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Abstract: A class of Fourier Integral Operators which converge to the unitary group of
the Schrödinger equation in the semiclassical limit ε → 0 in the uniform operator norm
is constructed. The convergence allows for an error bound of order O(ε), which can
be improved to arbitrary order in ε upon the introduction of corrections in the symbol.
On the Ehrenfest-timescale, the result holds with a slightly weaker error bound. In the
chemical literature the approximation is known as the Herman-Kluk propagator.

1. Introduction

We study approximate solutions of the semiclassical time-dependent Schrödinger equa-
tion

iε
d

dt
ψε(t) = −ε

2

2
�ψε(t) + V (x)ψε(t), ψε(0) = ψε0 ∈ L2(Rd ,C) (1)

in the semiclassical limit ε → 0. The operator H ε := − ε2

2 � + V (x) on the right-
hand side of (1) is the so-called Hamiltonian, a self-adjoint operator on L2(Rd ,C). It is
well-known that the solution of (1) can be written as

ψε(t) = e− i
ε

H ε tψε0 ,

where the group of unitary operators e− i
ε

H ε t is defined by the spectral theorem.
The semiclassical parameter εmay be thought of as the quantum of action �, but there

are also situations, where ε has a different meaning. One example is provided by Born-
Oppenheimer molecular dynamics, where Eq. (1) describes the semiclassical motion of
the nuclei of a molecule in the case of well-separated electronic energy surfaces and ε is
the square root of the ratio of the electronic mass and the average nuclear mass. In this
case, the ε in front of the time-derivative in (1) is due to a rescaling of time˜t = t/ε. This
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particular choice, the so-called “distinguished limit” (see [Co68]) leads to a non-trivial
movement of the nuclei on timescales of order O(1).

To formulate our main result, we introduce the following class of Fourier Integral
Operators (FIOs):

Iε(κ t ; u)ϕ(x) := 1

(2πε)3d/2

∫

R3d
e

i
ε
�κ

t
(x,y,q,p)u(x, y, q, p)ϕ(y) dq dp dy, (2)

where

• κ t (q, p) =
(

Xκ
t
(q, p),�κ

t
(q, p)

)

is a C1-family of canonical transformations of

the classical phase space T ∗
R

d = R
d × R

d ,
• Sκ

t
(q, p) is the associated classical action

Sκ
t
(q, p) =

t
∫

0

[

d

dt
Xκ

τ

(q, p) ·�κτ (q, p)− (h ◦ κτ )(q, p)

]

dτ,

• the complex-valued phase function is given by

�κ
t
(x, y, q, p) = Sκ

t
(q, p) +�κ

t
(q, p) ·

(

x − Xκ
t
(q, p)

)

− p · (y − q)

+
i

2

∣

∣

∣x − Xκ
t
(q, p)

∣

∣

∣

2
+

i

2
|y − q|2 , (3)

• and the symbol u is a smooth complex-valued function which is bounded with all its
derivatives.

For this class of operators, the authors previously established an L2-boundedness result,
see [RoSw07]. The central result of this paper reads

Theorem. Let e− i
ε

H ε t be the propagator defined by the time-dependent Schrödinger
equation (1) on the time-interval [−T, T ] with subquadratic potential V ∈ C∞(Rd ,R),
i.e. supx∈Rd |∂αx V (x)| < ∞ for all α ∈ N

d with |α| ≥ 2. Then

sup
t∈[−T,T ]

∥

∥

∥e− i
ε

H ε t − Iε (κ t ; u
)

∥

∥

∥

L2→L2
≤ C(T )ε,

where κ t = (Xκ
t
, �κ

t
) and u are uniquely given as

• the flow associated to the classical Hamiltonian h(x, ξ) = 1
2 |ξ |2 + V (x):

d

dt
Xκ

t
(q, p) = �κ

t
(q, p) Xκ

0
(q, p) = q,

d

dt
�κ

t
(q, p) = −∇V

(

Xκ
t
(q, p)

)

�κ
0
(q, p) = p,

and
• the solution of the Cauchy-problem

d

dt
u(t, q, p) = 1

2
u(t, q, p)tr

(

Z−1
(

Fκ
t
(q, p)

) d

dt
Z
(

Fκ
t
(q, p)

)

)

,

u(0, q, p) = 2d/2.
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The C
d×d-valued function

Z
(

Fκ
t
(q, p)

)

= (i id id)Fκ
t
(q, p)†

(−i id
id

)

= Xκ
t

q (q, p)− i Xκ
t

p (q, p) + i�κ
t

q (q, p) +�κ
t

p (q, p),

depends on elements of the transposed Jacobian

Fκ
t
(q, p)† =

(

Xκ
t

q (q, p) �κ
t

q (q, p)

Xκ
t

p (q, p) �κ
t

p (q, p)

)

of κ t with respect to (q, p).

The equation for u is easily solved. Its solution is the so-called Herman-Kluk prefactor

u(t, q, p) =
(

det Z
(

Fκ
t
(q, p)

)) 1
2
,

where the branch of the square root is chosen by continuity in time starting from t = 0.
We presented a simplified version of our main result. Theorem 2 will essentially add
three central aspects. First, we will state it for more general Hamilton operators, namely
certain Weyl-quantised pseudodifferential operators. Second, the error estimate can be
improved to εN , where N is arbitrary large by adding a correction of the form

∑N−1
n=1 ε

nun
to u. As u, the un are solutions of explicitly solvable Cauchy-problems. Third, for the
Ehrenfest-timescale T (ε) = CT log(ε−1) the result still holds with a slightly weaker
bound.

Whereas there is an abundant number of works on Fourier Integral Operators in the
mathematical literature, only a few of them provide explicit global expressions, which
can serve as a starting point for computational methods. The first works which apply
FIOs with real-valued phase function to this problem are [KiKu81] and [Ki82]. In this
case one has to deal with the boundary value problem

Given x, y ∈ R
d , find p such that Xκ

t
(y, p) = x .

To get uniqueness for its solution one has either to restrict to short times t or to impose
very strong restrictions on the potential. The same problems are met in [Fu79], where
Fujiwara applies a related class of operators without integral in the oscillatory kernel
to the Schrödinger equation to justify the time-slicing approach for Feynman’s path
integrals.

One way to avoid the caustic problem is provided by the Hörmander-Maslov theory.
Here the global FIO is represented as a sum over local oscillatory integral operators
with compactly supported symbols. Moreover, in each local term, an individual basis in
phase-space is chosen to avoid the caustic problem.

The major advantage of complex-valued phase functions is that they provide one
global oscillatory integral representation for the operator. In the non-semiclassical set-
ting, Tataru shows in [Ta04] that the unitary group of time evolution is an FIO with
complex-valued phase function (different from (3)). He also establishes that the simpler
choice u(t, q, p) = 2d/2 leads to a parametrix for the non-semiclassical Schrödinger
equation. Similar results are shown in [Bo03].

A class of operators related to (2) is used in the works [LaSi00] and [Bu02] for the
construction of approximate solutions of the semiclassical time-dependent Schrödinger
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equation. In their case, the kernel consists of an integral over the momentum space in
contrast to the phase-space integral in our expression

(

˜Iε(κ t ; ũ)ψ
)

(x) = 1

(2πε)d

∫

T ∗Rd
e

i
ε
�κ

t
(x,y,y,p)ũ(t, y, p)ψ(y) dp dy.

Moreover, these works only allow compactly supported symbols, which enforces the
truncation of the Hamiltonian in momentum. Finally there is the work of Bily and
Robert [BiRo01], which treats the so-called Thawed Gaussian Approximation discussed
below.

Results on FIOs on the Ehrenfest-timescale do not seem to be present in the literature
so far. However, in [HaJo00] and [CoRo97], the time-evolution of coherent states is
studied on the Ehrenfest timescale. Moreover [BiRo03] discusses the time-evolution of
expectation values with respect to certain localised states and [BaGrPa99] and [BoRo02]
investigate the propagation of observables with error bounds in operator norm.

In addition to the mathematical literature connecting the time-dependent Schrödinger
equation and Fourier Integral Operators, there is an abundant number of papers in chem-
ical journals on this topic. Nevertheless, the focus is mainly put on three approximations:
the “Thawed Gaussian Approximation” (TGA), the “Frozen Gaussian Approximation”
(FGA) and the Herman-Kluk expression. Confusingly, in the chemical literature both
TGA and FGA do not only refer to specific algorithms but they are also used to describe
whole classes of approximations. For example, the Herman-Kluk approximation is some-
times considered as an FGA, whereas the TGA refers both to the time-evolution of a
coherent state and a Fourier Integral Operator. We give a short formal discussion of the
most important methods in the rest of this introduction hinting at related rigorous results.

