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Abstract. In this paper, we propose a new gradient recovery method for elliptic inter-
face problem using body-fitted mesh. Due to the lack of regularity of the solution at
the interface, standard gradient recovery methods fail to give superconvergent results,
and thus will lead to overrefinement when served as a posteriori error estimator. This
drawback is overcome by designing a new gradient recovery operator. We prove the
superconvergence of the new method for both mildly unstructured mesh and adaptive
mesh and present several numerical examples to verify the superconvergence and its
robustness as a posteriori error estimator.

AMS subject classifications: 65L10, 65L60, 65L70
Key words: elliptic interface problem, gradient recovery, superconvergence, body-fitted mesh, a
posteriori error estimator, adaptive method.

1 Introduction
Interface problem frequently appears in the fields of fluid dynamics and material science,
where the background consists of rather different materials. The numerical challenge
comes from discontinuities of the coefficient at the interface, where the solution is not
smooth in general. Computational methods for elliptic interface problem have been studied
intensively in literature, which can be roughly categorized into two types: unfitted mesh
methods and body-fitted mesh methods.

Numerical methods based on unfitted mesh solve interface problems on Cartesian grids,
among which, famous examples include immersed boundary method (IBM) by Peskin
[35, 36] and immersed interface method (IIM) by Leveque and Li [24], just to name a
few. We refer interested readers to [26] for a review of the literature. IBM uses Dirac
δ-function to model discontinuity and discretizes it to distribute a singular source to the
nearest grid point. IIM constructs a special finite difference scheme near the interface to
get an accurate approximation of the solution. It was further developed in the framework
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of finite element method [25,27,28], which modifies basis functions on interface elements.
Moreover, in [20,21], a special weak form was derived based on the Petrov-Galerkin method
to discretize elliptic interface problem. A shortcoming of unfitted mesh methods is that
the resulting discretized linear system is in general non-symmetric and indefinite even
though the original continuous problem is self-adjoint.

Body-fitted mesh methods require mesh grids to align with the interface in order to
capture discontinuity. The resulting discretized linear system is symmetric and positive
definite if the original continuous problem is self-adjoint. Error estimates for finite element
method with body-fitted mesh have been established by [2, 6, 12, 42]. In particular, [12]
showed that smooth interface can be approximated by linear interpolation of distinguished
points on the interface. Although the solution to interface problem has low global regu-
larity, the finite element approximation was shown to have nearly the same optimal error
estimates in both L2 and energy norms as for regular (non-interface) problems.

Meanwhile, superconvergence analysis has attracted considerable attention in the com-
munity of finite element method, and theories have been well developed for regular prob-
lems [3, 9, 39, 47]. Then it is natural to ask if one can obtain similar superconvergence
results for elliptic interface problem. However, limited work has been done in this direc-
tion due to the lack of regularity of solution at the interface. Recently, [13, 14] proposed
two special interpolation formulae to recover flux for one-dimensional linear and quadratic
immersed finite element methods. Supercloseness was established between finite element
solution and linear interpolation of the true solution in [40].

In this paper, we aim to develop a gradient recovery technique for elliptic interface
problem based on body-fitted finite element discretization. Standard gradient recovery
operators, including superconvergent patch recovery (SPR) [48, 49] and polynomial pre-
serving recovery (PPR) [32,33,44], produce superconvergent recovered gradient only when
the solution is smooth enough. Therefore, they can not be applied directly to elliptic
interface problem since the solution has low regularity at the interface due to the disconti-
nuity of coefficients. Furthermore, building up a recovery-type a posteriori error estimator
based on these methods will lead to overrefinement as studied in [8].

An observation that we rely on is that, even though the solution has low global regular-
ity, it is in general piecewise smooth on each subdomain separated by the smooth interface
(special case as Kellogg problem will be also discussed in Example 5.4). This motivates us
to develop a new gradient recovery method by applying PPR gradient operator on each
subdomain since PPR is a local gradient recovery method. One one hand, for a node away
from the interface, we use stand PPR gradient recovery operator; On the other hand, for a
node close to the interface, we design the gradient recovery operator by fitting a quadratic
polynomial in the least-squares sense only using the sampling points in each subdomain.
This will generate two approximations of the gradient in each subdomain for a node on the
interface, which is consistent with the fact that the solution, in general, is not continuously
differentiable at the interface. The method is to use a divide-and-conquer strategy, which
has also been used in the immersed finite element method [25,27,28].

We prove that the proposed gradient recovery method has superconvergence for the
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following two types of meshes: Benefited from [40] on the approximation estimate and
supercloseness, we are able to establish the superconvergence theory on mildly unstruc-
tured meshes; Using the practical assumption and supercloseness result in [41] for adaptive
mesh, we show that the proposed recovered gradient method is superconvergent to exact
gradient on adaptive mesh. Therefore, the method provides an asymptotically exact a
posteriori error estimator for elliptic interface problem. Compared to the a posteriori er-
ror estimator in [4, 11, 30] and recovery-type error estimator in [8], the estimator based
on the proposed gradient recovery is easier in implementation and asymptotically more
exact, which will be verified by two-dimensional numerical examples.

