
Noname manuscript No.
(will be inserted by the editor)

Semiclassical limit of the Schrödinger-Poisson-
Landau-Lifshitz-Gilbert system

Lihui Chai · Carlos J. Garćıa-Cervera ·
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Abstract The Schrödinger-Poisson-Landau-Lifshitz-Gilbert (SPLLG) system
is an effective microscopic model that describes the coupling between conduc-
tion electron spins and the magnetization in ferromagnetic materials. This
system has been used in connection to the study of spin transfer and mag-
netization reversal in ferromagnetic materials. In this paper, we rigorously
prove the existence of weak solutions to SPLLG and derive the Vlasov-Poisson-
Landau-Lifshitz-Glibert system as the semiclassical limit.

Keywords Schrödinger-Poisson-Landau-Lifshitz-Gilbert · Semiclassical
limit · Spin transfer · Magnetization

1 Introduction

This paper is devoted to the study of spin-magnetization coupling in fer-
romagnetic materials by analyzing the semiclassical limit of the Schrödinger-
Poisson-Landau-Lifshitz-Gilbert (SPLLG) system. The spin-magnetization cou-
pling plays a key role in the active control of domain-wall motion [29,28,17]
and magnetization reversal in magnetic multilayers [4], which are the core
techniques used in magnetoresistance random access memories and race-track
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memories [9]. The SPLLG system is used to describe a mechanism known as
spin-transfer torque that transfers the spin angular momentum to magnetiza-
tion dynamics via spin-magnetization coupling, and was introduced in the the
seminal works of Slonczweski [34] and Berger [7,8]. The SPLLG system com-
bines two different models, one to describe the conduction electron spin and
one to describe the magnetization dynamics, and will be described in details
as follows.
Model description. We start from the quantum mixed-state theory where
the pure state wave functions {ψεj}∞j=1 satisfy the following Schrödinger equa-
tion [31],

iε∂tψ
ε
j(x, t) = −ε

2

2
∆ψεj(x, t) + V εψεj(x, t)−

ε

2
mε · σ̂ψεj(x, t). (1.1)

Here 0 < ε � 1 is the renormalized Planck constant in the semiclassical
regime, ψεj = (ψεj,+, ψ

ε
j,−)T stands for the j-th spinor with “±” indicating spin

up and down respectively, and the Pauli matrices σ̂ = (σ1, σ2, σ3)T are defined
as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

The position density ρε, current density jε, spin density sε, and spin current
Jεs are given by

ρε(x, t) =

∞∑
j=1

λεj |ψ
ε
j(x, t)|2, (1.3a)

jε(x, t) = ε

∞∑
j=1

λεj Im
(
ψεj
†
(x, t)∇xψεj(x, t)

)
, (1.3b)

sε(x, t) =

∞∑
j=1

λεjTrC2

(
σ̂
(
ψεj(x, t)ψ

ε
j
†
(x, t)

))
, (1.3c)

Jεs (x, t) = ε

∞∑
j=1

λεjIm
(

TrC2

(
σ̂ ⊗∇xψεj(x, t)ψ

ε
j
†
(x, t)

))
, (1.3d)

where the coefficients λεj ≥ 0 are the occupation probabilities of the L2(R3)-

orthonormal initial states {ϕεj}∞j=1. Note that ψεj
†

is the complex conjugate
transpose of ψεj , TrC2 is the trace operator of a 2× 2 complex matrix, and ⊗
means a tensor product of two 3-vectors. Therefore sε is a 3-vector and Jεs is
a 3× 3 matrix.

The potential V ε in (1.1) is given self-consistently by the Coulomb inter-
action,

V ε = −N ∗ ρε, (1.4)
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with the kernel function given by

N(x) = − 1

4π|x|
, (1.5)

and ∗ is the convolution operator in x.
We assume that the ferromagnetic material occupies a compact domain Ω

with smooth boundary. The magnetization mε satisfies the Landau-Lifshitz-
Gilbert equation [24,20],

∂tm
ε = −mε ×Hε

eff + αmε × ∂tmε, with |mε(x, t)| = 1, and x ∈ Ω, (1.6)

with Neumann boundary conditions,

∂νm
ε = 0 on ∂Ω, (1.7)

where α is the dimensionless damping constant, and ν is the outward unit
normal vector on ∂Ω. The first term on the right-hand-side of (1.6) describes
the precession of magnetization around the local effective field Hε

eff, and the
second term is the Gilbert damping.

In (1.6), the effective fieldHε
eff is defined as the variational derivative (with

respect to mε) of the Landau-Lifshitz energy

FLL =

∫
Ω

(
1

2
|∇mε|2 + w(mε)− 1

2
Hε

s ·mε − ε

2
sε ·mε

)
dx, (1.8)

which is given by

Hε
eff = −δFLL

δmε
= ∆mε − w′(mε) +Hε

s +
ε

2
sε. (1.9)

The term w(mε) in (1.8) stands for the anisotropy energy, and we assume
that w ≥ 0 is a polynomial up to degree 4. In particular, this assumption is
satisfied for uniaxial anisotropy given by

w(mε) = mε
2
2 +mε

3
2, (1.10)

and the cubic anisotropy given by [23]

w(mε) = mε
1
2mε

2
2 +mε

2
2mε

3
2 +mε

3
2mε

1
2. (1.11)

We use w′(mε) in the variational derivative instead of ∇mw(mε) for ease
of notation. The coupling term sε ·mε gives rise to the spin transfer torque,
which converts the spin angular momentum to magnetization dynamics; and
Hε

s = −∇u is the stray field, where the magnetostatic potential u is given by

u = ∇N ∗ ·mε, (1.12)

and thus

Hε
s(x) = −∇ (∇N ∗ ·mε) . (1.13)
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Main result. Our previous work [16] introduced a systematic (but formal)
way of deriving mean-field models for spin-magnetization coupling in ferro-
magnetic materials using the Wigner transform,

W ε(x,v, t) =
1

(2π)3

∫
R3
y

∞∑
j=1

λεjψ
ε
j

(
x+

εy

2
, t
)
ψεj
†
(
x− εy

2
, t
)

eiv·y dy .

(1.14)
We also numerically implemented the mean-field models in three dimensions,
and applied them to predict current-driven domain wall motion [15]. In the
current work, we rigorously prove that the SPLLG system has the Vlasov-
Poisson-Landau-Lifshitz-Gilbert (VPLLG) system as its semiclassical limit.
We describe the main result in the following theorem.
Theorem. Under certain assumptions on the initial conditions to be specified
later, there exists a sequence of solutions (W ε, mε) to the SPLLG system
(1.1) - (1.6) and (1.14), such that

W ε ε→0−−−→W in L∞((0, T ), L2(R3
x × R3

v)) weak* ,

mε ε→0−−−→m in L∞((0, T ), H1(Ω)) weak* ,

and (W,m) is a weak solution to the following VPLLG system,

∂tW = −v · ∇xW +∇xV · ∇vW +
i

2
[σ̂ ·m, W ],

∂tm = −m×Heff + αm× ∂tm,

where the potential V is given by

V = −N ∗ ρ,

and the effective magnetic field Heff is given by

Heff = ∆m− w′(m) +Hs, Hs(x) = −∇ (∇N ∗ ·m) ,

with N given in (1.5) and the density ρ =

∫
R3
v

W dv.

Related works. The Wigner transform, first introduced by Wigner in [35], is
a powerful tool in studying the semiclassical limit of quantum systems. Under
the Wigner transform, the Schrödinger equation becomes a phase-space quan-
tum Liouville equation. Markowich and Neuzert proved that the semiclassical
limit of the Schrödinger equation in the presence of an external potential is
given by a Liouville equation [27]. There is also a natural connection between
semiclassical limits and homogenization analysis, as discussed in [19]. The elec-
tron dynamics with spin were considered by the Wigner transform in [3] with
a magnetic field given by a fixed, external vector potential. In the spin-less
case, the existence and uniqueness of the three-dimensional Schrödinger sys-
tem with a self-consistent Poisson potential were analyzed in [10,2,14], and
the semiclassical limit of the Schrödinger-Poisson system to the Vlasov-Poisson
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system was derived rigorously in [25,30], and with an additional periodic po-
tential in [26,5,6]. The Landau-Lifshitz-Gilbert (LLG) system has also been
intensively studied in the literature. Alouges and Soyeur studied the global
weak solutions and showed the existence and non-uniqueness in [1]. In [13,
12], local existence and uniqueness of the regular solution was proven in three
dimensions, and the global existence of regular solutions was proven in two
dimensions for small initial data. The spin-polarized dynamics was studied
in [18] by coupling the LLG system with a spin-transport equation, and the
existence and non-uniqueness of the weak solutions was discussed in three di-
mensions. The global existence of weak solutions to several model equations of
magnetization reversal by spin-polarized current was also studied in [22]. The
existence of a global smooth solution of the spin-polarized transport system
was provided in one and two dimensions in [21] and [32], respectively.

