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Abstract. We present a domain decomposition theory on an in-
terface problem for the linear transport equation between a diffu-
sive and a non-diffusive region. To leading order, i.e. up to an
error of the order of the mean free path in the diffusive region, the
solution in the non-diffusive region is independent of the density in
the diffusion region. However, the diffusive and the non-diffusive
regions are coupled at the interface at the next order of approxi-
mation. In particular, our algorithm avoids interating the diffusion
and transport solutions as is done in most other methods — see
for example Bal-Maday [Math. Modelling and Numer. Anal. to
appear]. Our analysis is based instead on an accurate description
of the boundary layer at the interface matching the phase-space
density of particles leaving the non-diffusion region to the bulk
density that solves the diffusive equation.

1. The interface problem

Consider the steady, linear transport equation with isotropic scat-
tering and slab geometry:

(1.1)

µ∂xΨ(x, µ) + σ(x)Ψ(x, µ) = σ(x)c(x)Ψ(x) ,

where Ψ(x) = 1
2

∫ 1

−1

Ψ(x, µ)dµ .

The phase space density Ψ is defined so that Ψ(x, µ)1
2
dµdx is the num-

ber of particles (e.g. neutrons) located inside an interval of width dx
centered at x, moving in a direction whose angle θ with the x axis is
such that µ = cos θ belongs to an interval of width dµ centered at µ.

The function σ(x) > 0 is the scattering cross-section at position x,
while c(x) > 0 is the average number of emitted particles per collision
at x. Below we restrict our attention to the case where 0 < c(x) ≤ 1.
When c = 1 the material is purely scattering; when c < 1 there exist
absorbing collisions.
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The transport equation (1.1) is posed for x ∈ (x
L
, x

R
) and µ ∈ [−1, 1],

supplemented with boundary conditions at x
L

and x
R
. Perhaps the sim-

plest example of boundary conditions for (1.1) consists in prescribing
the phase-space density of particles entering the domain (x

L
, x

R
) at x

L

and x
R
:

(1.2)
Ψ(x

L
, µ) = FL(µ) , for µ ∈ (0, 1] ,

Ψ(x
R
,−µ) = FR(µ) , for µ ∈ (0, 1] .

More general boundary conditions can also be analyzed by the methods
of the present paper. For more details on the physical meaning of (1.1)-
(1.2), the interested reader is referred to chapter XXI of [7].

Our purpose is to analyze the solution of (1.1)-(1.2) in the case where
the order of magnitude of the scattering cross-section σ varies consid-
erably over the domain (x

L
, x

R
). Such situations are frequently encoun-

tered in most applications of transport theory where the background
medium is often made of (very) different materials.

Specifically, we consider the case of two different materials with an
interface located at x

M
∈ (x

L
, x

R
). At x

M
, the scattering cross-section σ

and emission rate c(x) are assumed to be discontinuous; they are given
as follows in terms of a small parameter ε:

(1.3)
σ(x) = 1 , and 0 < c(x) < 1 , for x ∈ (x

L
, x

M
) ,

σ(x) = ε−1 , and c(x) = 1 − ε2γ(x) , for x ∈ (x
M
, x

R
) .

It will be assumed below that

(1.4) 0 < γ∗ ≤ γ(x) ≤ γ∗ , for each x ∈ (x
M
, x

R
)

for some constants γ∗ and γ∗; we shall also restrict our attention to ε’s
such that

(1.5) 0 < ε < ε∗ , where ε∗ < 1/γ∗ .

The small parameter ε is the ratio of the mean free path (the average
distance a particle travels between two consecutive collisions with the
background medium) to the size of the domain x

R
− x

M
. Changing the

space variable x in (1.1) into

x
M
−

∫ x
M

x

σ(z)dz for x ∈ (x
L
, x

M
)

and x
M

+

∫ x

x
M

σ(z)dz for x ∈ (x
M
, x

R
)

one sees that there is no loss of generality in assuming σ to be piecewise
constant as in (1.3). (In the context of radiative transfer, the new
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Figure 1. The interface problem

space variables so defined are referred to as the “optical thickness”:
see chapter I, §7 in [6].)

Since the mean-free path is small in the region (x
M
, x

R
), we expect

that the solution Ψε is isotropic (i.e. a function of x alone) to leading
order and governed by the diffusion approximation of (1.1): see section
4.1 below. Hence the domain (x

M
, x

R
) is referred to as “the diffusion

region”. The smallness of the mean free path in (x
M
, x

R
) makes it

very costly to solve the transport equation accurately there. Solving
the diffusion equation on the other hand is much more efficient. By
contrast, in the domain (x

L
, x

M
) one must retain the µ dependence in

the solution Ψε and solve the transport equation for Ψε in that domain,
which will be therefore referred to as “the transport region”.