The rest of the paper is organized as follows. In Section 2, we introduce elliptic
interface problem and its finite element approximation based on the body-fitted mesh. In
Section 3, we first give a brief introduction to polynomial preserving recovery method,
based on which, we develop a new gradient recovery method for elliptic interface problem.
In Section 4, superconvergence is proved for the proposed gradient recovery operator on
both mildly unstructured mesh and adaptively refined mesh. In addition, we show that the
method provides an asymptotically exact a posteriori error estimator for elliptic interface
problem. In Section 5, several numerical examples are presented to confirm our theoretical
results. Conclusive remarks are made in Section 6.

2 Finite element method for elliptic interface problem
In this section, we first introduce elliptic interface problem and then describe the finite
element approximation using a body-fitted mesh.

2.1 Elliptic interface problem

Let Ω be a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. A C2-curve
Γ divides Ω into two disjoint subdomains Ω− and Ω+, which is typically characterized
by zero level set of some level set function φ [34, 38]. Then Ω−= {z ∈Ω|φ(z)< 0} and
Ω+={z∈Ω|φ(z)>0}. We shall consider the following elliptic interface problem

−∇·(β(z)∇u(z))=f(z), z in Ω\Γ, (2.1)
u=0, z on ∂Ω, (2.2)

where the diffusion coefficient β(z)≥β0 is a piecewise smooth function, i.e.

β(z)=

{
β−(z) if z∈Ω−,
β+(z) if z∈Ω+, (2.3)

which has a finite jump of function values across the interface Γ. At the interface Γ, one
has the following jump conditions

[u]Γ =u
+−u−=0, (2.4)

[βun]Γ =β
+u+n −β−u−n =g, (2.5)
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where un denotes the normal flux ∇u·n with n being the unit outer normal vector of the
interface Γ.

Notations. Let C denote a generic positive constant which may be different at dif-
ferent occurrences. For the sake of simplicity, we use x.y to mean that x≤Cy for some
constant C, which is independent of mesh size and the interface location but may depend
on the coefficient β.

Standard notations for Sobolev spaces and their associate norms given in [7,15,18] are
adopted in this paper. Moreover, for a subdomain A of Ω, let Pm(A) be the space of
polynomials of degree less than or equal to m in A and nm be the dimension of Pm(A)
which equals to 1

2 (m+1)(m+2). W k,p(A) denotes the Sobolev space with norm ‖·‖k,p,A
and seminorm |·|k,p,A. When p=2,W k,2(A) is simply denoted by Hk(A) and the subscript
p is omitted in its associate norm and seminorm. As in [40], denote W k,p(Ω−∪Ω+) as
the function space consisting of piecewise Sobolev function w such that w|Ω−∈W k,p(Ω−)
and w|Ω+ ∈W k,p(Ω+). For the function space W k,p(Ω−∪Ω+), define norm as

‖w‖k,p,Ω−∪Ω+ =
(
‖w‖pk,p,Ω−+‖w‖k,p,Ω+

)1/p
,

and seminorm as
|w|k,p,Ω−∪Ω+ =

(
|w|pk,p,Ω−+|w|k,p,Ω+

)1/p
.

The variational formulation of the elliptic interface problem (2.1)–(2.5) is given by
finding u∈H1

0 (Ω) such that

(β∇u,∇v)=(f ,v)−〈g,v〉, ∀v∈H1
0 (Ω), (2.6)

where (·,·) and 〈·,·〉 are standard L2-inner product in the spaces L2(Ω) and L2(Γ) respec-
tively. By the positiveness of β, Lax-Milgram Theorem implies (2.6) has a unique solution.
It is proved in [12,37] that u∈Hr(Ω−∪Ω+) for 0≤r≤2 and

‖u‖r,Ω−∪Ω+ .‖f‖0,Ω+‖g‖r−3/2,Γ, (2.7)

provided that f ∈L2(Ω) and g∈Hr−3/2(Γ).

Remark 2.1. For the sake of easing theoretical analysis, we simply assume homogeneous
jump of function value. In fact, one can extend the method to inhomogeneous jump of
function value [u]Γ=q by defining a piecewise smooth function q̂ that satisfies q̂|Γ=q and
q̂|∂Ω =0, and then the problem (2.1)–(2.5) is equivalent to find u=w+ q̂ with w∈H1

0 (Ω)
such that

(β∇w,∇v)=(f ,v)−〈g,v〉−(β∇q̂,∇v), ∀v∈H1
0 (Ω).

2.2 Finite element approximation

Let Th be a body-fitted triangulation of Ω. Then every triangle T ∈Th belongs to one of
the following three different cases:
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(a) T ⊂Ω−;

(b) T ⊂Ω+;

(c) T∩Ω− 6=∅ and T∩Ω+ 6=∅; in that case, two of vertices of T lie on Γ.

For any T ∈Th, denote its diameter and supremum of the diameters of the circles inscribed
in T by hT and ρT respectively. Let h=maxT∈Th

hT . Assume that the triangulation of Ω is
shape-regular in the sense that there is a constant ξ such that hT

ρT
≤ξ for all T ∈Th. Denote

Γh as an approximation to Γ which consists of the edges with both endpoints lying on Γ.
The domain Ω is divided into two parts Ω−h and Ω+

h by Γh, which are the approximations
of Ω− and Ω+ respectively.

