T'(p,p + 2) (for p > 9) are obtained from the unknot by
a (+1)-twisting (see [13]). This implies that their corresponding left-handed torus knots are smoothly slice
in CP? (see [2]). We will prove the following:

Proposition 1.1 T(—p,4p £ 1) is smoothly slice in CP? for any p > 2.

We will show that T'(—p,4p + 1) is (—1, 2p)-twisted for any p > 2 (see Figure 5). R. E. Gompf pointed
out, using a different proof, that T(—2,7) is also smoothly slice in CP? ([14]). This can be deduced from
Proposition 1.1. We also show that handedness in CP? counts e.g. T'(—2, 5) is slice in CP? but g4(7(2,5)) = 1
(see Theorem 1.2).

From now on, gs(K) denotes the minimal genus over all isotopy classes of smooth connected oriented
and compact surfaces whose boundary is the knot K C 9(CP? — intB*), and d denotes its corresponding
degree in Ho(CP? —intB*, 53 7Z). In section 2.1, we will prove Theorem 1.1 by explicitely giving a Seifert
surface for T'(—p, q) lying in CP? — intB* as stated in Claim 2.1.

(g—D@—pr—1)

Theorem 1.1 g5s(T(—p,q)) < 5 .

By an easy application of concordance theory, we can show that a slice knot in S? is slice in CP2.
However, the converse is not true since we can easily conclude from Theorem 1.1 that T'(—p,p+1) (p > 2)
is slice in CP2.

A. Yasuhara [35] proved that there exist an infinite family 7'(—2,2z; + 1) which is non slice in CP2.
However, the value of the smooth slice genus of any non-slice (£p, ¢)-torus knot in CP? is still unknown.




To answer this question, we will prove in section 2.2 the following:

Theorem 1.2 (Handedness)
(1) 9s(T(=2,5)) = 0 and g5(T'(2,5)) = 1.

@2) 170 < g.(T(2,9) < % for g=+1 (mod. 4).

(3) gs(T(=2,7)) = 0 with d = 4, and g,(T(2,7)) = 2 with d € {0, +1}.

An interesting question is to find the degree and the smooth slice genus of torus knots in CP? in general.
Note that T'(p, q) is obtained from T'(2,3) by adding (p — 1)(¢ — 1) — 2 half-twisted bands. This implies that
(pP—Dg—1)

2
genus in CP? and the concordance genus are the same for any (p, ¢)-torus knot (0 < p < ¢ and p and ¢ are

coprime). This let us hit to the following conjecture:

(p—1—1)
2
All known examples of slice torus knots in CP? are (—1)-twisted e.g. T'(—p,4p £ 1) for any p > 2 (see
Figure 5). Notice that only left-handed torus knots can be slice in CP? with the right-handed trefoil as
the only exception (see Figure 4). This can be proved by a using a theorem due to P. Gilmer and O. Ya
Viro (see Theorem 2.2.1) and a theorem on non-positivity of the signatures of right-handed torus knots in
general (see Ait Nouh- Yasuhara [4]). This let us meet with the following conjecture:

there is a genus — 1 concordance between 7'(2,3) and T'(p, q). We claim that the smooth slice

Conjecture 1.1 g4(T(p,q)) = — 1.

Conjecture 1.2 A torus knot is slice in CP? if and only if it is (—1)-twisted.

In section 3, we disapprove the first Lawson’s conjecture by proving the following:
Proposition 3.1 Lawson’s conjecture fails for either the pair (4,1) or (4, —1) or (4,0) € Ho(CP2#CP?).
In [5], we answer this conjecture by the positive for the small pairs (3,3) and (6, 6).

In section 4, we disapprove the second Lawson’s conjecture [23] by proving Theorem 1.3.

Let E(1) = CP?#9CP? be the 4-manifold equipped with an elliptic fibration, and E(2) = E(1)#;E(1)
be the fiber sum. We can check that F(2) is a K3 surface and then b5 = 3 and b; = 19 (refer to R. Gompf
and A. Stipsicz [15], pp.67 — 76 for more details on elliptic fibrations).

