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Abstract

Let K be a knot in the 3-spherje3 and D a disk in$3 meetingK transversely more than once in
the interior. For nontriviality we assume thidd N K| > 2 over all isotopies oK in $3 — 3 D. Let
Kpn (C 53) be a knot obtained fronk by n twisting along the diskD. We prove that ifK is a
trivial knot andK p ,, is a graph knot, thefz| < 1 or K and D form a special pair which we call an
“exceptional pair”. As a corollary, ifK, D) is not an exceptional pair, then by twisting unkriot
more than once (in the positive or the negative direction) along theldljske always obtain a knot
with positive Gromov volume. We will also show that there are infinitely many graph knots each of
which is obtained from a trivial knot by twisting, but its companion knot cannot be obtained in such
a manner.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let K be a knot in the 3-spherg® and D a disk in $® meetingK transversely more
than once in the interior. We assume thatN K| is minimal and greater than one over all
isotopies ofK in §% — 9 D. We call such a diskD atwisting diskfor K. Let Kp_,(C S%)
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be a knot obtained fromX by n twisting along the diskD, in other words,—%—surgery on
the trivial knotda D.

A knot in $° is called agraph knotif its exterior is a graph manifold, i.e., there is a
family of tori which decompose the &tior into Seifert fiber spaces.

Let us introduce some typical twistings which convert unknots into graph knots.

Definition (Exceptional pai). Let K° be a trivial knot intersecting a disk exactly once;

K U D be aHopflinkins3. We definek to be an(e;, ¢;)-cable of k't (1<i <m), i.e.,

K' is an essential, simple closed curve on the boundary of a small tubular neighborhood
of Ki~1 wrappinge; (respectivelyg;) times in meridional (respectively longitudinal)
direction, wherele;| = 1 andg; > 2. ThenK™ is a trivial knot in $* and K7} , is an
iterated torus knot for any integetsandn; in particular,KLl)’n is an(e1 + nq1, q1)-torus

knotT (1 + nq1, q1) and if furthergy = 2 thenKll),_s is a trivial knot, see Fig. 1 in which

m = 1. A pair (K, D) is called arexceptional pairof type (e1, q1; . . .; &m, gm) if the link

K U aD is isotopic to a linkk™ U 9 D for some integem.

In this paper we will prove:

Theorem 1.1. Suppose thak is a trivial knot andD a twisting disk forK . If a knotKp ,
is a graph knot, thein| < 1 or (K, D) is an exceptional pair.

Here are some examples of non-exceptional paifsD) such thatKp 1 is a graph
knot.

Example 1. In Fig. 2, K p 1 is a trefoil knot. In [5], [32, p. 2293], we find other examples
of non-exceptional paireK, D) such thatkp 1 or Kp _1 is a torus knot.

K1
@ n-twist

exceptional pair of type (1, q) (1+nq, q)-torus knot
Fig. 1.
K Kp,1
1-twist (\
D /\—//
trivial knot trefoil knot

Fig. 2.
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trivial knot T(2,3) # T(2,5)
Fig. 3.
K D
trivial knot
Fig. 4.

Example 2. In Fig. 3,Kp 1 is a connected sum of two torus knots [25].

Example 3 [5,32]. For the pair(K, D) in Fig. 4, Kp 1 is a(23, 2)-cable of a(4, 3)-torus
knot. By [21] the linkK Ud D is hyperbolic, in particulai,K, D) is a non-exceptional pair.

Once we have a non-exceptional pékf, D) such thatKp 1 is a graph knot, we can
obtain another paifK’, D) by taking some cables & .

Example 4. Let (K, D) be a pair given in Example 1, 2 or 3. Applying a construction
of exceptional pair to the paiik, D) instead of the Hopf link K%, D), we can obtain a
non-exceptional pai(k’, D) so thatKy, , is a graph knot which is an iterated cable of
Kp..

We then apply Theorem 1.1 to a study of Gromov volunh&s, , ||. For the definition
of Gromov volumes, see [13], [29, Section 6], [28]. It is convenient for us to recall some
properties of Gromov volumes.

e Let K be a hyperbolic knot, i.e., its complement admits a complete hyperbolic metric.
3 . .
Then|K| = \’0'%3"0 where Vo[$3 — K) is the volume of$® — K andus is the
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volume of the regular ideal simplex. More generallyFifis a hyperbolic manifold
with toral boundary, theii P|| = %(3’)) [29].

e Let K be a torus knot, i.e., its exterior is a Seifert fiber space, thefn = 0. More
generally, if P is a Seifert fiber space, thejP|| = 0 [29].

e Let K be a satellite knot with a family of essential tari Let P; (1 <i < n) be the
closure of a component & (K) — 7. Then| K| =)"7_; | Pi|l [28].

It follows that a knot is a graph knot if and only if its Gromov volume vanishes. Thus
we have:

Corollary 1.2 (Gromov volumes)Let K be a trivial knot and(K, D) a non-exceptional
pair. If |n] > 1, then||Kp | > O.

