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Abstract

Let K be a knot in the 3-sphereS3 andD a disk inS3 meetingK transversely more than once
the interior. For nontriviality we assume that|D ∩ K| � 2 over all isotopies ofK in S3 − ∂D. Let
KD,n (⊂ S3) be a knot obtained fromK by n twisting along the diskD. We prove that ifK is a
trivial knot andKD,n is a graph knot, then|n| � 1 or K andD form a special pair which we call a
“exceptional pair”. As a corollary, if(K,D) is not an exceptional pair, then by twisting unknotK

more than once (in the positive or the negative direction) along the diskD, we always obtain a kno
with positive Gromov volume. We will also show that there are infinitely many graph knots ea
which is obtained from a trivial knot by twisting, but its companion knot cannot be obtained in
a manner.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let K be a knot in the 3-sphereS3 andD a disk inS3 meetingK transversely more
than once in the interior. We assume that|D ∩ K| is minimal and greater than one over
isotopies ofK in S3 − ∂D. We call such a diskD a twisting diskfor K. Let KD,n(⊂ S3)
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be a knot obtained fromK by n twisting along the diskD, in other words,− 1-surgery on

a

rhood
l)

es
n
the trivial knot∂D.

A knot in S3 is called agraph knotif its exterior is a graph manifold, i.e., there is
family of tori which decompose the exterior into Seifert fiber spaces.

Let us introduce some typical twistings which convert unknots into graph knots.

Definition (Exceptional pair). Let K0 be a trivial knot intersecting a diskD exactly once;
K ∪∂D be a Hopf link inS3. We defineKi to be an(εi, qi)-cable ofKi−1 (1 � i � m), i.e.,
Ki is an essential, simple closed curve on the boundary of a small tubular neighbo
of Ki−1 wrapping εi (respectivelyqi ) times in meridional (respectively longitudina
direction, where|εi | = 1 andqi � 2. ThenKm is a trivial knot in S3 and Km

D,n is an

iterated torus knot for any integersm andn; in particular,K1
D,n is an(ε1 + nq1, q1)-torus

knotT (ε1 +nq1, q1) and if furtherq1 = 2 thenK1
D,−ε1

is a trivial knot, see Fig. 1 in which
m = 1. A pair (K,D) is called anexceptional pairof type(ε1, q1; . . . ; εm,qm) if the link
K ∪ ∂D is isotopic to a linkKm ∪ ∂D for some integerm.

In this paper we will prove:

Theorem 1.1. Suppose thatK is a trivial knot andD a twisting disk forK. If a knotKD,n

is a graph knot, then|n| � 1 or (K,D) is an exceptional pair.

Here are some examples of non-exceptional pairs(K,D) such thatKD,1 is a graph
knot.

Example 1. In Fig. 2,KD,1 is a trefoil knot. In [5], [32, p. 2293], we find other exampl
of non-exceptional pairs(K,D) such thatKD,1 or KD,−1 is a torus knot.

Fig. 1.

Fig. 2.
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Fig. 3.

Fig. 4.

Example 2. In Fig. 3,KD,1 is a connected sum of two torus knots [25].

Example 3 [5,32]. For the pair(K,D) in Fig. 4,KD,1 is a (23,2)-cable of a(4,3)-torus
knot. By [21] the linkK ∪∂D is hyperbolic, in particular,(K,D) is a non-exceptional pai

Once we have a non-exceptional pair(K,D) such thatKD,1 is a graph knot, we ca
obtain another pair(K ′,D) by taking some cables ofK.

Example 4. Let (K,D) be a pair given in Example 1, 2 or 3. Applying a construct
of exceptional pair to the pair(K,D) instead of the Hopf link(K0,D), we can obtain a
non-exceptional pair(K ′,D) so thatK ′

D,1 is a graph knot which is an iterated cable
KD,1.

We then apply Theorem 1.1 to a study of Gromov volumes‖KD,n‖. For the definition
of Gromov volumes, see [13], [29, Section 6], [28]. It is convenient for us to recall s
properties of Gromov volumes.

• Let K be a hyperbolic knot, i.e., its complement admits a complete hyperbolic m

Then‖K‖ = Vol(S3−K)
v3

, where Vol(S3 − K) is the volume ofS3 − K andv3 is the
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volume of the regular ideal simplex. More generally, ifP is a hyperbolic manifold
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with toral boundary, then‖P‖ = Vol(P )
v3

[29].
• Let K be a torus knot, i.e., its exterior is a Seifert fiber space, then‖K‖ = 0. More

generally, ifP is a Seifert fiber space, then‖P‖ = 0 [29].
• Let K be a satellite knot with a family of essential toriT . Let Pi (1 � i � n) be the

closure of a component ofE(K) − T . Then‖K‖ = ∑n
i=1 ‖Pi‖ [28].

It follows that a knot is a graph knot if and only if its Gromov volume vanishes. T
we have:

Corollary 1.2 (Gromov volumes).Let K be a trivial knot and(K,D) a non-exceptiona
pair. If |n| > 1, then‖KD,n‖ > 0.

If (K,D) is an exceptional pair, thenKD,n is an iterated torus knot and‖KD,n‖ = 0 for
any integern.

Remark. For anyr ∈ R, we can take a twisting diskD for the trivial knotK so that
‖KD,1‖ > r, see [19, Proposition 3.3].