The starting point is the following identity, which holds for ψ ∈ L2(Rd ,C):

ψ(x) = 1

(2πε)d

∫

T ∗Rd
gε(q,p)(x)〈gε(q,p), ψ〉 dq dp, (4)

where

gε(q,p)(x) = 1

(πε)d/4
e−|x−q|2/2εeip·(x−q)/ε (5)

denotes the coherent state centered at (q, p) in phase space T ∗
R

d . Within the chemical
community, Eq. (4) is heuristically explained as an “expansion in an overcomplete set of
Gaussians”, but the equality can be made rigorous with the help of the FBI-transform,
consider [Ma02]. Applying the unitary group of (1) to expression (4), one gets the formal
equality

(

e− i
ε

opε(h)tψε0

)

(x) = 1

(2πε)d

∫

T ∗Rd

(

e− i
ε

opε(h)t gε(q,p)

)

(x)〈gε(q,p), ψε0 〉 dq dp. (6)

Hence, one expects an approximation to the solution of (1) if the following approximate
expression for the time-evolution of coherent states is used in (6),

(

e− i
ε

opε(h)t gε(q,p)

)

(x) ≈ 1

(πε)d/4

[

det
(

Xκ
t

q (q, p) + i Xκ
t

p (q, p)
)]− 1

2
(7)

×e
i
ε

Sκ
t
(q,p) e−(x−Xκ

t
(q,p))·
κt

(q,p)(x−Xκ
t
(q,p))/2ε ei�κ

t
(q,p)·(x−Xκ

t
(q,p))/ε
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with


κ
t
(q, p) = −i

(

�κ
t

q (q, p) + i�κ
t

p (q, p)
) (

Xκ
t

q (q, p) + i Xκ
t

p (q, p)
)−1

.

In the chemical literature (7) was first derived in [He75]. For rigorous mathematical
results consider [Ha85,Ha98 or CoRo97]. As the coherent state changes its width, expres-
sion (7) and the resulting operator were baptised “Thawed Gaussian Approximation”.

However, it turns out numerically (see e.g. the computations in [HaRoGr04]) that
more accurate approximations are obtained if one drops the time-dependent spreading
and uses expressions like (2). In the simplest case, the symbol u ≡ 1 is held constant in
t , q and p. This approximation is known as the “Frozen Gaussian Approximation” and
holds only for times of order O(ε), see the remark after Theorem 2. To get to the longer
times of order O(1), the more sophisticated choice of u(t, q, p) as the Herman-Kluk
prefactor is needed, see [HeKl84] for the original work and [Ka94] and [Ka06] for works,
which are methodically related to our presentation. Moreover, the latter of them presents
the first derivation of the higher order corrections.

Organisation of the paper and notation. The paper is organised in the following way.
Sect. 2 will set the stage for the discussion of our approximation. Here we will recall
central definitions and results on Fourier Integral Operators, first and foremost their def-
inition and well-definedness on the functions of Schwartz class as well as their bound as
operators acting on L2(Rd ,C), see Definition 6 and Theorem 1. Most of the results of
this section can be found in [RoSw07] and we refer the reader to that paper for a more
detailed discussion and motivation of them. In Sect. 3 we state results on the compo-
sition of Weyl-quantised pseudo-differential operators and Fourier Integral Operators,
see Proposition 2 and investigate the time-derivative of a C1-family of Fourier Integral
Operators in Proposition 3. Moreover, we combine these results to the statement and
proof of our main result, Theorem 2. Finally, Sect. 4 is devoted to the proofs of the
central composition results.

We close this introduction by a short discussion of the notation. Throughout this paper,
we will use standard multiindex notation. Vectors will always be considered as column
vectors. The inner product of two vectors a, b ∈ R

d will be denoted as a ·b =∑d
j=1 a j b j

and extended to vectors a, b ∈ C
d by the same formula. The transpose of a matrix

A will be A†, whereas A∗ := A
†

denotes its adjoint and finally e j will stand for the j th

canonical basis vector of R
d or C

d .
For a differentiable mapping F ∈ C1(Rd ,Cd), we will use both (∂x F)(x) and Fx (x)

for the transpose of its Jacobian at x , i.e. ((∂x F)(x)) jk = (Fx (x)) jk = (∂x j Fk)(x). This
leads to the identity ∂x (F · G) = Gx F + Fx G for F,G ∈ C1(Rd ,Cd). The Hessian
matrix of a mapping F ∈ C2(Rd ,C) will be denoted by Hessx F(x).

For the sake of better readability of the formulae, we will be somewhat sloppy with
respect to the distinction between functions and their values. As a crucial example, we
will write (x − Xκ(q, p))v for the function (x, y, q, p) 
→ (x − Xκ (q, p))v(x, y, q, p).

When dealing with canonical transformations, we introduce the following notations
for a complex linear combination of the components:

Zκ(q, p) := (
x)
1
2 Xκ(q, p) + i

(


x)− 1
2 �κ(q, p),

Z
κ
(q, p) := (
x)

1
2 Xκ(q, p)− i

(


x)− 1
2 �κ(q, p).
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We want to point out that Z
κ
(q, p) is not the complex conjugate of Zκ(q, p) for non-real

matrices
x . The matrix square root of a positive definite matrix will always be chosen
as the unique positive definite square root, compare Appendix B. We want to point out
that both the determinant of this matrix-square root and the square root of a determinant
will appear in this paper.

We define z := 
yq + i p, ∂z := (
y)−1 ∂q − i∂p and

divz X (q, p) =
d
∑

k=1

(


y)−1
jk ∂qk X j (q, p)− i

d
∑

j=1

∂p j X j (q, p)

for functions X ∈ C1(R2d ,Cd), regardless whether they are row or column vectors.
With these definitions the identity divz X (q, p) = trXz(q, p) still holds. Finally, we
mention that the expression d

dt Xκ
(t,s)
(q, p) · �κ(t,s) (q, p) denotes the inner product of

d
dt Xκ

(t,s)
(q, p) and �κ

(t,s)
(q, p).

2. Canonical Transformations and Fourier Integral Operators

In this section, we specialise the central definitions and results of [RoSw07] to the case
of Hamiltonian flows.

2.1. Symbol classes and canonical transformations. The definition of our FIOs in-
volves two fundamental objects. One of them is a smooth complex-valued function, the
so-called symbol. The following definition deviates from [RoSw07] by the additional
ε-dependence.

Definition 1 (Symbol class). Let m = (m j )1≤ j≤J ∈ R
J and d = (d j )1≤ j≤J ∈ N

J . We
say that u : ]0, 1] × R

|d| → C
N is a symbol of class S[m; d], if there is ε0 < 1, such

that uε ∈ C∞(R|d|,CN ) for all ε ≤ ε0 and the following quantities are finite for any
k ≥ 0:

Mm
k [u] := sup

ε≤ε0

max|α|=k
sup

z∈R|d|

∣

∣

∣

∣

∣

∣

J
∏

j=1

〈z j 〉−m j ∂αz uε(z)

∣

∣

∣

∣

∣

∣

, (8)

where 〈z〉 := √1 + |z|2. We extend this definition to any m j ∈ R := {−∞} ∪ R ∪ {+∞}
by setting, for instance with non-finite m1,

S[(+∞,m2, . . . ,m J ); d] =
⋃

m1∈R

S[(m1, . . . ,m J ); d].

The second central object in the definition of a Fourier Integral Operator is a canonical
transformation of the classical phase space.

Definition 2. (Canonical transformation) Let κ(q, p) = (Xκ(q, p),�κ(q, p)) be a dif-
feomorphism of T ∗

R
d = R

d ×R
d . We represent its differential by the following Jacobian

matrix:

Fκ(q, p) =
(

Xκq (q, p)† Xκp(q, p)†

�κq(q, p)† �κp(q, p)†

)

. (9)
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κ is said to be a canonical transformation if Fκ(q, p) is symplectic for any (q, p) in
T ∗

R
d , i.e.

Fκ(q, p) ∈ Sp(2d) :=
{

S ∈ Gl(2d)
∣

∣

∣S† J S = J
}

with J :=
(

0 id
−id 0

)

.

To get good properties for our operators, we need to restrict the class of canonical
transformations under consideration.