If (K, D) is an exceptional pair, theKip , is an iterated torus knot anj& p ,, || = O for
any intege.

Remark. For anyr € R, we can take a twisting disk for the trivial knot K so that
IKp1|l > r, see [19, Proposition 3.3].

In Example 2 above, the graph knBt 3t 7> 5 can be obtained from a trivial knot by
twisting and its companion kno#® 3 and7» 5 can be also obtained from a trivial knot by
twisting. Furthermore, in Example 4 every companion knngfl is also obtained from
a trivial knot by twisting. So it is natural to ask: if a satellite knot (not necessarily a graph
knot) k can be obtained from a trivial knot by twisting, then can every companion knot be
obtained in such a manner?

The next proposition answers this question in the negative.

Proposition 1.3. There exists an infinite family of composite graph knots each of which
can be obtained by twisting a trivial knot, but its companion knot is not obtained in such a
manner.

Proof. Denote the(p, g)-torus knot byT (p, ¢), where O< p < ¢, p andq are coprime
integers. The knok =T(p, p + H 8T (—p, 2p + 4) can be obtained from a trivial knot
by twisting, see [6, Appendix B.2]. However, the companion Kfgp, p + 4) cannot be
obtained from a trivial knot by twisting, see [1].0

2. Satellitediagrams

To simplify descriptions, here we recalhtellite diagramg22]. Let k be a nontrivial
knotin $3. Let 7 be a (possibly empty) set of essential torifitk) = S — int N (k) which
gives the torus decomposition &f(k) in the sense of Jaco and Shalen [15] and Johannson
[17]. The closure of each component®fk) — | J 7, which is referred to aséecomposing
piece is hyperbolic or Seifert fibered; moreover, a Seifert fibered piece is either a torus
knot space, a cable space, or a composing sfji&;éemma VI1.3.4.]. A satellite diagram,
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D say, fork is a tree with labelled vertices and one open edge defined as follows. Each
vertex of D corresponds to a decomposing piece, each ed@eatfrresponds to a torus in
T UJE(k), each vertex is labellefl, Ca, Co, or H according as the decomposing piece is
a torus knot space, a cable space, a composing space, or a hyperbolic space, respectively.
Note that an edge for a torus #h connects two vertices, but the edge 8t (k) has one
end open. li is simple(i.e., 7 = ¥), then the satellite diagram consists of a single vertex
with one open edge. For example, the satetligggram for a connected sum of two torus
knots, an iterated torus knot and a cable of a connected sum of two iterated torus knots are
given in Fig. 5. For a given kndt, since the torus decomposition Bik) is unique up to
isotopy, the satellite diagram faris uniquely determined.

A knotk is a graph knot, equivalently the Gromov volumekas vanishes, if and only
if each label appeared at vertices of the satellite diagreif Ga or Co.

The vertex corresponding to a decomposing piece which conddiigs) is called the
innermost vertexNote that if the innermost vertex & (respectivelyCa or Co), thenk is
a torus knot (respectively a cable knot or a composite knot).

3. Planar surfacesin graph knot exteriors

Letk be a cable knot (which may be a torus knot). Then there is a (possibly unknotted)
solid torusV in $2 such thatk is lying on the boundaryV andk wraps more than
once in longitudinal direction. Then an annuldis= 9V — int N (k) is essential, meaning
incompressible and boundary-incompressibl&3r- int N (k). We call such an annulus
acabling annuluf . It is known that every essential planar surface in a torus knot space
is isotopic to a cabling annulus [30]. The goal in this section is to prove the analogous
result for graph knots.

Let £ be a (nontrivial) prime @gph knot. Then the innermost vertex of the satellite
diagram ofk has a labeCa (i.e., a decomposing pied® which containg E (k) is a cable
space) and is a cable knot.
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A slopeon d N (k) is the isotopy class of a simple closed curveddn(k). Let F be an
essential planar surface. Then all the boundary componerfisasé essential o8N (k)
and have the same slope, theundary slopef F.

Proposition 3.1. Let k be a(nontrivial) prime graph knot ins3. Every essential planar
surface inE (k) whose boundary slope is nétis isotopic to a cabling annulus.

Proof. If k is a torus knot, then the result follows from [30]. We hereafter assumé ikat
a satellite knot.

Let F be an essential planar surfacehtik) whose boundary slope is not a meridian.
We begin by observing that is separating. Assume for a contradiction tihatloes not
separateE (k). Then each component @fF represents a longitudinal slope bf Thus
0-surgery ork produces a manifold which contains a non-separating 2-sphere. This implies
thatk is a trivial knot [4, Corollary 8.3], contradicting the assumption.