Domain decomposition methods matching kinetic and hydrodynamic
or diffusion models have received a lot of attention in the past 15 years.
Some of the ideas in the present work can be found in [10]; other
methods have been proposed in [1], [4], [8], [9], [13], [16], [17], [18],
[19], [21], [22], [23].

In the notations of Figure 1, solving the problem (1.1)-(1.2) with
coefficients given by (1.3) reduces to finding good approximations of the
angle distributions of particles crossing the interface in the direction of
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the transport domain — i.e. f− — and in the direction of the diffusive
domain — i.e. f+. In fact, the solution in the diffusive region depends
only on some appropriate angle average of f+, so that the most critical
task is to evaluate f− accurately.

In most of the existing domain decomposition methods for this prob-
lem — for instance in [1], [23] — this is done by an iteration proce-
dure in which the diffusion and the transport equation are solved al-
ternately until convergence of the successive approximants to f− and
f+ is reached.

The method described in this paper is completely different. Instead,
we propose a boundary condition at x

M
on the transport side which

mimics the reflection of particles on an infinitely thick, purely scat-
tering domain. This reflection condition is based on almost explicit
computations for the steady transport equation in a half-space filled
with a purely scattering material. These computations go back to the
work of Wiener and Hopf [24] on the Milne-Schwarzschild problem in
astrophysics. This material is recalled in section 2. Then, classical
results on the diffusion approximation of the transport equation show
that, by solving the transport equation in the transport region (x

L
, x

M
)

with this reflection condition at x
M

, one approximates the restriction
to the transport domain of the global solution to within O(ε). Thus,
using this reflection condition yields the correct transport and diffu-
sion solutions in one step up to an O(ε) error and in two steps up to
an O(ε2) error. In particular, this method avoids iterating alternately
on the diffusion and transport solutions until convergence of the fluxes
at the interface is reached.

This simple model can be seen as the prototype in a series of analo-
gous problems, such as, for instance, radiative transfer in multi-material
media, gas (or plasma) dynamics in cases involving both a kinetic and
a hydrodynamic description etc... We hope that a complete and rigor-
ous treatment of this simple case can give valuable insight on some of
the issues listed above.

2. Half-space problems, Chandrasekhar’s H-function,

reflection on a semi-infinite, purely scattering medium

In this section, we quickly review the mathematical objects involved
in the reflection condition at the interface between the transport and
the diffusion domains.

Consider the half-space transport problem

(2.1) µ∂zΓ + Γ − Γ = 0 , z > 0 , 0 < |µ| < 1 ,
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with boundary condition

(2.2) Γ(0, µ) = G(µ) , 0 < µ < 1 .

The theory of existence, uniqueness and asymptotic behavior of this
half-space transport problem follows from the work of Wiener and Hopf
[24]. It is summarized in the next lemma which can be proved by energy
(PDE) methods — this was done originally in [2], with a few technical
improvements in [12] (see pp. 1359–1368 there).

Lemma 2.1. For each G ∈ L2([0, 1], µdµ) there is a unique solution Γ
of the half-space transport equation (2.1) in L∞([0,+∞);L2([−1, 1], |µ|dµ)).

This solution satisfies the following properties:

• if G ∈ L∞([0, 1]), then Γ ∈ L∞([0,+∞) × [−1, 1]) and one has

(2.3) ‖Γ‖L∞ ≤ ‖G‖L∞ ;

• it has zero flux

(2.4) 1
2

∫ 1

−1

µΓ(z, µ)dµ = 0 ;

• there exists a constant Γ∞ such that, for each γ ∈ [0, 1)

(2.5)
‖Γ(z, ·) − Γ∞‖L2(|µ|dµ) = O(e−γz) , and

‖Γ(z, ·) − Γ∞‖L∞ = O(e−γz) , if G ∈ L∞([0, 1])

as z → +∞.

Notice that (z, µ) 7→ z−µ is a solution of (2.1); hence, by Lemma 2.1,
the half-space problem (2.1)-(2.2) with G ≡ 0 has a unique solution Γ∗
such that (z, µ) 7→ Γ∗(z, µ) − z belongs to L∞([0,+∞) × [−1, 1]). (In
other words, Γ∗ = Γ0

∗ + z − µ where Γ0
∗ is the unique bounded solution

of (2.1)-(2.2) with G(µ) ≡ µ.)

Definition 2.1. The Chandrasekhar H-function is defined as

H(µ) = 1√
3
Γ∗(0,−µ) , µ ∈ (0, 1) .

In particular1, H ∈ L∞([0, 1]).