Definition 3. (Canonical transformation of class B) A canonical transformation κ of
T ∗

R
d is said to be of class B if Fκ ∈ S[0; 2d]. A time-dependent family of canonical

transformations κ t will be called of class B in [−T, T ] if it is pointwise continuously
differentiable with respect to time and we have for all k ≥ 0,

sup
t∈[−T,T ]

M0
k

[

Fκ
t
]

< ∞ and sup
t∈[−T,T ]

M0
k

[

d

dt
Fκ

t
]

< ∞.

In particular Fκ
t

and d
dt Fκ

t
are of class S[0; 2d] pointwise for t ∈ [−T, T ].

We also have to restrict the Hamiltonians we use.

Definition 4. A time-dependent Hamiltonian h ∈ C(R,C∞(R2d ,C)) is called subqua-
dratic, if

sup
−T ≤t≤T

sup
(x,ξ)∈Rd×Rd

‖∂α(x,ξ)h(t, x, ξ)‖L∞ (10)

is finite for all |α| ≥ 2 and T > 0. It is called sublinear, if the quantity is finite for all
|α| ≥ 1.

The next result will investigate the relation between classical Hamiltonians and the
flows they generate.

Proposition 1. If h ∈ C(R,C∞(R2d ,C)) is a time-dependent subquadratic Hamiltonian,
the Hamiltonian flow κ(t,s) generated by h,

d

dt
κ(t,s) = J∇(x,ξ)h(t, κ(t,s)), κ(s,s) = id (11)

is a family of canonical transformations of class B in [−T, T ]. Moreover, every
Hamiltonian flow of class B is generated by a subquadratic Hamiltonian. Under the
additional assumption

K h
k = max|α|=k

sup
(t,x,ξ)∈R2d+1

∥

∥

∥∂
α
(x,ξ)Hess(x,ξ)h(t, x, ξ)

∥

∥

∥ < ∞

for all k ≤ n0, we have

sup
|t−s|<T (ε)

M0
k

[

Fκ
(t,s)
]

≤ Ck(2CT )
k |log ε|k ε−2K [h]CT ,

for all k ≤ n0 on the Ehrenfest timescale T (ε) = CT log ε−1, where

K [h](T ) = sup
t∈]−T,T [

sup
(q,p)∈R2d

sup
X∈R

2d

|X |=1

∣

∣

〈

JHess(x,ξ)h(t, x, ξ)X, X
〉∣

∣

and K [h] := K [h](+∞).
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Proof. The basic identity follows by differentiating (11) with respect to (q, p):

d

dt
Fκ

(t,s)
(q, p) = JHess(x,ξ)h(t, κ

(t,s)(q, p))Fκ
(t,s)
(q, p). (12)

The fundamental theorem of calculus gives

∣

∣

∣Fκ
(t,s)

X
∣

∣

∣

2

= 2
∫ t

s

〈

JHess(x,ξ)h
(

τ, κ(τ,s)(q, p)
)

Fκ
(τ,s)
(q, p)X

∣

∣

∣Fκ
(τ,s)
(q, p)X

〉

dτ + |X |2

≤ 2K [h](T )
∣

∣

∣

∣

∫ t

s

∣

∣

∣Fκ
(τ,s)
(q, p)X

∣

∣

∣

2
dτ

∣

∣

∣

∣

+ |X |2

for all X ∈ R
2d . We deduce

∥

∥

∥Fκ
(t,s)
(q, p)

∥

∥

∥ ≤ eK [h](T )|t−s|

by an application of Gronwall’s Lemma. For the derivatives we have

d

dt
∂α(q,p)F

κ(t,s) (q, p) = JHess(x,ξ)h(τ, κ
(t,s)(q, p))∂α(q,p)F

κ(t,s) (q, p)

+
∑

β<α

(

α

β

)

J∂α−β
(q,p)

[

Hess(x,ξ)h(τ, κ
(t,s)(q, p))

]

∂
β

(q,p)F
κ(t,s) (q, p),

and hence

∂α(q,p)F
κ(t,s) (q, p)

=
∫ t

s
Fκ

(t,τ )
(q, p)

∑

β<α

(

α

β

)

∂
α−β
(q,p)

[

Hess(x,ξ)h(τ, κ
(τ,s)(q, p))

]

∂
β

(q,p)F
κ(τ,s) (q, p) dτ,

(13)

so we obtain inductively
∥

∥

∥∂
α
(q,p)F

κ(t,s) (q, p)
∥

∥

∥ ≤ Ck(2T )keK [h](T )|t−s|,

where Ck depends on K h
l for l ≤ k. The result for the Ehrenfest timescale follows by

substituting T (ε) = CT log(ε−1) into this expression.
Now consider a Hamiltonian flow of class B. The identity (12) gives

J

(

d

dt
Fκ

(t,s)
(q, p)

)

J
(

Fκ
(t,s)
(q, p)

)†
J = Hess(q,p)h(t, κ

(t,s)(q, p)).

Hence, h is subquadratic, as d
dt Fκ

(t,s)
is of class S[0; 2d] by definition.

Remark 1. 1. It is well-known that linear Hamiltonian flows are generated by quadratic
Hamiltonians and vice-versa, compare Chapter 4 in Folland.



A Mathematical Justification for the Herman-Kluk Propagator 733

2. By estimating the logarithm, we can have a bound of the form

sup
|t−s|<T (ε)

M0
k

[

Fκ
(t,s)
]

≤ C ′
k(CT )ε

−ρ(CT ), (14)

for the Ehrenfest timescale, where ρ(CT ) < ρ0 for any ρ0 > 0, if CT is chosen
small enough.

3. From now on, all considered canonical transformations are assumed to be of class
B.

An important quantity associated with a canonical transformation is the so-called action.

Definition 5. (Action) Let κ(q, p) = (Xκ(q, p),�κ(q, p)) be a canonical transfor-
mation of T ∗

R
d . A real-valued function Sκ is called an action associated to κ if it

fulfills

Sκq (q, p) = −p + Xκq (q, p)�κ(q, p), Sκp(q, p) = Xκp(q, p)�κ(q, p). (15)

Remark 2. 1. An action associated to a canonical transformation is only defined up to
an additive constant. If we consider a time-dependent family of canonical transfor-
mations κ t , we will choose this time-dependent constant such that Sκ

t
(q, p) is C1

with respect to time.
2. If κ(t,s) is induced by a Hamiltonian h(t, x, ξ), the action of classical mechanics

Sκ
(t,s)

cl (q, p) =
t
∫

s

(

d

dt
Xκ

τ

(q, p) ·�κτ (q, p)− h
(

τ, κ(τ,s)(q, p)
)

)

dτ

is an action in the sense of this definition. In this case, we use the convention
Sκ

(s,s)
(q, p) = 0, where Sκ

(t,s)
(q, p) is now considered as a function of t . We cannot

assume Sid(q, p) = 0, as the case h(t, x, ξ) = h(t) shows.

2.2. Definition of FIOs and continuity results. In this section, we will define the oper-
ators we will use to approximate the propagator of the Schrödinger equation.

Definition 6. (Fourier Integral Operator) For u ∈ S[+∞; 4d] and ϕ ∈ S(Rd ,C) we
define the Fourier Integral Operator with symbol u by the oscillatory integral

[Iε(κ; u;
x ,
y)ϕ
]

(x)

:= 1

(2πε)3d/2

∫

R3d
e

i
ε
�κ (x,y,q,p;
x ,
y)u(x, y, q, p)ϕ(y) dq dp dy, (16)

where

• 
x and
y are complex symmetric matrices (i.e.
 = 
†) with positive definite real
part,

• the complex-valued phase-function is given by

�κ(x, y, q, p;
x ,
y) = Sκ(q, p)− p · (y − q) +�κ(q, p) · (x − Xκ(q, p))

+
i

2
(y − q) ·
y(y − q)

+
i

2
(x − Xκ(q, p)) ·
x (x − Xκ(q, p)).
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The technical details concerning the oscillatory integral formalism are found in Appen-
dix A. The following theorem combines the central results of [RoSw07].

Theorem 1. 1. If u ∈ S[+∞; 4d], Iε(κ; u;
x ,
y) sends S(Rd ,C) into itself and is
continuous.

2. If u ∈ S[0; 4d], Iε(κ; u;
x ,
y) can be extended in a unique way to a linear
bounded operator L2(Rd ,C) → L2(Rd ,C) and there exists a constant C(Mκ

0 ,


x ,
y) such that

∥

∥Iε(κ; u;
x ,
y)
∥

∥

L2→L2 ≤ C(Mκ
0 ;
x ,
y)

∑

|α|≤4d+1

‖∂α(x,y)u‖L∞ . (17)

In the special case where u ∈ S[0; 2d] is independent of (x, y), we have

∥

∥Iε(κ; u;
x ,
y)
∥

∥

L2→L2 ≤ 2−d/2 det
(�
x�
y)− 1

4 ‖u‖L∞ . (18)

Remark 3.

