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Abstract

The minimal genus problem of connected sums of 4-manifolds and the minimal slice genus of
knots in CP 2 are treated. The approach used is twisting operations on knots in S3.

We give an upper bound of the smooth slice genus of left-handed torus knots in CP 2 and we
study the smooth slice genus of the family of (2, q)-torus knots in CP 2 for any q ≥ 3.

T. Lawson conjectured in [23] that the minimal genus of (m,n) ∈ H2(CP 2#CP 2) is given by
(m−1
2 ) + (n−1

2 ) -this is the genus realized by the connected sum of algebraic curves in each factor.

T. Lawson also conjectured in [23] that if X = X1#X2 is the connected sum of two symplectic
4-manifolds with b+

2 ≥ 3, and if (a, b) ∈ H2(X) = H2(X1)⊕H2(X2) satisfies a.a ≥ 0 and b.b ≥ 0,
then the minimal genus for this class is the sum of the minimal genus for the class a and the
minimal genus for the class b.

We answer these conjectures by the negative.

1 Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to
be oriented unless otherwise stated. In particular, all knots are oriented. Let X be a closed 4-manifold and
K a knot in ∂(X − intB4) ∼= S3, where B4 is an embedded 4-ball in X. If K bounds a properly embedded
2-disk in X − intB4, then K is called a slice knot in X. We adopt here the terminology of Seifert surface for
K, for a properly embedded orientable compact surface S ⊂ X − intB4 bounding K in ∂(X − intB4) ∼= S3.
We denote by gs(K) the minimal genus over all isotopy classes of smooth Seifert surfaces for K lying in
X − intB4.

A (p, q)-torus knot T (p, q) (0 < p < q and p and q are coprime) is a knot that wraps around the standard
solid torus in the longitudinal direction p times and the meridional direction q times, where the linking
number of the meridian and longitude is equal to 1 (see D. Rolfsen [31]).
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Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior. Let n be an integer.
A − 1

n
-Dehn surgery along ∂D2 changes K into a new knot Kn in S3. Let ω = lk(∂D2, L). We say that Kn

is obtained from K by (n, ω)-twisting (or simply twisting). Then we write K
(n,ω)
→ Kn, or K

(n,ω)
→ K(n, ω).

We say that Kn is n-twisted provided that K is the unknot (see Figure 1). By Kirby’s calculus [19], we
can prove that a (−1)-twisted knot in S3 is smoothly slice in CP 2 (see a proof in [25]). This motivates our
interest for studying surfaces in CP 2 − intB4 bounding torus knots in ∂(CP 2 − intB4) ∼= S3 in general, and
therefore the minimal genus problem in CP 2#CP 2 by the gluing of surfaces techniques.

K. Motegi and K. Miyazaki proved that if a (p, q)-torus knot (q 6= kp ± 1) is n-twisted, then n = ±1
(see [27]). In addition, if 0 < p < q then n = +1 (see [4]). Equivalentely, if T (−p, q) (q 6= kp ± 1) is
n-twisted, then n = −1 and therefore smoothly slice in CP 2 ([2], [25]). Indeed, J. Song and H. Goda and
C. Hayashi proved that T (2, 5) and even the family T (p, p + 2) (for p ≥ 9) are obtained from the unknot by
a (+1)-twisting (see [13]). This implies that their corresponding left-handed torus knots are smoothly slice
in CP 2 (see [2]). We will prove the following:

Proposition 1.1 T (−p, 4p ± 1) is smoothly slice in CP 2 for any p ≥ 2.

We will show that T (−p, 4p ± 1) is (−1, 2p)-twisted for any p ≥ 2 (see Figure 5). R. E. Gompf pointed
out, using a different proof, that T (−2, 7) is also smoothly slice in CP 2 ([14]). This can be deduced from
Proposition 1.1. We also show that handedness in CP 2 counts e.g. T (−2, 5) is slice in CP 2 but gs(T (2, 5)) = 1
(see Theorem 1.2).

From now on, gs(K) denotes the minimal genus over all isotopy classes of smooth connected oriented
and compact surfaces whose boundary is the knot K ⊂ ∂(CP 2 − intB4), and d denotes its corresponding
degree in H2(CP 2 − intB4, S3, Z). In section 2.1, we will prove Theorem 1.1 by explicitely giving a Seifert
surface for T (−p, q) lying in CP 2 − intB4 as stated in Claim 2.1.