Theorem 1.3 There exist (a,b) € Ho(E(2)#E(2)) = Ha(E(2)) @ H2(E(2)) such that a.a > 0 and
b.b > 0, and the genus of a (resp. b) is minimal in Ho(E(2)) (resp. Ho(E(2))), but the genus of a + b is
less and not equal to the sum of the genus of a and the genus of b.

The genus function G is defined on Ha(X,Z) as follows: For a € Hy(X,Z), consider

G(a) = min{genus(X)|2 C X represents «,i.e.,[X] = a}

Where ¥ ranges over closed, connected, oriented surfaces smoothly embedded in the 4-manifold X. Note
that G(—a) = G(«) and G(a) > 0 for all @« € Ho(X,Z) (An excellent reference is Gompf-Stipsicz [14]).



5,C % - int B

i 4
ZZC Xz— int B

Figure 2: The gluing of surfaces technique

In our setting, the connection between knot theory and dimension four topology is based on the following
construction depicted in Figure 2: Let K be a knot in S3, then the dual knot of K is the inverse of the
mirror-image K* of K i.e. K = —K* ([16]). Denote by X{ and X3 two oriented and closed 4-manifolds
and let (;,0%;) C (X; —intB*,S3) for i = 1,2 two compact and oriented surfaces such that 9%; = K and

0% = K. Denote by E& = ZluKSK and 2’2 = ZQUKS? where Sg (resp. S%) is the standard Seifert sur-
face for K (resp. K) in B%. Gluing ¥} and X}, along their boundaries yields a new closed surface E&UKZQ

such that [3{ ) 25] = (5] + (2] € Ha(X,#X.Z) and (24 £5) = 9(S1) + 9(22) — ga(K) — a(K).
where g4(K') denotes the 4-ball genus of K.

Let a = [2)] = [ZluKSK] € Hy(X1,Z) and b = [T)] = [21UKSF] € Hy(Xy,Z). Thena+ b= [21UK22].
It is important to notice here that under the assumptions g4(K) > 1, and a and b are minimal, then
G(a+0b) < G(a) + G(b). Indeed, EluKZg skips the four ball genus of K and K. In this fashion, we will
present a counterexample to the second Lawson’s conjeture as stated in Theorem 1.3 and illustrated in
Figure 8 of page 12 with K = 47 and X; = X2 = E(2) in which we find a and b as described above such
that G(a +b) < G(a) + G(b).

If we take the standard connected sum of X1 and X5, then this does not affect the genus. More precisely,
we will get a new surface X1#39 whose genus is the sum of the genus of ¥1 and ¥,. This proves that if

X = X #X, is the connected sum of two closed 4-manifolds, and if (a,b) € Ho(X) = Ho(X1) & Ho(X3)



then G(a +b) < G(a) + G(b). However, the inequality can be strict. Therefore, the minimal genus in a

connected sum of 4-manifolds is not always the sum of the minimal genus in each factor.

We mention here that G. Mikhalkin ([28]) has shown that the genus-minimizing surfaces in CP? can

have their genus reduced further after direct sum with additional copies of CP? i.e. CP?#..4+CP?2.

So far, there is no theory for 4-manifolds with even b; , and Seiberg-Witten theory applies mainly to
4-manifolds with odd b; > 1. Connected sums of 4-manifolds with even b; is an open area of research where
gauge theory remains inefficient. In light of the above techniques, we treat CP2#CP? and E(2)#E(2).