By Lemma 2.1, the map G 7→ Γ∞ defines a linear functional on
L2([0, 1], µdµ); likewise, Γ(0,−µ) = (RG)(µ) a.e. on [0, 1] where R is
a bounded operator on L2([0, 1], µdµ). The striking fact in the theory
of the half-space problem (2.1) is that both this linear functional and
the operator R have remarkably simple expressions in terms of the
Chandrasekhar H-function.

1One also knows that µ 7→ µH(µ) is in W 1,1([0, 1]) — see [12], Theorem C.3 —
but this is not needed below.
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Lemma 2.2. For each G ∈ L2([0, 1], µdµ) the unique solution Γ of the
half-space transport equation (2.1) in L∞([0,+∞);L2([−1, 1], |µ|dµ))
satisfies the following properties:

• as z → +∞, Γ(z, ·) converges in L2([−1, 1], |µ|dµ) to

Γ∞ =
√

3
2

∫ 1

0

G(µ)H(µ)µdµ ;

• for a.e. µ ∈ (0, 1], the density of particles emerging from the
half-space is

Γ(0,−µ) = (RG)(µ) = 1
2
H(µ)

∫ 1

0

G(µ′)
H(µ′)

µ+ µ′µ
′dµ′ .

In particular, if G ≡ 1, the uniqueness part of Lemma 2.1 shows that
the solution of (2.1)-(2.2) is Γ ≡ 1. Hence R1 = 1, and therefore the
H function satisfies the following nonlinear integral equation:

(2.6)
1

H(µ)
=

∫ 1

0

H(µ′)

2(µ+ µ′)
µ′dµ′ .

This integral equation can be solved iteratively by a relaxation method
in order to tabulate H .

This presentation of Chandrasekhar’s function H and of the reflec-
tion operator R goes back to [10] pp. 309–311 (in the context of the
Boltzmann equation) and is given in detail in [11] pp. 222–224. An-
other presentation, based on stochastic processes, can be found in [3].

3. The coupling algorithms

In this section we give a detailed description of the coupling algo-
rithms for the steady transport problem (1.1) with coefficients (1.3).

3.1. Order O(ε) coupling. The prescription for a coupling algorithm
that approximates the solution of the interface problem to within O(ε)
is as follows.

First solve the steady transport problem

(3.1)

µ∂xΦ0 + Φ0 − cΦ0 = 0 , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

Φ0(xL
, µ) = FL(µ) , µ ∈ (0, 1] ,

Φ0(xM
,−µ) = R(Φ0(xM

, ·)
∣

∣

(0,1]
)(µ) , µ ∈ (0, 1] ,

where R is the operator defined in Lemma 2.2.
That the problem (3.1) has a unique solution is a more or less clas-

sical result in the theory of the transport equation: see Appendix A
below.
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Once this is done and the density Φ0 has been computed, solve the
diffusion problem

(3.2)

−1
3
∂xxΘ0 + γΘ0 = 0 , x ∈ (x

M
, x

R
) ,

Θ0(xM
) =

√
3

2

∫ 1

0

µH(µ)Φ0(xM
, µ)dµ ,

Θ0(xR
) =

√
3

2

∫ 1

0

µH(µ)FR(µ)dµ ,

where H is Chandrasekhar’s function of defined in 2.1.

Theorem 3.1. Let Ψε be the solution of the original two-scale steady
transport problem (1.1)-(1.2) with coefficients as in (1.3), and define
Ψ0 as follows:

Ψ0(x, µ) = Φ0(x, µ) for (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

Ψ0(x, µ) = Θ0(x) for (x, µ) ∈ (x
M
, x

R
) × [−1, 1] .

Then

‖Ψε − Ψ0‖L1([x
L
,x

R
]×[−1,1]) = O(ε)

and, for each x′
M

, x′
R
∈ (x

M
, x

R
) such that x′

M
< x′

R
, one has

‖Ψε − Ψ0‖L2([x
L
,x

M
]×[−1,1]) + ‖Ψε − Ψ0‖L∞([x′

M
,x′

R
]×[−1,1]) = O(ε)

as ε→ 0.

Notice that the function Ψ0 is in general discontinuous in x at x
M

while Ψε is continuous in x for a.e. µ ∈ [−1, 1] and each ε > 0. Hence
the approximation above cannot hold in the L∞ norm. This discon-
tinuity is the manifestation at the macroscopic scale of the boundary
layer with thickness of order O(ε) at the interface inside the diffusive
region.