In Example 2 above, the graph knotT2,3�T2,5 can be obtained from a trivial knot b
twisting and its companion knotsT2,3 andT2,5 can be also obtained from a trivial knot b
twisting. Furthermore, in Example 4 every companion knot ofK ′

D,1 is also obtained from
a trivial knot by twisting. So it is natural to ask: if a satellite knot (not necessarily a g
knot)k can be obtained from a trivial knot by twisting, then can every companion kn
obtained in such a manner?

The next proposition answers this question in the negative.

Proposition 1.3. There exists an infinite family of composite graph knots each of w
can be obtained by twisting a trivial knot, but its companion knot is not obtained in s
manner.

Proof. Denote the(p, q)-torus knot byT (p,q), where 0< p < q , p andq are coprime
integers. The knotk = T (p,p + 4) � T (−p,2p + 4) can be obtained from a trivial kno
by twisting, see [6, Appendix B.2]. However, the companion knotT (p,p + 4) cannot be
obtained from a trivial knot by twisting, see [1].�

2. Satellite diagrams

To simplify descriptions, here we recallsatellite diagrams[22]. Let k be a nontrivial
knot inS3. LetT be a (possibly empty) set of essential tori inE(k) = S3 − intN(k) which
gives the torus decomposition ofE(k) in the sense of Jaco and Shalen [15] and Johan
[17]. The closure of each component ofE(k)−⋃

T , which is referred to as adecomposing
piece, is hyperbolic or Seifert fibered; moreover, a Seifert fibered piece is either a
knot space, a cable space, or a composing space[15, Lemma VI.3.4.]. A satellite diagram
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D say, fork is a tree with labelled vertices and one open edge defined as follows.
vertex ofD corresponds to a decomposing piece, each edge ofD corresponds to a torus i
T ∪ ∂E(k), each vertex is labelledT ,Ca,Co, or H according as the decomposing piece
a torus knot space, a cable space, a composing space, or a hyperbolic space, resp
Note that an edge for a torus inT connects two vertices, but the edge for∂E(k) has one
end open. Ifk is simple(i.e.,T = ∅), then the satellite diagram consists of a single ve
with one open edge. For example, the satellitediagram for a connected sum of two tor
knots, an iterated torus knot and a cable of a connected sum of two iterated torus kn
given in Fig. 5. For a given knotk, since the torus decomposition ofE(k) is unique up to
isotopy, the satellite diagram fork is uniquely determined.

A knot k is a graph knot, equivalently the Gromov volume ofk is vanishes, if and only
if each label appeared at vertices of the satellite diagram isT , Ca or Co.

The vertex corresponding to a decomposing piece which contains∂E(k) is called the
innermost vertex. Note that if the innermost vertex isT (respectivelyCa or Co), thenk is
a torus knot (respectively a cable knot or a composite knot).

3. Planar surfaces in graph knot exteriors

Let k be a cable knot (which may be a torus knot). Then there is a (possibly unkn
solid torusV in S3 such thatk is lying on the boundary∂V and k wraps more than
once in longitudinal direction. Then an annulusA = ∂V − intN(k) is essential, meanin
incompressible and boundary-incompressible, inS3 − intN(k). We call such an annulusA
acabling annulusof k. It is known that every essential planar surface in a torus knot s
is isotopic to a cabling annulus [30]. The goal in this section is to prove the analo
result for graph knots.

Let k be a (nontrivial) prime graph knot. Then the innermost vertex of the satel
diagram ofk has a labelCa (i.e., a decomposing pieceP1 which contains∂E(k) is a cable
space) andk is a cable knot.
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A slopeon ∂N(k) is the isotopy class of a simple closed curve on∂N(k). Let F be an
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essential planar surface. Then all the boundary components ofF are essential on∂N(k)

and have the same slope, theboundary slopeof F .

Proposition 3.1. Let k be a (nontrivial) prime graph knot inS3. Every essential plana
surface inE(k) whose boundary slope is not1

0 is isotopic to a cabling annulus.

Proof. If k is a torus knot, then the result follows from [30]. We hereafter assume thak is
a satellite knot.

Let F be an essential planar surface inE(k) whose boundary slope is not a meridia
We begin by observing thatF is separating. Assume for a contradiction thatF does not
separateE(k). Then each component of∂F represents a longitudinal slope ofk. Thus
0-surgery onk produces a manifold which contains a non-separating 2-sphere. This im
thatk is a trivial knot [4, Corollary 8.3], contradicting the assumption.

LetT be a (non-empty) family of tori which defines a torus decomposition ofE(k), i.e.,
T decomposesE(k) asE(k) = ⋃

Pi . Sincek is a graph knot, eachPi is a torus knot space
a cable space or a composing space. Furthermore sincek is prime, the piece containin
∂E(k) is a cable space. IfPi is a cable space, then∂Pi consists of two components; th
component which is closer to∂E(k) is called aninner boundary componentand the other
component is called anouter boundary component. Note that each boundary component
Pi bounds a solid torus inS3 containingk in its interior. We use the slopea

b
in the preferred

meridian-longitude co-ordinate determined by the solid torus; it will be assumed
b � 0. For a properly embedded surfaceFi ⊂ Pi , the inner (respectivelyouter) boundary
component ofFi is the component lying on the inner (respectively outer) boundary oPi .
Similarly the slope represented by an inner (respectively outer) boundary compon
Fi is referred to as theinner (respectivelyouter) boundary slopeof Fi . Note that every
component of∂F is contained in the inner boundary component ofP1.

We isotopeF so thatF intersectsTi(∈ T ) transversely and|F ∩(
⋃

Ti∈T Ti)| is minimal.
Then each component ofF ∩ Pi is a properly embedded planar surface inPi .