Let7 be a (non-empty) family of tori whitdefines a torus decomposition®tk), i.e.,

7 decomposes (k) asE (k) = |J P;. Sincek is a graph knot, each; is a torus knot space,

a cable space or a composing space. Furthermore gire@rime, the piece containing

dE (k) is a cable space. IP; is a cable space, thehP; consists of two components; the
component which is closer ®E (k) is called arinner boundary componennd the other
componentis called aputer boundary componertote that each boundary component of

P; bounds a solid torus ii® containingk in its interior. We use the slogkin the preferred
meridian-longitude co-ordinate determined by the solid torus; it will be assumed that
b > 0. For a properly embedded surfaEecC P;, theinner (respectivelyoutern boundary
component off; is the component lying on the inner (respectively outer) bounda#y .of
Similarly the slope represented by an inner (respectively outer) boundary component of
F; is referred to as thenner (respectivelyouter) boundary slopef F;. Note that every
component ob F is contained in the inner boundary componenPof

We isotopeF’ so thatF intersectd; (e 7) transversely antF N (UT,-eT T;)| is minimal.

Then each component @&f N P; is a properly embedded planar surfacePin

Claim 3.2. Each component of N P; is an essential surface if;.

Proof. Assume for a contradiction that a componéhtof F N P; is compressible irP;.
Then there is a compressing digkc P;) for F’. Since F is incompressible inE (k),
04 bounds a diskD in F. SincedA = aD is essential inF’, D N3 P; # (. Letc be an
innermost circle inD N (UTjeT T;) and D, C D the disk bounded by. Assume thaD,

is contained in a decomposing pie€g. A boundary-irreducibility and an irreducibility
of P;, we see thaiD,. is a boundary-parallel disk i®?;. Thus we can remove by an
isotopy. This contradicts the minimality ¢t N (Ur, .7 7:)|. Hence each component of
F N P; isincompressible irP;.

If some component of’ N P; is boundary-compressible iR;, then it should be a

boundary-parallel annulus. This coadlicts again the minimality g N (UTieT ). O

Let us recall the following.
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Lemma 3.3[8]. Every incompressible, boundary-incompressible connected planar surface
ina (p, g)-cable space is of one of the following types

(1) an annulus with both boundary components inner, of slepe

(2) an annulus with both boundary components outer, of stbpe

(3) an annulus with one inner boundary component of slppeand one outer boundary
component of slopg;

(4) a surface withy inner boundary components of sloé‘é,f”—q, and one outer boundary
component of slopéﬂq‘#, for some integek;

(5) a surface with one inner boundary component of slé§e and ¢ outer boundary
components of slop,%, for some integergé andm such thattg =1+ mp.

A (p, g)-cable spacég > 2) has a unique Seifert fibration up to isotopy. A surface in
the cable space is isotopic to a vertical (a union of fibers) annulus if and only if it is of type
(1), (2) or (3), and is isotopic to a horizontal (transverse to fibers) surface if and only if it
is of type (4) or (5). An essential annuluski(k) is a cabling annulus if it is isotopic to an
annulus inPy with type (1).

We divide the proof into two cases depending on whether the satellite diagram has a
vertex with labelCo or not.

Case(l). The satellite diagram df has no vertices with lab&o, i.e.,k is an iterated torus
knot.

Then we put the decomposing pied@s P, ..., P, so thatP; is theith closest piece
fromk; P, (1<i <m—1)isa(p;, g;)-cable space ans,, is a(p., gn)-torus knot space.
Letn be the largest number such thfan P, # @. ThenP, is a cable space (respectively a
torus knot space) it < m (respectively: = m).

Claim 3.4. Each component af N P, is a vertical annulus.

Proof. Let F’ be a component of' N P,. First suppose thaP, is a torus knot space.
Since F’ is an essential planar surface Ry, F’ is isotopic to a vertical annulus [30].
Next suppose thab, is a cable space. Then by the choiceRyf 3 F’ is contained in the
inner boundary component &,. From Lemma 3.3 we see that is isotopic to a vertical
annulus. O

To prove Proposition 3.1, it is sufficient to show that 1. In fact, once we establish
thatn = 1, then the planar surfade C E (k) (which was isotoped so thg¥ N (Ur. o7 Ti)|
is minimal) is contained inP; with only inner boundary components, and hence it is a
cabling annulus as desired. Let us assume for a contradiction th&t

By Claim 3.4,F N P, consists of vertical annuli, hence each comporgndf F N P,
has the inner boundary slopg,q,, see Lemma 3.3. On the other hafdN P,_1 is
isotopic to a horizontal surface, for otherwise,N P,_1 is also isotopic to a vertical
surface and Seifert fibrations df,_1 and P, match and hence’,_1 U P, is also a
Seifert fiber space, a contration. Hence each component 6fn P,_1 is of type (4)
or (5) in Lemma 3.3. If some compone#t,_1 is of type (4), then the outer boundary
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Fig. 6.

slope of F,,—1 equals% for some integek, which coincides with the integer
n—1
Pnqn- This is impossible becausg_1 > 2. Hence each component 6fN P,_1 is of

type (5). Let us take a connected componéit,_1 of F N (P, U P,—1). ThenF, ,_1
has a form(U;¢; <, Fl DU (Uigj<y F}), whereF'_, is a component o N P,_1

and F} is that of F N P,. The boundary ofF, ,—1 consists of the inner boundary
components of;_; (1<i <x);eachF,_; has exactly one inner boundary component

(see Lemma 3.3), hend§, ,—1 is anx-punctured 2-sphere. Sindf—;{ is an annulus and
F,_, is a disk withg,_1 holes (see Lemma 3.3), the Euler characterigii¢;, ,—1) =

x(Urcicx Fr_p) U(Uicj<y 1)) is x(1— gu—1), which should be 2- x. However, this
is impossible becausg,_1 > 2. It follows thatn = 1 andF is a cabling annulus.
Case(ll). The satellite diagram of has a vertex with labeCo, i.e., there is a composing
space inE (k).