The great advantage of this procedure is that the transport region
and the diffusive region are completely decoupled at this order of ap-
proximation. That may seem somewhat paradoxical: indeed, suppose
that FL ≡ 0. According to the prescription above, Ψ0 ≡ 0 in the
transport region, independently of whether FR ≡ 0 or not. However,
the total flux of particles inside the diffusion region is approximated by
−ε1

3
∂xΘ0 and gives in general a non trivial contribution of order O(ε)

at the interface from the diffusion side. Based on this simple observa-
tion, we anticipate that the treatments of the transport and diffusion
regions must be coupled somehow if one wants to get the next order of
accuracy O(ε2).
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3.2. Order O(ε2) coupling. Once the solution of the problem (1.1)-
(1.2)-(1.3) has been computed to within O(ε) by the prescription above,
one determines the order O(ε) correction to the steady transport prob-
lem (3.1) by solving

(3.3)

µ∂xΦ1 + Φ1 − cΦ1 = 0 , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

Φ1(xL
, µ) = 0 , µ ∈ (0, 1] ,

Φ1(xM
,−µ) = R(Φ1(xM

, ·)
∣

∣

(0,1]
)(µ)

− (λ+ µ)∂xΘ0(xM
) , µ ∈ (0, 1] .

Having determined Φ1 we next compute the diffusion approximation of
the solution Ψε as follows:

(3.4)

−1
3
∂xxΘε + γΘε = 0 , x ∈ (x

M
, x

R
) ,

Θε(xM
) − ελ∂xΘε(xM

) =
√

3
2

∫ 1

0

µH(µ)(Φ0 + εΦ1)(xM
, µ)dµ ,

Θε(xR
) + ελ∂xΘε(xR

) =
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ .

Once Φ0, Φ1 and Θε are determined, the approximation of the solu-
tion of (1.1)-(1.2)-(1.3) to within O(ε2) is expressed as follows.

Theorem 3.2. Let Ψε be the solution of the original two-scale steady
transport problem (1.1)-(1.2) with coefficients as in (1.3). Define Ψ1

ε

as follows:

Ψ1
ε(x, µ) = (Φ0 + εΦ1)(x, µ) for (x, µ) ∈ (x

L
, x

M
) × [−1, 1] ,

Ψ1
ε(x, µ) = Θε(x) − εµ∂xΘε(x) for (x, µ) ∈ (x

M
, x

R
) × [−1, 1] .

Then, for each x′
M

, x′
R
∈ (x

M
, x

R
) such that x′

M
< x′

R
, one has

‖Ψε − Ψ1
ε‖L2([x

L
,x

M
]×[−1,1]) + ‖Ψε − Ψ1

ε‖L∞([x′
M
,x′

R
]×[−1,1]) = O(ε2)

as ε→ 0.

The following observation is crucial in understanding the coupling
algorithms discussed here: a perturbation of order O(1) (resp. of order
O(ε)) in the solution of the diffusion equation on (x

M
x

R
) has an effect

of order O(ε) (resp. O(ε2)) on the solution of the transport equation
over (x

L
, x

M
).

In any case, both algorithms presented in Theorems 3.1 and 3.2 lead
to approximations of the solution Ψε of the original two-scale steady
transport problem (1.1)-(1.2)-(1.3) to within O(ε) and O(ε2) respec-
tively in a finite number of steps (respectively one and two steps).
By using this algorithms, one avoids iterating on the transport and
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diffusion solutions as is done in most other domain decomposition al-
gorithms (e.g. in [1], [23]).

4. Error estimate for

the domain decomposition algorithm:

the steady problem

Our proof of Theorems 3.1 and 3.2 is based on a precise error es-
timate for the diffusion approximation of the transport equation with
boundary layer terms and on a few elementary stability results for the
transport equation itself. This preliminary material is discussed in the
next few subsections.

4.1. The diffusion approximation. In the diffusive region x ∈ [x
M
, x

R
],

the scaled transport equation is

(4.1) µ∂xΨε +
1

ε
Ψε =

1

ε
(1 − ε2γ)Ψε , x

M
< x < x

R
, −1 < µ < 1 .

It is supplemented with the boundary conditions

(4.2) Ψε(xM
, µ) = FM(µ) , 0 < µ < 1 ,

and

(4.3) Ψε(xR
,−µ) = FR(µ) , 0 < µ < 1 .

The main difficulty in the domain decomposition algorithm is that
the boundary condition FM is not explicitly known, but eventually
determined by the coupling of the transport and diffusion domains.

Assuming however that FM is known, the diffusion approximation
of the scaled transport equation (4.1)-(4.2)-(4.3) can be formulated as
follows.

Let Θε be the solution of the diffusion equation

(4.4) −1
3
∂xxΘε + γΘε = 0 , x

M
< x < x

R
;

with Robin boundary conditions

(4.5)

Θε − ελ∂xΘε

∣

∣

∣

x=x
M

=
√

3
2

∫ 1

0

µH(µ)FM(µ)dµ ,

Θε + ελ∂xΘε

∣

∣

∣

x=x
R

=
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ ,

where H is the Chandrasekhar function (see Definition 2.1) and with
λ given by

λ =
√

3
2

∫

µ2H(µ)dµ .
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The parameter λ is related to the so-called “extrapolated endpoints”
x

M
− ελ and x

R
+ ελ; the Robin boundary conditions (4.5) can be

viewed as Taylor expansions at order O(ε2) of the Dirichlet boundary
conditions at the extrapolated endpoints.