The element in Th can be categorized into two types: regular elements and interface
elements. An element T is called an interface element if it has exactly two vertices on Γ;
otherwise, it is called regular element. The set of all interface elements is denoted by T ∗h .
For each element T ∈T ∗h , let T−=T∩Ω− and T+=T∩Ω+. Since Γ is C2, one has

|T−|.h3
T , or |T+|.h3

T ,

as shown in [12].
For each edge e on Γh, define a projection Ph [6, 40] from e to Γ as

Ph(z)=z+d(z)nh, ∀z∈e, (2.8)

where nh is the unit normal vector of e pointing from Ω− to Ω+ and d(z) is the sign
distance function between z and Γ along nh. Note that Ph is a point in Γ for each z∈e.
According to [6, 40], the projection Ph and its inverse are well defined when the length of
e is small enough.

Let Vh be the continuous linear finite element space and Vh,0 =Vh∩H1
0 (Ω). We ap-

proximate the diffusion coefficient β by βh with βh|T = β− if T ∈Ω−h and βh|T = β+ if
T ∈Ω+

h . Then the linear finite element approximation of the variational problem (2.6) is
to find uh∈Vh,0 such that

(βh∇uh,∇vh)=(f ,vh)−〈gh,vh〉Γh
, ∀vh∈Vh,0, (2.9)

where gh=g(Ph(z)) and 〈·,·〉Γh
is L2-inner product of L2(Γh). Moreover, [12,42,45] proved

the following convergence results for the finite element approximation (2.9).

Theorem 2.2. Let u and uh be the solution to (2.6) and (2.9) respectively. If u∈H2(Ω−∪
Ω+) and g∈H2(Γ), then we have

‖∇u−∇uh‖0,Ω.h|logh|1/2(‖f‖0,Ω+‖g‖2,Γ), (2.10)
‖u−uh‖0,Ω.h2|logh|1/2(‖f‖0,Ω+‖g‖2,Γ). (2.11)

Note that the error estimate (2.10) is nearly optimal due to the existence of |logh|1/2.
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3 Gradient recovery for elliptic interface problem

In this section, we first summarize the polynomial preserving recovery(PPR) method pro-
posed by Zhang and Naga in [32, 33, 44] for finite element approximation of standard
elliptic problem, then based on which, we propose a new gradient recovery method for
elliptic interface problem.

3.1 Polynomial preserving recovery

For any vertex z and n∈Z+, let L(z,n) denote the union of elements in the first n layers
around z, i.e.,

L(z,n) :=
⋃
{T :T ∈Th,T∩L(z,n−1) 6=∅}, (3.1)

where L(z,0) :={z}.
The set of all mesh vertices and edges are denoted by Nh and Eh respectively. The

standard Lagrange basis of Vh is denoted by {φz :z∈Nh} with φz(z′)=δzz′ for all z,z′∈Nh.
Let us introduce the PPR gradient recovery operator Gh :Vh→Vh×Vh. For any vertex z,
let Kz be a patch of elements around z. Select all nodes in Nh∩Kz as sampling points and
fit a polynomial pz∈P2(Kz) in the least-squares sense at those sampling points, i.e.

pz=arg min
p∈P2(Kz)

∑
z̃∈Nh∩Kz

(uh−p)2(z̃). (3.2)

Then the recovered gradient at z is defined as

(Ghuh)(z)=∇pz(z).

After obtaining recovered gradient value at all nodal points, we define the recovered
gradient Gh on the whole domain by

Ghuh :=
∑
z∈Nh

(Ghuh)(z)φz. (3.3)

Remark 3.1. If uh is a function in Vh, then∇uh is a piecewise constant function and hence
is discontinuous on Ω. However, the recovered gradient Ghuh is a continuous piecewise
linear function. In that sense, Gh can be viewed as a smoothing operator to smooth a
discontinuous piecewise constant function into a continuous piecewise linear function.

To complete the definition of PPR, we need to define Kz. If z is an interior vertex, Kz
is defined as the smallest L(z,n) that guarantees the uniqueness of pz in (3.2) [32,33,44].
In the case that z∈Nh∪∂Ω, let n0 be the smallest positive integer such that L(z,n0) has
at least one interior mesh vertex. Then, we define

Kz=L(z,n0)∪{Kz̃ : z̃∈L(z,n0) and z̃ an interior vertex}.
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Remark 3.2. In order to avoid numerical instability, all discrete least-squares fittings are
carried out on a reference patch ωz.

The PPR gradient recovery operator Gh has the followings properties, as proved in
[19,32,33,44]:

I. Gh is a linear operator.

II. Gh preserves quadratic polynomials. Consequently, Gh enjoys the approximation
property

‖∇u−GhuI‖0,Ω.h2|u|3,Ω, ∀u∈H3(Ω), (3.4)

where uI is the linear interpolation of u in Vh.

III. ‖Ghvh‖0,Ω.‖∇vh‖0,Ω,∀vh∈Vh.

3.2 Improved polynomial preserving recovery operator

As we mentioned in Remark 3.1, standard PPR can be viewed a smoothing operator.
However, ∇u is discontinuous across the interface Γ for the elliptic interface problem,
and thus standard PPR won’t work since it provides continuous gradient approximation.
Noticing that in many cases, even though u have low global regularity due to the existence
of the interface, u|Ω− (or u|Ω+) is smooth, which motivates us to recover a piecewise
continuous gradient approximation instead.