Then we can find a sub-tree as in Fig. 6.

Let O be the closest composing spaceFifk) and denote the cable spad@s P, ...,

P, so thatP; is theith closest piece from; Q is the (n + 1)-closest piece fromk. The
closure ofE (k) — (J;_4 P; is the exteriotE (k") of a companion knat’ of k.

If FN Q=¢,then we can reduce case (II) to case (I), thus to complete the proof of
Proposition 3.1, we will assume th&tN Q # ¢ and derive a contradiction.

Let F,, be a component of N P, such thatF;, intersects both inner and outer boundary
components of?,; sinceF N Q # @ and F is connected, such a component exists. Ket
be a component af N E (k) such thab F' N3 F, # .

Now we divide into two subcases.

Case(ll)-(a). F, is vertical, i.e.,F, is an annulus with one inner boundary component
of slope p,qg,, and one outer boundary component of slo%e see Lemma 3.3. Since
F, has the outer boundary slo;gg, the boundary slope of”’ is also Z— It is easy to
observe tha¥” is an essential planar surfacefir{k’) (cf. Claim 3.2). On the other hand,
sinceQ is a composing space (homeomorphiddisk with holeg x S1), we can find an
essential annulud in E (k) with dA C dE (k") such that its boundary slope # Then
[11, Theorem 1.1] asserts that < 1, contradicting the fact thag, > 2.

Case(ll)-(b). F, is horizontal, i.e. F, is of type(4) or (5) in Lemma 3.3.
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Case(ll)-(b)-type (4). First suppose thdt, is of type (4). Then the outer (respectively

inner) boundary slope aof;, is 1’1‘"5”" (respectlvelym) for some integet,, see

Lemma 3.3. Since the outer boundary slope'«‘pfcommdes with the boundary slope of
F’ C E(k'), the argument in case (l)-(a) above shqw$qn| < 1. Sinceg, > 2, we have
k, = 0. Thus the inner boundary slope &f is M = (—1)

Let F,_1 be a component of N P,_1 such tha’rEl 1 intersects both inner and outer
boundary components @f,_1; sinceF N P, # ¢ and F is connected, such a component
exists.

Claim 3.5. The inner boundary slope &f,_1 is (—1).

Proof. If F,_1 is isotopic to a vertical annulus, than,_; is of type (3) and the outer
boundary slope |s”— which coincides Wlthl (the inner boundary slope df,). This
contradicts thag,,— 1 2 This then implies thaFn 1 is of type (4) or (5).

First suppose thaf,_1 is of type (4). By Lemma 3.3, the outer boundary slope of

F,_1is M and the inner boundary slopg,_; is %”11"”1 for some
[

integerk,, 1. Recall that the inner boundary slope Bf which coincides with the outer
boundary slope of},_1 is 0. It follows thatk,—1 = 0 (because,,—1 > 2) and hence the
inner boundary slopé&),_1 = % as required.

Next suppose thak;,,_1 is of type (5). Then again by Lemma 3.3, the outer boundary

. . . ly_1q2 .
slope of F,_1 is fl—‘_ll and the inner boundary slope Bf_1 is %";1 for some integers
£,-1,m,—1. The above argument shows that_1 = 0 and hence the inner boundary slope
of F,_1is also} as required. O

Applying the argument in Claim 3.5 successively, we can conclude that the inner
boundary slope of1, which is the boundary slope df, is %, contradicting the initial
assumption.

Case(l)-(b)-type (5). Let us suppose tha, is of type (5). Then the outer (respectively
2
inner) boundary slope df, is ,fT (respectively%) for some intege¢,,, m, (Lemma 3.3).
Since the outer boundary slope Bf coincides with the boundary slope Bf C E(k'), the
argumentin case (I1)-(a) shows that =0, 1.
2

Assume thatn, = 0. Then the inner boundary slope Bf is em_q = %. This means that
the outer boundary slope &f,_1 is (1). Then the identical argument in case (I1)-(b)-type (4)
shows that the inner boundary slope Bf, which is the boundary slope df, is %,
contradicting the initial assumption.