Organization of the paper. In Section 2, we prove the existence of weak
solutions to the Schödinger-Poisson-Landau-Lifshitz-Gilber (SPLLG) system.
We introduce the assumptions, conserved quantities and a priori estimates
needed for taking the semiclassical limit of SPLLG in Section 3. In Section 4,
we rigorously prove the semiclassical limit as the Vlasov-Poisson-Landau-
Lifshitz-Gilbert system.

2 Existence of the Weak Solution

Without loss of generality, we consider ε = 1 and the following coupled
system consisting of the Schrödinger equation{

i∂tψj = − 1
2∆ψj + Vψj − 1

2m · σ̂ψj , j ∈ N, t > 0,

ψj(t = 0,x) = ϕj(x),
(2.1)

and the Landau-Lifshitz-Gilbert equation
∂tm = −m×H + αm× ∂tm, (x, t) ∈ Ω × R+,

m(t = 0,x) = m0(x), x ∈ Ω,
∂νm = 0, (x, t) ∈ ∂Ω × R+,

(2.2)

where the Poisson potential

V = −N ∗ ρ[Ψ ], (2.3)

the effective field

H = ∆m− w′(m) +Hs +
1

2
s[Ψ ], (2.4)
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and ρ[Ψ ], s[Ψ ] and Hs given by

ρ[Ψ ] =

∞∑
j=1

λj |ψj |2, (2.5a)

s[Ψ ] =

∞∑
j=1

λjTrC2

(
σ̂
(
ψjψ

†
j

))
, (2.5b)

Hs = −∇(∇N ∗ ·m), (2.5c)

respectively. Here N(x) and w(m) are given by (1.5) and (1.10) respectively,
and we have used the short-hand notation Ψ = {ψj}j∈N and introduce Φ =
{ϕj}j∈N to be used later. For each λ = {λj}∞j=1 and each r ∈ R, we introduce

the following Hilbert norm for Ψ defined on some measurable domain K ⊂ R3,

‖Ψ‖2Hrλ(K) :=

∞∑
j=1

λj‖ψj‖2Hr(K), (2.6)

then we say Ψ ∈ Hrλ(K) if ‖Ψ‖Hrλ(K) <∞, and we denote H0
λ(K) by L2

λ(K).
We use the following definition of weak solutions:

Definition 1 Let Φ ∈ H1
λ(R3), m0 ∈ H1(Ω), |m0| = 1 a.e. in Ω. We say

(Ψ ,m) is a weak solution to the Schrodinger-Poisson-Landau-Lifshitz system
(2.1)-(2.5) if, for all T > 0,

– Ψ ∈ L∞([0,∞),H1
λ(R3)), m ∈ L∞([0,∞), H1(Ω)) ∩ H1([0, T ] × Ω), and

|m| = 1 a.e. .
– For all χ ∈ H1([0, T ]×Ω) and η ∈ C([0, T ], H1

c (R3)), the following holds

i

∫ T

0

∫
R3

∂tψjη =
1

2

∫ T

0

∫
R3

∇ψj · ∇η +

∫ T

0

∫
R3

Vψjη

− 1

2

∫ T

0

∫
R3

m · σ̂ψjη,∫ T

0

∫
Ω

∂tm · χ = α

∫ T

0

∫
Ω

m× ∂tm · χ−
∫ T

0

∫
Ω

(m×H) · χ,

(2.7)

where ∫ T

0

∫
Ω

m×H · χ =

∫ T

0

∫
Ω

m×
(
Hs +

1

2
s− w′(m)

)
· χ

−
∫ T

0

∫
Ω

m×∇m · ∇χ,

and V , ρ, s, and Hs are given as (2.3)-(2.5).
– Ψ(x, 0) = Φ(x) and m(x, 0) = m0(x) in the trace sense.

We summarize the result in the following existence theorem:

Theorem 1 Let Ω be a bounded domain with smooth boundary. Given any
initial conditions with Φ ∈ H1

λ(R3) and m0 ∈ H1(Ω), there exists Ψ ∈
L∞([0,∞),H1

λ(R3)) and m ∈ L∞([0,∞), H1(Ω)) ∩ H1([0, T ] × Ω) for all
T > 0, such that (Ψ ,m) is a weak solution to (2.1)-(2.2).
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2.1 Bounded domain

We first consider the Schrödinger equation in K = {x ∈ R3, |x| < R} in
the coupled SPLLG system, i.e., for each λ = {λj}∞j=1,


i∂tψj = − 1

2∆ψj + Vψj − 1
2m · σ̂ψj , j ∈ N, (x, t) ∈ K × R+,

ψj(t = 0,x) = ϕj(x), x ∈ K
ψj(x, t) = 0, (x, t) ∈ ∂K × R+,

(2.8)

with the potential given by the Poisson equation{
−∆V = ρ[Ψ ] (x, t) ∈ K × R+

V (x, t) = 0 (x, t) ∈ ∂K × R+,
(2.9)

and magnetization given by the Landau-Lifshitz-Gilbert equation
∂tm = −m×H + αm× ∂tm, (x, t) ∈ Ω × R+,

m(t = 0,x) = m0(x), x ∈ Ω,
∂νm = 0, (x, t) ∈ ∂Ω × R+.

(2.10)

We assume the initial condition satisfies |m0(x)| ≡ 1 a.e. in Ω, and let

Ψ ≡ 0, in
(
R3\K

)
× R+, and m ≡ 0, in

(
R3\Ω̄

)
× R+.

The main result of this subsection is summarized as the following theorem.

Theorem 2 Let Ω be a bounded domain with smooth boundary. Given K ⊂
R3 as a ball large enough such that Ω ⊂ K, and given initial condition
with Φ ∈ H1

λ(K) and m0 ∈ H1(Ω), then for all T > 0, there exists Ψ ∈
L∞([0,∞),H1

λ(K)) and m ∈ L∞([0,∞), H1(Ω)) ∩H1([0, T ] × Ω), such that
the system (2.8) - (2.10) holds weakly.

To prove this theorem, similar to [1], instead of directly considering (2.10),
we first construct weak solutions to a penalized problem, where the constraint
|m| ≡ 1 is relaxed,

α∂tm+m× ∂tm = H − k(|m|2 − 1)m, (x, t) ∈ Ω × R+,

m(t = 0,x) = m0(x), x ∈ Ω,
∂νm = 0, (x, t) ∈ ∂Ω × R+,

(2.11)

with k > 0 as a penalization constant. We then apply the Galerkin method to
show that the system (2.8) and (2.11) has weak solutions and then let k go to
infinity to get weak solutions to the system (2.8) and (2.10).



8 Lihui Chai et al.

Galerkin approximation.

Let {θn}n∈N be the normalized eigenfunctions of

−∆θ = µθ in K, θ|∂K = 0. (2.12)

Let {ωn}n∈N be the normalized eigenfunctions of

−∆ω = µω in Ω, ∂νω|∂Ω = 0. (2.13)

Note that θn ∈ C∞(K̄) and ωn ∈ C∞(Ω̄). We define the orthogonal projec-
tions ΠK

N and ΠΩ
N as

ΠK
N (u) =

N∑
n=1

(u, θn)L2(K)θn, ∀u ∈ H1(K), (2.14)

ΠΩ
N (u) =

N∑
n=1

(u, ωn)L2(Ω)ωn, ∀u ∈ H1(Ω). (2.15)

Consider the approximate solutions ΨN = {ψjN}j∈N and mN in the forms of

ψjN (x, t) =

N∑
n=1

αjn(t)θn(x), mN (x, t) =

N∑
n=1

βn(t)ωn(x), (2.16)

where αjn and βn are two- and three-dimensional vector-valued functions
respectively, and are chosen such that∫

K

(
i∂tψjN +

1

2
∆ψjN − VNψjN +

1

2
mN · σ̂ψjN

)
θn = 0,

ψjN (·, 0) = ΠK
Nϕj ,

(2.17)

and∫
Ω

(
α∂tmN +mN × ∂tmN −HN + k(|mN |2 − 1)mN

)
ωn = 0,

mN (·, 0) = ΠΩ
Nm0,

(2.18)

for n = 1, 2, ..., N , where VN satisfies −∆VN = ρN , VN |∂K = 0, HN =

∆mN +HsN + 1
2sN −w

′(mN ), HsN = −∇(∇N ∗ ·mN ), ρN =

∞∑
j=1

λj |ψjN |2,

and sN =

∞∑
j=1

λjTrC2

(
σ̂ψjNψ

†
jN

)
. The local (in time) existence of solutions

to the Cauchy problem (2.17)-(2.18) follows from Picard’s theorem.
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Lemma 1 Let (ΨN ,mN , VN ,ρN , sN ,HsN ) be the solution to (2.17)-(2.18).
Then the interval of definition of (ΨN ,mN , VN ,ρN , sN ,HsN ) can be extended
to [0,∞), with

ΨN ∈ L∞(R+,H1
λ(K)), (2.19a)

∂tΨN ∈ L∞(R+,H−1
λ (K)), (2.19b)

mN ∈ L∞(R+, H1(Ω)), (2.19c)

∂tmN ∈ L2(R+, L2(Ω)), (2.19d)

w′(mN ) ∈ L∞(R+, Lr(Ω)), 1 ≤ r ≤ 2, (2.19e)

ρN ∈ L∞(R+, Lr(K)), 1 ≤ r ≤ 3, (2.19f)

sN ∈ L∞(R+, Lr(K)), 1 ≤ r ≤ 3, (2.19g)

VN ∈ L∞(R+, L6(K)), (2.19h)

∇VN ∈ L∞(R+, L2(K)), (2.19i)

HsN ∈ L∞(R+, L2(R3)), (2.19j)

|mN |2 − 1 ∈ L∞(R+, L2(Ω)), (2.19k)

and the sequences are uniformly bounded in the corresponding spaces.