In particular, when ε = 0, the problem (4.4)-(4.5) reduces to the
Dirichlet problem

(4.6)

−1
3
∂xxΘ0 + γΘ0 = 0 , x

M
< x < x

R
;

Θ0(xM
) =

√
3

2

∫ 1

0

µH(µ)FM(µ)dµ ,

Θ0(xR
) =

√
3

2

∫ 1

0

µH(µ)FR(µ)dµ .

Let ΓMε be the solution of

(4.7)
µ∂zΓ

M
ε + ΓMε − Γ

M

ε = 0 , z > 0 , −1 < µ < 1 ,

ΓMε (0, µ) = FM(µ) − Θε(xM
) + εµ∂xΘε(xM

) , 0 < µ < 1 ,

in L∞([0,+∞);L2([−1, 1], |µ|dµ)) (whose existence and uniqueness is
guaranteed by Lemma 2.1) while ΓRε is similarly defined with the bound-
ary data

(4.8) ΓRε (0, µ) = FR(µ) − Θε(xR
) − εµ∂xΘε(xR

) , 0 < µ < 1 .

The diffusion approximation consists then in replacing the solution Ψε

of the transport problem (4.1)-(4.2)-(4.3) by the truncated multi-scale
expansion

• at order O(ε):

(4.9) Φ0
ε (x, µ) = Θ0(x) + ΓM0

(

x− x
M

ε
, µ

)

+ ΓR0

(

x
R
− x

ε
, µ

)

.

• at order O(ε2):
(4.10)

Φ1
ε (x, µ) = Θε(x) − εµ∂xΘε(x) + ΓMε

(

x− x
M

ε
, µ

)

+ ΓRε

(

x
R
− x

ε
, µ

)

.

With these notations, the diffusion approximation for the transfer equa-
tion (4.1)-(4.2)-(4.3) can be stated as follows.

Proposition 4.1. The error between the solution Ψε of the transfer
problem and the truncated expansion Φε satisfies

• At order O(ε):

(4.11)
∥

∥Ψε − Φ0
ε

∥

∥

L∞([x
M
,x

R
]×[−1,1])

≤ C0ε ;
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in addition

(4.12) sup
µ∈(0,1)

∣

∣

∣
Ψε(xM

,−µ) −R(Ψε(xM
, ·)
∣

∣

[0,1]
)(µ)

∣

∣

∣
≤ C0ε .

• At order O(ε2):

(4.13)
∥

∥Ψε − Φ1
ε

∥

∥

L∞([x
M
,x

R
]×[−1,1])

≤ C1ε
2 ;

in addition
(4.14)

sup
µ∈(0,1)

∣

∣

∣
Ψε(xM

,−µ) −R(Ψε(xM
, ·)
∣

∣

[0,1]
)(µ) + ε(λ+ µ)∂xΘ0(xM

)
∣

∣

∣
≤ C1ε

2 .

In (4.12) and (4.14), R is the operator defined in Lemma 2.2.
This Proposition is the main result in [2]; it is phrased here essentially

in the notations of Theorem 2.2 in [12]. An equivalent formulation,
based on stochastic processes, can be found in [3].

4.2. Stability results. The first stability result needed in the error
estimate for the coupling algorithm bears on the transport equation
itself.

Let σ ≡ σ(x) satisfy 0 < σ∗ < σ(x) ≤ σ∗ and c ≡ c(x) satisfy
0 ≤ c(x) ≤ c∗ < 1 for some constants σ∗, σ

∗ and c∗ and for each
x ∈ [x

L
, x

M
]. Consider the transport equation

(4.15)

µ∂xf + σ(f − cf) = 0 , (x, µ) ∈ (x
L
, x

M
) × [−1, 1];

f(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

f(x
M
,−µ) = FM(µ) , µ ∈ (0, 1] .

We next define two operators on L2([0, 1], µdµ), denoted by TL and TM ,
in the following manner:

(4.16)
(TLFL)(µ) = f(x

M
, µ) for a.e. µ ∈ (0, 1] when FM = 0 ,

(TMFM)(µ) = f(x
M
, µ) for a.e. µ ∈ (0, 1] when FL = 0 .

By linearity of the problem (4.15), in the general case where neither
FL nor FM is identically 0,

f(x
M
, µ) = (TLFL)(µ) + (TMFM )(µ) , for a.e. µ ∈ (0, 1] .