Assume thatn,, = 1. Then the inner boundary slope Bf is l”q" =lnq?.
Claim 3.6. Each component of N Py is of type(5) in the cable spac®;.
Proof. Take a componenf,_1 of F N P,_1 so that F,_1 intersects both inner and

outer boundary components &f_1. Since the inner boundary slope Bf is Enq,f, the
outer boundary slope of},_1 is also the integefnq,%. If F,_1 is isotopic to a vertical
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annulus, then the outer boundary sIope—¥s— which cannot be an integer, because
(Pn-1,qn-1) =1andg,_1 > 2. If F,_1 is of type (4), then the outer boundary slope is

%{;’”"1 which cannot be an integer, fgf_1 > 2. Thus we assume th&},_1 is of
n—14,_1

type (5). Then the outer boundary slopgﬁ'%si which is an integer only ifz,—1 = 1. This

then implies that the inner boundary slopeff 1 equals = 1q,,1 L=y, 1qn 1- Repeating
this argument, we see that each comporfaraf F N Py is of type (5). This completes the
proof. O

Now we will show that the situation in Claim 3.6 cannot happen.

Suppose for a contradiction th&tN Py consists of surfaces of ty6), sayFy, . .., Fy
each of which is a planar surface with one inner boundary componentarditer
boundary components. WriteN (E (k) —int Py) = F{ ‘U F}/,, wherefF! is a connected
planar surface witly boundary components =1, ... ).

Claim 3.7. F/ (1<i <) is not a disk, and henag > 2.

Proof. Assume for a contradiction thaf! is a disk. Letc be an innermost circle in
F/ N (Ur,er Tj) and D, C F{ the disk bounded by. (Possiblyc = 9 F/ and D. = F}.)
Assume thatD, is contained in a decomposing piefeof E (k). SinceP is irreducible
and boundary-irreducible, we see that is a boundary-parallel disk i?. Thus we can
removec by an isotopy. This contradicts the minimality|dt N (U7 .7 7). O

Note that F = (;_; Fi') U (U,-y:1 F!) is an x-punctured sphere. Consider Euler
characteristic, we have2x = x(1—¢;)+ Y _;(2—1#;),i.e.,2=x(2—q1) +Y_;_;(2—1;).
Sinceq1 > 2 andy; > 2, the right-hand side of the equation is not positive, a contradiction.

It follows that F N Q = @ and the proof of Proposition 3.1 is now completed:

4. Proof of Theorem 1.1 for hyperbolic pairs

Let K be a knot ins® and D a twisting disk fork. Setc = 3 D. We say that the pair
(K, D) is ahyperbolic pairif the link K U c is hyperbolic, i.e.$2 — K U ¢ is hyperbolic.

The goal in this section is to prove Theorem 1.1 for hyperbolic pairs. It should be
mentioned that if(K, D) is a hyperbolic pair an&Kp , is a satellite knot, then as a
particular case of [12] we can deduce that 2.

Proposition 4.1. Suppose thatK, D) is a hyperbolic pair. IfKp , is a graph knot, then
In| <1.

We attempt to follow, verbatim, the proof of [24, Proposition 2.1]. Before proving the
proposition, we prepare some notations.

Let K be a knot in a 3-manifoldZ. The manifold obtained fromM by Dehn surgery
on a knotk with slopey is denoted byM (K; y); if M = $3, for simplicity we denote
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M(K;y) by (K;y). If M c §3, then using the preferred meridian-longitude pair of
K c S8, we parameterize slopesof K by r € Q U {co}, then we also writdK; r) for
(K; y). Aslope ofK isintegralif a representative of itntersects a meridian & exactly
once. For knots irs? integral slopes correspond to integers.

Recall that in our settingg is a trivial knot and the extericE (K) = $° —int N(K) is a
solid torus containing in its interior. Let(wg, o) be a preferred meridian-longitude pair
of K. By performing—%—surgery onc, we obtain a twisted knak,, in S3 as the image
of K. Let (u,, A,) be a preferred meridian-longitude pair &% .

The preferred meridian-longitude pairs Kfand that ofK,, are related as follows (for
suitable orientations). We omit the proof here.

Claim 4.2. u, = n and,, = Ao+ w?n o, wherew denotes the linking number &fandc.

In the following, we denoté& (K) by V to emphasize that it is a solid torus. It should
be noted that a meridian & is a preferred longitude df and a preferred longitude &f
is a meridian of. ThenE (K,,) = V (c; —1).

Suppose thak, is a graph knot, i.e. E(K}) is a graph manifold. I, is also a trivial
knot, then from [20,18] we see thai| < 1. So in the following we assume thai, is
nontrivial. Then each label appeared at vertices of satellite diagrdy &f 7', Ca or Co.

Assume first that the innermost vertex has a labél.e., K, is a torus knot). Then if
(K, D) is not an exceptional pair of types, g1), we haveln| < 1 [26, Theorem 3.8], see
also [24].

Next suppose that the innermost vertex has a l@ldi.e., K,, is a composite knot). In
this case, we can conclude that = 1 from more general results in [6,14].