Theorem 1.1 gs(T (−p, q)) ≤
(q − 1)(q − p − 1)

2
.

By an easy application of concordance theory, we can show that a slice knot in S 3 is slice in CP 2.
However, the converse is not true since we can easily conclude from Theorem 1.1 that T (−p, p + 1) (p ≥ 2)
is slice in CP 2.

A. Yasuhara [35] proved that there exist an infinite family T (−2, 2xi + 1) which is non slice in CP 2.
However, the value of the smooth slice genus of any non-slice (±p, q)-torus knot in CP 2 is still unknown.
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To answer this question, we will prove in section 2.2 the following:

Theorem 1.2 (Handedness)

(1) gs(T (−2, 5)) = 0 and gs(T (2, 5)) = 1.

(2)
q ∓ 1

4
≤ gs(T (2, q)) ≤

q − 3

2
for q ≡ ±1 (mod. 4).

(3) gs(T (−2, 7)) = 0 with d = 4, and gs(T (2, 7)) = 2 with d ∈ {0,±1}.

An interesting question is to find the degree and the smooth slice genus of torus knots in CP 2 in general.
Note that T (p, q) is obtained from T (2, 3) by adding (p− 1)(q− 1)− 2 half-twisted bands. This implies that

there is a genus
(p − 1)(q − 1)

2
− 1 concordance between T (2, 3) and T (p, q). We claim that the smooth slice

genus in CP 2 and the concordance genus are the same for any (p, q)-torus knot (0 < p < q and p and q are
coprime). This let us hit to the following conjecture:

Conjecture 1.1 gs(T (p, q)) =
(p − 1)(q − 1)

2
− 1.

All known examples of slice torus knots in CP 2 are (−1)-twisted e.g. T (−p, 4p ± 1) for any p ≥ 2 (see
Figure 5). Notice that only left-handed torus knots can be slice in CP 2 with the right-handed trefoil as
the only exception (see Figure 4). This can be proved by a using a theorem due to P. Gilmer and O. Ya
Viro (see Theorem 2.2.1) and a theorem on non-positivity of the signatures of right-handed torus knots in
general (see Ait Nouh- Yasuhara [4]). This let us meet with the following conjecture:

Conjecture 1.2 A torus knot is slice in CP 2 if and only if it is (−1)-twisted.

In section 3, we disapprove the first Lawson’s conjecture by proving the following:

Proposition 3.1 Lawson’s conjecture fails for either the pair (4, 1) or (4,−1) or (4, 0) ∈ H2(CP 2#CP 2).

In [5], we answer this conjecture by the positive for the small pairs (3, 3) and (6, 6).

In section 4, we disapprove the second Lawson’s conjecture [23] by proving Theorem 1.3.
Let E(1) = CP 2#9CP 2 be the 4-manifold equipped with an elliptic fibration, and E(2) = E(1)#fE(1)

be the fiber sum. We can check that E(2) is a K3 surface and then b+
2 = 3 and b−2 = 19 (refer to R. Gompf

and A. Stipsicz [15], pp.67 − 76 for more details on elliptic fibrations).

Theorem 1.3 There exist (a, b) ∈ H2(E(2)#E(2)) = H2(E(2)) ⊕ H2(E(2)) such that a.a ≥ 0 and
b.b ≥ 0, and the genus of a (resp. b) is minimal in H2(E(2)) (resp. H2(E(2))), but the genus of a + b is
less and not equal to the sum of the genus of a and the genus of b.

The genus function G is defined on H2(X, Z) as follows: For α ∈ H2(X, Z), consider

G(α) = min{genus(Σ)|Σ ⊂ X represents α, i.e., [Σ] = α}

Where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the 4-manifold X. Note
that G(−α) = G(α) and G(α) ≥ 0 for all α ∈ H2(X, Z) (An excellent reference is Gompf-Stipsicz [14]).