Claim 3.2. Each component ofF ∩ Pi is an essential surface inPi .

Proof. Assume for a contradiction that a componentF ′ of F ∩ Pi is compressible inPi .
Then there is a compressing disk∆(⊂ Pi) for F ′. SinceF is incompressible inE(k),
∂∆ bounds a diskD in F . Since∂∆ = ∂D is essential inF ′, D ∩ ∂Pi 	= ∅. Let c be an
innermost circle inD ∩ (

⋃
Tj ∈T Tj ) andDc ⊂ D the disk bounded byc. Assume thatDc

is contained in a decomposing piecePj . A boundary-irreducibility and an irreducibilit
of Pj , we see thatDc is a boundary-parallel disk inPj . Thus we can removec by an
isotopy. This contradicts the minimality of|F ∩ (

⋃
Ti∈T Ti)|. Hence each component

F ∩ Pi is incompressible inPi .
If some component ofF ∩ Pi is boundary-compressible inPi , then it should be a

boundary-parallel annulus. This contradicts again the minimality of|F ∩ (
⋃

Ti∈T Ti)|. �
Let us recall the following.
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Lemma 3.3 [8]. Every incompressible, boundary-incompressible connected planar surface
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in a (p, q)-cable space is of one of the following types:

(1) an annulus with both boundary components inner, of slopepq ;
(2) an annulus with both boundary components outer, of slopep

q
;

(3) an annulus with one inner boundary component of slopepq , and one outer boundar
component of slopep

q
;

(4) a surface withq inner boundary components of slope1+kpq
k

, and one outer boundar

component of slope1+kpq

kq2 , for some integerk;

(5) a surface with one inner boundary component of slope�q2

m
, and q outer boundary

components of slope�
m

, for some integers� andm such that�q = 1+ mp.

A (p, q)-cable space(q � 2) has a unique Seifert fibration up to isotopy. A surface
the cable space is isotopic to a vertical (a union of fibers) annulus if and only if it is of
(1), (2) or (3), and is isotopic to a horizontal (transverse to fibers) surface if and onl
is of type (4) or (5). An essential annulus inE(k) is a cabling annulus if it is isotopic to a
annulus inP1 with type (1).

We divide the proof into two cases depending on whether the satellite diagram
vertex with labelCo or not.
Case(I). The satellite diagram ofk has no vertices with labelCo, i.e.,k is an iterated torus
knot.

Then we put the decomposing piecesP1,P2, . . . ,Pm so thatPi is theith closest piece
from k; Pi (1� i � m−1) is a(pi, qi)-cable space andPm is a(pm,qm)-torus knot space
Let n be the largest number such thatF ∩ Pn 	= ∅. ThenPn is a cable space (respectively
torus knot space) ifn < m (respectivelyn = m).

Claim 3.4. Each component ofF ∩ Pn is a vertical annulus.

Proof. Let F ′ be a component ofF ∩ Pn. First suppose thatPn is a torus knot space
SinceF ′ is an essential planar surface inPn, F ′ is isotopic to a vertical annulus [30
Next suppose thatPn is a cable space. Then by the choice ofPn, ∂F ′ is contained in the
inner boundary component ofPn. From Lemma 3.3 we see thatF ′ is isotopic to a vertica
annulus. �

To prove Proposition 3.1, it is sufficient to show thatn = 1. In fact, once we establis
thatn = 1, then the planar surfaceF ⊂ E(k) (which was isotoped so that|F ∩ (

⋃
Ti∈T Ti)|

is minimal) is contained inP1 with only inner boundary components, and hence it
cabling annulus as desired. Let us assume for a contradiction thatn � 2.

By Claim 3.4,F ∩ Pn consists of vertical annuli, hence each componentFn of F ∩ Pn

has the inner boundary slopepnqn, see Lemma 3.3. On the other hand,F ∩ Pn−1 is
isotopic to a horizontal surface, for otherwise,F ∩ Pn−1 is also isotopic to a vertica
surface and Seifert fibrations ofPn−1 and Pn match and hencePn−1 ∪ Pn is also a
Seifert fiber space, a contradiction. Hence each component ofF ∩ Pn−1 is of type (4)

or (5) in Lemma 3.3. If some componentFn−1 is of type (4), then the outer boundar
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slope ofFn−1 equals1+kpn−1qn−1

kq2
n−1

for some integerk, which coincides with the intege

pnqn. This is impossible becauseqn−1 � 2. Hence each component ofF ∩ Pn−1 is of
type (5). Let us take a connected componentFn,n−1 of F ∩ (Pn ∪ Pn−1). ThenFn,n−1

has a form(
⋃

1�i�x F i
n−1) ∪ (

⋃
1�j�y F

j
n ), whereF i

n−1 is a component ofF ∩ Pn−1

and F
j
n is that of F ∩ Pn. The boundary ofFn,n−1 consists of the inner bounda

components ofF i
n−1 (1 � i � x); eachF i

n−1 has exactly one inner boundary compon

(see Lemma 3.3), henceFn,n−1 is anx-punctured 2-sphere. SinceFj
n is an annulus and

F i
n−1 is a disk withqn−1 holes (see Lemma 3.3), the Euler characteristicχ(Fn,n−1) =

χ((
⋃

1�i�x F i
n−1) ∪ (

⋃
1�j�y F

j
n )) is x(1− qn−1), which should be 2− x. However, this

is impossible becauseqn−1 � 2. It follows thatn = 1 andF is a cabling annulus.
Case(II). The satellite diagram ofk has a vertex with labelCo, i.e., there is a composin
space inE(k).