Thus in the following we assume that the innermost vertex has aGdbéle., K, is a
cable knot). To make it precise, we assume tiais a(p, ¢)-cable of some graph knét
wherep andg are relatively prime and > 2. Lett be a regular fiber of the cable spake
which is a decomposing piece containdy (K,). Thenr = pgu, + A,, which is written
as(pqg + w2n) o + Ao by Claim 4.2.

Attach a solid torug¥ to V in such a way that the meridian & is identified with a
regular fiberr. Then we obtain a 3-manifold U W and denote the image ofin VU W
by ¢’ to emphasize that it is i¥ U W. SinceV is a solid torus, the manifol@ U W
is homeomorphic t&? x S if pg + w?n =0 (i.e.,r = rg), S° if |pg + w?n| =1 (i.e.,

t = +u0+ o), or alens space (pg + w?n, 1) if |pg + w?n| > 2.

We denote the slope represented by a meridiantof 1« and the slope represented by
—1/n by y. Since the meridian af is also a meridian of’, we use the same symbpolto
denote the meridian af. For simplicity, we continue to use the same symjab denote
the corresponding slope fof.

Lemma 4.3. (VU W)(c’;¥) = V(c; y) U W is a reducible manifold withous? x S*
summand.

Proof. SinceV(c;y) = E(K,), the manifold in question is obtained from(K,) by
attaching the solidv so that a meridian o#¥ is identified with a regular fiber of the
decomposing piece”. Hence the resulting manifold i€K,;; pq) = (k; g)uL for the
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companion knok and some lens spadez S3, §2 x S1, see [7]. Since; > 2, by [10],
(k; g) 2 §3 hence(V U W)(c’; ¥) = V(c; y) U W is reducible.

SinceH1(V(c; y) UW) = H1((Kpn; pq)) = Zpg is finite, V(c; y) UW does not contain
a non-separating 2-sphere, in particular, it hasfe S*-summand. O

For two slopes/; andy» of a knot, the distance\(y1, y2) between them is defined to
be their minimal geometric intersection number.

Lemma4.4. If pg + w?n =0, then|n| = 1.

Proof. Sincepg +w?n =0, VU W)(c;u)=V(e; p) UW XV UW X S2 x S1. By
Lemma 4.3,(V U W)(c’; ¥) = V(c; ¥) U W is a reducible manifold withous? x St
summand. IfV U W —int N(¢') is reducible, then the primeness $% x St implies that
¢’ is contained in a 3-ball iV U W. This means thatV U W)(c’; y) hass? x S! as a
summand, a contradiction. Henteu W —int N(¢’) is irreducible. Apply [11] to conclude
thatA(y, u) =1, i.e., the slope is integral and henc|=1. O

Lemma4.5. If |pg + w?n| = 1, then|n| = 1.

Proof. Under this assumptiony U W = §3. Since(V U W)(c’; y) is reducible (Lem-
ma 4.3), by [9],A(y, u) =1, i.e., the slope is integral and henc| =1. O

The rest of this section is devoted to prove:
Lemma 4.6. Suppose thatk, D) is a hyperbolic pair andpg + w?n| > 2. Thenjn| = 1.

Proof. For simplicity, setX = V U W — intN(c¢’). Note thatV U W is a lens space
L(pg + w?n, 1). Let us now divide the proof into the following three cases:

(1) X = L(pg +w?n,1) —intN(c) is irreducible and not an atoroidal Seifert fiber space.
(2) X is an atoroidal Seifert fiber space.
(3) X isreducible.

Recall that

o (VUW)(; )=V UW = L(pg +w?n,1).
e (VUW)(;y)=V(c;y)UW is a reducible manifold withous? x $ summand
(Lemma 4.3).

Case(1). Sinceu is a cyclic surgery slope angdis a reducing surgery slope fot, apply
[2, Theorem 1.2] to conclude that(y, u) =1, i.e.,|n| =1, as desired.
Case(2). SinceX is an atoroidal Seifert fiber spaceethase orbifold is either the disk with

at most two cone points or the Mébius band with no cone points. If the latter case occurs,
thenX is a twisted/-bundle over the Klein bottle, hencé admits also a Seifert fibration
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whose base orbifold is the disk with two cone points of indices 2, 2. Thus the latter case
reduces to the former case.

Now let us assume that the base orbifold¥fs the disk with at most one cone point.
ThenX is a solid torus, and hende pg + w?n, 1)(¢’; y) = (VU W)(c’; y) admits a genus
one Heegaard splitting. This contradicts Lemma 4.3. It follows that the base orbif&ld of
is the disk with exactly two cone points. Lebe a slope represented by a regular fiber in
IN(c') C X. ThenL(pg + w?n, 1)(c’; y) = (VU W)(c’; y) is (i) a connected sum of two
lens spaces if\(y, r) =0, (ii) a lens space ifA(y, t) = 1, or (iii) a Seifert fiber space over
the 2-sphere with three exceptional fibergiify, r) > 2. A Seifert fiber space of type (iii)
are neither lens space nor a reducible manifold [16, Example VI.13]. Dust) = 0,
i.e.,y =t.SinceA(u,t) =1, we haveA(y, u) =1 as desired.