Lemma 4.1. The operators TL and TM are bounded on L2([0, 1], µdµ);
further

‖TL‖L(L2([0,1],µdµ)) ≤ 1 , ‖TM‖L(L2([0,1],µdµ)) < 1 .
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Proof. We start with the basic energy estimate obtained by multiplying
(4.15) by f and integrating over [x

L
, x

R
] × [−1, 1]:

(4.17)
∫ x

M

x
L

∫ 1

−1

σ(1 − c)f 2dxdµ+

∫ x
M

x
L

∫ 1

−1

σc(f − f)2dxdµ

+ 1
2

∫ 1

0

µf(x
L
,−µ)2dµ+ 1

2

∫ 1

0

µf(x
M
, µ)2dµ

= 1
2

∫ 1

0

µFL(µ)2dµ+ 1
2

∫ 1

0

µFM(µ)2dµ .

Applying this successively to FM ≡ 0 and FL ≡ 0 leads to

(4.18) ‖TL‖L(L2([0,1],µdµ)) ≤ 1 and then ‖TM‖L(L2([0,1],µdµ)) ≤ 1 .

It remains to prove that the second inequality is strict. Take FL ≡ 0,
and pick for FM a sequence φn ≡ φn(µ). Assume that φn satisfies

(4.19) ‖φn‖L2([0,1],µdµ) = 1 and ‖TMφn‖L2([0,1],µdµ) → 1

as n → +∞. Calling fn the corresponding solution of the transport
equation (4.15) and applying the energy estimate (4.17) leads to

∫ x
M

x
L

∫ 1

−1

σ(1 − c)f 2
ndxdµ+

∫ x
M

x
L

∫ 1

−1

σc(fn − fn)
2dxdµ

+ 1
2

∫ 1

0

µfn(xL
,−µ)2dµ→ 0

as n → +∞. Because σ(x) ≥ σ∗ > 0 and c(x) ≤ c∗ < 1, this implies
that fn → 0 in L2([x

L
, x

M
] × [−1, 1]) as n → +∞. By using the

transport equation in (4.15), µ∂xfn → 0 in L2([x
L
, x

M
]×[−1, 1]) as n→

+∞. Hence the sequence of boundary values satisfies (TMφn)(µ) =
fn(xM

, µ) → 0 in L2([0, 1], µdµ) as n → +∞. Therefore our initial
assumption (4.19) is wrong, which implies that the second inequality
in (4.18) is strict. �

The second stability result that we need bears on the operator R
defined in Lemma 2.2 and can be seen as a stability result for the
transport equation, however inside the diffusive region.

Lemma 4.2. The operator R defined in Lemma 2.2 is a contraction
mapping on the space L2([0, 1], µdµ):

‖R‖L(L2([0,1],µdµ)) = 1 .

Proof. The energy estimate analogous to (4.17) for the problem (2.1)
with the boundary condition (2.2) is obtained by multiplying equation
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(2.1) by Γ, on account of (2.2) and of the asymptotic behavior as z →
+∞ in Lemma 2.1. One finds that

(4.20)

∫ +∞

0

∫ 1

−1

(Γ − Γ)2dzdµ+ 1
2

∫ 1

0

µΓ(x
L
,−µ)2dµ

= 1
2

∫ 1

0

µG(µ)2dµ .

Hence

1
2

∫ 1

0

µΓ(x
L
,−µ)2dµ ≤ 1

2

∫ 1

0

µG(µ)2dµ ,

which means that ‖R‖L(L2([0,1],µdµ)) ≤ 1. This inequality is actually an
equality since R1 = 1. �

4.3. Continuity across the interface. The last ingredient in our
proof is the following continuity statement.

Lemma 4.3. Let σ ≡ σ(x) satisfy 0 < σ∗ ≤ σ(x) ≤ σ∗ and c ≡ c(x)
satisfy 0 ≤ c(x) ≤ c∗ < 1 for some constants σ∗, σ

∗ and c∗ and for
each x ∈ [x

L
, x

R
]. Consider the transport equation

(4.21)

µ∂xf + σ(f − cf) = 0 , (x, µ) ∈ (x
L
, x

R
) × [−1, 1];

f(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

f(x
R
,−µ) = FR(µ) , µ ∈ (0, 1] ,

where FL and FM ∈ L2([0, 1], µdµ). Then, for a.e. µ ∈ [−1, 1], the
function x 7→ f(x, µ) is continuous.

Proof. The energy estimate (4.17) implies the existence of a positive
constant C such that
∫ x

M

x
L

∫ 1

−1

σ(1 − c)f 2dxdµ ≤ C and

∫ x
M

x
L

∫ 1

−1

σc(f − f)2dxdµ ≤ C .