1. The dependence of C(Mκ
0 ;
x ,
y) on Mκ

0 ,

x and 
y can be made more explicit.

Consider [RoSw07] for the precise expression.
2. There is an analogous result for Weyl-quantised pseudodifferential operators

(opε(h)ψ)(x) := 1

(2πε)d

∫

T ∗R

e
i
ε
ξ ·(x−y)h

( x + y

2
, ξ
)

ψ(y) dy dξ,

see for example [Ma02]:
(a) If h ∈ S[+∞; 2d], opε(h) sends S(Rd ,C) into itself and is continuous.
(b) If h ∈ S[0; 2d], opε(h) extends to a bounded operator on L2(Rd ,C) with an

ε-independent norm bound (Calderón-Vaillancourt Theorem).

3. We have Iε
(

id; det(
x +
y)
1
2 ;
x ,
y

)

= id, compare Appendix B for the cor-

rect choice of the square root.

3. Composition Results and the Approximation Theorem

The standard approach in the field of asymptotic analysis consists in a two step proce-
dure. First, one constructs an asymptotic solution U ε

N (t, s)ψεs of order O(εN+1), i.e. a
function which fulfills

(

iε
d

dt
− H ε(t)

)

U ε
N (t, s)ψεs = εN+1 RεN (t, s)ψεs . (19)

If one can establish an ε-independent bound on the remainder RεN (t, s), the asymptotic
solution can be turned into an approximate solution of the unitary group with the help
of a special version of Gronwall’s Lemma, (see for example Lemma 2.8 in [Ha98] for
the strategy of the proof):

Lemma 1. Let U ε(t, s) be the propagator of the time-dependent Schrödinger-equation
(

iε
d

dt
− H ε(t)

)

ψε(t) = 0, ψε(s) = ψεs ∈ D ⊂ L2(Rd ,C)
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for some family of self-adjoint operators H ε(t) with common domain D. Moreover, for
some T > 0 and −T ≤ t, s ≤ T , let U ε

N (t, s) be a family of bounded operators, which
is strongly differentiable with respect to t , leaves a core of H ε(t) invariant and which
fulfills

iε
d

dt
U ε

N (t, s)ψε(s)− H ε(t)U ε
N (t, s)ψε(s) = εN+1 RεN (t, s)ψε(s)

with U ε
N (s, s) = id. If ‖RεN (t, s)‖L2→L2 < ∞ for all −T ≤ t, s ≤ T , we have

∥

∥U ε
N (t, s)− U ε(t, s)

∥

∥

L2→L2 ≤ εN

∣

∣

∣

∣

∣

∣

t
∫

s

‖RεN (τ, s)‖L2→L2 dτ

∣

∣

∣

∣

∣

∣

.

In this section, we state the intermediate results needed for the construction of the asymp-
totic solution.

In Proposition 2, we show using Weyl-quantisation that the composition of differ-
ential operators with Fourier Integral Operators is again an FIO. Moreover, we give an
asymptotic expansion of the symbol of the new FIO, whose terms but for the last are
x-independent. This is important, as x-dependence of the symbol may be converted to
ε-dependence, which can be seen from Lemma 3. Proposition 3 deals with the time-
derivative of a family of FIOs and an uniqueness result for symbols and canonical
transformations is given in Proposition 4. The section is closed with the statement and
proof of our main result.

To state our results, we need the matrix Z(q, p) = Zκz (q, p) (
x )
1
2 , which already

appeared as Z (Fκ(q, p)) in the statement of our main result in the introduction. We
justify this abuse of notation by better readability of the formulae presented here. The in-
vertibility of Z(q, p), which is implicitly claimed in the following statements, is shown
in Lemma 2.

The composition result reads:

Proposition 2. Let κ be a canonical transformation of class B, h ∈ S[mh; 2d] be poly-
nomial in ξ and u ∈ S[mu; 2d]. Then we have

opε(h)Iε(κ; u;
x ,
y) = Iε
(

κ;
N
∑

n=0

εnvn;
x ,
y

)

+ εN+1Iε (κ; vεN+1;
x ,
y)

as operators from S(Rd ,C) to S(Rd ,C), where vn, v
ε
N+1 ∈ S[mu + mh; 2d] are given

by

v0(q, p) = u(q, p)(h ◦ κ)(q, p), (20)

v1(q, p) = −divz

(

(

(hx + i
x hξ ) ◦ κ(q, p)
)† Z−1(q, p)u(q, p)

)

+u(q, p)
1

2
tr
(

Z−1(q, p)∂z((hx + i
x hξ ) ◦ κ(q, p))
)

(21)

and

vn(q, p) = Ln[h; κ;
x ,
y]u(q, p) ∈ S[mu + mh; 2d], 2 ≤ n ≤ N ,

vεN+1(x, q, p) = LεN+1[h; κ;
x ,
y]u(q, p) ∈ S[(mh,mu + mh); (d, 2d)],
for some linear differential operators Ln and LεN+1.
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Remark 4. 1. The proof reveals the following properties of the operators Ln and LεN+1:
• In the case of the Ehrenfest-timescale, i.e. in the case where all derivatives of

Fκ(q, p) and u allow for a bound of the form Cε−ρ , one has
∣

∣Ln[h; κ;
x ,
y]u∣∣ ≤ C ′ε−Mρ
∑

|α|≤n

|∂α(q,p)u|.

An analogous statement holds for LεN+1.
• In the case of linear canonical transformations, quadratic Hamiltonians and con-

stant symbols u, one has vn = vεN = 0 for all n, N ≥ 2.
2. We want to comment on the assumption on polynomial behavior of h: Usually, com-

position results of PDOs and FIOs are proved with the help of a stationary phase
argument in the ξ -variable. As a complex phase function yields non-real stationary
point, one has to use pseudo-analytic continuations of the symbol. In our case, we
do not need the polynomial behavior in ξ for this reason. The problem is that the
class of FIOs is not closed under the composition with PDOs and that it is only for
differential operators that the remainder Iε (κ; vεN+1;
x ,
y

)

is of this type.

The second result of this section will investigate the time-derivative of a family of FIOs.
In the case of a time-dependent family of canonical transformations, we have the fol-
lowing result:

Proposition 3. Let u ∈ C(R, S[(mq ,m p); (d, d)]) be a family of time-dependent sym-
bols with u(·, q, p) ∈ C1(R,C) and ( d

dt u)(t, ·, ·) ∈ S[(mq ,m p); (d, d)], κ t a family of

canonical transformations of class B, Sκ
t
an action associated to κ t ,
x ∈ C1(R,Gl(d))

a family of complex symmetric matrices with positive definite real part and
y complex
symmetric with positive definite real part. We have

iε
d

dt
Iε (κ t ; u;
x (t),
y) = Iε

(

κ t ;
2
∑

n=0

εnvn;
x (t),
y

)

with

v0(t, q, p) = u(t, q, p)

(

− d

dt
Sκ

t
(q, p) +

d

dt
Xκ

t
(q, p) ·�κ t

(q, p)

)

(22)

v1(t, q, p) = i
d

dt
u(t, q, p) (23)

+divz

(

(

d

dt
�κ

t
(q, p)− i
x (t)

d

dt
Xκ

t
(q, p)

)†

Z−1(t, q, p)u(t, q, p)

)

− i

2
u(t, q, p)tr

(

Z−1(t, q, p)Xκz (q, p)
d

dt

x (t)

)

,

v2(t, q, p) = −
d
∑

k=1

divz

(

∂zk

(

d

dt

x (t)Z−1(t, q, p)ek u(q, p)

)†

Z−1(t, q, p)

)

, (24)

where v0, v1, v2 ∈ C0
(

R, S[(mq ,m p); (d, d)]).
Remark 5. In both propositions, the case of a linear canonical transformation, a quadratic
symbol h and a constant symbol u results in vn = 0 for n ≥ 2. This will result in the
exactness of the Herman-Kluk expression for quadratic Hamiltonians.
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Finally, we have the following uniqueness result:

Proposition 4. Let κ1 and κ2 be two canonical transformations of class B and
u, v ∈ S[0; 2d]. If

lim
ε→0

∥

∥Iε(κ1; u;
x ,
y)− Iε(κ2; v;
x ,
y)
∥

∥

L2→L2 = 0,

then u = v and κ1(q, p) = κ2(q, p) for all (q, p) ∈ supp u.