Proof Multiplying (2.17) by α†jn, summation over n, and separating the real
and imaginary parts produce

d

dt

∫
K

|ψjN |2 = 0, (2.20)

therefore

‖ψjN (t, ·)‖L2(K) = ‖ΠK
N (ϕ)‖L2(K). (2.21)

Multiplying (2.17) by
dα†jn

dt
and summation over j (with the weight λj ) and

n bring

1

2

d

dt

∫
K

∞∑
j=1

λj |∇ψjN |2 +
1

2

d

dt

∫
K

|∇VN |2 =
1

2

∫
K

∂tsN ·mN . (2.22)

Multiplying (2.18) by
dβn
dt

and summation over n yield

α

∫
Ω

|∂tmN |2 dx+
1

2

d

dt

∫
Ω

|∇mN |2 +
1

2

d

dt

∫
R3

|HsN |2

+
d

dt

∫
Ω

w(mN ) +
k

4

d

dt

∫
Ω

(
|mN |2 − 1

)2
=

1

2

∫
Ω

∂tmN · sN .
(2.23)
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Adding (2.22) and (2.23) gives

d

dt

∫
K

∞∑
j=1

λj |∇ψjN |2 +
d

dt

∫
K

|∇VN |2

+
d

dt

∫
Ω

|∇mN |2 +
d

dt

∫
R3

|HsN |2 +
d

dt

∫
Ω

2w(mN )

+
k

2

d

dt

∫
Ω

(
|mN |2 − 1

)2
+ 2α

∫
Ω

|∂tmN |2 =
d

dt

∫
Ω

sN ·mN .

(2.24)

Thus∫
K

∞∑
j=1

λj |∇ψjN |2 +

∫
K

|∇VN |2

+

∫
Ω

|∇mN |2 +

∫
R3

|HsN |2 +

∫
Ω

2w(mN )

+
k

2

∫
Ω

(
|mN |2 − 1

)2
+ 2α

∫ t

0

∫
Ω

|∂tmN |2 =

∫
Ω

sN ·mN + IN ,

(2.25)

where

IN =

∫
K

∞∑
j=1

λj |∇ψjN (x, 0)|2 +

∫
K

|∇VN (x, 0)|2

+

∫
Ω

|∇mN (x, 0)|2 +

∫
R3

|HsN (x, 0)|2 +

∫
Ω

2w(mN (x, 0))

+
k

2

∫
Ω

(
|mN (x, 0)|2 − 1

)2 − ∫
Ω

sN (x, 0) ·mN (x, 0).

(2.26)

Note that∫
Ω

mN · sN ≤‖mN‖L6(Ω) ‖sN‖L6/5(R3) ≤ C‖∇mN‖L2(Ω) ‖sN‖L6/5(R3)

≤C‖∇mN‖L2(Ω) ‖sN‖
3/4
L1(R3) ‖sN‖

1/4
L3(R3)

≤C‖∇mN‖L2(Ω)

 ∞∑
j=1

λj
∥∥ψjN∥∥2

L2(R3)

 3
4

×

 ∞∑
j=1

λj
∥∥∇ψjN∥∥2

L2(R3)

 1
4

≤C‖∇mN‖L2(Ω)

 ∞∑
j=1

λj
∥∥∇ψjN∥∥2

L2(R3)

 1
4

, (2.27)
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then together with (2.25) we reach that there exists a constant C, which may
depend on the initial datum Φ and m0 but is independent of N , such that for
all t > 0

1

2

∫
K

∞∑
j=1

λj |∇ψjN |2 +

∫
K

|∇VN |2 +
1

2

∫
Ω

|∇mN |2 +

∫
R3

|HsN |2

+
k

2

∫
Ω

(
|mN |2 − 1

)2
+ 2α

∫ t

0

∫
Ω

|∂tmN |2 ≤ C.

(2.28)

Then, by (2.21) and (2.28), (2.19f) and (2.19g) follows from Sobolev interpo-
lations. Furthermore, from (2.17) it follows that∣∣∣∣∫

K

∂tψjN θn

∣∣∣∣ ≤ C‖θn‖H1(K), ∀n ∈ N, (2.29)

therefore, {
∂tψjN

}
is uniformly bounded in H−1(K). (2.30)

ut

It follows from Lemma 1 that up to subsequences

ΨN
N→∞−−−−→ Ψk ∈ L∞(R+,H1

λ(K)) weak* , (2.31a)

∂tΨN
N→∞−−−−→ ∂tΨ

k ∈ L∞(R+,H−1
λ (K)) weak* , (2.31b)

mN
N→∞−−−−→mk ∈ L∞(R+, H1(Ω)) weak* , (2.31c)

∂tmN
N→∞−−−−→ ∂tm

k ∈ L2(R+, L2(Ω)) weakly , (2.31d)

w′(mN )
N→∞−−−−→ w′(mk) ∈ L∞(R+, Lr(Ω)) weak* , 1 ≤ r ≤ 2, (2.31e)

ρN
N→∞−−−−→ ρk ∈ L∞(R+, Lr(K)) weak* , 1 ≤ r ≤ 3, (2.31f)

sN
N→∞−−−−→ sk ∈ L∞(R+, Lr(K)) weak* , 1 ≤ r ≤ 3, (2.31g)

VN
N→∞−−−−→ V k ∈ L∞(R+, L6(K)) weak* , (2.31h)

∇VN
N→∞−−−−→ ∇V k ∈ L∞(R+, L2(K)) weak* , (2.31i)

|mN |2 − 1
N→∞−−−−→ |mk|2 − 1 ∈ L∞(R+, L2(Ω)) weak* , (2.31j)

then by Aubin’s lemma

ΨN
N→∞−−−−→ Ψk ∈ C([0, T ],L2

λ(K)) strongly , (2.31k)

by the Sobolev embedding theorem

mN
N→∞−−−−→mk ∈ L2([0, T ], L2(Ω)) strongly , (2.31l)

and by the continuity of the map from mN to HsN

HsN
N→∞−−−−→Hk

s ∈ L2([0, T ], L2(R3)) strongly , (2.31m)

and Hk
s = −∇(∇N ∗ ·mk).
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Lemma 2 The limit (Ψk, ρk, sk) satisfies (2.5a) and (2.5b).

Proof Let ρ̃ =
∑∞
j=1 λj |ψ

k
j |2 and η ∈ C∞0 (K), and because of (2.31k),∣∣∣∣∫

K

(ρN − ρ̃)η

∣∣∣∣ ≤ ∞∑
j=1

λj

∫
K

|ψjN +ψkj ||ψjN −ψ
k
j ||η|

≤C
(
‖ΨN‖L2

λ(K) + ‖Ψk‖L2
λ(K)

)(
‖ΨN − Ψk‖L2

λ(K)

)
≤C

(
‖ΨN − Ψk‖L2

λ(K)

)
N→∞−−−−→ 0.

Then we get ρk = ρ[Ψk] =
∑∞
j=1 λj |ψ

k
j |2. A similar argument shows sk =

s[Ψk] =
∑∞
j=1 λj(ψ

k†
j σ̂ψ

k
j ). ut

Lemma 3 The limit (V k, ρk) satisfies (2.9).

Proof It is easy to see that V k is a weak solution of −∆V k = ρk on K×R+. In
addition, by (2.19f), since ‖ρN‖L2(K) is uniformly bounded, we know that VN
are uniformly bounded in H2(K), so we know V k ∈ L∞(R+, H2(K)), which
implies V is a strong solution. ut

Lemma 4 The limit (Ψk,mk) satisfies (2.8) and (2.11) weakly, i.e. for all
χ ∈ H1([0, T ]×Ω) and η ∈ C([0, T ], H1(K)), it holds that

i

∫ T

0

∫
R3

∂tψ
k
j η =

1

2

∫ T

0

∫
R3

∇ψkj · ∇η +

∫ T

0

∫
R3

V kψkj η

− 1

2

∫ T

0

∫
R3

mk · σ̂ψkj η,∫ T

0

∫
Ω

α∂tm
kχ = −

∫ T

0

∫
Ω

(
mk × ∂tmk −Hk

s −
1

2
sk + w′(mk)

)
χ

+

∫ T

0

∫
Ω

k
(
|mk|2 − 1

)
mkχ+∇mk · ∇χ.

(2.32)

Furthermore, there is a constant C such that∫
K

∞∑
j=1

λj |∇ψkj |2 +

∫
K

|∇V k|2 +

∫
Ω

|∇mk|2 +

∫
R3

|Hk
s |2

+
k

2

∫
Ω

(
|mk|2 − 1

)2
+ 2α

∫ t

0

∫
Ω

|∂tmk|2 ≤ C,

(2.33)

uniformly in k.