These inequalities and the transport equation (4.21) imply that

µ∂xf = −σc(f − f) − σ(1 − c)f ∈ L2([x
L
, x

R
] × [−1, 1])

because of the bounds 0 ≤ σ ≤ σ∗ and 0 ≤ c ≤ 1. This implies
in particular that the derivative ∂xf(·, µ) ∈ L2([x

L
, x

R
]) for a.e. µ ∈

[−1, 1], which in turn establishes the announced continuity. �
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4.4. Proof of Theorem 3.1. Apply Lemma 4.3 with

σ(x) = 1[x
L
,x

M
](x) +

1

ε
1[x

M
,x

R
](x) and c(x) = 1 − ε2γ for x ∈ [x

M
, x

R
] .

Hence, for each ε ∈ (0, ε∗) and a.e. µ ∈ [−1, 1], the function x 7→
Ψε(x, µ) is continuous — see (1.4) and (1.5) for the definition of ε∗.

Notice that this continuity is in general not uniform in ε for σ is not
bounded uniformly in ε in the diffusive region. This lack of uniformity
is consistent with the presence of boundary layers ΓM0 and ΓR0 with
variations of order 1 over lengths of order ε in the truncated expansions
(4.9).

For the O(ε) estimate, this continuity at x
M

for a.e. µ ∈ [−1, 0)
together with (4.12) implies that

φε(µ) := Ψε(xM
,−µ)−R(Ψε(xM

, ·)
∣

∣

(0,1]
)(µ) satisfies ‖φε‖L∞(0,1) ≤ C0ε .

Then, by definition of the operators TL, TM and R, one has

Ψε(xM
, µ) = (TLFL)(µ) + (TMΨε(xM

, ·)
∣

∣

[−1,0)
)(µ)

and hence

Ψε(xM
, ·)
∣

∣

[−1,0)
= R ◦ TLFL + R ◦ TMΨε(xM

, ·)
∣

∣

[−1,0)
+ φε .

By Lemmas 4.1 and 4.2 ‖R ◦ TM‖L(L2([0,1],µdµ) < 1; hence I −R◦TM is
invertible in L(L2([0, 1], µdµ)) and

(4.22) Ψε(xM
, ·)
∣

∣

[−1,0)
= (I −R ◦ TM)−1(R ◦ TLFL + φε) .

Define χ0 by

(4.23) χ0 = (I −R ◦ TM)−1R ◦ TLFL .

Because of (4.22) and the stability results in Lemmas 4.1 and 4.2
(4.24)

‖Ψε(xM
, ·)
∣

∣

[−1,0)
−χ0‖L2(µdµ) ≤

‖φε‖L∞

1 − ‖TM‖L(L2(µdµ))

≤
C0ε

1 − ‖TM‖L(L2(µdµ))

.

Consider Φ the solution of

µ∂xΦ + (Φ − cΦ) = 0 , (x, µ) ∈ (x
L
, x

M
) × [−1, 1];

Φ(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ;

Φ(x
M
,−µ) = χ0(µ) , µ ∈ (0, 1] .

Applying the energy estimate (4.17) shows that

(4.25) ‖Ψε − Φ‖L2([x
L
,x

M
]×[−1,1]) = O(ε) .

On the other hand, the definition of χ0 implies that Φ = Φ0 (the
solution of (3.1)). This establishes the O(ε) approximation for the
transport domain.



DOMAIN DECOMPOSITION FOR TRANSPORT 15

Let Nε be the solution of

−1
3
∂xxNε + γNε = 0 , x ∈ (x

M
, x

R
) ;

Nε(xM
) =

√
3

2

∫ 1

0

µH(µ)Ψε(xM
, µ)dµ ;

Nε(xR
) =

√
3

2

∫ 1

0

µH(µ)FR(µ)dµ .

By (4.24), |Nε(xM
) − Θ0(xM

)| = O(ε) and hence, by the Maximum
Principle for the diffusion equation ‖Nε − Θ0‖L∞([x

M
,x

R
]) = O(ε). On

the other hand, by the order O(ε) statement in Proposition 4.1, one
finds that ‖Ψε −Nε‖L1([x

M
,x

R
]×[−1,1]) = O(ε) and that, for any choice of

interior points x′M < x′R in (x
M
, x

R
), ‖Ψε−Nε‖L∞([x′

M
,x′

R
]×[−1,1]) = O(ε).

This eventually implies that

‖Ψε − Θ0‖L1([x
M
,x

R
]×[−1,1]) = O(ε)

and

‖Ψε − Θ0‖L∞([x′
M
,x′

R
]×[−1,1]) = O(ε)

which is precisely the O(ε) approximation for the diffusive part of the
domain.