By the strategy outlined before, these results are combined to our main result:

Theorem 2. Let U ε(t, s) be the propagator associated to the time-dependent Schröding-
er-equation

iε
d

dt
ψε(t) = H ε(t)ψε(t), ψε(s) = ψεs ∈ L2(Rd)

on the time-interval −T ≤ s, t ≤ T , where H ε(t) = opε(h0 + εh1) with subquadratic
h0(t, x, ξ) and sublinear h1(t, x, ξ), both polynomial in ξ . Moreover let

• 
y ∈ Gl(d) be complex symmetric with positive definite real part and
• 
x ∈ C1(R,Gl(d)) be complex symmetric fulfilling 0 < γ id ≤ �
x (t) ≤ γ ′ id for

all t ∈ [−T, T ] in the sense of quadratic forms.

Then

sup
−T ≤s,t≤T

∥

∥

∥

∥

∥

U ε(t, s)− Iε
(

κ(t,s);
N
∑

n=0

εnun;
x (t),
y

)∥

∥

∥

∥

∥

L2→L2

≤ C(T )εN+1,

where κ(t,s) and the un are uniquely given as

• the Hamiltonian flow associated to h0 and
• the solutions of

d

dt
un (t, s, q, p) =

n−1
∑

k=0

Ln−kuk + un(t, s, q, p)

×
[

1

2
tr

(

Z−1(t, s, q, p)
d

dt
Z(t, s, q, p)

)

− ih1

(

t, Xκ
(t,s)
(q, p),�κ

(t,s)
(q, p)

)

]

with initial conditions

u0(s, s, q, p) = det
(


x (s) +
y)1/2

un(s, s, q, p) = 0, n ≥ 1.

Corollary 1. Under the additional assumption

‖(∂α(q,p)h)(t, q, p)‖L∞(R×R2d ) < ∞,

for all α ∈ N
2d we have the following result on the Ehrenfest timescale T (ε) =

CT log(ε−1):

sup
−T (ε)≤s,t≤T (ε)

∥

∥

∥

∥

∥

U ε(t, s)− Iε
(

κ(t,s);
N
∑

n=0

εnun;
x (t),
y

)∥

∥

∥

∥

∥

≤ C(CT )ε
N+1−ρ(CT ),

where ρ(CT ) can be made arbitrary small, if CT is chosen small enough.
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Remark 6. 1. We recall that Z(t, s, q, p) = (i (
y)−1 id)Fκ
(t,s)
(q, p)†(−i
x (t) id)†,

thus the dependence of Z(t, s, q, p) on q and p is only via the Jacobian of the flow.
2. The expression for the leading order symbol is

u0(t, s, q, p) = (det
yZ(t, s, q, p)
) 1

2 e
−i

t
∫

s
h1
(

τ,κ(τ,s)(q,p)
)

dτ
,

where the branch of the square root is defined by continuity in t starting from

u0(s, s, q, p) = det (
x (s) +
y)
1
2 , compare Remark 3. The corresponding FIO

is known as the Herman-Kluk propagator in the chemical literature. Notice that the
dependence of u on q and p is only via Fκ

(t,s)
(q, p). Likewise, the (q, p)-dependence

in uk is only via Fκ
(t,s)
(q, p) and its derivatives with respect to q and p.

3. As an easy corollary we get that the FIO defined in the last theorem approximately
inherits the properties of U (t, s), i.e. it is almost unitary in the sense that

∥

∥

∥Iε
(

κ(t,s); u;
x (t),
y
)

Iε
(

κ(t,s); u;
x (t),
y
)∗ − id

∥

∥

∥ ≤ CN ε
N+1,

∥

∥

∥Iε
(

κ(t,s); u;
x (t),
y
)∗ Iε

(

κ(t,s); u;
x (t),
y
)

− id
∥

∥

∥ ≤ CN ε
N+1,

where u =∑N
n=0 ε

nun and it almost fulfills the group property, i.e.
∥

∥

∥Iε
(

κ(t,t
′); u; id, id

)

Iε
(

κ(t
′,s); u; id, id

)

− Iε
(

κ(t,s); u; id, id
)∥

∥

∥ ≤ C ′
N ε

N+1.

The result also holds for general 
x and 
y . The possibility of stating the correct
dependence of the symbol on the matrices is left to the reader.

4. In the case of a linear flow

κ(t,s)(q, p) = F(t, s)

(

q
p

)

the approximation becomes exact as the symbols vn in Propositions 2 and 3 vanish
for n ≥ 2. Hence, the metaplectic representation of F can be expressed by a Fourier
Integral Operator.

5. The proof will produce the following byproduct: the so-called Frozen Gaussian
Approximation, which is obtained by choosing κ(t,s) as the Hamiltonian flow but
keeping u0 constant for all q, p and t , is an asymptotic solution of the Schrödinger
equation of order O(ε). Thus it approximates the unitary group for the short times
of order ε. It will not be a valid approximation for longer times because of the
uniqueness of the symbol.

Proof. By Theorem 1, an FIO associated to a C1 family κ(t,s) of canonical transforma-
tion of class B and (x, y)-independent symbol u = ∑N

n=0 ε
nun , un ∈ C1(R, S[0; 2d])

leaves S(Rd ,C) invariant. Thus, we can plug such an operator as an ansatz into the time-
dependent Schrödinger equation (1). By Propositions 2 and 3 we have a representation

(

iε
d

dt
− opε(h0 + εh1)

)

Iε
(

κ(t,s);
N
∑

n=0

εnun;
x (t),
y

)

= Iε
(

κ(t,s);
N+1
∑

n=0

εnvn;
x (t),
y

)

+ εN+2Iε
(

κ(t,s); vεN+2;
x (t),
y
)
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on S(Rd ,C). We will show that the vn , 0 ≤ n ≤ N +1 vanish, if κ(t,s) and un ∈ S[0, 2d],
0 ≤ n ≤ N are chosen properly. Moreover, it will turn out that vεN+2 is of class S[0; 3d].
Thus, by Theorem 1, Iε

(

κ(t,s);∑N
n=0 ε

nun;
x (t),
y
)

is an asymptotic solution of

order N + 2. The statement will then follow by Lemma 1.
Combining Propositions 2 and 3, one recognises v0 as the product of u0 and

(

− d

dt
Sκ

(t,s)
(q, p) +

d

dt
Xκ

(t,s)
(q, p) ·�κ(t,s) (q, p)− h0

(

t, κ(t,s)(q, p)
)

)

. (25)

As we do not expect Iε(κ; 0;
x ,
y) = 0 to be a good approximation of U (t, s), we
require (25) to vanish. By combining its derivatives with respect to p and q, it is easily
seen that this is the case if and only if κ(t,s) is the Hamiltonian flow associated to h0.

There are several parts which contribute to v1:

1. the zeroth order terms of Propositions 2 and 3 applied to u1,
2. the first order terms of Propositions 2 and 3 applied to u0,
3. the zeroth order term of Proposition 2 applied to u0 for the subprincipal symbol h1.

Thus we get the following expression for v1:

u1

[

− d

dt
Sκ

(t,s)
(q, p) +

d

dt
Xκ

(t,s)
(q, p) ·�κ(t,s) (q, p)− h0

(

t, κ(t,s)(q, p)
)

]

(26)

+ divz

(

[

(∂x h0 + i
x (t)∂ξh0)
(

t, κ(t,s)(q, p)
)]† Z−1(t, s, q, p)u0

)

(27)

+ divz

(

(

d

dt
�κ

(t,s)
(q, p)− i
x (t)

d

dt
Xκ

(t,s)
(q, p)

)†

Z−1(t, s, q, p)u0

)

(28)

− u0
1

2
tr
(

Z−1(t, s, q, p)∂z

[

(∂x h0 + i
x (t)∂ξh0)
(

t, κ(t,s)(q, p)
)])

+ i
d

dt
u0 − i

2
u0tr

(

Z−1(t, s, q, p)Xκz (q, p)
d

dt

x (t)

)

− u0h1

(

t, κ(t,s)(q, p)
)

= i
d

dt
u0 − i

2
u0tr

(

Z−1(t, s, q, p)
d

dt
Z(t, s, q, p)

)

− u0h1

(

t, κ(t,s)(q, p)
)

,

as (26) and (27)+(28) vanish because of the choice of κ(t,s) as the Hamilton flow.
As the linearisation of det(A) is det(A)tr(A−1dA) for invertible A, the equation

v1 = 0 with initial conditions that recover identity, is solved by

u0(t, s, q, p) = (det(
yZ(t, s, q, p))
) 1

2 exp

⎛

⎝−i

t
∫

s

h1

(

τ, κ(τ,s)(q, p)
)

dτ

⎞

⎠ ,

which is of class S[0; 2d].
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vn is given by the following expression:

i
d

dt
un−1 − i

2
un−1tr

(

Z−1(t, s, q, p)
d

dt
Z(t, s, q, p)

)

− un−1h1

(

t, κ(t,s)(q, p)
)

−
d
∑

k=1

divz

(

(

∂zk

(

d

dt

x (t)Z−1(t, s, q, p)ek un−2

))†

Z−1(t, s, q, p)

)

−i
n−2
∑

j=2

L j [h0(t); κ(t,s);
x (t),
y]un− j

−i
n−3
∑

j=1

L j [h1(t); κ(t,s);
x (t),
y]un− j−1,

where we already dropped the terms analogous to (26)–(28). The equation vn = 0 is
easily solved by variation of the constant, as the corresponding homogeneous ODE
coincides with the equation for u0. Its solution is in S[0; 2d] with its form analogous
to (13).