Then we can find a sub-tree as in Fig. 6.
Let Q be the closest composing space inE(k) and denote the cable spacesP1,P2, . . . ,

Pn so thatPi is theith closest piece fromk; Q is the(n + 1)-closest piece fromk. The
closure ofE(k) − ⋃n

i=1 Pi is the exteriorE(k′) of a companion knotk′ of k.
If F ∩ Q = ∅, then we can reduce case (II) to case (I), thus to complete the pro

Proposition 3.1, we will assume thatF ∩ Q 	= ∅ and derive a contradiction.
Let Fn be a component ofF ∩Pn such thatFn intersects both inner and outer bound

components ofPn; sinceF ∩ Q 	= ∅ andF is connected, such a component exists. LeF ′
be a component ofF ∩ E(k′) such that∂F ′ ∩ ∂Fn 	= ∅.

Now we divide into two subcases.
Case(II)-(a). Fn is vertical, i.e.,Fn is an annulus with one inner boundary compon
of slopepnqn, and one outer boundary component of slopepn

qn
, see Lemma 3.3. Sinc

Fn has the outer boundary slopepn

qn
, the boundary slope ofF ′ is also pn

qn
. It is easy to

observe thatF ′ is an essential planar surface inE(k′) (cf. Claim 3.2). On the other han
sinceQ is a composing space (homeomorphic to[disk with holes] × S1), we can find an
essential annulusA in E(k′) with ∂A ⊂ ∂E(k′) such that its boundary slope is10. Then
[11, Theorem 1.1] asserts thatqn � 1, contradicting the fact thatqn � 2.
Case(II)-(b). Fn is horizontal, i.e.,Fn is of type(4) or (5) in Lemma 3.3.
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inner) boundary slope ofFn is 1+knpnqn

knq2
n

(respectively1+knpnqn

kn
) for some integerkn, see

Lemma 3.3. Since the outer boundary slope ofFn coincides with the boundary slope
F ′ ⊂ E(k′), the argument in case (II)-(a) above shows|knq

2
n| � 1. Sinceqn � 2, we have

kn = 0. Thus the inner boundary slope ofFn is 1+knpnqn

kn
= 1

0.
Let Fn−1 be a component ofF ∩ Pn−1 such thatFn−1 intersects both inner and out

boundary components ofPn−1; sinceF ∩ Pn 	= ∅ andF is connected, such a compone
exists.

Claim 3.5. The inner boundary slope ofFn−1 is 1
0 .

Proof. If Fn−1 is isotopic to a vertical annulus, thenFn−1 is of type (3) and the oute
boundary slope ispn−1

qn−1
, which coincides with1

0 (the inner boundary slope ofFn). This
contradicts thatqn−1 � 2. This then implies thatFn−1 is of type (4) or (5).

First suppose thatFn−1 is of type (4). By Lemma 3.3, the outer boundary slope
Fn−1 is 1+kn−1pn−1qn−1

kn−1q2
n−1

and the inner boundary slopeFn−1 is 1+kn−1pn−1qn−1
kn−1

for some

integerkn−1. Recall that the inner boundary slope ofFn which coincides with the oute
boundary slope ofFn−1 is 1

0. It follows thatkn−1 = 0 (becauseqn−1 � 2) and hence the
inner boundary slopeFn−1 = 1

0 as required.
Next suppose thatFn−1 is of type (5). Then again by Lemma 3.3, the outer bound

slope ofFn−1 is �n−1
mn−1

and the inner boundary slope ofFn−1 is
�n−1q

2
n−1

mn−1
for some integers

�n−1,mn−1. The above argument shows thatmn−1 = 0 and hence the inner boundary slo
of Fn−1 is also1

0 as required. �
Applying the argument in Claim 3.5 successively, we can conclude that the

boundary slope ofF1, which is the boundary slope ofF , is 1
0, contradicting the initia

assumption.
Case(II)-(b)-type (5). Let us suppose thatFn is of type (5). Then the outer (respective

inner) boundary slope ofFn is �n

mn
(respectively�nq2

n

mn
) for some integer�n, mn (Lemma 3.3).

Since the outer boundary slope ofFn coincides with the boundary slope ofF ′ ⊂ E(k′), the
argument in case (II)-(a) shows thatmn = 0,1.

Assume thatmn = 0. Then the inner boundary slope ofFn is �nq
2
n

mn
= 1

0. This means tha

the outer boundary slope ofFn−1 is 1
0. Then the identical argument in case (II)-(b)-type

shows that the inner boundary slope ofF1, which is the boundary slope ofF , is 1
0,

contradicting the initial assumption.

Assume thatmn = 1. Then the inner boundary slope ofFn is �nq2
n

mn
= �nq

2
n.

Claim 3.6. Each component ofF ∩ P1 is of type(5) in the cable spaceP1.