Let Ωh be the body-fitted triangulation introduced in Subsection 2.2. The approximate
interface Γh divides the triangulation Ωh into two disjoint sets:

T −h :=
{
T ∈Th| all three vertices of T are in Ω−

}
, (3.5)

T +
h :=

{
T ∈Th| all three vertices of T are in Ω+

}
. (3.6)

Let V −h and V +
h be the continuous linear finite element spaces defined on T −h and T +

h

respectively.
Denote the PPR gradient recovery operator on V −h byG−h . ThenG

−
h is a linear bounded

operator from V −h to V −h ×V
−
h . Similarly, let G+

h be PPR gradient recovery operator from
V +
h to V +

h ×V
+
h . Then, for any uh∈Vh, we define the global gradient recovery operator

GIh :Vh→ (V −h ∪V
+
h )×(V −h ∪V

+
h ) as

(GIhuh)(z)=

{
(G−h uh)(z) if z∈Ω−h ,
(G+

h uh)(z) if z∈Ω+
h .

(3.7)

Specifically, we define (GIhuh)(z) according to the location of z:

Case 1. If z is far from the approximate interface Γh, (GIhuh)(z) is the standard PPR recov-
ered gradient at z.
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Case 2. If z is close to the approximate interface Γh, (GIhuh)(z) is given by fitting a quadratic
polynomial in the least-squares sense using sampling points only from T −h or only
from T +

h .

Case 3. If z is on approximate interface Γh, (GIhuh)(z) is given two values: one by (G−h uh)(z)
and the other by (G+

h uh)(z).

We call GIh as improved polynomial preserving recovery (IPPR) operator.

Remark 3.3. Given a function uh in Vh, GIhuh is not a function in Vh×Vh, since it is
two-valued on the approximate interface Γh as described in Case 3.

Remark 3.4. The choice of GIh is not limited to PPR gradient recovery operator, and in
fact, it can be any local gradient recovery operator such as weighted averaging gradient
recovery operator [1] and SPR gradient recovery operator [48, 49]. One can even use
different gradient recovery operators on two subdomains separated by Γh, for example,
PPR gradient recovery operator on V −h and SPR gradient recovery operator on V +

h . We
shall use PPR gradient recovery operator in this paper for convenience.

Remark 3.5. The IPPR operator can be generalized to the case when the domain Ω
is divided into serval subdomains by defining the gradient recovery operator piecewise in
each subdomain.

Moreover, we have the following approximation estimate for the IPPR gradient recov-
ery operator GIh.

Theorem 3.6. Let GIh:Vh→(V −h ∪V
+
h )×(V −h ∪V

+
h ) be the IPPR gradient recovery operator.

Given u∈H3(Ω−∪Ω+), then

‖GIhuI−∇u‖0,Ω.h2‖u‖3,Ω−∪Ω+ , (3.8)

where uI is interpolation of u into linear finite element space Vh.

Proof. Notice thatG−h andG+
h are the standard PPR gradient recovery operators. Formula

(3.4) implies that

‖G−h uI−∇u‖0,Ω−
h
.h2‖u‖3,Ω− , and ‖G+

h uI−∇u‖0,Ω+
h
.h2‖u‖3,Ω+ .

Therefore,

‖GIhuI−∇u‖20,Ω =‖G−h uI−∇u‖
2
0,Ω−

h

+‖G+
h uI−∇u‖

2
0,Ω+

h

.h4‖u‖23,Ω−+h
4‖u‖23,Ω+

.h4‖u‖3,Ω−∪Ω+ .
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4 Superconvergence Analysis
In this section, we prove that the IPPR gradient recovery method has superconvergence
for both mildly unstructured mesh and adaptive mesh.

4.1 Superconvergence on mildly unstructured mesh

We first introduce the definition of the mesh structure which guarantees the supercloseness
result.

Definition 4.1. 1. Two adjacent triangles are called to form an O(h1+α) approximate
parallelogram if the lengths of any two opposite edges differ only by O(h1+α).

2. The triangulation Th is called to satisfy Condition (σ,α) if there exist a partition
Th,1∪Th,2 of Th and positive constants α and σ such that every two adjacent triangles in
Th,1 form an O(h1+α) parallelogram and∑

T∈Th,2

|T |=O(hσ).

Under the above mesh condition, the following supercloseness result holds:

Theorem 4.1. Let u be the solution to variational problem (2.6) and uh be the finite
element solution to (2.9). If the body-fitted mesh satisfies Condition (σ,α) and u∈H3(Ω−∪
Ω+)∩W 2,∞(Ω−∪Ω+), then for any vh∈Vh,0, we have

(βh∇(u−uI),∇vh).h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+)|vh|1,Ω

+h
3
2 ‖u‖2,∞,Ω−∪Ω+ |vh|1,Ω,

(4.1)

and
‖∇(uI−uh)‖0,Ω.h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+)

+h
3
2 (‖u‖2,∞,Ω−∪Ω++‖g‖0,∞,Γ),

(4.2)

where ρ=min(α, σ2 , 1
2 ) and uI ∈Vh is the interpolation of u.

Proof. The proof is similar to the proof of Theorem 3.6 in [40] where we use the estimates
in [43] instead of [10].