2 Proof of statements
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Figure 3: The surfaces ¥ and &

2.1 Smooth Seifert surface spanning a (—p, q)-torus knot in CP?

To prove Theorem 1.1, we explicitely give a smooth complex Seifert surface for T'(—p, q), and find its
genus (see Claim 2.1). Recall some preliminaries: In homogeneous coordinates [z : y : z] where (z,v,2) € C3,
the complex projective plane CP? is covered by three affine charts U, := {[1 : y : 2] € CP?|(y,2) € C?},
and Uy := {[z : 1 : 2] € CP?|(x,2) € C*} and U, := {[z : y : 1] € CP?|(z,y) € C?}. Let ¥ be the curve in
CP? that is given in homogeneous coordinates by 2P29P + 49 =0 (0 < p < ¢; p and ¢ are coprime). This
curve has two singularities: the one in U, at [x : y : 2] = [0: 0 : 1] whose link is T'(p, ¢), and the other one in
U, at [1:0: 0] whose link is T'(¢ — p, q) (see Figure 3). Thus the intersection number with the CP! (y = 0)

is p+ (¢ — p) = q as required. Since ¥ has degree ¢, we can desingularize it by perturbing its equation



to obtain a smooth curve ¥. By Thom’s conjecture, that is proved by P. Kronheimer and T. Mrowka (see

[20]), the genus of X is (¢ — 1)(¢ — 2)/2.

Claim 2.1 MyS = >N (CP? —int(B*([0:0: 1],€)) (see Figure 3) is a smooth complex Seifert surface
)

for T(—p,q) in CP? whose genus is (g1 2(q —2) — (p = 1)2((] — 1).

Proof Desingularizing the singularity [0 : 0 : 1] (resp. [1 : 0 : 0]) replaces the cone on T'(p,q) (resp.
T(q — p,q)) by its Milnor fiber M, , (resp. My, 4), which is the obvious Seifert surface for the torus
knot T'(p,q) whose genus is (p — 1)(q¢ — 1)/2 (resp. (¢ —p —1)(¢ — 1)/2) ( see [21],[6]). Thus, if we undo
the perturbation to recover ¥, we must subtract such a term for each singularity: the genus of ¥ is then
(¢g—1(q—-2)/2-—p—-1)(¢g—1)/2—(¢q—p—1)(g—1)/2 = 0. Thus, ¥ is a sphere with two locally

knotted points. Since ¥ = My, U Mp,q, then OMPS = M, N S3([0: 0 : 1],¢€). Therefore M5, bounds

T(p,q)
T'(—p,q), and Mp¢ is smooth, complex and compact. In addition, g(My5) = g(f]) —g(Mp,q), or equivalentely

g(Mpo) = (@—1)(q—-2)/2—(p—1)(¢—1)/2.
Proof of Theorem 1.1 The proof is an immediate corollary of Claim 2.1.
Remark Notice that the degree d of a genus-minimizing Seifert surface for T'(—p, q) is different from ¢

in general. Indeed, T'(—p,4p £+ 1) is slice with d = 2p (¢ = 4p £ 1) (see Proposition 1.1). Thus the relative

Thom conjecture is false in general.
2.2. Proof of Theorem 1.2
We need some preliminaries derived from old gauge theory:
Theorem 2.2.1 (P. Gilmer and O. Ya. Viro [12], [33]) Let X be an oriented, compact 4-manifold with

0X = 52, and K a knot in 0X. Suppose K bounds a surface of genus g in X representing £ € Ho(X,0X).

d? -1

= €2 — 0(X) — o4(k) |< dimHo(X; Zg) + 2g.

(1) 1If £ is divisible by an odd prime d, then: |

2
(2) If ¢ is divisible by 2, then: % —0o(X) —o(k) |< dimHs(X;Za) + 2g.



In the following, let by (resp. by ) denotes the dimension of the maximal positive (resp. negative)

subspace for the intersection form on Hy(X,Z).

Theorem 2.2.2 (K. Kikuchi [18]) Let X be a closed, oriented and smooth 4-manifold such that: (1)
H{(X) has no 2-torsion; and (2) b3' < 3.