Proof. Take a componentFn−1 of F ∩ Pn−1 so thatFn−1 intersects both inner an
outer boundary components ofPn−1. Since the inner boundary slope ofFn is �nq

2
n, the

outer boundary slope ofFn−1 is also the integer�nq
2
n . If Fn−1 is isotopic to a vertica
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annulus, then the outer boundary slope ispn−1 , which cannot be an integer, because
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the
qn−1
(pn−1, qn−1) = 1 andqn−1 � 2. If Fn−1 is of type (4), then the outer boundary slope
1+kn−1pn−1qn−1

kn−1q2
n−1

, which cannot be an integer, forqn−1 � 2. Thus we assume thatFn−1 is of

type (5). Then the outer boundary slope is�n−1
mn−1

, which is an integer only ifmn−1 = 1. This

then implies that the inner boundary slope ofFn−1 equals
�n−1q

2
n−1

mn−1
= �n−1q

2
n−1. Repeating

this argument, we see that each componentF1 of F ∩ P1 is of type (5). This completes th
proof. �

Now we will show that the situation in Claim 3.6 cannot happen.
Suppose for a contradiction thatF ∩P1 consists of surfaces of type(5), sayF 1

1 , . . . ,F x
1

each of which is a planar surface with one inner boundary component andq1 outer
boundary components. WriteF ∩ (E(k)− intP1) = F ′

1 ∪ · · ·∪F ′
y , whereF ′

i is a connected
planar surface withti boundary components(i = 1, . . . , y).

Claim 3.7. F ′
i (1 � i � y) is not a disk, and henceti � 2.

Proof. Assume for a contradiction thatF ′
i is a disk. Letc be an innermost circle in

F ′
i ∩ (

⋃
Tj ∈T Tj ) andDc ⊂ F ′

i the disk bounded byc. (Possiblyc = ∂F ′
i andDc = F ′

i .)
Assume thatDc is contained in a decomposing pieceP of E(k). SinceP is irreducible
and boundary-irreducible, we see thatDc is a boundary-parallel disk inP . Thus we can
removec by an isotopy. This contradicts the minimality of|F ∩ (

⋃
Ti∈T Ti)|. �

Note that F = (
⋃x

i=1 F i
1) ∪ (

⋃y

i=1 F ′
i ) is an x-punctured sphere. Consider Eu

characteristic, we have 2−x = x(1−qi)+∑y

i=1(2− ti), i.e., 2= x(2−q1)+∑y

i=1(2− ti).
Sinceq1 � 2 andti � 2, the right-hand side of the equation is not positive, a contradic

It follows thatF ∩ Q = ∅ and the proof of Proposition 3.1 is now completed.�

4. Proof of Theorem 1.1 for hyperbolic pairs

Let K be a knot inS3 andD a twisting disk forK. Setc = ∂D. We say that the pai
(K,D) is ahyperbolic pairif the link K ∪ c is hyperbolic, i.e.,S3 − K ∪ c is hyperbolic.

The goal in this section is to prove Theorem 1.1 for hyperbolic pairs. It shoul
mentioned that if(K,D) is a hyperbolic pair andKD,n is a satellite knot, then as
particular case of [12] we can deduce thatn � 2.

Proposition 4.1. Suppose that(K,D) is a hyperbolic pair. IfKD,n is a graph knot, then
|n| � 1.

We attempt to follow, verbatim, the proof of [24, Proposition 2.1]. Before proving
proposition, we prepare some notations.

Let K be a knot in a 3-manifoldM. The manifold obtained fromM by Dehn surgery
on a knotK with slopeγ is denoted byM(K;γ ); if M ∼= S3, for simplicity we denote
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M(K;γ ) by (K;γ ). If M ⊂ S3, then using the preferred meridian-longitude pair of

ir

r

ld

f
e

by

e

K ⊂ S3, we parameterize slopesγ of K by r ∈ Q ∪ {∞}, then we also write(K; r) for
(K;γ ). A slope ofK is integral if a representative of it intersects a meridian ofK exactly
once. For knots inS3 integral slopes correspond to integers.

Recall that in our setting,K is a trivial knot and the exteriorE(K) = S3 − intN(K) is a
solid torus containingc in its interior. Let(µ0, λ0) be a preferred meridian-longitude pa
of K. By performing− 1

n
-surgery onc, we obtain a twisted knotKn in S3 as the image

of K. Let (µn,λn) be a preferred meridian-longitude pair ofKn.
The preferred meridian-longitude pairs ofK and that ofKn are related as follows (fo

suitable orientations). We omit the proof here.

Claim 4.2. µn = µ andλn = λ0+w2nµ0, wherew denotes the linking number ofK andc.

In the following, we denoteE(K) by V to emphasize that it is a solid torus. It shou
be noted that a meridian ofK is a preferred longitude ofV and a preferred longitude ofK

is a meridian ofV . ThenE(Kn) = V (c;− 1
n
).

Suppose thatKn is a graph knot, i.e.,E(Kn) is a graph manifold. IfKn is also a trivial
knot, then from [20,18] we see that|n| � 1. So in the following we assume thatKn is
nontrivial. Then each label appeared at vertices of satellite diagram ofKn is T , Ca or Co.

Assume first that the innermost vertex has a labelT (i.e., Kn is a torus knot). Then i
(K,D) is not an exceptional pair of type(ε1, q1), we have|n| � 1 [26, Theorem 3.8], se
also [24].

Next suppose that the innermost vertex has a labelCo (i.e.,Kn is a composite knot). In
this case, we can conclude that|n| = 1 from more general results in [6,14].

Thus in the following we assume that the innermost vertex has a labelCa (i.e.,Kn is a
cable knot). To make it precise, we assume thatKn is a(p, q)-cable of some graph knotk,
wherep andq are relatively prime andq � 2. Let t be a regular fiber of the cable spaceP

which is a decomposing piece containing∂N(Kn). Thent = pqµn + λn, which is written
as(pq + w2n)µ0 + λ0 by Claim 4.2.