Proof It is easy to see that (2.32) is true for all χ ∈ C∞([0, T ] × Ω) and
η ∈ C([0, T ], H1(K)) by passing the limit N →∞ in (2.17) and (2.18). Then
by a density argument, (2.32) is also true for all χ ∈ H1([0, T ] × Ω). Taking
the limit N → ∞ in (2.25) gives the estimate (2.33) by lim

N→∞
|mN (x, 0)| =

|m0(x)| = 1. ut
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Limit as k tends to ∞.

From Lemma 4, in particular

∫
Ω

(
|mk|2 − 1

)2 ≤ C/k, we can get, up to a

subsequence,

mk k→∞−−−−→m pointwise a.e. with |m| = 1. (2.34)

In a similar way to (2.31), we can also get

Ψk
k→∞−−−−→ Ψ ∈ L∞(R+,H1

λ(K)) weak* , (2.35a)

∂tΨ
k k→∞−−−−→ ∂tΨ ∈ L∞(R+,H−1

λ (K)) weak* , (2.35b)

Ψk
k→∞−−−−→ Ψ ∈ C([0, T ],L2

λ(K)) strongly , (2.35c)

mk k→∞−−−−→m ∈ L∞(R+, H1(Ω)) weak* , (2.35d)

∂tm
k k→∞−−−−→ ∂tm ∈ L2(R+, L2(Ω)) weakly , (2.35e)

mk k→∞−−−−→m ∈ L2([0, T ], L2(Ω)) strongly , (2.35f)

mk k→∞−−−−→m ∈ L4([0, T ]×Ω) weakly , (2.35g)

|mk|2 − 1
k→∞−−−−→ 0 ∈ L2([0, T ]×Ω) weakly and a.e. , (2.35h)

w′(mk)
k→∞−−−−→ w′(m) ∈ L∞(R+, Lr(Ω)) weak* , 1 ≤ r ≤ 2, (2.35i)

ρk
k→∞−−−−→ ρ ∈ L∞(R+, Lr(K)) weak* , 1 ≤ r ≤ 3, (2.35j)

sk
k→∞−−−−→ s ∈ L∞(R+, Lr(K)) weak* , 1 ≤ r ≤ 3, (2.35k)

V k
k→∞−−−−→ V ∈ L∞(R+, L6(K)) weak* , (2.35l)

Hk
s
k→∞−−−−→Hs ∈ L2([0, T ], L2(R3)) strongly . (2.35m)

Proof (Proof of Theorem 2) Let ξ ∈ C∞([0, T ] × Ω), and χ = mk × ξ. As
χ ∈ H1([0, T ]×Ω), we get from (2.32) that∫ T

0

∫
Ω

(
−αmk × ∂tmk + |mk|2∂tmk − (mk · ∂tmk)mk

)
· ξ

=

∫ T

0

∫
Ω

mk ×∇mk · ∇ξ −mk ×
(
Hk

s +
1

2
sk − w′(mk)

)
· ξ .

(2.36)

Since∫ T

0

∫
Ω

|mk|2∂tmk · ξ =

∫ T

0

∫
Ω

(|mk|2 − 1)∂tm
k · ξ +

∫ T

0

∫
Ω

∂tm
k · ξ ,

(2.37)

we have ∫ T

0

∫
Ω

|mk|2∂tmk · ξ k→∞−−−−→
∫ T

0

∫
Ω

∂tm · ξ . (2.38)
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On the other hand,

∫ T

0

∫
Ω

(mk · ∂tmk)mk · ξ k→∞−−−−→
∫ T

0

∫
Ω

(m · ∂tm)m · ξ = 0 . (2.39)

Eventually we obtain that for all ξ ∈ C∞([0, T ]×Ω) it holds

∫ T

0

∫
Ω

∂tm · ξ =

∫ T

0

∫
Ω

(
m×

(
α∂tm+ w′(m)−Hs −

1

2
s

))
· ξ

+

∫ T

0

∫
Ω

m×∇m · ∇ξ.
(2.40)

Since |m| = 1 a.e. , by a density argument, we also obtain the above equation
holds for all ξ ∈ H1([0, T ]×Ω). In the mean time, by passing the k →∞ limit
in the Schrödinger equation in (2.32), we can obtain

i

∫ T

0

∫
R3

∂tψjη =
1

2

∫ T

0

∫
R3

∇ψj · ∇η +

∫ T

0

∫
R3

Vψjη

− 1

2

∫ T

0

∫
R3

m · σ̂ψjη,
(2.41)

for all η ∈ C([0, T ], H1(K)). This ends the proof of Theorem 2. ut

The weak solutions have the following property:

Proposition 1 Let (Ψ ,m, V, ρ, s,Hs) be one solution in Theorem 2, then

‖ψj(t)‖L2(K) = ‖ϕj‖L2(K), ‖m(t)‖L2(Ω) = ‖m0‖L2(Ω), (2.42)

and

d

dt

∫
K

∞∑
j=1

λj |∇ψj |2 +
d

dt

∫
K

|∇V |2 +
d

dt

∫
Ω

|∇m|2

+
d

dt

∫
R3

|Hs|2 +
d

dt

∫
Ω

2w(m)− d

dt

∫
Ω

s ·m+ 2α

∫
Ω

|∂tm|2 = 0.

(2.43)

Moreover, there exists a constant C such that for all t > 0,

∫
K

∞∑
j=1

λj |∇ψj |2 +

∫
K

|∇V |2

+

∫
Ω

|∇m|2 +

∫
R3

|Hs|2 + 2α

∫ t

0

∫
Ω

|∂tm|2 ≤ C.

(2.44)
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2.2 Whole space

We then consider the Schrödinger equations in R3 in the SPLLG system
and show the existence by representing the solution as a limit of the solutions
of bounded-domain problems defined on a sphere whose radius goes to infinity
[10].

We denote the sphere of radius R by BR = {x ∈ R3, |x| < R}, and without
loss of generality assume Ω ⊂ BR.

We consider the sequences (ΨR,mR, VR,ρR, sR,HsR), which are defined
forR > R0 and satisfy the following coupled system consisting of the Schrödinger
equation

i∂tΨR = − 1
2∆ΨR + V ΨR − 1

2mR · σ̂ΨR, (x, t) ∈ BR × R+,

ΨR(t = 0,x) = ΦR(x), x ∈ BR,
ΨR(x, t) = 0, (x, t) ∈ ∂BR × R+,

(2.45)

the Poisson equation{
−∆VR = ρR (x, t) ∈ BR × R+,

VR(x, t) = 0 (x, t) ∈ ∂BR × R+,
(2.46)

and the Landau-Lifshitz-Gilbert equation
∂tmR = −m×HR + αmR × ∂tmR, (x, t) ∈ Ω × R+,

mR(t = 0,x) = m0(x), x ∈ Ω,
∂νmR = 0, (x, t) ∈ ∂Ω × R+,

(2.47)

where the effective field

HR = ∆mR − w′(mR) +HsR +
1

2
sR, (2.48)

and ρR, sR and HsR given by

ρR =

∞∑
j=1

λj |ψjR|2, (2.49a)

sR =

∞∑
j=1

λjTrC2

(
σ̂
(
ψjRψ

†
jR

))
, (2.49b)

HsR = −∇(∇N ∗ ·mR), (2.49c)

respectively. In (2.45) we have used the notation ΨR = {ψjR}j∈N and ΦR =
{ϕjR}j∈N, and (2.45) should be understood component-wisely for each ψjR,
j ∈ N. We also assume |m0(x)| ≡ 1 for all x ∈ Ω and set

ΨR ≡ 0, in
(
R3\BR

)
× R+, and m ≡ 0, in

(
R3\Ω̄

)
× R+. (2.50)
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We assume that the initial Φ = {ϕj}j∈N ∈ H1
λ(R3), and choose ΦR =

{ϕjR}j∈N as

ϕjR(x) =

{
0, j > R,

ϕj(x)σ(x/R), j ≤ R,
(2.51)

where σ(x) ∈ C∞0 (B1), 0 ≤ σ ≤ 1, and σ(x) = 1 for x ∈ B1/2.
Theorem 2 implies that the problem (2.45)-(2.49) has at least one weak

solution (ΨR, mR, VR, ρR, sR, HsR). By Proposition 1 and the Gagliardo-
Nirenberg interpolation inequality, we can get∫

BR

∞∑
j=1

λj |∇ψjR|2 +

∫
BR

|∇VR|2

+

∫
Ω

|∇mR|2 +

∫
R3

|HsR|2 + 2α

∫ t

0

∫
Ω

|∂tmR|2 ≤ C,

(2.52)

where the constant C only depends on the initial conditions but not on time
t and the radius R. Then

‖ρR‖Lr(BR) + ‖sR‖Lr(BR) ≤C, 1 ≤ r ≤ 3, (2.53a)

‖∇ρR‖Ls(BR) + ‖∇sR‖Ls(BR) ≤C, 1 ≤ s ≤ 3

2
, (2.53b)

‖VR‖L6(BR) ≤C. (2.53c)