Remark 4.2. If Γ=Γh or the flux jump g given by (2.5) vanishes with Γ smooth enough so
that |T−|.h4

T ( or |T+|.h4
T ), then one has the following O(h1+ρ) improved supercloseness

results

(βh∇(u−uI),∇vh).h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+)|vh|1,Ω, (4.3)

and

‖∇(uI−uh)‖0,Ω.h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+). (4.4)
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Remark 4.3. The difference between Theorem 4.1 and Theorem 3.6 in [40] lies in the
condition of mesh structure. The O(h2σ) irregular mesh condition in [40] is just a special
case of Condition (σ,α).

Remark 4.4. For the body-fitted mesh generated by Delaunay algorithm, the assumption
that two adjacent triangles form O(h1+α) approximate parallelogram is violated near
boundary and interface, however, the summation of the area of such type triangles is
bounded by O(hσ), and thus it satisfies Condition (σ,α).

The supercloseness result in Theorem 4.1 implies the following superconvergent result.

Theorem 4.5. Under the same hypothesis as in Theorem 4.1, then we have

‖∇u−GIhuh‖0,Ω.h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+)+

h
3
2 (‖u‖2,∞,Ω−∪Ω++‖g‖0,∞,Γ),

(4.5)

where ρ=min(α, σ2 , 1
2 ).

Proof. We decompose ∇u−GIhuh as (∇u−GIhuI)−(GIhuI−GIhuh), and then by triangle
inequality,

‖∇u−GIhuh‖0,Ω

≤‖∇u−GIhuI‖0,Ω+‖GIhuI−GIhuh‖0,Ω

≤‖∇u−GIhuI‖0,Ω+‖G−h uI−G
−
h uh‖0,Ω−

h
+‖G+

h uI−G
+
h uh‖0,Ω+

h

≤‖∇u−GIhuI‖0,Ω+‖∇(uI−uh))‖0,Ω−
h
+‖∇(uI−uh)‖0,Ω+

h

≤‖∇u−GIhuI‖0,Ω+‖∇(uI−uh)‖0,Ω,

(4.6)

where we have used the boundedness property of PPR gradient recovery operator G−h and
G+
h . The first term can be bounded by Theorem 3.6 and the second term is estimated in

Theorem 4.1, which completes the proof.

Remark 4.6. Under the same assumptions in Remark 4.2, one has the following improved
superconvergence result

‖∇u−GIhuh‖0,Ω.h1+ρ(‖u‖3,Ω−∪Ω++‖u‖2,∞,Ω−∪Ω+). (4.7)

4.2 Superconvergence on adaptive mesh

In this subsection, for simplicity, we assume that the interface Γ does not cut through
any element T ∈Th, i.e. Γ=Γh, which implies Ω−=Ω−h and Ω+=Ω+

h . Furthermore, we
assume that the solution u to (2.6) has a single singularity on the interface Γ, and without
loss of generality, we assume that the singularity is at the origin and u− (or u+) can be
decomposed into a smooth part w− (or w+) and singular part v− (or v+), i.e.,

u−=w−+v−, and u+=w++v+, (4.8)
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where ∣∣∣∣∣ ∂mw−

∂xi∂ym−i

∣∣∣∣∣.1, and
∣∣∣∣∣ ∂mv−

∂xi∂ym−i

∣∣∣∣∣.rδ−m, (4.9)

and ∣∣∣∣∣ ∂mw+

∂xi∂ym−i

∣∣∣∣∣.1, and
∣∣∣∣∣ ∂mv+

∂xi∂ym−i

∣∣∣∣∣.rδ−m, (4.10)

with r=
√
x2+y2 and 0<δ<2 being a constant.

For any edge e of the mesh Th, let he be the length of the edge and re be the distance
from the origin to the midpoint of e. If e is an interior edge, denote Ωe to be the patch
of e consisting of two triangles sharing the edge e. In addition, let h'minT∈Th

hT and N
be the number of vertices of Th. To get superconvergence, one also needs the following
restriction on mesh structure.

Definition 4.2. The triangulation Th is said to satisfy Condition (α,σ,µ) if there exist
constants α>0, σ≥0, and µ>0 such that the interior edge can separated into two parts
Eh = E1,h⊕E2,h: Ωe forms an O

(
h1+α
e /rα+µ(1−α)e

)
parallelogram for ∀e ∈ E1,h and the

number of edges in E2,h satisfies #E2,h.Nσ.

Note that the above mesh condition is a practical assumption for adaptive mesh as
shown in [41]. In addition, we assume hT'r1−µ

T hµ for any T∈Th, and then we can establish
the following supercloseness result on the adaptive mesh.

Theorem 4.7. Let u be the solution to the variational problem (2.6) and uh be the fi-
nite element solution to (2.9). Suppose the adaptive refined mesh Th satisfies Condition
(α,σ,δ/2), and hT ' r1−δ/2

T hδ/2 for any T ∈Th. If u satisfied (4.8)-(4.10), then for any
vh∈Vh,0, we have

(βh∇(u−uI),∇vh).
1+(lnN)1/2

N1/2+ρ ‖∇vh‖0,Ω, (4.11)

and

‖β1/2
h (∇uI−∇uh)‖0,Ω.

1+(lnN)1/2

N1/2+ρ ‖∇vh‖0,Ω, (4.12)

where ρ=min
(
α
2 , 1−σ

2

)
and uI is the linear interpolation of u.

Proof. First, one can decompose (βh∇(u−uI),∇vh) as

(βh∇(u−uI),∇vh)
=(β−h (∇u

−−u−I ),∇vh)Ω−+(β+(∇u+−u+I ),∇vh)Ω+

=I1+I2.