Attach a solid torusW to V in such a way that the meridian ofW is identified with a
regular fibert . Then we obtain a 3-manifoldV ∪ W and denote the image ofc in V ∪ W

by c′ to emphasize that it is inV ∪ W . SinceV is a solid torus, the manifoldV ∪ W

is homeomorphic toS2 × S1 if pq + w2n = 0 (i.e., t = λ0), S3 if |pq + w2n| = 1 (i.e.,
t = ±µ0 + λ0), or a lens spaceL(pq + w2n,1) if |pq + w2n| � 2.

We denote the slope represented by a meridian ofc by µ and the slope represented
−1/n by γ . Since the meridian ofc is also a meridian ofc′, we use the same symbolµ to
denote the meridian ofc′. For simplicity, we continue to use the same symbolγ to denote
the corresponding slope forc′.

Lemma 4.3. (V ∪ W)(c′;γ ) = V (c;γ ) ∪ W is a reducible manifold withoutS2 × S1

summand.

Proof. SinceV (c;γ ) = E(Kn), the manifold in question is obtained fromE(Kn) by
attaching the solidW so that a meridian ofW is identified with a regular fiber of th
decomposing pieceP . Hence the resulting manifold is(Kn;pq) ∼= (k; p

q
) �L for the
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companion knotk and some lens spaceL � S3, S2 × S1, see [7]. Sinceq � 2, by [10],

o

ce.

h
ccurs,
n

(k; p
q
) � S3, hence(V ∪ W)(c′;γ ) = V (c;γ ) ∪ W is reducible.

SinceH1(V (c;γ )∪W) ∼= H1((Kn;pq)) ∼= Zpq is finite,V (c;γ )∪W does not contain
a non-separating 2-sphere, in particular, it has noS2 × S1-summand. �

For two slopesγ1 andγ2 of a knot, the distance∆(γ1, γ2) between them is defined t
be their minimal geometric intersection number.

Lemma 4.4. If pq + w2n = 0, then|n| = 1.

Proof. Sincepq + w2n = 0, (V ∪ W)(c′;µ) = V (c;µ) ∪ W ∼= V ∪ W ∼= S2 × S1. By
Lemma 4.3,(V ∪ W)(c′;γ ) = V (c;γ ) ∪ W is a reducible manifold withoutS2 × S1

summand. IfV ∪ W − intN(c′) is reducible, then the primeness ofS2 × S1 implies that
c′ is contained in a 3-ball inV ∪ W . This means that(V ∪ W)(c′;γ ) hasS2 × S1 as a
summand, a contradiction. HenceV ∪W − intN(c′) is irreducible. Apply [11] to conclude
that∆(γ,µ) = 1, i.e., the slopeγ is integral and hence|n| = 1. �
Lemma 4.5. If |pq + w2n| = 1, then|n| = 1.

Proof. Under this assumption,V ∪ W ∼= S3. Since(V ∪ W)(c′;γ ) is reducible (Lem-
ma 4.3), by [9],∆(γ,µ) = 1, i.e., the slopeγ is integral and hence|n| = 1. �

The rest of this section is devoted to prove:

Lemma 4.6. Suppose that(K,D) is a hyperbolic pair and|pq + w2n| � 2. Then|n| = 1.

Proof. For simplicity, setX = V ∪ W − intN(c′). Note thatV ∪ W is a lens space
L(pq + w2n,1). Let us now divide the proof into the following three cases:

(1) X = L(pq +w2n,1)− intN(c′) is irreducible and not an atoroidal Seifert fiber spa
(2) X is an atoroidal Seifert fiber space.
(3) X is reducible.

Recall that

• (V ∪ W)(c′;µ) = V ∪ W = L(pq + w2n,1).
• (V ∪ W)(c′;γ ) = V (c;γ ) ∪ W is a reducible manifold withoutS2 × S1 summand

(Lemma 4.3).

Case(1). Sinceµ is a cyclic surgery slope andγ is a reducing surgery slope forX, apply
[2, Theorem 1.2] to conclude that∆(γ,µ) = 1, i.e.,|n| = 1, as desired.

Case(2). SinceX is an atoroidal Seifert fiber space, the base orbifold is either the disk wit
at most two cone points or the Möbius band with no cone points. If the latter case o
thenX is a twistedI -bundle over the Klein bottle, henceX admits also a Seifert fibratio
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whose base orbifold is the disk with two cone points of indices 2, 2. Thus the latter case

t.

of
r in
o
r
)

in

r-
reduces to the former case.
Now let us assume that the base orbifold ofX is the disk with at most one cone poin

ThenX is a solid torus, and henceL(pq +w2n,1)(c′;γ ) = (V ∪W)(c′;γ ) admits a genus
one Heegaard splitting. This contradicts Lemma 4.3. It follows that the base orbifoldX

is the disk with exactly two cone points. Lett be a slope represented by a regular fibe
∂N(c′) ⊂ X. ThenL(pq + w2n,1)(c′;γ ) = (V ∪ W)(c′;γ ) is (i) a connected sum of tw
lens spaces if∆(γ, t) = 0, (ii) a lens space if∆(γ, t) = 1, or (iii) a Seifert fiber space ove
the 2-sphere with three exceptional fibers if∆(γ, t) � 2. A Seifert fiber space of type (iii
are neither lens space nor a reducible manifold [16, Example VI.13]. Thus∆(γ, t) = 0,
i.e.,γ = t . Since∆(µ, t) = 1, we have∆(γ,µ) = 1 as desired.