Therefore, as R→∞, there exists a subsequence {ΨR,mR, VR,ρR, sR,HsR}
(not relabeled) such that

ΨR
R→∞−−−−→ Ψ ∈ L∞(R+,H1

λ(R3)) weak* , (2.54a)

ρR
R→∞−−−−→ ρ ∈ L∞(R+, Lr(R3)) weak* , 1 ≤ r ≤ 3, (2.54b)

sR
R→∞−−−−→ s ∈ L∞(R+, Lr(R3)) weak* , 1 ≤ r ≤ 3, (2.54c)

VR
R→∞−−−−→ V ∈ L∞(R+, L6(R3)) weak* , (2.54d)

∇VR
R→∞−−−−→ ∇V ∈ L∞(R+, L2(R3)) weak* , (2.54e)

mR
R→∞−−−−→m ∈ L∞(R+, H1(Ω)) weak* , (2.54f)

∂tmR
R→∞−−−−→ ∂tm ∈ L2(R+, L2(Ω)) weakly , (2.54g)

mR
R→∞−−−−→m ∈ L2([0, T ], L2(Ω)) strongly , (2.54h)

w′(mR)
R→∞−−−−→ w′(m) ∈ L∞(R+, Lr(Ω)) weak* , 1 ≤ r ≤ 2, (2.54i)

and

HsR
R→∞−−−−→Hs = −∇(∇N ∗ ·m) ∈ L2([0, T ], L2(R3)) strongly . (2.54j)

We then show the limit (Ψ ,m, V, ρ, s,Hs) satisfies the whole-space Schrödinger-
Poisson-Landau-Lifshitz system (2.1)-(2.5). First we state the following con-
vergence result:



Semiclassical limit of the SPLLG system 17

Lemma 5 For every T > 0 and bounded K ⊂ R3, there exists a subsequence
such that

∂tΨR
R→∞−−−−→ ∂tΨ ∈ L∞((0, T ),H−1

λ (K)) weak* , (2.55a)

ΨR
R→∞−−−−→ Ψ ∈ C([0, T ],L2

λ(K)) strongly, (2.55b)

ρR
R→∞−−−−→ ρ ∈ C([0, T ], L1(K)) strongly, (2.55c)

sR
R→∞−−−−→ s ∈ C([0, T ], L1(K)) strongly. (2.55d)

Proof We omit the proof of this lemma and remark that this is essentially the
same as Lemma 4.4 and 4.5 in [10]. ut

By passing the R→∞ limit in (2.45) – (2.47), we obtain :

Lemma 6 The limit (Ψ ,m, V, s,Hs) satisfies (2.7) for all T > 0, all χ ∈
H1([0, T ]×Ω), and all η ∈ C([0, T ],H1

λ(K)) for some bounded K ⊂ R3. And
ρ = ρ[Ψ ] and s = s[Ψ ] satisfy (2.5a) and (2.5b) respectively.

We refer to Lemma 4.10 in [10] for the Poisson potential:

Lemma 7 The limit (V, ρ) satisfies (2.3), i.e.

V (x, t) =
1

4π

∫
R3

ρ(y, t)

|x− y|
dy. (2.56)

Lemma 6 and 7 imply that the limit (Ψ ,m, V, ρ, s,Hs) is a weak solution of the
Schrodinger-Poisson-Landau-Lifshitz system, and we have proved Theorem 1.

3 Semiclassical limit: Assumptions and preliminaries

In this section, we introduce assumptions, conserved quantities and a priori
estimates that are needed for taking the semiclassical limit of SPLLG system
(1.1).

Assumption 1 For fixed ε ∈ (0, ε0], we assume λεj ≥ 0, ∀j ∈ N, {ϕεj}j∈N
is orthonormed in L2(R3;C2). λεj ≥ 0, ∀j ∈ N, {ϕεj}j∈N is orthonormal in

L2(R3;C2)

Assumption 2 There is a constant C > 0 independent of ε ∈ (0, ε0] such
that

∞∑
j=1

λεj + ε2
∞∑
j=1

λεj‖∇ϕεj‖2L2(R3) + ε−3
∞∑
j=1

(λεj)
2 ≤ C, (3.1)

for ε ∈ (0, εo].

Assumption 3 The initial condition of the LLG equation (1.6) is given by
mε(x, t = 0) = 0 for x ∈ Ω̄c and mε(x, t = 0) = m0(x) for x ∈ Ω, where
m0 ∈ H1(Ω), |m0| ≡ 1, and ∂νm0 = 0 on ∂Ω.
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Remark 1 Assumptions 1 and 2 have been used in [30,25,5,6] for proving the
semiclassical limit of the Schrödinger-Poisson system, and Assumption 3 was
used in [1,11,18] for proving the existence of solutions to the LLG equation.
The first two terms in the inequality (3.1) indicate that the total mass and total
kinetic energy are bounded resp., while the third term in (3.1) is a technical
assumption used in proving the regularities of the physical observables.

We next introduce the mixed state density matrix,

Zε(x,y, t) =

∞∑
j=1

λεjψ
ε
j(y, t)ψ

ε
j
†
(x, t), (3.2)

and the p-norm,

��Zε��
p

=

 ∞∑
j=1

|λεj |p
 1

p

, for any p ≥ 1. (3.3)

Then the Wigner transform (1.14) can be rewritten as

W ε(x,v, t) =
1

(2π)3

∫
R3
y

Zε
(
x+

εy

2
,x− εy

2
, t
)

eiv·y dy . (3.4)

Note that the Wigner function W ε is a 2 × 2 matrix and is connected to the
densities and currents via its moments,

ρε(x, t) =

∫
R3
v

TrC2

(
W ε(x,v, t)

)
dv, (3.5a)

jε(x, t) =

∫
R3
v

vTrC2

(
W ε(x,v, t)

)
dv, (3.5b)

sε(x, t) =

∫
R3
v

TrC2

(
σ̂W ε(x,v, t)

)
dv, (3.5c)

Jεs (x, t) =

∫
R3
v

v ⊗ TrC2

(
σ̂W ε(x,v, t)

)
dv, (3.5d)

and the kinetic energy

Eεkin =

∫
R3
x

ε2

2

∞∑
j=1

λεj |∇ψ
ε
j(x, t)|2 dx

=

∫
R3
x

∫
R3
v

|v|2

2
TrC2

(
W ε(x,v, t)

)
dv dx. (3.6)

Direct calculations from (1.1) show that the Wigner function (3.4) satisfies

∂tW
ε = −v · ∇xW ε +

(
Θε[V ε] +

i

2
Γ ε[mε]

)
W ε,

W ε(x,v, t = 0) = W ε
I (x,v),

(3.7)
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where the operator Θε is given by

Θε[V ε]W ε(x,v) =
1

(2π)3

∫∫
1

iε

[
V ε
(
x− εy

2

)
− V ε

(
x+

εy

2

)]
×W ε(x,v′)ei(v−v′)·y dy dv′,

(3.8)

and the operator Γ ε is given by

Γ ε[mε]W ε(x,v) =
1

(2π)3

∫∫ [
Mε

(
x− εy

2

)
W ε(x,v′)

−W ε(x,v′)Mε
(
x+

εy

2

)]
ei(v−v′)·y dy dv′,

(3.9)

with the matrix Mε = σ̂ ·mε.
The initial datum W ε

I is the Wigner transform of the initial density matrix

ZεI (x,y) =

∞∑
j=1

λεjϕ
ε
j(y)ϕεj

†(x), (3.10)

which is

W ε
I (x,v) =

1

(2π)3

∫
R3
y

ZεI

(
x+

εy

2
,x− εy

2

)
eiv·y dy . (3.11)

In what follows, we give a list of conserved quantities that the SPLLG system
preserves.
Conservation of the total mass.∫

R3
x

ρε(x, t) dx =

∫
R3
x

∫
R3
v

TrC2

(
W ε(x,v, t)

)
dv dx

=

∫
R3
x

∫
R3
v

TrC2

(
W ε
I (x,v)

)
dv dx

=

∫
R3
x

ρε(x, 0) dx =

∞∑
j=1

λεj .

(3.12)

Conservation of the L2-norm of W ε.

‖W ε(t)‖2L2(R3
x×R3

v) :=

∫
R3
x

∫
R3
v

TrC2

{[
W ε(x,v, t)

]2}
dv dx

=

∫
R3
x

∫
R3
v

TrC2

{[
W ε
I (x,v)

]2}
dv dx

=‖W ε
I ‖2L2(R3

x×R3
v) =

2

(4πε)3

∞∑
j=1

(λεj)
2.

(3.13)
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This can be seen by left-multiplying W ε† = W ε on (3.7) and integrating

− i
d

dt

∫
R3
x

∫
R3
v

[
W ε(x,v, t)

]2
dv dx

= − 2i

∫
R3
x

∫
R3
v

W ε(x,v, t)Θε[V ε]W ε(x,v, t) dv dx

+

∫
R3
x

∫
R3
v

W ε(x,v, t)Γ ε[Mε]W ε(x,v, t) dv dx.