If ¢ is a characteristic class of Ho(X,Z) represented by an embedded 2-sphere in X, then: ¢2 = o(X)

Theorem 2.2.3 (D. Acosta [1], R. Fintushel [10], A. Yasuhara [35]) Let X be a smooth closed oriented
simply connected 4-manifold with m = min(b3 (X),b; (X)) and M = maxz(bs (X), by (X)), and assume that

m > 2. Suppose X is an embedded surface in X of genus ¢ so that [X] is characteristic. Then

w+2—M if BX<o(X)<0 or 0<o(X) <Y
XX —o(X

g> 9(] 80'( )|)+2—M if o(X)<XX<0 or 0<YX¥<0o(X)
XY —o0(X
%H_m if o(X)<0<EY or NE<0<o(X)

To prove Theorem 1.2., we need the following;:
Corollary 2.1 T'(2,5) is not slice in CP?

Proof Assume for a contradiction that T'(2,5) is slice in CP?2, then there exist a properly embedded
disk A ¢ CP? — intB* = Mj such that OA = T(2,5). Let [A] = dy, where v is the standard generator of
Ho(CP? — intB*, 83, 7). If d is even, then by Theorem 2.2.1, | d; —0(T(2,5)) —1|< 1. By A.G. Tristram
[32], o(T(2,5)) = —4, and then d satisfies d* + 3 < 1, a contradiction.

Assume now that d is odd. We can check that T'(—2,5) is obtained from the unknot 7(—2,1) by a single
(—2,2)-twisting. In [25] and [9], the authors proved using Kirby’s calculus on the Hopf link [19], that there
exist D C Mi#Ms = S? x S? — intB* = M, such that [D] = 2a + 23 and 9D = T(—2,5). The sphere
[AUD] = dy+2a+28 € CP*#5?% x 5? is a characteristic class. By Kikuchi’s Theorem, [S$?].[S?] = o(M*)

and then d? 4+ 8 = 1, a contradiction.

Proof of Theorem 1.2
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Figure 4:

Notice first that T'(2,3) is obtained from the unknot by (—1,0)-twisting (see Figure 4), which implies
that T'(2,3) is smoothly slice in CP2.

(1) J. Song and H. Goda and C. Hayashi proved in [13] that T'(2,5) is obtained from the unknot by a
single (+1,3)-twisting. Therefore, T'(—2,5) is obtained from the unknot by a single (—1,3)-twisting ([2]).
From [9] and [25] we deduce that T'(—2,5) is slice in CP2. Notice that T(2,5) is obtained from 7'(2,3)
by adding two bands. Thus there is a genus-one cobordism between 7'(2,3) and 7(2,5), and therefore
9s(T'(2,5)) < 1. Corollary 2.1 yields that g5(7'(2,5)) = 1.

1 -3
(2) Assume that ¢ = 4n + 1 for some integer n > 1, and prove that % <9s(T(2,q9)) < qT

Case 1 g = 4n + 1 for some integer n > 1:

Let X, C CP?—intB* be a genus-minimizing g surface such that 9L, = T(2,4n+1) with [$,] = dy where
7 is the standard generator of Ho(CP? Z). Note that T(—2,4n + 1) is obtained from T'(—2,1) by a single
(—2n, 2)-twisting. By [9] and [25], there exist a disk (D,dD) C (S? x S? —intB*, %) such that 0D =
T(—2,4n + 1) and [D] = 2a + 2nf € Ha(S? x §? —intB* S3). The surface ¥ = X, U D C CP?*#S5% x S*
satisfies [2] = dy + 2a + 2n3 € Ho(CP?#S5?% x 5?). Thus [X]? = d? + 8n, so blowing up ¥ € CP?#52 x §?
a number of times equal to d? + 8n gives a genus g surface & C CP?#5? x 52#(612 + 8n)m (the proper

transform) with [£]> = 0. If ¢; denotes the homology class of the exceptional sphere in the it blow-up
i=d*>+8n
(i=1,2,...,d* + 8n), then [i] =dy+2a+45 — Z €.
i=1
If d is odd then X = CP?#5? x S?#(d?> + 8n)CP? has a signature o(X) = 1 — d?> — 8n. The last
8n+d? —1

inequality of Theorem 2.2.3, yields that g > 3

(%), which implies that g > n.