Case(3). Since a lens spaceL(pq +w2n,1) is irreducible butL(pq +w2n,1)− intN(c′)
is reducible,c′ is contained in a 3-ballB ⊂ L(pq + w2n,1). SinceV − intN(c) is
irreducible,Σ = ∂B is not contained inV . Hence we assume thatΣ intersects the solid
torusW with non-empty meridian disks ofW . We further assume that|Σ ∩W |, the number
of components ofΣ ∩ W , is minimal among 2-spheres bounding 3-balls which contac.
SinceΣ separatesV ∪ W , |Σ ∩ W | is an even integer� 2. SetS = Σ ∩ (V − intN(c)),
which is a planar surface.

Lemma 4.7. If |∂S| � 4, thenγ is integral(i.e., |n| = 1).

Proof. Assume that|∂S| � 4. SinceΣ separatesL(pq + w2n,1) = V ∪ W , S also
separatesV . Cutting V alongS, we obtain two 3-manifoldsM1 andM2. Without loss
of generality we may assume thatM1 ⊃ c. The minimality of|Σ ∩ W | assures thatS is
incompressible in bothM1 − intN(c) andM2. There are two cases to consider: (1)S is
incompressible inM1(c;γ ), or (2)S is compressible inM1(c;γ ).

(1) S is incompressible inM1(c;γ ). Then S is incompressible inV (c;γ ) =
M1(c;γ ) ∪S M2. Since |∂S| � 4, S is boundary-incompressible inV (c;γ ) ∼= E(Kn).
Recall also that a boundary component ofS is lying on ∂V = ∂E(Kn) and has slope
pqµn + λn. Then from Proposition 3.1 we see thatS should be a cabling annulus, in pa
ticular |∂S| = 2, a contradiction.

(2) S is compressible inM1(c;γ ).

Claim 4.8. S is compressible also inM1 = M1(c;µ).

Proof. If S is incompressible inM1, thenS is also incompressible inV = M1 ∪S M2. This
implies that the solid torusV contains an incompressible planar surfaceS with |∂S| � 4,
a contradiction. �

Suppose that there is no incompressible annulus inM1 − intN(c) with one boundary
component inS and the other in∂N(c). Then Wu [31, Theorem 1] shows that∆(γ,µ) = 1,
i.e.,γ is integral as claimed in Lemma 4.7.

Let us assume that there is such an annulus, sayA, in M1 − intN(c). Write ∂A =
C1 ∪C2, whereC1 ⊂ ∂N(c) andC2 ⊂ S(⊂ Σ). SinceC2 bounds a disk in the 2-sphereΣ ,
C1 bounds a disk in the 3-ballB. Thusc′ is a trivial knot inB, and∂A ∩ N(c) represents
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a longitudinal slopeλ′ of c′. Apply [3, Theorem 2.4.3(b)] to conclude that∆(γ,λ′) � 1
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oof

the
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ince
or M1 − intN(c) ∼= S1 × S1 × I . The latter implies that the incompressible surfaceS in
M1 − intN(c) is a disk or an annulus, contradicting the assumption|∂S| � 4. It follows
that∆(γ,λ′) � 1. This, together with the triviality ofc′ ⊂ B, implies that eitherB(c′;γ ) =
B(c′;1/m) ∼= B3 or B(c′;γ ) = B(c′;0) ∼= S2 × S1 with an open 3-ball removed. Henc
L(pq + w2n,1)(c′;γ ) = (L(pq + w2n,1) − B) ∪ B(c′;γ ) is homeomorphic toL(pq +
w2n,1) or L(pq +w2n,1) � (S2 ×S1). This contradicts Lemma 4.3 and completes a pr
of Lemma 4.7. �

To finish the proof of Lemma 4.6, assume for a contradiction thatγ is not integral.
Since |∂S| is even, Lemma 4.7 shows that|∂S| = 2, i.e., S is an annulus. It follows
thatS3 − intN(K ∪ c) = V − intN(c) contains an essential annulus. This contradicts
hyperbolicity ofS3 − intN(K ∪ c) = V − intN(c). �

Now the proof of Proposition 4.1 follows from Lemmas 4.4–4.6.

5. Proof of Theorem 1.1 for non-hyperbolic pairs

In this section we will prove Theorem 1.1 in the case whereK andc = ∂D forms a
non-hyperbolic link.

Proposition 5.1. Suppose that(K,D) is a non-hyperbolic pair andKD,n is a graph knot.
Then|n| � 1 or (K,D) is an exceptional pair.

Proof. If S3 − intN(K ∪ ∂D) = S3 − intN(K ∪ c) is Seifert fibered, then(K,D) is an
exceptional pair of type(ε1, q1).

Let us suppose thatS3 − intN(K ∪ c) contains essential tori. LetT be a family of
essential toriT1, . . . , Tn which defines a torus decomposition ofS3 − intN(K ∪ c) in the
sense of Jaco and Shalen [15] and Johannson [17].

Lemma 5.2. Each torus inT separates∂N(K) and ∂N(c). Hence each decomposin
piece has exactly two boundary components.