(3.14)

The second term on the right of the above equation is∫
R3
x

∫
R3
v

W ε(x,v, t)Γ ε[Mε]W ε(x,v, t) dv dx

=

∫∫∫∫
W ε(x,v, t)Mε

(
x− εy

2

)
W ε(x,v′, t)ei(v−v′)·y dv′ dy dv dx

−
∫∫∫∫

W ε(x,v, t)W ε(x,v′, t)Mε
(
x+

εy

2

)
ei(v−v′)·y dv′ dy dv dx

=

∫∫∫∫
W ε(x,v, t)Mε

(
x− εy

2

)
W ε(x,v′, t)ei(v−v′)·y dv′ dy dv dx

−
∫∫∫∫

W ε(x,v′, t)W ε(x,v, t)Mε
(
x− εy

2

)
ei(v−v′)·y dv dy dv′ dx.

By taking trace on both side of the above equation, the right hand side vanishes
since TrC2(AB) = TrC2(BA), and one has

Tr

(∫
R3
x

∫
R3
v

W ε(x,v, t)Γ ε[Mε]W ε(x,v, t) dv dx

)
= 0. (3.15)

Essentially the same argument also yields

Tr

(∫
R3
x

∫
R3
v

W ε(x,v, t)Θε[V ε]W ε(x,v, t) dv dx

)
= 0. (3.16)

Therefore, taking trace on both side of (3.14) produces (3.13).
Energy dissipation. An extension of (2.43) implies that

α

∫ t

0

∫
Ω

|∂tmε|2 + FSC(t) + FLL(t) = FSC(0) + FLL(0), (3.17)

where we have defined the energy connected the Schrödinger equations as

FSC =
ε2

2

∫
R3
x

∞∑
j=1

λεj |∇ψ
ε
j |2 dx+

1

2

∫
R3
x

|∇V ε|2 dx

=
1

2

∫
R3
x

∫
R3
v

|v|2TrC2

(
W ε(x,v, t)

)
dv dx+

1

2

∫
R3
x

|∇V ε(x, t)|2 dx,

(3.18)
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and the by Landau-Lifshitz energy as

FLL =
1

2

∫
Ω

|∇mε|2 dx+
1

2

∫
R3

|Hε
s |2 dx

+

∫
Ω

w(m) dx− ε

2

∫
Ω

sε ·mε dx.

(3.19)

In the end, we shall give a priori estimates of densities and currents using
the following classical interpolation lemma [30,25,2,5,6].

Lemma 8 Let 1 ≤ p ≤ ∞, q = (5p− 3)/(3p− 1), s = (5p− 3)/(4p− 2), and
θ = 2p/(5p− 3). Then and there exists a constant C > 0 such that

‖ρε‖Lq(R3
x) ≤ C

��Zε��θ
p

(
ε−2Eεkin

)1−θ
, (3.20)

‖jε‖Ls(R3
x) ≤ C

��Zε��θ
p

(
ε−2Eεkin

)1−θ
, (3.21)

with Eεkin given by (3.6).

By (3.12)-(3.13) and Assumption 2, we conclude that there exists a con-
stant C independent of ε such that

‖ρε‖L∞((0,∞),L1(R3
x)) = ‖ρε(·, 0)‖L1(R3

x) ≤ C, (3.22)

‖W ε‖L∞((0,∞),L2(R3
x×R3

v)) = ‖W ε
I ‖L2(R3

x×R3
v) ≤ C. (3.23)

By (1.4)-(1.5), and the Hölder’s inequality, one has

‖∇V ε(t)‖2L2(R3
x) ≤ ‖V

ε(t)‖L6(R3
x)‖ρε(t)‖L6/5(R3

x) . (3.24)

Then the Gagliardo-Nirenberg-Sobolev inequality ‖f‖Lq(Rn) ≤ C‖∇f‖Lp(Rn)

for 1
q = 1

p −
1
n implies

‖∇V ε(t)‖L2(R3
x) ≤ C‖ρε(t)‖L6/5(R3

x) . (3.25)

Applying Lemma 8 brings

‖ρε(t)‖L7/5(R3
x) ≤C‖W ε(t)‖4/7L2(R3

x×R3
v) (Eεkin)

3/7

≤C

(∫
R3
x

∫
R3
v

|v|2TrC2 (W ε(x,v, t)) dv dx

)3/7

.
(3.26)

Then applying the interpolation between L1(R3
x) and L7/5(R3

x) leads to

‖ρε(t)‖L6/5(R3
x) ≤C

(∫
R3
x

∫
R3
v

|v|2TrC2 (W ε(x,v, t)) dv dx

)1/4

, (3.27)

and therefore

‖∇V ε(t)‖2L2(R3
x) ≤C

(∫
R3
x

∫
R3
v

|v|2TrC2 (W ε(x,v, t)) dv dx

)1/2

. (3.28)
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For the coupling energy between spin and the magnetization, one has∣∣∣∣∫
Ω

sε ·mε dx

∣∣∣∣ ≤ ∫
Ω

|sε ·mε|dx

≤
∫
R3
x

|sε|dx ≤
∞∑
j=1

λεj‖ψ
ε
j(t)‖2L2(R3

x) ≤ C.
(3.29)

Then by applying (3.28) and (3.29) to (3.17) we get

α

∫ t

0

∫
Ω

|∂tmε|2 +
1

2

∫
Ω

|∇mε(t)|2 dx+ Eεkin(t) ≤ C + FLL(0) + 2Eεkin(0),

and then by Assumption 2, we have

Eεkin(t) =
1

2

∫
R3
x

∫
R3
v

|v|2TrC2

(
W ε(x,v, t)

)
dv dx ≤ C, (3.30)

‖V ε‖L∞((0,∞),L6(R3
x)) + ‖∇V ε‖L∞((0,∞),L2(R3

x)) ≤ C, (3.31)

and

α

∫ t

0

∫
Ω

|∂tmε|2 + ‖mε(t)‖L2(Ω) + ‖∇mε(t)‖L2(Ω) ≤ C. (3.32)

Then by Lemma 8, we have

‖ρε‖L∞((0,∞),Lq(R3
x)) ≤ C, q ∈ [1, 7/5] , (3.33a)

‖jε‖L∞((0,∞),Ls(R3
x)) ≤ C, s ∈ [1, 7/6] . (3.33b)

Similarly, one can also have the estimates for sε and Jεs ,

‖sε‖L∞((0,∞),Lq(R3
x)) ≤ C, q ∈ [1, 7/5] , (3.33c)

‖Jεs ‖L∞((0,∞),Ls(R3
x)) ≤ C, s ∈ [1, 7/6] . (3.33d)

4 Semiclassical limit of the SPLLG system

In the section, we rigorously derive the semiclassical limit of the Schrödinger-
Poisson-Landau-Lifshitz-Gilbert (SPLLG) system (1.1)-(1.6). Using (3.23), (3.33a)-
(3.33d), (3.32), and (3.31), and applying the Banach-Alaoglu theorem, after
restriction to a sub-sequence if necessary, we have

W ε
I

ε→0−−−→WI in L2(R3
x × R3

v) weakly, (4.1a)

W ε ε→0−−−→W in L∞((0,∞), L2(R3
x × R3

v)) weak* , (4.1b)

ρε
ε→0−−−→ ρ in L∞((0,∞), Lq(R3

x)) weak* , q ∈ [1, 7/5] , (4.1c)

jε
ε→0−−−→ j in L∞((0,∞), Ls(R3

x)) weak* , s ∈ [1, 7/6] , (4.1d)
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sε
ε→0−−−→ s in L∞((0,∞), Lq(R3

x)) weak* , q ∈ [1, 7/5] , (4.1e)

Jεs
ε→0−−−→ Js in L∞((0,∞), Ls(R3

x)) weak* , s ∈ [1, 7/6] , (4.1f)

mε ε→0−−−→m in L∞((0,∞), H1(Ω)) weak* , (4.1g)

∂tm
ε ε→0−−−→ ∂tm in L2([0, T ], L2(Ω)) weakly, (4.1h)

w′(mε)
ε→0−−−→ w′(m) in L∞(R+, Lr(Ω)) weak* , 1 ≤ r ≤ 2, (4.1i)

V ε
ε→0−−−→ V in L∞((0,∞), L6(R3

x)) weak* , (4.1j)

∇V ε ε→0−−−→ ∇V in L∞((0,∞), L2(R3
x)) weak* . (4.1k)

Further more, from (3.32) by Aubin’s lemma we get, up to a subsequence,

mε ε→0−−−→m in L2([0, T ], L2(Ω)) strongly, (4.1l)

and this together with the continuity of the map (1.13) from mε to Hε
s implies

Hε
s
ε→0−−−→Hs in L2([0, T ], L2(R3

x)) strongly, (4.1m)

and

Hs(x) = −∇
∫
Ω

∇N(x− y) ·m(y) dy,

Then we have the following lemma.

Lemma 9 The limit observables can be calculated by taking moments to W :

ρ(x, t) =

∫
R3
v

TrC2

(
W (x,v, t)

)
dv,

j(x, t) =

∫
R3
v

vTrC2

(
W (x,v, t)

)
dv,

s(x, t) =

∫
R3
v

TrC2

(
σ̂W (x,v, t)

)
dv,

Js(x, t) =

∫
R3
v

v ⊗ TrC2

(
σ̂W (x,v, t)

)
dv.