3



S

S

K

K

K

K

B
4

Σ

Σ

X  −   int  B

X  −   int  B

1 1

2 2

4

4

Figure 2: The gluing of surfaces technique

In our setting, the connection between knot theory and dimension four topology is based on the following
construction depicted in Figure 2: Let K be a knot in S3, then the dual knot of K is the inverse of the
mirror-image K∗ of K i.e. K = −K∗ ([16]). Denote by X4

1 and X4
2 two oriented and closed 4-manifolds

and let (Σi, ∂Σi) ⊂ (Xi − intB4, S3) for i = 1, 2 two compact and oriented surfaces such that ∂Σ1 = K and

∂Σ2 = K. Denote by Σ′
1 = Σ1

⋃

K
SK and Σ′

2 = Σ2

⋃

K
SK where SK (resp. SK) is the standard Seifert sur-

face for K (resp. K) in B4. Gluing Σ′
1 and Σ′

2 along their boundaries yields a new closed surface Σ′
1

⋃

K
Σ′

2

such that [Σ′
1

⋃

K
Σ′

2] = [Σ′
1] + [Σ′

2] ∈ H2(X1#X2, Z) and g(Σ′
1

⋃

K
Σ′

2) = g(Σ1) + g(Σ2) − g4(K) − g4(K),

where g4(K) denotes the 4-ball genus of K.

Let a = [Σ′
1] = [Σ1

⋃

K
SK ] ∈ H2(X1, Z) and b = [Σ′

2] = [Σ1

⋃

K
SK ] ∈ H2(X2, Z). Then a + b = [Σ1

⋃

K
Σ2].

It is important to notice here that under the assumptions g4(K) ≥ 1, and a and b are minimal, then

G(a + b) < G(a) + G(b). Indeed, Σ1

⋃

K
Σ2 skips the four ball genus of K and K. In this fashion, we will

present a counterexample to the second Lawson’s conjeture as stated in Theorem 1.3 and illustrated in

Figure 8 of page 12 with K = 41 and X1 = X2 = E(2) in which we find a and b as described above such

that G(a + b) < G(a) + G(b).

If we take the standard connected sum of Σ1 and Σ2, then this does not affect the genus. More precisely,

we will get a new surface Σ1#Σ2 whose genus is the sum of the genus of Σ1 and Σ2. This proves that if

X = X1#X2 is the connected sum of two closed 4-manifolds, and if (a, b) ∈ H2(X) = H2(X1) ⊕ H2(X2)
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then G(a + b) ≤ G(a) + G(b). However, the inequality can be strict. Therefore, the minimal genus in a

connected sum of 4-manifolds is not always the sum of the minimal genus in each factor.

We mention here that G. Mikhalkin ([28]) has shown that the genus-minimizing surfaces in CP 2 can

have their genus reduced further after direct sum with additional copies of CP 2 i.e. CP 2#..#CP 2.

So far, there is no theory for 4-manifolds with even b+
2 , and Seiberg-Witten theory applies mainly to

4-manifolds with odd b+
2 > 1. Connected sums of 4-manifolds with even b+

2 is an open area of research where

gauge theory remains inefficient. In light of the above techniques, we treat CP 2#CP 2 and E(2)#E(2).

2 Proof of statements

T(q−p,q) T(p,q)

B 
4

B 
4

( [1:0:0] ,
( [0:0:1] ’  

ε
ε

)
)

. .
[1:0:0]

[0:0:1]

M

Mp,q

q−p,q

Figure 3: The surfaces Σ and Σ̃

2.1 Smooth Seifert surface spanning a (−p, q)-torus knot in CP 2

To prove Theorem 1.1, we explicitely give a smooth complex Seifert surface for T (−p, q), and find its

genus (see Claim 2.1). Recall some preliminaries: In homogeneous coordinates [x : y : z] where (x, y, z) ∈ C
3,

the complex projective plane CP 2 is covered by three affine charts Ux := {[1 : y : z] ∈ CP 2|(y, z) ∈ C
2},

and Uy := {[x : 1 : z] ∈ CP 2|(x, z) ∈ C
2} and Uz := {[x : y : 1] ∈ CP 2|(x, y) ∈ C

2}. Let Σ be the curve in

CP 2 that is given in homogeneous coordinates by xpzq−p + yq = 0 (0 < p < q; p and q are coprime). This

curve has two singularities: the one in Uz at [x : y : z] = [0 : 0 : 1] whose link is T (p, q), and the other one in

Ux at [1 : 0 : 0] whose link is T (q − p, q) (see Figure 3). Thus the intersection number with the CP 1 (y = 0)

is p + (q − p) = q as required. Since Σ has degree q, we can desingularize it by perturbing its equation
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to obtain a smooth curve Σ̃. By Thom’s conjecture, that is proved by P. Kronheimer and T. Mrowka (see

[20]), the genus of Σ̃ is (q − 1)(q − 2)/2.