Proof. Assume for a contradiction that there is a torusTi ∈ T which does not separa
∂N(K) and∂N(c). By the solid torus theorem [27],Ti bounds a solid torusVi . SinceTi is
incompressible inS3 − intN(K ∪ c), Vi is knotted inS3 and contains bothK andc in its
interior. Furthermore, the triviality ofK andc in S3 implies that there are 3-ballsBK and
Bc in Vi such thatK ⊂ BK andc ⊂ Bc. Choose a meridian diskD of Vi so thatD ∩ c = ∅;
an existence of the above 3-ballBc assures an existence of such a meridian disk. S
K ⊂ BK , the algebraic intersection number ofK andD is zero. Moreover, sinceD∩c = ∅,
the algebraic intersection number ofKn andD, i.e., the winding number windVi (Kn) of
Kn in (the companion solid torus)Vi is still zero. This contradicts the following claim.�
Claim 5.3. Let k be a graph knot andW a companion solid torus ofk. Then the winding
number ofk in W is not zero.
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Proof. Let us consider the torus decomposition ofW − intN(k). Choose the subfamily

t

ing
,

e

y

{S1, . . . , Sn} consisting of tori each of which separates∂W and∂N(k). Then we obtain
solid tori Wi in W bounded bySi so that W ⊃ W1 ⊃ · · · ⊃ Wn ⊃ k. Assume tha
windW(k) = 0. Then since windW(k) = windW(CW1)windW1(CW2) · · ·windWn(k), where
CWi denotes a core ofWi , at least one of windW (CW1), windW1(CW2), . . . ,windWn(k)

is zero. Note thatWj − intWj+1 is a (p, q)-cable space or the union of a compos
spaceP and some graph knot exteriors, where∂Wj , ∂Wj+1 ⊂ ∂P . In the former case
windWj (CWj+1) = q � 2, and in the latter case, windWj (CWj+1) = 1, a contradiction. �

Let T1 be the (unique) innermost torus with respect to∂N(c), and let P be the
decomposing piece bounded byT1 and∂N(c).

Suppose first thatP is hyperbolic. CuttingS3 alongT1, we obtain two 3-manifolds
W(⊃ K) andW ′(⊃ c).

Claim 5.4. W is an unknotted solid torus inS3.

Proof. By the solid torus theorem [27],W or W ′ is a solid torus. Assume thatW
(respectivelyW ′) is a solid torus. SinceT1 is incompressible inS3 − intN(K ∪ c), T1

is incompressible also inW − intN(K) (respectivelyW ′ − intN(c)). The nontriviality of
K (respectivelyc) implies thatW is unknotted (respectivelyW ′ is unknotted, and henc
W = S3 − intW ′ is also an unknotted solid torus).�

Let J be a core ofW , thenJ is a trivial knot by Claim 5.4.
After − 1

n
-surgery onc, we obtainKn andJn as the images ofK andJ , respectively.

Note thatJn is a companion knot ofKn and sinceKn is a graph knot,Jn is also a graph
knot. SinceS3 − intN(J ∪ C) = S3 − int(W ∪ N(C)) = P is hyperbolic, we can appl
Proposition 4.1 to the pairJ andc, and conclude that|n| = 1.

Now assume thatP is Seifert fibered. Since∂P consists of two components,P is a
cable space, see Fig. 7 in whichP is a(1,2)-cable space.

Fig. 7.
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Then sinceK is unknotted inS3, P is a (±1, q)-cable space for some integerq � 2,
e

-

l

on
on a
olic
a

gral?
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for
o like
and a regular fiber ofP representsqµc ± λc in terms of a preferred meridian-longitud
pair (µc,λc) of c.

Recall thatT is a family of essential tori defining the torus decomposition ofS3 −
intN(K ∪ c).

Claim 5.5. If |n| > 1, then the familyT defines also a torus decomposition of

E(Kn) = (
S3 − intN(K ∪ c)

) ∪− 1
n

N(c).

Proof. Let us considerP ∪− 1
n

N(c). Sinceq � 2 and |n| > 1, ∆(±q,− 1
n
) = |±nq +

1| � 3. Thus the Seifert fibration ofP can be extended to that ofP ∪− 1
n

N(c) over the

disk with two exceptional fibers of indicesq , |qn + ε| (ε = ±1). Hence it is boundary
irreducible and admits a unique Seifert fibration up to isotopy. It turns out thatT defines
also the torus decomposition ofE(Kn) = (S3 − intN(K ∪ c)) ∪− 1

n
N(c). �

Let P1 = P,P2, . . . ,Pm be decomposing pieces ofS3 − intN(K ∪ c). By Claim 5.2
eachPi has exactly two boundary components. From Claim 5.5, we see thatP1 ∪− 1

n

N(c),P2, . . . ,Pm are decomposing pieces ofE(Kn) = (S3 − intN(K ∪ c)) ∪− 1
n

N(c).

SinceKn is a graph knot,P2, . . . ,Pm are Seifert fiber spaces. Since eachPi has exactly
two boundary components,Pi is a cable space. The triviality ofK in S3 implies thatPi is
a (εi, qi)-cable space, whereεi = ±1 andqi � 2. It follows that(K,D) is an exceptiona
pair as desired. �

Theorem 1.1 follows from Propositions 4.1 and 5.1.
We close this paper by noting a relationship between Proposition 4.1 and surgeries

knots in a solid torus. In [12] Gordon and Luecke proved that a toroidal surgery
hyperbolic knot in a solid torus is integral or half-integral. If a surgery on a hyperb
knot in a solid torus yields a Seifert fiber space, then the surgery is integral [24]. Is
surgery on a hyperbolic knot in a solid torus producing a graph manifold also inte
If this is true, then Proposition 4.1 follows in this direction. However, there are infinite
many non-integral (half-integral) surgeries on hyperbolic knots in a solid torus prod
graph manifolds, see [23].
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