We finally note that the highest order symbol is of class S[0; 3d]. Thus, we have
established that the constructed FIO is an asymptotic solution of order N +2 on the class
of Schwartz functions, so the result follows by the strategy outlined at the beginning of
the proof.

We turn to the uniqueness. Assume that there are κ̃ (t,s) and ũ ∈ S[0; 2d] such that
∥

∥

∥U ε(t, s)− Iε
(

κ̃ (t,s); ũ;
x (t),
y
)∥

∥

∥ ≤ C ′(T )ε.

In this case we have
∥

∥

∥Iε
(

κ(t,s); u0;
x (t),
y
)

− Iε
(

κ̃ (t,s); ũ;
x (t),
y
)∥

∥

∥ ≤ (C(T ) + C ′(T )
)

ε,

and thus we get κ̃ (t,s) = κ(t,s) and ũ = u0 on suppu0 = R
2d by Proposition 4. The

uniqueness of the higher order corrections follows inductively by the same kind of
argument.

Proof (of Corollary 1). To extend the result to the Ehrenfest timescale, we have to study
the dependence of the remainder’s symbol vεN+2 on T = T (ε) and to show that the
growth of

∑

|α|≤4d+1

∥

∥∂αx v
ε
N+2

∥

∥

L∞

can be controlled by the O(εN+2)-term of the remainder in the ε → 0 limit if CT is
sufficiently small.

The dependence comes from the elements of Fκ
(t,s)
(q, p) and its derivatives. By (14),

they allow for a bound of the form C ′(CT )e−ρ(CT ), where ρ(CT ) can be made arbitrary
small if CT is chosen small enough. Moreover, vεN+2 has polynomial growth in these
quantities, which follows from the form of the differential operators of Proposition 2,
the explicit expressions for un and the bound away from zero of the determinant of
Z(t, s, q, p), compare the proof of Lemma 2. Combining these facts, the result follows.
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4. Proofs of the Intermediate Results

The proof of the composition results rely strongly on results about conversion of
x-dependence to ε-dependence. We introduce the following notation:

Definition 7. Two symbols u, v ∈ S[+∞; 4d] are said to be equivalent with respect to
κ if

Iε(κ; u;
x ,
y) = Iε(κ; v;
x ,
y)

as operators from S(Rd ,C) to S(Rd ,C). In this case we write u ∼ v.

The central technical result is:

Lemma 2. We have

i�κz (x, y, q, p;
x ,
y) = Zκz (q, p)
(


x)
1
2 (x−Xκ(q, p)) =: Z(q, p)(x−Xκ (q, p)).

Z(q, p)=(i (
y)−1 id)(Fκ(q, p))†(−i
x id)† is invertible and its inverseZ−1(q, p)
is in the class S[0; 2d].
Proof. The derivatives of �κ(x, y, q, p;
x ,
y) with respect to q and p are

�κq(x, y, q, p;
x ,
y) = [�κq − i Xκq

x ](q, p)(x − Xκ(q, p))− i
y(y − q),

�κp(x, y, q, p;
x ,
y) = [�κp − i Xκp

x ](q, p)(x − Xκ(q, p))− (y − q),

which gives the identity for Z(q, p). Obviously, Z(q, p) inherits its symbol class from
Fκ(q, p). Moreover, we have

Z(q, p)
(�
x)−1 Z(q, p)∗

= 2� (
y)−1 +

(

�
(


x) Fκ(q, p)

(

i (
y)−1

−id

))∗(
�
(


x) Fκ(q, p)

(

i (
y)−1

−id

))

with

�(
) =
(

(�
)1/2 0
(�
)−1/2�
 (�
)−1/2

)

.

Hence, by the superadditivity of the determinant for positive definite hermitian matrices,
det Z(q, p) is uniformly bounded away from 0 for all q and p, so by its expression via
the formula of minors, Z−1(q, p) ∈ S[0; 2d], as Z(q, p) is.

By integration by parts, Lemma 2 yields the following conversion result, which is a
special case of Lemma 5 in [RoSw07].

Lemma 3. Let u ∈ S[(mx ,mq ,m p); (d, d, d)]. Then

(x j − Xκj (q, p))u ∼ εv,

where v ∈ S[(mx ,mq ,m p); (d, d, d)] is given by

v(x, q, p) = −divz

(

e†
jZ−1(q, p)u(x, q, p)

)

with

Z(q, p) := Zκz (q, p)
(


x)
1
2 .
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Remark 7. 1. We recall that

Zκz (q, p) =
(

(


y)−1
∂q − i∂p

)

(

(


x)
1
2 Xκ (q, p) + i

(


x)− 1
2 �κ(q, p)

)

.

2. Obviously, Z(q, p) depends on q and p only via the elements of Fκ(q, p). For bet-
ter readability, we do not explicitly denote this dependence. Moreover, we drop the
dependence on 
x and 
y in the notation.

3. For a linear canonical transformation κ(q, p) = M

(

q
p

)

, with M ∈ Sp(2d), we

have Fκ(q, p) = M , so Z(q, p) = (i id (
y)−1)M†(−i
x id)† is constant with
respect to (q, p).

With these auxiliary results, we are able to prove the result on the composition of
PDOs and FIOs:

Proof (of Proposition 2). Let ϕ ∈ S(Rd ,C). The composition of opε(h) with the FIO
applied to ϕ is

[opε(h)Iε(κ; u;
x ,
y)ϕ](x)
= 1

(2πε)5d/2

∫

R5d
h
( x+w

2
, ξ
)

e
i
ε
�κ (x,w,y,q,p;
x ,
y)u(q, p)ϕ(y) dq dp dy dw dξ,

where�κ(x, w, y, q, p;
x ,
y) := ξ · (x −w)+�κ(w, y, q, p;
x ,
y) and the inte-
gral is an oscillatory one. Using the creation and annihilation “variables” and operators

a := (
x)
1
2 x+w

2 + i
(


x)− 1
2 ξ ; ∂a := (
x)− 1

2 ∂w − i

2

(


x)
1
2 ∂ξ ,

a := (
x)
1
2 x+w

2 − i
(


x)− 1
2 ξ ; ∂a := (
x)− 1

2 ∂w +
i

2

(


x)
1
2 ∂ξ ,

we perform a Taylor-expansion of the symbol h to order 2N around κ(q, p):

h
( x+w

2
, ξ
)

=
∑

|α+β|≤2N

1

α!β!
((

∂αa ∂
β

a h
)

◦ κ
)

(q, p)
(

a−Zκ(q, p)
)α
(

a−Z
κ
(q, p)

)β

+
∑

|α+β|=2N+1

(

a − Zκ(q, p)
)α
(

a − Z
κ
(q, p)

)β

Rα,β (a, a, q, p)

= hT

(

a − Zκ(q, p), a − Z
κ
(q, p)

)

+ hR (a, a, q, p) ,

where the remainder is given by

Rα,β (a, a, q, p)

= |α + β|
α!β!

1
∫

0

σ |α+β|−1
(

∂αa ∂
β

a h
)

(x + σ (Xκ(q, p)− x) , ξ + σ (�κ(q, p)− ξ))dσ.

In the first step, we discuss only the Taylor-polynomial hT. As

− i∂a�
κ =

(

1

2

(


x)
1
2 ∂ξ − i

(


x)− 1
2 ∂w

)

�κ = a − Zκ(q, p) (29)
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and
(

∂a
∂a

)

(

a a
) =

(

id 0
0 id

)

,

integration by parts with the operator ∂a yield

(

a − Zκ (q, p)
)α
(

a − Z
κ
(q, p)

)β

v ∼ ε|α|β!
(β − α)!