Claim 2.1 M∞
p,q = Σ̃ ∩ (CP 2 − int(B4([0 : 0 : 1], ε)) (see Figure 3) is a smooth complex Seifert surface

for T (−p, q) in CP 2 whose genus is
(q − 1)(q − 2)

2
−

(p − 1)(q − 1)

2
.

Proof Desingularizing the singularity [0 : 0 : 1] (resp. [1 : 0 : 0]) replaces the cone on T (p, q) (resp.

T (q − p, q)) by its Milnor fiber Mp,q (resp. Mq−p,q), which is the obvious Seifert surface for the torus

knot T (p, q) whose genus is (p − 1)(q − 1)/2 (resp. (q − p − 1)(q − 1)/2) ( see [21],[6]). Thus, if we undo

the perturbation to recover Σ, we must subtract such a term for each singularity: the genus of Σ is then

(q − 1)(q − 2)/2 − (p − 1)(q − 1)/2 − (q − p − 1)(q − 1)/2 = 0. Thus, Σ is a sphere with two locally

knotted points. Since Σ̃ = M∞
p,q

⋃

T (p,q)

Mp,q, then ∂M∞
p,q = Mp,q ∩ S3([0 : 0 : 1], ε). Therefore M∞

p,q bounds

T (−p, q), and M∞
p,q is smooth, complex and compact. In addition, g(M∞

p,q) = g(Σ̃)−g(Mp,q), or equivalentely

g(M∞
p,q) = (q − 1)(q − 2)/2 − (p − 1)(q − 1)/2.

Proof of Theorem 1.1 The proof is an immediate corollary of Claim 2.1.

Remark Notice that the degree d of a genus-minimizing Seifert surface for T (−p, q) is different from q

in general. Indeed, T (−p, 4p ± 1) is slice with d = 2p (q = 4p ± 1) (see Proposition 1.1). Thus the relative

Thom conjecture is false in general.

2.2. Proof of Theorem 1.2

We need some preliminaries derived from old gauge theory:

Theorem 2.2.1 (P. Gilmer and O. Ya. Viro [12], [33]) Let X be an oriented, compact 4-manifold with

∂X = S3, and K a knot in ∂X. Suppose K bounds a surface of genus g in X representing ξ ∈ H2(X, ∂X).

(1) If ξ is divisible by an odd prime d, then: |
d2 − 1

2d2
ξ2 − σ(X) − σd(k) |≤ dimH2(X; Zd) + 2g.

(2) If ξ is divisible by 2, then: |
ξ2

2
− σ(X) − σ(k) |≤ dimH2(X; Z2) + 2g.
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In the following, let b+
2 (resp. b−2 ) denotes the dimension of the maximal positive (resp. negative)

subspace for the intersection form on H2(X, Z).

Theorem 2.2.2 (K. Kikuchi [18]) Let X be a closed, oriented and smooth 4-manifold such that: (1)

H1(X) has no 2-torsion; and (2) b±1
2 ≤ 3.

If ξ is a characteristic class of H2(X, Z) represented by an embedded 2-sphere in X, then: ξ2 = σ(X)

Theorem 2.2.3 (D. Acosta [1], R. Fintushel [10], A. Yasuhara [35]) Let X be a smooth closed oriented

simply connected 4-manifold with m = min(b+
2 (X), b−2 (X)) and M = max(b+

2 (X), b−2 (X)), and assume that

m ≥ 2. Suppose Σ is an embedded surface in X of genus g so that [Σ] is characteristic. Then

g ≥







































| Σ.Σ − σ(X) |

8
+ 2 − M if Σ.Σ ≤ σ(X) ≤ 0 or 0 ≤ σ(X) ≤ Σ.Σ

9(| Σ.Σ − σ(X) |)

8
+ 2 − M if σ(X) ≤ Σ.Σ ≤ 0 or 0 ≤ Σ.Σ ≤ σ(X)

| Σ.Σ − σ(X) |

8
+ 2 − m if σ(X) ≤ 0 ≤ Σ.Σ or Σ.Σ ≤ 0 ≤ σ(X)