The proof of this lemma is analogous to Lemma 3.1 in [25].

4.1 The limit of the Wigner-Poisson equation as ε→ 0

We denote φ = φ(x,v, t) to be a C∞-test function such that the support
of Fv,y[φ] is compact in R3

x×R3
y× [0,∞), where Fv,y is the Fourier transform

Fv,y[φ](y) =
1

(2π)3/2

∫
R3
v

φ(v)e−iy·v dv. (4.2)
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Multiplying equation (3.7) by φ and integrating by parts yield∫∫∫ (
W ε(∂tφ+ v · ∇xφ) +

(
Θε[V ε] +

i

2
Γ ε[mε]

)
W εφ

)
dx dv dt = 0.

(4.3)

By (4.1), W ε converges to W in the weak* sense, and taking the limit ε→ 0
gives

lim
ε→0

∫∫∫
W ε(∂tφ+ v · ∇xφ) dx dv dt =

∫∫∫
W (∂tφ+ v · ∇xφ) dx dv dt.

(4.4)

Next we study the limit of the Θε and Γ ε operators as ε→ 0,resp..

The limit of the operator Θε.

Lemma 10 Let W ε be the solution to the Wigner equation (3.7) coupled with
the LLG equation (1.6), then for any C∞-test function φ = φ(x,v, t) such that
Fv,y[φ] defined in (4.2) has compact support in R3

x × R3
y × [0,∞), we have

lim
ε→0

∫∫∫
Θε[V ε]W εφ dx dy dt = −

∫∫∫
W∇xV · ∇vφ dx dy dt. (4.5)

To prove this lemma, we first need to prove the following estimate.

Lemma 11 We rewrite Θε[V ε] as

Θε[V ε]W ε(x,v) =
1

(2π)3

∫∫
δε[V ε](x,y, t)W ε(x,v′, t)ei(v−v′)·y dy dv′,

where

δε[V ε](x,y, t) =
1

iε

[
V ε
(
x− εy

2

)
− V ε

(
x+

εy

2

)]
.

then the symbols δε[V ε](x,y, t) can be written as

δε[V ε](x,y, t) = iy · ∇xV ε(x, t) +Rε(x,y, t),

where Rε satisfies

‖Rε‖L∞
((0,∞),L2(BR×BR))

≤C(R)ε5/14, (4.6)

for every R > 0. Here BR denotes the ball in R3 with radius R and center in
origin.
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Proof Direction calculations show that Rε should be of the following form

Rε(x,y, t) =
i

2

∫ 1

−1

y ·
(
∇xV ε

(
x+

εsy

2
, t
)
−∇xV ε(x, t)

)
ds.

Then by the estimates in [25], we know

‖Rε(t)‖L2(BR×BR) ≤ Cσ(R)εσ|∇xV ε(t)|Wσ,2(BR). (4.7)

The embedding W 2,7/5(B2R) b W 1+σ,2(B2R) with σ = 5/14, together with
(3.31) and the standard localization argument for the Poisson equation, pro-
duces

‖V ε(t)‖W 1+σ,2(B2R) ≤ Cσ(R)‖V ε(t)‖W 2,7/5(B2R)

≤ Cσ(R)‖ρε(t)‖L7/5(R3
x) ≤ Cσ(R),

(4.8)

which implies (4.6). ut

Proof (Proof of Lemma 10) Notice that the Θε part of the weak form of (4.3)
can be written as∫∫∫

Θε[V ε]W εφdx dv dt =−
∫∫∫

W ε∇xV ε · ∇vφdx dv dt

+

∫∫∫
Rε(Fv,y[W ε])(Fv,y[φ]) dx dy dt,

(4.9)

with Fv,y defined in (4.2). Then by (4.1), Lemma 11 and taking the limit
ε→ 0, one has

lim
ε→0

∫∫∫
Rε(Fv,y[W ε])(Fv,y[φ]) dx dy dt = 02×2. (4.10)

To pass to the limit of the term containing ∇xV ε in (4.9), one only needs to
show the strong convergence of V ε in C([0, T ], H1(BR)). Equation(4.8) implies

‖V ε(t)‖L∞((0,∞);W 2,7/5(BR)) ≤ C(R) (4.11)

for every R > 0. By (1.4) and the continuity equation

∂tρ
ε +∇x · jε = 0, (4.12)

one has

∂tV
ε(x, t) = − 1

4π

∫
R3
y

∇ · jε(y, t)
|x− y|

dy =
1

4π

∫
R3
y

(x− y) · jε(y, t)
|x− y|3

dy. (4.13)

Then (3.33b) and Young’s inequality for convolution yield

‖∂tV ε‖L∞((0,∞),Lr(BR) ≤ C(R), with r =
21

11
. (4.14)
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Since

W 2,7/5(BR) bW 1+σ,7/5(BR) ⊂ H1(BR) ⊂ L2(BR) ⊂ Lr(BR) (4.15)

for σ = 5/14 and r = 21/11, by (4.11) and (4.14), one can apply the com-
pactness result in [33] to conclude that, for every R > 0 and T > 0 there is a
subsequence such that

V ε
ε→0−−−→ V in C([0, T ], H1(BR)) strongly. (4.16)

Therefore one can pass the limit of the Θε part in (4.3) and prove Lemma
10. ut

The limit of the operator Γ ε.

Lemma 12 Let W ε and mε are the solutions to the Wigner equation (3.7)
coupled with the LLG equation (1.6), and |mε| ≡ 1 in Ω and is 0 in Ωc, then
for any C∞-test function φ = φ(x,v, t) such that Fv,y[φ] defined in (4.2) has
compact support in R3

x × R3
y × [0,∞), we have

lim
ε→0

∫∫∫
Γ ε[mε]W εφdx dv dt = lim

ε→0

∫∫∫
[M,W ]φdx dv dt, (4.17)

where M = m · σ̂, m is the limit of mε in L2([0, T ], L2(Ω)), and [·, ·] denotes
the commutator [A,B] = AB −BA.

One difficulty in proving this lemma is to deal with the jump discontinuities
of mε across the boundary of Ω. We first prove the following lemma for a
smooth mε in R3.

Lemma 13 Suppose mε converge to m strongly in L2([0, T ], L2(R3
x)), and

‖mε(t)‖H1(R3
x) ≤ C. Suppose W ε converge to W in L∞((0,∞), L2(R3

x ×R3
v))

in the weak* sense, and ‖W ε‖L∞((0,∞),L2(R3
x×R3

v)) ≤ C. Then for any C∞-test
function φ = φ(x,v, t) such that Fv,y[φ] defined in (4.2) has compact support
in R3

x × R3
y × [0,∞), we have

lim
ε→0

∫∫∫
Γ ε[mε]W εφ dx dv dt =

∫∫∫
[M,W ]φdx dv dt.

Proof To show this, we write Γ ε = Γ ε− − Γ ε+, where

Γ ε+[mε]W ε(x,v) =
1

(2π)3

∫∫
W ε(x,v′)Mε

(
x+

εy

2

)
ei(v−v′)·y dy dv′,

Γ ε−[mε]W ε(x,v) =
1

(2π)3

∫∫
Mε

(
x− εy

2

)
W ε(x,v′)ei(v−v′)·y dy dv′,

and

Mε
(
x+

εy

2

)
= Mε(x) + εRε(x,y),
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where

Rε =
y

2
·
∫ 1

0

∇xMε
(
x+

εys

2
, t
)

ds.

Then we can estimate

‖Rε(t)‖L2(BR×BR) =

∫
BR

∫
BR

∣∣∣∣y2 ·
∫ 1

0

∇xMε
(
x+

εys

2
, t
)

ds

∣∣∣∣2 dx dy

≤
∫
BR

∫
BR

∫ 1

0

∣∣∣y
2
· ∇xMε

(
x+

εys

2
, t
)∣∣∣2 dsdx dy

≤C(R)

∫
BR

∫
BR

∫ 1

0

∣∣∣∇xMε
(
x+

εys

2
, t
)∣∣∣2 dsdx dy

=C(R)

∫ 1

0

∫
BR

∫
BR

∣∣∣∇xMε
(
x+

εys

2
, t
)∣∣∣2 dx dy ds

≤C(R)

∫ 1

0

∫
BR

‖∇xMε (t) ‖2L2(R3
x) dy ds

≤C(R)‖∇xMε (t) ‖2L2(R3
x). (4.18)

Since ‖mε(t)‖H1(R3
x) ≤ C, we get

‖Rε(t)‖L2(BR×BR) ≤ C(R). (4.19)

And since we have ‖W ε‖L∞((0,∞),L2(R3
x×R3

v)) ≤ C and ‖Rε(t)‖L2(BR×BR) ≤
C(R), then if taking the limit ε→ 0, we get

lim
ε→0

ε

∫∫∫
Fv,y[W ε]RεFv,y[φ] dx dy dt = 02×2. (4.20)

Thus we have

lim
ε→0

∫∫∫
Γ ε+[mε]W εφdx dv dt =

∫∫∫
WMφ dx dv dt. (4.21)