(

a − Z
κ
(q, p)

)β−α
v, (30)

where we extended the meaning of “∼” in an obvious way. Moreover we have
(

i∂a+2i
(


x)
1
2 Z−1(q, p)∂z

)

(

a−Z
κ
(q, p)

)

= −2i
(


x)
1
2 Z−1(q, p)∂z Z

κ
(q, p),

and hence by (29) and Lemma 3,
(

a − Z
κ
(q, p)

)γ

v(q, p)

∼ − 2ε

#γ

∑

k|γk �=0

divz

(

e†
k

(


x)
1
2 Z−1(q, p)

(

a − Z
κ
(q, p)

)γ−ek
v(q, p)

)

= ε

#γ

∑

k|γk �=0

(

d
∑

m=1

(γ − ek)m

(

a − Z
κ
(q, p)

)γ−ek−em
(L(ek ,em )v)(q, p)

+
(

a − Z
κ
(q, p)

)γ−ek
(Lekv)(q, p)

)

, (31)

where the differential operators L(ek ,em ) and Lek are given by

(L(ek ,em )v)(q, p) := 2e†
k

(


x)
1
2 Z−1(q, p)∂z Z

κ
emv(q, p),

(Lekv)(q, p) := −2divz

(

e†
k

(


x)
1
2 Z−1(q, p)v(q, p)

)

,

and #γ denotes the number of non-zero components of γ .
The symmetrization by the summation over k allows for the iteration of the procedure.

We define the three sets

�1 :=
{

γ ∈ N
d
∣

∣

∣ |γ | = 1
}

, �2 := �1 × �1, � := �1 ∪ �2.

In expression (31) the sum is taken over all possible reductions of the multi-index γ by
elements of the “brick-sets” �1 and �2. After another integration by parts in all terms

with
(

a − Z
κ
(q, p)

)

-dependence, the sum is taken over all possible reductions of γ by

elements in � × �, which may be considered as a two-step path in �, plus the terms

which already led to γ = 0 in the first step. So after the removal of all
(

a − Z
κ
(q, p)

)

-

dependence, the sum is taken over all possible paths in the “brick-set” � which reduce
γ to zero. To formalise this idea, we define the map

[ · ] : � → N
d ,

[γ ] :=
{

γ γ ∈ �1

γ1 + γ2 γ = (γ1, γ2) ∈ �2.
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With

λ(γ, γ1, . . . , γn) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

#(γ−∑
l<n

[γl ])
)−1

γn ∈ �1

(

#(γ−∑
l<n

[γl ])
)−1(

γ − ∑

l<n
[γl ] − e j

)

k

γn = (e j , ek) ∈ �2

we have
(

a − Z
κ
(q, p)

)γ

v(q, p) (32)

∼
∑

γ1 . . . , γk ∈ �
[γ1]+ . . .+[γk]=γ

εkλ(γ, γ1, . . . , γk) . . . λ(γ, γ1, γ2)λ(γ, γ1)
(Lγk . . .Lγ1v

)

(q, p).

Combining (30) and (32), we get

(hT u)(q, p)

∼
N
∑

n=0

εn Ln[h; κ;
x ,
y]u(q, p) + εN+1
˜LεN+1[h; κ;
x ,
y]u(q, p)

=
∑

|β| ≤ 2N
α ≤ β

∑

γ1 . . . , γk ∈ �
[γ1] + . . . + [γk] = β − α

ε|α|+k

α!(β − α)!

(

k
∏

l=1

λ(γ, γ1, . . . , γl)Lγl

)

×
(

u ∂αa ∂
β

a h ◦ κ
)

(q, p)

+εN+1
˜LεN+1[h; κ;
x ,
y]u(q, p),

where εN+1
˜LεN+1[h; κ;
x ,
y]u(q, p) contains all the terms of order εN+1 and higher.

As k ranges between �|β − α|/2� and |β − α|, we have

Ln[h; κ;
x ,
y]

=
∑

n ≤ |α+β| ≤ 2n
α ≤ β

1

α!(β − α)!
∑

γ1, . . . , γn−|α| ∈ �
[γ1]+ . . .+[γn−|α|] = β − α

⎛

⎝

n−|α|
∏

l=1

λ(γ, γ1, . . . , γl)Lγl

⎞

⎠

with the following convention for n − |α| = 0:

∑

γ1,...,γn−|α|

n−|α|
∏

l=1

λ(γ, γ1, . . . , γl)Lγl = id.

For the first few terms in the expansion, we have more transparent expressions.
The zeroth order term

(h ◦ κ) (q, p)u(q, p)

is provided by α = β = 0. For the first order term, there are three contributions.
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1. The terms with |β| = 1, α = β, which result in

εtr (((∂a∂ah) ◦ κ) (q, p)) u(q, p).

2. The terms |β| = 1, α = 0, which give

−εdivz

(

(

(∂ah)† ◦ κ
)

(q, p)
(


x)
1
2 Z−1(q, p)u(q, p)

)

.

3. The first order contribution of terms |β| = 2, α = 0, which is

εtr

(

Z−1(q, p)∂z Z
κ
(q, p) ((Hessah) ◦ κ) (q, p)

(


x)
1
2

)

u(q, p).

By an application of the chain rule, they may be combined to

= −εdivz

(

(

(∂ah)† ◦ κ
)

(q, p)
(


x)
1
2 Z−1(q, p)u(q, p)

)

+εtr

(

Z−1(q, p)∂z

(

(


x)
1
2 ((∂ah) ◦ κ) (q, p)

))

u(q, p).

The second order term arises in a similar way.
The form of the coefficients of the differential operators Ln[h; κ;
x ,
y] follows,

if Z−1(q, p) is expressed by the formula of minors. With respect to the symbol class of
vn , it is sufficient to note that κ ∈ S[1; 2d].

We turn to the discussion of the remainder. The (a − Zκ(q, p)) and (a − Z
κ
(q, p))-

factors may be converted to ε-dependence analogously to hT , resulting in terms of order
εN+1 to ε2N+2. As h(x, ξ) is polynomial in ξ , the resulting expression equals the applica-
tion of a differential operator of order mξ to an FIO. We have ∂x�

κ(x, y, q, p;
x ,
y) =
�κ(q, p) + i
x (x − Xκ(q, p)), hence the symbol class by iterative applications of
Lemma 3.

Remark 8. In the case κ = id, u(q, p) = 1,
x = 
y = id, the proof provides the
asymptotic expansion of the Anti-Wick symbol of a Weyl quantised pseudodifferential
operator.

We have Z(q, p) = 2 id, Zκ = q+i p and Z
κ = q−i p. Hence ∂z Z

κ = 0, L(e j ,ek ) = 0
and (Le j u)(q, p) = −(∂z j u)(q, p). Moreover, all Le j commute.

By straightforward calculation, the Anti-Wick symbol is

N
∑

|β|=0

(−1)|β|ε|β|

β!
(

�βh
)

(q, p),

where

�β =
d
∏

k=1

(∂2
xk

+ ∂2
ξk
)βk .

Thus formally

hAW = e−ε�hWeyl,

so we recover that the Anti-Wick quantisation is the solution of the Cauchy-problem for
the inverse heat-equation at time t = ε with the Weyl-symbol as initial datum (com-
pare [Ma02], where the conversion is expressed by the heat-kernel).
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Next, we give the easy proof of Proposition 3:

Proof (of Proposition 3). By direct computation iε d
dt Iε

(

κ t ; u
)

is an FIO with symbol

iε
d

dt
u(t, q, p)− u(t, q, p)

d

dt
�κ

t
(x, y, q, p;
x (t),
y)

= iε
d

dt
u(t, q, p)− u(t, q, p)

[

d

dt
Sκ

t
(q, p)− d

dt
Xκ

t
(q, p) ·�κ t

(q, p)

+

(

d

dt
�κ

t
(q, p)− i

(


x (t)
d

dt
Xκ

t
(q, p)

))

·
(

x − Xκ
t
(q, p)

)

+
i

2

(

x − Xκ
(t,s)
(q, p)

)

· d

dt

x (t)

(

x − Xκ
(t,s)
(q, p)

)

]

.