Case(3). Since a lens spada pg + w?n, 1) is irreducible butL. (pg + w?n, 1) — int N(¢')

is reducible,¢’ is contained in a 3-balB ¢ L(pg + w?n,1). SinceV — intN(c) is
irreducible,X = 9 B is not contained ir¥’. Hence we assume that intersects the solid
torusW with non-empty meridian disks a¥. We further assume thaf N W|, the number
of components o N W, is minimal among 2-spheres bounding 3-balls which contain
SinceX separatey U W, | X N W|is an even integek 2. SetS = X' N (V —intN(c)),
which is a planar surface.

Lemmad.7.If |0S]| > 4, theny is integral(i.e., |n| = 1).

Proof. Assume that|d$| > 4. Since ¥ separates.(pg + w?n,1) =V U W, § also
separated/. Cutting V along S, we obtain two 3-manifoldg/; and M». Without loss
of generality we may assume th#ft; O c¢. The minimality of| ¥ N W| assures tha$ is
incompressible in bot; — int N(¢) and M». There are two cases to consider: fljs
incompressible i1 (c; y), or (2) S is compressible i1 (c; y).

(1) S is incompressible inM1(c; y). Then § is incompressible inV(c;y) =
Mi(c; y) Us M». Since|dS| > 4, S is boundary-incompressible if (c; y) = E(K,).
Recall also that a boundary component$fs lying on dV = 9E(K,,) and has slope
pqun + Ay Then from Proposition 3.1 we see tifashould be a cabling annulus, in par-
ticular |0 S| = 2, a contradiction.

(2) S is compressible i1 (c; ).

Claim 4.8. S is compressible also iM1 = M1(c; ).

Proof. If Sisincompressible i/, thens is also incompressible i = M1 Us M>. This
implies that the solid toru¥ contains an incompressible planar surféceith |0S| > 4,
a contradiction. O

Suppose that there is no incompressible annulu&in- int N (¢) with one boundary
componentirs and the otherid N (c). Then Wu [31, Theorem 1] shows thaty, u) =1,
i.e.,y isintegral as claimed in Lemma 4.7.

Let us assume that there is such an annulus,sapn M1 — intN(c). Write 9A =
C1UC2,whereC1 C dN(c) andCz C S(C X). SinceC> bounds a disk in the 2-spheks
C1 bounds a disk in the 3-balt. Thusc’ is a trivial knot in B, andd A N N(c) represents
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a longitudinal slope.” of ¢’. Apply [3, Theorem 2.4.3(b)] to conclude thadi(y, »') <1

or M1 —intN(c) = St x §1 x I. The latter implies that the incompressible surface

M1 — intN(c) is a disk or an annulus, contradicting the assumptiédgf > 4. It follows
thatA(y, ') < 1. This, together with the triviality of c B, implies that eitheB(¢’; y) =
B(c’; 1/m) = B3 or B(c’; y) = B(c’; 0) = §2 x ST with an open 3-ball removed. Hence
L(pg +w?n,1)(c’; y) = (L(pg + w?n, 1) — B) U B(c’; y) is homeomorphic td.(pq +
w?n, 1) or L(pq +w?n, 1) # (52 x $1). This contradicts Lemma 4.3 and completes a proof
of Lemma4.7. O

To finish the proof of Lemma 4.6,saume for a contradiction that is not integral.
Since 0S| is even, Lemma 4.7 shows thitS| = 2, i.e., § is an annulus. It follows
thatS® —int N(K Uc) = V — int N(c) contains an essential annulus. This contradicts the
hyperbolicity ofS —int N(K Uc) =V —intN(c). O

Now the proof of Proposition 4.1 follows from Lemmas 4.4-4.6.

5. Proof of Theorem 1.1 for non-hyperbalic pairs

In this section we will prove Theorem 1.1 in the case whErandc = aD forms a
non-hyperbolic link.

Proposition 5.1. Suppose thatk, D) is a non-hyperbolic pair an& p , is a graph knot.
Then|n| < 1 or (K, D) is an exceptional pair.

Proof. If 2 —intN(K UdD) =S —intN(K Uc) is Seifert fibered, thenk, D) is an
exceptional pair of typési, g1).

Let us suppose tha#® — int N(K U ¢) contains essential tori. L&f be a family of
essential toriry, . .., T, which defines a torus decomposition$¥ — int N(K U ¢) in the
sense of Jaco and Shalen [15] and Johannson [17].

Lemma 5.2. Each torus in7 separatesdN(K) and dN(c). Hence each decomposing
piece has exactly two boundary components.