12

Lemma 3.3 in [41] implies the following estimates for I1 and I2,

I1.
1+(lnN)1/2

N1/2+ρ ‖∇vh‖0,Ω,

I2.
1+(lnN)1/2

N1/2+ρ ‖∇vh‖0,Ω,

which completes the proof of (4.11). By (2.6) and (2.9), also noticing that Γ= Γh and
β=βh, we have

(βh∇(uI−uh),∇vh)=(βh∇(uI−u),∇vh).

Taking vh=uI−uh gives (4.12).

Before presenting our main superconvergent theorem on the adaptively refined mesh,
we need to estimate gradient recovery operator analogous to Theorem 3.6.

Theorem 4.8. Under the same hypothesis as in Theorem 4.7. Then

‖∇u−GIhuI‖0,Ω.
1+(lnN)1/2

N
. (4.13)

Proof. The definition of GIh produces

‖∇u−GIhuI‖20,Ω =‖∇u−−G−h u
−
I ‖

2
0,Ω−+‖∇u

+−G+
h u

+
I ‖

2
0,Ω+ . (4.14)

Note that u− (or u+) has the decomposition (4.8) and G−h (or G+
h ) is the standard PPR

gradient recovery operator. Lemma 5.2 in [41] implies

‖∇u−−G−h u
−
I ‖0,Ω−.

1+(lnN)1/2

N
, (4.15)

‖∇u+−G+
h u

+
I ‖0,Ω+ .

1+(lnN)1/2

N
. (4.16)

Combing (4.14)-(4.16) gives (4.13).

Then we can prove the superconvergence as follows.

Theorem 4.9. Under the same hypothesis as in Theorem 4.7. Then

‖β1/2(∇u−GIhuh)‖0,Ω.
1+(lnN)1/2

N1/2+ρ , (4.17)

where ρ=min
(
α
2 , 1−σ

2

)
.

Proof. The proof is essentially the same as in Theorem 4.5 where one should use Theo-
rems 4.8 and 4.7 instead of Theorems 3.6 and 4.1.
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Using the IPPR gradient recovery operator GIh, one can define a local a posteriori error
estimator on element T ∈Th as

ηT =‖β1/2(GIhuh−∇uh)‖0,T , (4.18)

and the corresponding global error estimator as

ηh=

∑
T∈Th

η2
T

1/2

. (4.19)

Theorem 4.9 implies that ηh is asymptotically exact a posteriori error estimator for
elliptic interface problem.

Theorem 4.10. Under the same hypothesis as in Theorem 4.7. If

1
N1/2 .‖β

1/2(∇(u−uh))‖0,Ω, (4.20)

then ∣∣∣∣∣ ηh
‖β1/2(∇u−∇uh)‖0,Ω

−1
∣∣∣∣∣. 1+(lnN)1/2

Nρ
, (4.21)

where ρ=min
(
α
2 , 1−σ

2

)
.

Remark 4.11. Assumption (4.20) is reasonable according to lower bounded estimates of
approximation by finite element spaces [23,29].

5 Numerical Examples

In this section, we present several numerical examples to illustrate the superconvergence
of the IPPR gradient recovery method and confirm the theoretical results given in the
previous section. We also make numerical comparisons to standard PPR method [32,33,44]
to show the effectiveness. For convenience, we shall use the following error measurements
in all examples:

De := ‖u−uh‖1,Ω, Die :=‖∇uI−∇uh‖0,Ω, (5.1)
Dre := ‖∇u−GIhuh‖0,Ω, Dpe :=‖∇u−Ghuh‖0,Ω. (5.2)

We would like to remark that all convergence rate will be computed in the degree
of freedom (Dof), and since Dof≈ h−2 for a two-dimensional quasi-uniform mesh, the
corresponding convergent rate in mesh size h is twice as much as what we present in the
tables.
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Example 5.1. In this example, we consider the elliptic interface problem (2.1) in the
square domain Ω=(−1,1)×(−1,1) with a circular interface of radius r0 =0.5 as studied
in [28]. The exact solution is

u(z)=


r3

β− if z∈Ω−,
r3

β+ +
(

1
β−−

1
β+

)
r3

0 if z∈Ω+,

where r=
√
x2+y2.
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Figure 1: Finite element mesh and solution for Example 5.1 with β+=10,β−=1: (a) Body-fitted mesh on the
second level; (b) Finite element solution on the body-fitted mesh.
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Figure 2: Plot of recovered gradient for Example 5.1 with β+=10,β−=1: (a) x-component; (b) y-component.
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Here we use five different levels of body-fitted meshes generated by a Delaunay mesh
generator. Figure 1(a) plots the second level body-fitted mesh and Figure 1(b) plots the
finite element solution on such a mesh. Figure 2 shows the recovered gradient.