The expressions (22) and (23) follow from applications of Lemma 3, where the quadratic
term contributes to v1 and v2:

(

x − Xκ(q, p)
) · d

dt

x (t)

(

x − Xκ(q, p)
)

u(q, p)

∼ −εdivz

(

u(q, p)(x − Xκ(q, p))†
d

dt

x (t)Z−1(q, p)

)

= −εtr
(

∂z

[

u(q, p)(x − Xκ(q, p))†
d

dt

x (t)Z−1(q, p)

])

= εtr
(

A(q, p)Z−1(q, p)Xκz (q, p)
)

u(q, p)

−ε
d
∑

k=1

(x − Xκ(q, p))†
(

∂zk

(

d

dt

x (t)Z−1(q, p)ek u(q, p)

))

∼ εtr

(

Z−1(q, p)Xκz (q, p)
d

dt

x (t)

)

u(q, p)

+ε2
d
∑

k=1

divz

[

∂zk

(

d

dt

x (t)Z−1(q, p)ek u(q, p)

)†

Z−1(q, p)

]

.

We close this section with the proof of Proposition 4.

Proof (of Proposition 4). The proof relies on the inner product
〈

gε,

x

κ ′(q0,p0)
, Iε (κ;w;
x ,
y) gε,


y

(q0,p0)

〉

(33)

for symbols w ∈ S[0; 2d] and canonical transformations κ, κ ′ of class B, where

gε,
(q,p)(x) = det (�
) 1
4

(πε)d/4
e−(x−q)·
(x−q)/2εeip·(x−q)/ε.

Straightforward calculation gives

(33) = 2d

(πε)d

det (�
x )
1
4 det (�
y)

1
4

det (2
x )
1
2 det (2
y)

1
2

∫

e
i
ε
�κ,κ

′
(q0,p0,q,p)w(q, p) dq dp,
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where

�κ,κ
′
(q, p, q0, p0) = Sκ(q, p)

+
1

2
(q − q0)(p + p0)− 1

2
(Xκ(q, p)− Xκ

′
(q0, p0))(�

κ(q, p) +�κ
′
(q0, p0))

+i (q0 − q) ·
y (q0 − q) /4 + i (p0 − p) · (
y)−1
(p0 − p) /4

+i
(

Xκ
′
(q0, p0)− Xκ (q, p)

)

·
x
(

Xκ
′
(q0, p0)− Xκ(q, p)

)

/4

+i
(

�κ
′
(q0, p0)−�κ(q, p)

)

· (
x)−1
(

�κ
′
(q0, p0)−�κ(q, p)

)

/4.

We choose σ ∈ C∞
0 (R

2d ,R) with σ = 1 in a neighborhood of (q0, p0) and split the
integral into

〈

gε,

x

κ ′(q0,p0)
, Iε (κ; σw;
x ,
y) gε,


y

κ(q0,p0)

〉

(34)

+
〈

gε,

x

κ ′(q0,p0)
, Iε (κ; (1 − σ)w;
x ,
y) gε,


y

κ(q0,p0)

〉

. (35)

It is easily seen that

��(q, p, q0, p0) = 0 and (∇(q,p)��)(q, p, q0, p0) = 0

if and only if (q, p) = (q0, p0) and κ(q0, p0) = κ ′(q0, p0). Thus the phase in (35) is
non-stationary on the support ofw(1−σ), so after integrations by parts with the operator

−iε

‖∇(q,p)�(q0, p0, q, p)‖2 ∇(q,p)�(q0, p0, q, p) · ∇(q,p),

we have limε→0 (35) = 0. By the same argument, the case κ(q0, p0) �= κ ′(q0, p0) gives
limε→0 (34) = 0. In the case κ(q0, p0) = κ ′(q0, p0), we have

Hess(q0,p0)�
κ,κ = i

2

(


y 0
0 (
y)−1

)

+
i

2
Fκ(q0, p0)

†
(


x 0
0 (
x )−1

)

Fκ(q0, p0),

at the stationary points, so by the Stationary Phase Theorem (Theorem 7.7.5. in [Hö83])

lim
ε→0

〈

gε,

x

κ(q0,p0)
, Iε (κ; σw;
x ,
y) gε,


y

κ(q0,p0)

〉

= C[κ;
x ;
y]w(q0, p0),

with the non-vanishing constant

C[κ;
x ;
y] = 22d det (�
x )
1
4 (�
y)

1
4

det (
x )
1
2 det (
y)

1
2

det

((


y 0
0 (
y)−1

)

+ Fκ(q0, p0)
†
(


x 0
0 (
x )−1

)

Fκ(q0, p0)

)− 1
2

.

Subsuming this discussion, we have

0 = lim
ε→0

〈

gε,

x

κ1(q0,p0)
,
[Iε(κ1; u;
x ,
y)− Iε(κ2; v;
x ,
y)

]

gε,

y

κ1(q0,p0)

〉

=
{

C[κ1;
x ;
y]u(q0, p0) κ1(q0, p0) �= κ2(q0, p0)

C[κ1;
x ;
y]u(q0, p0)− C[κ2;
x ;
y]v(q0, p0) κ1(q0, p0) = κ2(q0, p0).
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In the case κ1(q0, p0) �= κ2(q0, p0) we immediately get u(q0, p0) = 0 and by sym-
metry v(q0, p0) = 0 = u(q0, p0). In the case κ1(q0, p0) = κ2(q0, p0), we either have
u(q0, p0) = 0 or u(q0, p0) �= 0. In the first case, we immediately get v(q0, p0) =
0 = u(q0, p0). In the second case u does not vanish in a neighbourhood of (q0, p0).
Hence κ1 = κ2 in the same neighborhood, thus C[κ1;
x ;
y] = C[κ2;
x ;
y] and
so u(q0, p0) = v(q0, p0).

A. Oscillatory Integrals

We present the standard machinery of oscillatory integrals. For the definition of expres-
sions like

1

(2πε)(d+D)/2

∫

Rd

∫

RD
e

i
ε
�(x,y,θ)a(x, y, θ) dθ dy, (36)

with a(x, y, θ) ∈ S[(d, d, D), (+∞,−(d+1),+∞)], which have no sense as an ordinary
Lesbegue-integral because of the lack of decay in θ , two approaches can be taken. First,
one can choose a function σ ∈ S(RD) with σ(0) = 1 and set

(36) := lim
λ→∞

1

(2πε)(d+D)/2

∫

Rd

∫

RD
σ(θ/λ)e

i
ε
�(x,y,θ)a(x, y, θ) dθ dy.

To show the independence of the function σ a second technique is needed. Under suitable
conditions on the phase function, see e.g. [Ma02] the operator

L y = 1

1 + |∇y�(x, y, θ)|2
[

1 − iε∇y�(x, y, θ) · ∇y

]

provides decay in θ by partial integrations, i.e.
∣

∣

∣

∣

(

L†
y

)k
u

∣

∣

∣

∣

≤ Mk
(

1 + |θ |2)k/2
∑

|α|≤k

|∂αy u|,

where L†
y is the symmetric of L y defined by
∫

(L yϕ)(y)ψ(y) dy =
∫

ϕ(y)
(

L†
yψ
)

(y) dy ∀ϕ,ψ ∈ S(Rd).

Hence an alternative definition is provided by

(36) = 1

(2πε)(d+D)/2

∫

Rd

∫

RD
e

i
ε
�(x,y,θ)

(

L†
y

)k
a(x, y, θ) dθ dy.

For the special case of the phase function �κ , the operator L y reads

L y = 1 − iε(p + i
y(y − q)) · ∇y

1 + |p + i
y(y − q)|2
and provides decay in the p-variable, compare [RoSw07]. Moreover, the amplitude a is
given by

a(x, y, q, p) = u(x, y, q, p)ϕ(y),

which is of Schwartz-class with respect to y.
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B. Gaussian Integrals with Non-Real Matrices

We consider the convex cone C of complex symmetric matrices with positive definite
real part. Every matrix of C is invertible with its spectrum included in the open half
plane {z|�z > 0}. It follows from matrix theory (see [JoOkRe01]) that each element of
C admits an unique square root in C. Furthermore, the square root of M is given by the
Dunford-Taylor integral (see [Ka66] I.§5.6)

M1/2 = 1

2π i

∫

�

z1/2(M − z)−1 dz,

where the integration path is a closed contour in the half-plane {z|�z > 0} making a turn
around each eigenvalue in the positive direction and the value of z1/2 is chosen so that it
is positive for real positive z. As a consequence, the square root M1/2 is an holomorphic
function of M . If one considers the computation of the Gaussian integral

1

(2πε)d/2

∫

Rd
e− M

2ε x ·x dx,

it is well-known that its value is given by (det M)1/2 = det(M1/2) for positive defi-
nite real symmetric M . From the above discussion, it directly follows that this property
extends to any matrix M ∈ C (see Appendix A in [Fo89] or Sect. 3.4. in [Hö83] for an
alternative explanation).

Acknowledgements. The authors want to thank Caroline Lasser for many profitable discussions and valuable
comments.
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