d2
If d is even, then Gilmer-Viro’s Theorem 2.2.1 implies that | 5~ 1—0(T(2,4n 4+ 1) |[< 1+ 2g. Since
d2
o(T(2,4n+1)) = —4n (see Tristram [32]), then | 5~ 1+ 4n |< 1+ 2g, which implies that 2n — 1 < g, and

q—1

therefore n < g. Therefore if ¢ = 4n + 1, then <g.

-3
It is not hard to prove that g < QT by induction. Indeed, 7'(2,3) is slice in CP? and there is a

genus-two cobordism between T'(2,q) and T'(2,q + 2) and therefore, there is a genus g between T'(2,3)

and T'(2,q).
q—3

1
Case 2 If ¢ = 4n — 1 then the proof is similar to Case 1, and we get % <g< 5

(3) We can deduce from Proposition 1.1, whose proof follows, that T'(—2,7) is slice in CP? with d = 4.
Since T(2,7) is abtained from T(2,3), which is slice in CP?, by adding four half-twisted bands, then
9(T(2,7) < 2. Assume first that d is odd, then letting n = 2 in the inequality (x) yields that g4(7(2,7)) = 2
and d = £1. If d is even, then Gilmer-Viro’s Theorem 2.2.1 implies that if g4(7'(2,7)) = 2 then d = 0.

Therefore d € {0, £1}.

1 ¥i J__lL

T(-p, 4p+1)

T(-1.p)

Figure 5:

Proof of Proposition 1.1
Proposition 1.1 T(—p,4p & 1) for p > 2 is slice in CP2.

Proof The movie described in Figure 5 proves that T'(—p,4p 4+ 1) is obtained from T'(—1,p) by a single

(—1,2p)-twisting. The proof is similar for T'(—p,4p — 1) provided that we start from T'(1,p).



3 Minimal genus problem in CP?#CP?

25

T(2,7)

T(-2,7)

Figure 6:

T. Lawson conjectured in [23] that the minimal genus of (m, n) € Ha(CP?#CP?) is given by (\2m\—1) + (‘;l_l)
-this is the genus realized by the connected sum of algebraic curves in each factor. In [5], we answer this
conjecture by the positive for the small pairs (3,3) and (6,6). The proofs use twisting of knots in S3 and

gauge theory. We answer here this conjecture by the negative in general.
Proposition 3.1 Lawson’s conjecture fails for either the pair (4,1) or (4, —1) or (4,0) € Ho(CP2?#CP?).

Proof By Proposition 1.1, we deduce that T/(—2,7) is slice in CP? with degree d = 4. Therefore, there
exist a smooth disk (A, dA) C (CP? —intB*, S%) such that OA = T(—2,7) and [A] = 47, where v is the
standard generator of Hy(CP? — intB*, S3). By Theorem 1.2, the smooth slice genus of 7(2,7) in CP?
is two. Thus, there exist a genus-two surface (X3,0%) C (CP? —intB*, 83) such that 0%y = T(2,7) and
[¥s] = dy € Hy(CP? Z) where d € {0,£1}. By Theorem 1.2, the genus-two smooth surface ¥ = A U X
in CP?#CP? satisfies [Z] = 4y1 + dyy C Ho(CP?*#CP? Z) with d € {0,+1} (see Figure 6). If Lawson’s
conjecture were true, then the genus of ¥ which is two should be greater or equal to the proposed Law-
son’s minimal genus for the pair (4,d) € Ho(CP?*#CP?,7) which is 3 + W where d € {0,£1}, a

contradiction.