Table 1: Numerical results for Example 5.1 with β+=10,β−=1.
Dof De order Die order Dre order Dpe order
129 1.35e-01 – 1.63e-02 – 1.34e-01 – 2.44e-01 –
481 7.25e-02 0.48 5.00e-03 0.90 2.30e-02 1.34 1.80e-01 0.23
1857 3.69e-02 0.50 1.40e-03 0.94 6.82e-03 0.90 1.30e-01 0.24
7297 1.85e-02 0.50 3.76e-04 0.96 1.84e-03 0.96 9.24e-02 0.25
28929 9.29e-03 0.50 9.81e-05 0.97 4.78e-04 0.98 6.52e-02 0.25

Table 2: Numerical results for Example 5.1 with β+=1000,β−=1.
Dof De order Die order Dre order Dpe order
129 1.25e-01 – 1.51e-02 – 1.47e-01 – 2.76e-01 –
481 6.76e-02 0.47 4.63e-03 0.90 2.29e-02 1.41 2.01e-01 0.24
1857 3.45e-02 0.50 1.29e-03 0.95 6.78e-03 0.90 1.45e-01 0.24
7297 1.73e-02 0.50 3.39e-04 0.98 1.83e-03 0.96 1.03e-01 0.25
28929 8.68e-03 0.50 8.70e-05 0.99 4.75e-04 0.98 7.24e-02 0.25

Table 3: Numerical results for Example 5.1 with β+=1000000,β−=1.
Dof De order Die order Dre order Dpe order
129 1.25e-01 – 1.51e-02 – 1.47e-01 0.00 2.76e-01 –
481 6.76e-02 0.47 4.63e-03 0.90 2.29e-02 1.41 2.01e-01 0.24
1857 3.45e-02 0.50 1.29e-03 0.95 6.78e-03 0.90 1.45e-01 0.24
7297 1.73e-02 0.50 3.39e-04 0.98 1.83e-03 0.96 1.03e-01 0.25
28929 8.68e-03 0.50 8.70e-05 0.99 4.75e-04 0.98 7.25e-02 0.25

Table 4: Numerical results for Example 5.1 with β+=1,β−=1000000.
Dof De order Die order Dre order Dpe order
129 5.27e-01 – 6.02e-02 – 1.84e-01 0.00 3.51e-01 –
481 2.64e-01 0.53 1.70e-02 0.96 3.06e-02 1.36 2.14e-01 0.38
1857 1.32e-01 0.51 4.66e-03 0.96 8.06e-03 0.99 1.48e-01 0.28
7297 6.60e-02 0.51 1.26e-03 0.96 2.10e-03 0.98 1.03e-01 0.26
28929 3.30e-02 0.50 3.37e-04 0.96 5.40e-04 0.98 7.25e-02 0.26

Tables 1-4 show the numerical results for four typical different jump ratios: β−/β+=
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1/10 (moderate jump), β−/β+=1/1000 (large jump), β−/β+=1/1000000 (huge jump),
and β−/β+=1000000 (huge jump). In all different cases, optimal O(h) convergence can
be observed for H1-semi error of the finite element solution as given in Theorem 2.2.
Notice that in this example, g=0 and Γ is arbitrary smooth. As discussed in Remark 4.2,
one can have the supercloseness of O(h2) as observed in Column 5 of Tables 1-4. We also
notice that, for the convergence rate of recovered gradients, IPPR (Dre) superconverges
at the order of O(h2) while PPR (Dpe) converges suboptimally at the order of O(h0.5).

Example 5.2. In this example, we consider the flower-shape interface problem as
studied in [31, 46]. The computational domain is (−1,1)×(−1,1). The interface curve Γ
in polar coordinate is given by

r=
1
2+

sin(5θ)
7 ,

which contains both convex and concave parts. The diffusion coefficient is piecewise con-
stant with β−=1 and β+=10. The right hand function f in (2.1) is chosen to match the
exact solution

u(z)=

{
e(x

2+y2), if z∈Ω+

0.1(x2+y2)2−0.01ln(2
√
x2+y2), if z∈Ω+,

and the jump conditions at interface (2.4)-(2.5) are also provided by the exact solution.
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Figure 3: Finite element mesh and solution for Example 5.2: (a) Body-fitted mesh on the first level; (b) Finite
element solution on the body-fitted mesh.

We use Börgers algorithm [5] to generate the body-fitted meshes, with the first level of
mesh shown in Figure 3(a) and the finite element solution in Figure 3(b). Figure 4 gives
the plot of recovered gradient.

In Table 5, one can see that De decays at the rate of O(h) and Die superconverges
at the rate of O(h1.5) which is consistent with Theorem 4.1. IPPR (Dre) has an O(h1.5)
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Figure 4: Plot of recovered gradient for Example 5.2: (a) x-component; (b) y-component.

superconvergence that agrees with Theorem 4.5. However, no convergence is observed for
standard PPR gradient recovery (Dpe) since the exact solution is only smooth on each
subdomain.

Table 5: Convergence rate for Example 5.2.
Dof De order Die order Dre order Dpe order
1089 7.25e-02 – 1.29e-02 – 1.15e-02 – 6.40e-01 –
4225 3.72e-02 0.49 4.67e-03 0.75 3.74e-03 0.83 6.35e-01 0.01
16641 1.87e-02 0.50 1.68e-03 0.74 1.19e-03 0.83 6.36e-01 -0.00
66049 9.42e-03 0.50 6.06e-04 0.74 3.75e-04 0.84 6.34e-01 0.00
263169 4.72e-03 0.50 2.18e-04 0.74 1.27e-04 0.78 6.34e-01 0.00
1050625 2.36e-03 0.50 7.69e-05 0.75 4.49e-05 0.75 6.33e-01 0.00