To prove Theorem 1.2., we need the following:

Corollary 2.1 T (2, 5) is not slice in CP 2

Proof Assume for a contradiction that T (2, 5) is slice in CP 2, then there exist a properly embedded

disk ∆ ⊂ CP 2 − intB4 = M1 such that ∂∆ = T (2, 5). Let [∆] = dγ, where γ is the standard generator of

H2(CP 2 − intB4, S3, Z). If d is even, then by Theorem 2.2.1, |
d2

2
− σ(T (2, 5)) − 1 |≤ 1. By A.G. Tristram

[32], σ(T (2, 5)) = −4, and then d satisfies d2 + 3 ≤ 1, a contradiction.

Assume now that d is odd. We can check that T (−2, 5) is obtained from the unknot T (−2, 1) by a single

(−2, 2)-twisting. In [25] and [9], the authors proved using Kirby’s calculus on the Hopf link [19], that there

exist D ⊂ M1#M2 = S2 × S2 − intB4 = M2 such that [D] = 2α + 2β and ∂D = T (−2, 5). The sphere

[∆∪D] = dγ + 2α + 2β ∈ CP 2#S2 ×S2 is a characteristic class. By Kikuchi’s Theorem, [S2].[S2] = σ(M4)

and then d2 + 8 = 1, a contradiction.

Proof of Theorem 1.2

7



− 1

T ( 2 ,  3) T ( 2 ,  1) 

Figure 4:

Notice first that T (2, 3) is obtained from the unknot by (−1, 0)-twisting (see Figure 4), which implies

that T (2, 3) is smoothly slice in CP 2.

(1) J. Song and H. Goda and C. Hayashi proved in [13] that T (2, 5) is obtained from the unknot by a

single (+1, 3)-twisting. Therefore, T (−2, 5) is obtained from the unknot by a single (−1, 3)-twisting ([2]).

From [9] and [25] we deduce that T (−2, 5) is slice in CP 2. Notice that T (2, 5) is obtained from T (2, 3)

by adding two bands. Thus there is a genus-one cobordism between T (2, 3) and T (2, 5), and therefore

gs(T (2, 5)) ≤ 1. Corollary 2.1 yields that gs(T (2, 5)) = 1.

(2) Assume that q = 4n ± 1 for some integer n ≥ 1, and prove that
q ∓ 1

4
≤ gs(T (2, q)) ≤

q − 3

2
.

Case 1 q = 4n + 1 for some integer n ≥ 1:

Let Σg ⊂ CP 2−intB4 be a genus-minimizing g surface such that ∂Σg = T (2, 4n+1) with [Σg] = dγ where

γ is the standard generator of H2(CP 2, Z). Note that T (−2, 4n + 1) is obtained from T (−2, 1) by a single

(−2n, 2)-twisting. By [9] and [25], there exist a disk (D, ∂D) ⊂ (S2 × S2 − intB4, S3) such that ∂D =

T (−2, 4n + 1) and [D] = 2α + 2nβ ∈ H2(S
2 × S2 − intB4, S3). The surface Σ = Σg ∪ D ⊂ CP 2#S2 × S2

satisfies [Σ] = dγ + 2α + 2nβ ∈ H2(CP 2#S2 × S2). Thus [Σ]2 = d2 + 8n, so blowing up Σ ⊂ CP 2#S2 × S2

a number of times equal to d2 + 8n gives a genus g surface Σ̃ ⊂ CP 2#S2 × S2#(d2 + 8n)CP 2 (the proper

transform) with [Σ̃]2 = 0. If ei denotes the homology class of the exceptional sphere in the ith blow-up

(i = 1, 2, ..., d2 + 8n), then [Σ̃] = dγ + 2α + 4β −

i=d2+8n
∑

i=1

ei.

If d is odd then X = CP 2#S2 × S2#(d2 + 8n)CP 2 has a signature σ(X) = 1 − d2 − 8n. The last

inequality of Theorem 2.2.3, yields that g ≥
8n + d2 − 1

8
(?), which implies that g ≥ n.