10



4 Minimal genus problem of connected sum of symplectic surfaces

Let E(1) = CP249CP? be the 4-manifold equipped with an elliptic fibration, and let F be a regular fiber of
E(1). Then a tubular neighborhood of F is v(F) = D? x T?, and therefore dv(F) = T3(= 0(E(1) — v(F)).
Define E(2) = (E(1) —v(F))Ups(E(1) —v(F)), or simply E(2) = E(1)#rE(1) which is called the fiber sum.
E(2) is a K3 surface and then b = 3 and b, = 19. We have Ho(F(2),Z) = Z*2, and a basis is given by 16
spheres {51, ..., S16} of square —2, realizing —2FEg, and three K3 —nucli N;(2) = N(o;UT;)(i = 1,2,3) which

can be endowed with a symplectic structure, and such that the intersection matrix of (o4, 7;)(i = 1,2,3) is

(‘12 é) ([15], p. 72).
2

11
Claim 4.1 The intersection matrix of (¢,7,0 +3T)is [ 1 0 1
1 1 4

Proof By resolving the singular points, o + 37T is a genus three surface. Since 02 = —2, ¢7 =1 and

T? =0 then (6 +3T)? = 0® + 60T + T = 4, and o(0 + 3T) = 0> + 30T = 1.

Proof of Theorem 1.3

EILI

@ Q E-intd<Ee)

(b)

Figure 7:

Claim 4.2 Represent o + 3T by three disjoinct copies of the fiber denoted respectively by T4, T3 and

Ty. For convenience, we denote T' = T}. There exist a surface E C E(2) — int(B*) such that:
e J(E—J)=FENOJJ = Ly, where the (4,1)-torus link L4 ; is depicted in Figure 7(a), and

° [E — J] = [O‘] + [Tl] + [TQ] + [Tg] + [T4] in HQ(E(Q) — int(B4),53,Z).

11
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Figure 8:

2 2 3 3 4 4 5 9 6 6
Proof Consider F = (?, ?) X oU UT1 X (?, ?) UT2 X (?, ?) UT3 X (?, ?) UT4 X (?, ?), and the 4-
1 6,9 1 65,

= _] X [_7 _]
T T

Proof of Theorem 1.3

Notice that the figure eight 4; knot is both amphicheiral and invertible, and then 4, = 41, where 4; is the
dual knot of 4;. By Claim 4.2, there exist a surface E and a 4-ball J, such that: 9(E —J) = L4 (see Figure
7(b)). Since 4; is obtained from Ly by fusion (see Figure 7(c)), then there exist a 6-punctured sphere F
in $3 x [0,1] C J such that we can identify this band surgery with F' N (S® x {1/2}), and OF = Ly1 U4,
with Ly lies in S% x {0} = 8J x {0} and 4; lies in S® x {1} = 9J x {1}. By Schénflies theorem [31],
S3x {1}(=2 0J x {1}) bounds a 4-ball B* C J. Let (S1,051) C (intB* dB*) be a genus one Seifert surface for
41 (g4(41) = 1), then 31 = (E —int(J)) U FU Sy is represented by a = [o]+ [T]+ [0 +3T]. Since the genus

of E—int(J) is four, then the genus of ¥ is five. Since the K3-nucleus is symplectic, then by the adjunction

]2
RV =1+ g(: 5) (Ozsvéth-Szabo [29]). This implies that a = [X1] € Ha(F(2),Z) is

genus-minimizing in its homology class. Let X5 be another copy of ¥ in E(2), and denote [¥2] =b (= a).
Notice that a.a = b.b = 8, and that [X1(Jy, Y] = a + b € Ha(FE(2)#E(2),Z). Therefore the genus of the
class a +b = 2([o] + [T] + [0 + 3T7) is 8 (which is the genus of 31(J,, ¥2). If the second Lawson’s conjecture
were true, then the homology class of a + b would have genus 5 + 5 = 10; a contradiction.

ball J = |

formula 1+
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