Example 5.3 This example is the same as the one used in [17]. We decompose the
computational domain Ω=(−1,1)×(−1,1) into two parts: Ω−={z=(x,y)∈Ω :x>0,y>0}
and Ω+=Ω\Ω−. The diffusion coefficient β in (2.1) is chosen as

β(z)=

{
β− if z∈Ω−,
1 if z∈Ω+,

with β− being a constant. When f =0 in (2.1), the exact solution u in polar coordinate
is given by

u(r,θ)=
{
rµcos(µ(θ−π/4)) if 0≤θ≤π/2,
rµνcos(µ(θ−5π/4)) if π/2≤θ≤2π,

where

µ=
4
π

(√
3+β−
1+3β−

)
and ν=−β− sin(µπ/4)

sin(3µπ/4) .
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Note that u∈H1+s(Ω±) for any 0<s<µ.
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Figure 5: Adaptive refined and solution of Example 5.3 with β−=10000. (a) Adaptive refined mesh. (b). Finite
element solution on adaptive refined mesh h.

When β−>1, there is a singularity at the origin. To obtain optimal convergence rate,
we use the adaptive finite element method based on the recovery-type a posteriori error
estimator (4.18). In the numerical computation, we use the bulk marking strategy by [16]
with θ=0.2 , which marks a minimal setMk⊂Tk of elements in the following sense∑

T∈Mk

η2
T ≥θ

∑
T∈Tk

η2
T , (5.3)

where k means the level of adaptive refinement. We start with a uniform initial mesh T0
consisting of 32 right triangles. Here, we only consider the cases when β−=10,100,1000,
and 10000. Figure 5(a) plots an adaptive refined mesh and 5(b) shows the finite element
solution when β−= 10000. It shows clearly that the refinement is concentrated on the
singularity point.

Figures 6(a) and 6(b) give the numerical convergence rates for β−= 1000 and β−=
10000 respectively. In both cases, optimal convergence of O(N−0.5) for energy error and
superconvergence rate of O(N0.95) can be observed, which is consistent with Theorem 4.9.
We also plot the effective index

κ=
ηh

‖β1/2(∇u−∇uh)‖0,Ω

in Figure 7. It shows the error indicator (4.18) is an asymptotically exact a posteriori
error estimator for interface problem as in Theorem 4.10.

Example 5.4. In the example, we consider the Kellogg problem which is the bench-
mark problem of adaptive finite element method for interface problem studied by, for
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Figure 6: Convergence rates for Example 5.3: (a) β−=1000; (b) β−=10000.
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Figure 7: Graph of effective index of Example 5.3

example, [8, 11, 22, 30]. We choose the computational domain Ω= (−1,1)×(−1,1), and
consider (2.1) with β(x)=R in the first and third quadrants and β(x)=1 in the second
and fourth quadrants. When f = 0 in (2.1), the exact solution u in polar coordinates is
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Figure 8: Adaptive refined and solution of Example 5.3 with β−=10000. (a) Adaptive refined mesh. (b). Finite
element solution on adaptive refined mesh h.

given by u(r,θ)=rεµ(θ) with

µ(θ)=


cos((π/2−ξ)ε)·cos((θ−π/2+ν)ε) if 0≤θ≤π/2,
cos(νε)·cos((θ−π+ξ)ε) if π/2≤θ≤π,
cos(ξε)·cos((θ−π−ν)ε) if π≤θ≤3π/2,
cos((π/2−ν)ε)·cos((θ−3π/2−ξ)ε) if 3π/2≤θ≤2π,

with the constants ε,R,ξ and ν satisfying the nonlinear relations in [11,22]. Here we choose

ε=0.1, ν=π/4, ξ=−14.9225565104455152, R=161.4476387975881,

and then the exact solution u∈H1+ε with a singularity at the origin.
We start with a uniform initial mesh T0 consisting of 128 right triangles and adopt

bulk marking strategy by [16] with θ=0.2 as in the previous example. Figure 8(a) plots
one adaptive refined mesh and 8(a) plots its corresponding finite element solution. It
clearly indicates that recovery type a posteriori error estimator (4.18) successfully captures
the singularity without introducing any overrefinement. However, the recovery type a
posteriori error estimator based on classical gradient recovery operators like SPR or PPR
have the problem of overrefinement as discussed in [8].

Figure 9(a) shows the numerical errors. One can observe the optimal convergence rate
O(N0.5) for energy error and O(N0.58) superconvergence rate for recovered energy error.
Figure 9(b) gives the history of effective index. Due to the extreme low global regularity of
exact solution, the recovery type a posteriori error estimator (4.18) is not asymptotically
exact. However, it serves as a robust a posteriori error estimator for interface problem as
illustrated in Figure 8(a).
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Figure 9: Convergence rates for Example 5.3: (a) Errors; (b) Effective index.

6 Conclusion

In this paper, we develop a new gradient recovery method for elliptic interface problem
based on the body-fitted mesh. Specifically, we define an improved gradient recovery
operator, which overcomes the drawback that classical gradient recovery method fails to
produce superconvergence results when the solution lack regularity at the interface. The
superconvergence of this method is proved for both mildly unstructured mesh and adaptive
mesh. Several two-dimensional numerical examples are given to confirm our theoretical
results, and verify the robustness of the method served as a posteriori error estimator. As
a continuous study of this work, we develop gradient recovery methods based on unfitted
mesh for elliptic interface problem add two references on our recent paper.
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