Proof. Assume for a contradiction that there is a tofftiss 7 which does not separate
dN(K) anddoN (c). By the solid torus theorem [27]; bounds a solid torug;. SinceT; is
incompressible irs® — int N (K U ¢), V; is knotted inS® and contains botlk andc in its
interior. Furthermore, the triviality ok andc in S® implies that there are 3-balBx and

B. in V; such thatk ¢ Bx andc C B.. Choose a meridian disR of V; so thatD Nc =@;

an existence of the above 3-bdl} assures an existence of such a meridian disk. Since
K C Bg, the algebraic intersection numberifandD is zero. Moreover, sincB Nc¢ = @,

the algebraic intersection number &f, and D, i.e., the winding number wingl(K,,) of

K, in (the companion solid torud); is still zero. This contradicts the following claim.c

Claim 5.3. Let k be a graph knot andv a companion solid torus df. Then the winding
number ofk in W is not zero.
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Proof. Let us consider the torus decompositionWsf— int N (k). Choose the subfamily
{S1,...,S,} consisting of tori each of which separai@® anddN (k). Then we obtain
solid tori W; in W bounded bysS; so thatW > W1 D> --- D W, D k. Assume that
windw (k) = 0. Then since wing (k) = windw (Cw,) windw, (Cw,) - - -windw, (k), where
Cw, denotes a core oW;, at least one of wingl(Cw,), windw, (Cw,), ..., windy, (k)

is zero. Note thatV; — intW;1 is a (p, g)-cable space or the union of a composing
spaceP and some graph knot exteriors, wheX®;, dW;1 C dP. In the former case,
windw, (Cw,,,) = ¢ > 2, and in the latter case, wipd(Cw,,,) = 1, a contradiction. O

Let 71 be the (unique) innermost torus with respectot¥(c), and let P be the
decomposing piece bounded fyanda N (¢).

Suppose first thaP is hyperbolic. Cuttings® along 71, we obtain two 3-manifolds
W(o K)andW'(D c).

Claim 5.4. W is an unknotted solid torus isd.

Proof. By the solid torus theorem [27]W or W’ is a solid torus. Assume thav
(respectivelyW’) is a solid torus. Sincé? is incompressible ir§® — intN(K U c¢), Ty
is incompressible also i — int N (K) (respectivelyW’ — int N(c)). The nontriviality of
K (respectivelyc) implies thatW is unknotted (respectively’’ is unknotted, and hence
W = 53 —int W’ is also an unknotted solid torus) o

Let J be a core oW, thenJ is a trivial knot by Claim 5.4.

After —%—surgery onc, we obtaink, andJ, as the images oK andJ, respectively.
Note thatJ, is a companion knot oK,, and sincek,, is a graph knot/J, is also a graph
knot. SinceS® — intN(J U C) = $% — int(W U N(C)) = P is hyperbolic, we can apply
Proposition 4.1 to the paif andc, and conclude thgt| = 1.

Now assume thaP is Seifert fibered. Sincé P consists of two component®, is a
cable space, see Fig. 7 in whi¢his a(1, 2)-cable space.

Fig. 7.
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Then sincek is unknotted inS3, P is a (+1, ¢)-cable space for some integgr> 2,
and a regular fiber oP representg . + A, in terms of a preferred meridian-longitude
pair (w, M) of c.

Recall thatT is a family of essential tori defining the torus decompositiorsdf—
intN(K Uc).

Claim 5.5. If |n| > 1, then the family/” defines also a torus decomposition of

E(Ky) = (S*—intN(K Uc)) U_1 N(c).

Proof. Let us consider? U_1 N(c). Sinceg > 2 and|n| > 1, A(+gq, —%) = |*ng +
1] > 3. Thus the Seifert fibration P can be extended to that & U_1 N(c) over the
disk with two exceptional fibers of indiceg |gn + ¢| (¢ = £1). Hence it is boundary-
irreducible and admits a unique Seifert fibration up to isotopy. It turns outZihdefines
also the torus decomposition 6fK,,) = (S — int N(K Uc¢)) U_% N(c). O

Let P, = P, P», ..., P, be decomposing pieces 6% — int N(K U ¢). By Claim 5.2
each P; has exactly two boundary components. From Claim 5.5, we seePhat 1
N(c), Ps, ..., P, are decomposing pieces B{K,) = (S3 —intN(K Uc))U_1 N(c).

Sincek, is a graph knotpPs, ..., P, are Seifert fiber spaces. Since eaR;rﬁas exactly
two boundary components; is a cable space. The triviality & in S implies thatP; is
a(g;, gi)-cable space, wherg = +1 andg; > 2. It follows that(K, D) is an exceptional
pair as desired. O

Theorem 1.1 follows from Propositions 4.1 and 5.1.
We close this paper by noting a relationsbietween Proposition 4.1 and surgeries on

knots in a solid torus. In [12] Gordon and Luecke proved that a toroidal surgery on a

hyperbolic knot in a solid torus is integral or half-integral. If a surgery on a hyperbolic
knot in a solid torus yields a Seifert fiberage, then the surgery is integral [24]. Is a

surgery on a hyperbolic knot in a solid torus producing a graph manifold also integral?

If this is true, then Proposition 4.1 follows inighdirection. However, there are infinitely

many non-integral (half-integral) surgeries on hyperbolic knots in a solid torus producing

graph manifolds, see [23].
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