Similarly we have lim
ε→0

∫∫∫
Γ ε−[mε]W εφ dx dv dt =

∫∫∫
MWφdx dv dt, and

that completes the proof.

ut

Proof (Proof of Lemma 12) We define

mε,β = mε ∗ ϕβ
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where ϕβ(x) = ϕ(x/β) and ϕ is a positive mollifier.∣∣∣∣∫∫∫ (Γ ε[mε]W ε − [M,W ]
)
φ dx dv dt

∣∣∣∣
≤
∣∣∣∣∫∫∫ Γ ε

[
mε −mε,β

]
W εφdx dv dt

∣∣∣∣
+

∣∣∣∣∫∫∫ (Γ ε [mε,β
]
W ε −

[
Mβ ,W

])
φ dx dv dt

∣∣∣∣
+

∣∣∣∣∫∫∫ [Mβ −M,W
]
φdx dv dt

∣∣∣∣ ,
(4.22)

where we have use the notation Mβ = M ∗ϕβ . By the property of the mollifier
function, the third term on the right hand side of (4.22) can be bounded by∣∣∣∣∫∫∫ [Mβ −M,W

]
φ dx dv dt

∣∣∣∣ ≤ Cβ , (4.23)

where Cβ is a constant that goes to zero when β goes to zero. Since mε ∈
H1(Ω) and mε ≡ 0 in Ωc, we have mε,β ∈ H1(R3

x). Further more, since as
ε→ 0, mε →m in L2([0, T ]×R3

x) strongly, we have as ε→ 0, mε,β →mβ :=
m∗ϕβ in L2([0, T ]×R3

x) strongly. Then we can apply Lemma 13 to mε,β and
W ε to get the limit of the second term on the right hand side of (4.22)

lim
ε→0

∫∫∫ (
Γ ε
[
mε,β

]
W ε −

[
Mβ ,W

])
φdx dv dt = 0. (4.24)

For the first term on the right hand side of (4.22), we have∣∣∣∣∫∫∫ Γ ε
[
mε −mε,β

]
W εφdx dv dt

∣∣∣∣
≤
∣∣∣∣∫∫∫ Γ ε [mε −m]W εφ dx dv dt

∣∣∣∣+

∣∣∣∣∫∫∫ Γ ε
[
m−mβ

]
W εφdx dv dt

∣∣∣∣
+

∣∣∣∣∫∫∫ Γ ε
[
mβ −mε,β

]
W εφdx dv dt

∣∣∣∣
≤C(R)T‖mε −m‖L2([0,T ]×R3

x)‖W ε‖L∞((0,∞),L2(R3
x×R3

v))

+ C(R)T‖m−mβ‖L2([0,T ]×R3
x)‖W ε‖L∞((0,∞),L2(R3

x×R3
v))

+ C(R)T‖mβ −mε,β‖L2([0,T ]×R3
x)‖W ε‖L∞((0,∞),L2(R3

x×R3
v))

≤C(R)T‖mε −m‖L2([0,T ]×R3
x) + C(R)T‖m−mβ‖L2([0,T ]×R3

x)

+ C(R)T‖mβ −mε,β‖L2([0,T ]×R3
x),

(4.25)

where R is the radius of the support of Fv,y[φ]. Using the Young’s inequality
for convolution and the fact that

∫
ϕβ dx = 1, one gets

‖mβ −mε,β‖L2([0,T ]×R3
x) ≤ C‖mε −m‖L2([0,T ]×R3

x). (4.26)
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Then since mε converge to m strongly in L2([0, T ] × R3
x), we have the first

and third terms on the right hand side of (4.25) converge to zero as ε→ 0. By
the property of the mollifier function,

‖m−mβ‖L2([0,T ]×R3
x) ≤ Cβ . (4.27)

Thus we have

lim
ε→0

∣∣∣∣∫∫∫ Γ ε
[
mε −mε,β

]
W εφ dx dv dt

∣∣∣∣ ≤ Cβ . (4.28)

Then the estimates (4.22), (4.23), (4.24) and (4.28) yield

lim
ε→0

∣∣∣∣∫∫∫ (Γ ε[mε]W ε − [M,W ]
)
φdx dv dt

∣∣∣∣ ≤ Cβ . (4.29)

But the left hand side of above inequality is independent of β, we then have

lim
ε→0

∣∣∣∣∫∫∫ (Γ ε[mε]W ε − [M,W ]
)
φ dx dv dt

∣∣∣∣ = 0, (4.30)

which completes the proof of Lemma 12. ut

In summary, by (4.4), Lemma 10 and Lemma 12, one can take ε→ 0 in (4.3)
to get the semiclassical limit of the Schrödinger equation (1.1),∫∫∫ {

W (∂tφ+ v · ∇xφ−∇xV · ∇vφ) +
i

2
[σ̂ ·m, W ]φ

}
dx dv dt = 0.

(4.31)

Next we shall study the limit ε→ 0 of the LLG equation (1.6).

4.2 The limit of the Landau-Lifshitz equation as ε→ 0

Multiplying (1.6) by a test function φ in C∞((0,∞) × Ω) with compact
support yields∫∫

∂tm
εφdx dt =α

∫∫
mε × ∂tmε φ dx dt−

∫∫
mε ×Hε

eff φ dx dt.

(4.32)

According to (4.1l) and (4.1h),mε →m and ∂tm
ε ⇀ ∂tm

ε in L2([0, T ], L2(Ω))
strongly and weakly resp., and thus taking the limit ε→ 0 of the left-hand-side
and the first term on the right-hand-side of (4.32) produces

lim
ε→0

∫∫
∂tm

εφdx dt =

∫∫
∂tmφ dx dt, (4.33)

lim
ε→0

∫∫
mε × ∂tmεφdx dt =

∫∫
m× ∂tmφ dx dt. (4.34)
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According to (1.9), one has∫∫
mε ×Hε

eff φ dx dt =−
∫∫

mε × w′(mε)φ dx dt

−
∫∫

mε ×∇mε · ∇φdx dt

+

∫∫
mε ×Hε

sφdx dt

+
ε

2

∫∫
mε × sεφdx dt.

(4.35)

By (4.1l), (4.1i), (4.1m), and (4.1g), one has

lim
ε→0

∫∫
mε × w′(mε)φdx dt =

∫∫
m× w′(mε)φdx dt (4.36a)

lim
ε→0

∫∫
mε × (Hε

s +H0)φ dx dt =

∫∫
m× (Hs +H0)φ dx dt, (4.36b)

lim
ε→0

∫∫
mε ×∇mε · ∇φ dx dt =

∫∫
m×∇m · ∇φ dx dt. (4.36c)

Notice that (3.29) implies

lim
ε→0

ε

2

∫∫
mε × sεφdx dt = 0, (4.37)

Together with (4.36) and (4.37), we get from (4.35) that

lim
ε→0

∫∫
mε ×Hε

eff φdx dt =

∫∫
m×Heff φ dx dt, (4.38)

where Heff = ∇w(m) + ∆m + Hs. Then by (4.33), (4.34), and (4.38), one
can take the ε→ 0 limit in the LLG equation (1.6).

We summarize all results of the semiclassical limit of the SPLLG system
(1.1)-(1.6) in the following theorem.

Theorem 3 Under Assumptions 1 and 2, there exists a sequence of solutions
(W ε, mε) to the Wigner-Poisson-Landau-Lifshitz system (3.7), (1.4), (1.6),
and (1.13) such that

W ε
I

ε→0−−−→WI in L2(R3
x × R3

v) weakly,

W ε ε→0−−−→W in L∞((0,∞), L2(R3
x × R3

v)) weak* ,

V ε
ε→0−−−→ V in L∞((0,∞), L6(R3

x)) weak* ,

∇V ε ε→0−−−→ ∇V in L∞((0,∞), L2(R3
x)) weak* ,

mε ε→0−−−→m in L∞((0,∞), H1(Ω)) weak* ,

ρε
ε→0−−−→ ρ in L∞((0,∞), Lq(R3

x)) weak* , q ∈ [1, 7/5] ,
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sε
ε→0−−−→ s in L∞((0,∞), Ls(R3

x)) weak* , s ∈ [1, 7/6] ,

Hε
s
ε→0−−−→Hs in L∞((0,∞), L2(Ω)) weak* .

and for all T > 0,

mε ε→0−−−→m in L2([0, T ], L2(Ω)) strongly,

Hε
s
ε→0−−−→Hs in L2([0, T ], L2(R3

x)) strongly.

Here W is a weak solution of the following Wigner equation

∂tW = −v · ∇xW +∇xV · ∇vW +
i

2
[σ̂ ·m, W ],

m is the weak solution of

∂tm = −m×Heff + αm× ∂tm,

and the potential V , magnetic fields Heff and Hs and densities ρ and s are
given by

V = −N ∗ ρ, Heff = −w′(m) +∆m+Hs,

Hs = −∇ (∇N ∗ ·m) , ρ =

∫
R3
v

W dv, s =

∫
R3
v

TrC2(σ̂W ) dv,

with N given in (1.5).
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