8



If d is even, then Gilmer-Viro’s Theorem 2.2.1 implies that |
d2

2
− 1 − σ(T (2, 4n + 1) |≤ 1 + 2g. Since

σ(T (2, 4n +1)) = −4n (see Tristram [32]), then |
d2

2
− 1 + 4n |≤ 1 + 2g, which implies that 2n− 1 ≤ g, and

therefore n ≤ g. Therefore if q = 4n + 1, then
q − 1

4
≤ g.

It is not hard to prove that g ≤
q − 3

2
by induction. Indeed, T (2, 3) is slice in CP 2 and there is a

genus-two cobordism between T (2, q) and T (2, q + 2) and therefore, there is a genus
q − 3

2
between T (2, 3)

and T (2, q).

Case 2 If q = 4n − 1 then the proof is similar to Case 1, and we get
q + 1

4
≤ g ≤

q − 3

2

(3) We can deduce from Proposition 1.1, whose proof follows, that T (−2, 7) is slice in CP 2 with d = 4.

Since T (2, 7) is abtained from T (2, 3), which is slice in CP 2, by adding four half-twisted bands, then

g(T (2, 7) ≤ 2. Assume first that d is odd, then letting n = 2 in the inequality (?) yields that gs(T (2, 7)) = 2

and d = ±1. If d is even, then Gilmer-Viro’s Theorem 2.2.1 implies that if gs(T (2, 7)) = 2 then d = 0.

Therefore d ∈ {0,±1}.

−1

−1

−1

−1 −1

T ( −1 , p )

T ( − p ,  4p + 1)

Figure 5:

Proof of Proposition 1.1

Proposition 1.1 T (−p, 4p ± 1) for p ≥ 2 is slice in CP 2.

Proof The movie described in Figure 5 proves that T (−p, 4p + 1) is obtained from T (−1, p) by a single

(−1, 2p)-twisting. The proof is similar for T (−p, 4p − 1) provided that we start from T (1, p).
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3 Minimal genus problem in CP 2#CP 2

T(−2,7)

T(2,7)

Σ

∆ 

2

Figure 6:

T. Lawson conjectured in [23] that the minimal genus of (m,n) ∈ H2(CP 2#CP 2) is given by (
|m|−1
2 ) + (

|n|−1
2 )

-this is the genus realized by the connected sum of algebraic curves in each factor. In [5], we answer this

conjecture by the positive for the small pairs (3, 3) and (6, 6). The proofs use twisting of knots in S 3 and

gauge theory. We answer here this conjecture by the negative in general.

Proposition 3.1 Lawson’s conjecture fails for either the pair (4, 1) or (4,−1) or (4, 0) ∈ H2(CP 2#CP 2).

Proof By Proposition 1.1, we deduce that T (−2, 7) is slice in CP 2 with degree d = 4. Therefore, there

exist a smooth disk (∆, ∂∆) ⊂ (CP 2 − intB4, S3) such that ∂∆ = T (−2, 7) and [∆] = 4γ, where γ is the

standard generator of H2(CP 2 − intB4, S3). By Theorem 1.2, the smooth slice genus of T (2, 7) in CP 2

is two. Thus, there exist a genus-two surface (Σ2, ∂Σ2) ⊂ (CP 2 − intB4, S3) such that ∂Σ2 = T (2, 7) and

[Σ2] = dγ ∈ H2(CP 2, Z) where d ∈ {0,±1}. By Theorem 1.2, the genus-two smooth surface Σ = ∆ ∪ Σ2

in CP 2#CP 2 satisfies [Σ] = 4γ1 + dγ2 ⊂ H2(CP 2#CP 2, Z) with d ∈ {0,±1} (see Figure 6). If Lawson’s

conjecture were true, then the genus of Σ which is two should be greater or equal to the proposed Law-

son’s minimal genus for the pair (4, d) ∈ H2(CP 2#CP 2, Z) which is 3 + (|d|−1)(|d|−2)
2 where d ∈ {0,±1}, a

contradiction.

10



4 Minimal genus problem of connected sum of symplectic surfaces

Let E(1) = CP 2#9CP 2 be the 4-manifold equipped with an elliptic fibration, and let F be a regular fiber of

E(1). Then a tubular neighborhood of F is ν(F ) ∼= D2 × T 2, and therefore ∂ν(F ) = T 3(= ∂(E(1) − ν(F )).

Define E(2) = (E(1)−ν(F ))
⋃

T 3(E(1)−ν(F )), or simply E(2) = E(1)#F E(1) which is called the fiber sum.

E(2) is a K3 surface and then b+
2 = 3 and b−2 = 19. We have H2(E(2), Z) ∼= Z

22, and a basis is given by 16

spheres {S1, ..., S16} of square −2, realizing −2E8, and three K3−nucli Ni(2) = N(σi∪Ti)(i = 1, 2, 3) which

can be endowed with a symplectic structure, and such that the intersection matrix of (σi, Ti)(i = 1, 2, 3) is
(

−2 1
1 0

)

([15], p. 72).

Claim 4.1 The intersection matrix of (σ, T, σ + 3T ) is





−2 1 1
1 0 1
1 1 4



 .

Proof By resolving the singular points, σ + 3T is a genus three surface. Since σ2 = −2, σT = 1 and

T 2 = 0 then (σ + 3T )2 = σ2 + 6σT + T 2 = 4, and σ(σ + 3T ) = σ2 + 3σT = 1.

Proof of Theorem 1.3

L4,1

41

L4,1

(a )

(b )

(c )E − int J 2E ( )

Figure 7:

Claim 4.2 Represent σ + 3T by three disjoinct copies of the fiber denoted respectively by T2, T3 and

T4. For convenience, we denote T = T1. There exist a surface E ⊂ E(2) − int(B4) such that:

• ∂(E − J) = E ∩ ∂J = L4,1 where the (4, 1)-torus link L4,1 is depicted in Figure 7(a), and

• [E − J ] = [σ] + [T1] + [T2] + [T3] + [T4] in H2(E(2) − int(B4), S3, Z).
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F

S

S

1

1

1E − int J E(2)

E1 int J E(2)−

1 4 F

L

41 

4,1

Figure 8:

Proof Consider E = (
2

7
,
2

7
) × σ ∪

⋃

T1 × (
3

7
,
3

7
) ∪ T2 × (

4

7
,
4

7
) ∪ T3 × (

5

7
,
5

7
) ∪ T4 × (

6

7
,
6

7
), and the 4-

ball J = [
1

7
,
6

7
]2 × [

1

7
,
6

7
]2.

Proof of Theorem 1.3
Notice that the figure eight 41 knot is both amphicheiral and invertible, and then 41

∼= 41, where 41 is the
dual knot of 41. By Claim 4.2, there exist a surface E and a 4-ball J , such that: ∂(E−J) = L4,1 (see Figure
7(b)). Since 41 is obtained from L4,1 by fusion (see Figure 7(c)), then there exist a 6-punctured sphere F̂
in S3 × [0, 1] ⊂ J such that we can identify this band surgery with F̂ ∩ (S3 × {1/2}), and ∂F̂ = L4,1 ∪ 41

with L4,1 lies in S3 × {0} ∼= ∂J × {0} and 41 lies in S3 × {1} ∼= ∂J × {1}. By Schőnflies theorem [31],
S3×{1}(∼= ∂J×{1}) bounds a 4-ball B4 ⊂ J . Let (S1, ∂S1) ⊂ (intB4, ∂B4) be a genus one Seifert surface for

41 (g4(41) = 1), then Σ1 = (E − int(J))
⋃

F̂
⋃

S1 is represented by a = [σ]+[T ]+[σ+3T ]. Since the genus

of E− int(J) is four, then the genus of Σ1 is five. Since the K3-nucleus is symplectic, then by the adjunction

formula 1 +
[Σ1].[Σ1]

2
= 1 +

8

2
(= 5) (Ozsváth-Szabo [29]). This implies that a = [Σ1] ∈ H2(E(2), Z) is

genus-minimizing in its homology class. Let Σ2 be another copy of Σ1 in E(2), and denote [Σ2] = b (= a).
Notice that a.a = b.b = 8, and that [Σ1

⋃

41
Σ2] = a + b ∈ H2(E(2)#E(2), Z). Therefore the genus of the

class a + b = 2([σ] + [T ] + [σ + 3T ]) is 8 (which is the genus of Σ1
⋃

41
Σ2). If the second Lawson’s conjecture

were true, then the homology class of a + b would have genus 5 + 5 = 10; a contradiction.
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