4.5. Proof of Theorem 3.2. The proof of the O(ε2) approximation is
essentially identical to the O(ε) case. For a.e. µ ∈ [−1, 0), x 7→ Ψε(x, µ)
is continuous at x

M
and hence, by (4.14), the function ψε defined by

ψε(µ) := Ψε(xM
,−µ) −R(Ψε(xM

, ·)
∣

∣

(0,1]
)(µ) + ε(λ+ µ)∂xΘ0(xM

)

satisfies
‖ψε‖L∞([0,1]) ≤ C1ε

2 .

Hence

Ψε(xM
, ·)
∣

∣

[−1,0)
= R ◦ TLFL + R ◦ TMΨε(xM

, ·)
∣

∣

[−1,0)

− ε(λ + µ)∂xΘ0(xM
) + ψε ,

which we put in the form
(4.26)
Ψε(xM

, ·)
∣

∣

[−1,0)
= (I −R ◦ TM)−1(R ◦ TLFL − ε(λ+ µ)∂xΘ0(xM

) + ψε) .

Define χε by

(4.27) χε = (I −R ◦ TM)−1(R ◦ TLFL − ε(λ + µ)∂xΘ0(xM
)) .

Because of (4.26) and the stability results in Lemmas 4.1 and 4.2
(4.28)

‖Ψε(xM
, ·)
∣

∣

[−1,0)
−χε‖L2(µdµ) ≤

‖ψε‖L∞

1 − ‖TM‖L(L2(µdµ))

≤
C1ε

2

1 − ‖TM‖L(L2(µdµ))

.
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Let Φε be the solution of

(4.29)

µ∂xΦε + Φε − cΦε = 0 , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

Φε(xL
, µ) = FL(µ) , µ ∈ (0, 1] ,

Φε(xM
,−µ) = χε(µ) , µ ∈ (0, 1] .

Applying the energy estimate (4.17) shows that

(4.30) ‖Ψε − Φε‖L2([x
L
,x

M
]×[−1,1]) = O(ε2) .

On the other hand, the definition of χε implies that the boundary
condition at x

M
for Φε can be replaced by

Φε(xM
,−µ) = R(Φε(xM

, ·)
∣

∣

(0,1]
)(µ) − ε(λ+ µ)∂xΘ0(xM

) , µ ∈ (0, 1] .

By linearity of the problem (4.29) and uniqueness of the solution to
this problem with the above boundary condition at x

M
, one finds that

Φε = Φ0 + εΦ1 which proves the O(ε2) approximation for the transport
domain.

Let Ñε be the solution of

−1
3
∂xxÑε + γÑε = 0 , x ∈ (x

M
, x

R
) ;

Ñε(xM
) − ελ∂xÑε(xM

) =
√

3
2

∫ 1

0

µ2H(µ)Ψε(xM
, µ)dµ ;

Ñε(xR
) + ελ∂xÑε(xR

) =
√

3
2

∫ 1

0

µ2H(µ)FR(µ)dµ .

By (4.28) and the L∞ stability of the diffusion equation with Robin

boundary conditions, ‖Ñε−Θε‖L∞([x
M
,x

R
]) = O(ε2). By the order O(ε2)

statement in Proposition 4.1, for any choice of interior points x′M < x′R
in (x

M
, x

R
), ‖Ψε−Ñε‖L∞([x′

M
,x′

R
]×[−1,1]) = O(ε2). This eventually implies

that
‖Ψε − Θε‖L∞([x′

M
,x′

R
]×[−1,1]) = O(ε2)

which is precisely the O(ε2) approximation for the diffusion part of the
domain.

5. Extensions

5.1. The time-dependent problem. In many applications of trans-
port theory, one has to deal with evolution rather than steady problems.
Hence there is some interest in extending the domain decomposition
algorithms studied above to time-dependent problems.

There is however a fundamental difficulty in doing so: the natural
time-scale of the diffusion equation — in the domain (x

M
, x

R
) — is

much longer than that of the transport equation — in the domain
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(x
L
, x

M
). One way of avoiding this difficulty is to prepare the initial

and boundary data so that the evolution time scale in the transport
region is exactly as long as in the diffusive region. In particular, this
requires slowly varying boundary data, and an initial data that almost
belongs to the nullspace of the transport operator. Keeping the same
coefficients as in (1.3), we start from the problem
(5.1)
ε∂tΨε + µ∂xΨε + σΨε = σcΨε , t > 0 , (x, µ) ∈ (x

L
, x

M
) × [−1, 1] ,

Ψε(t, xL
, µ) = FL(t, µ) , t > 0 , µ ∈ (0, 1] ,

Ψε(t, xR
,−µ) = FR(t, µ) , t > 0 , µ ∈ (0, 1] ,

Ψε(0, x, µ) = ΨI(x, µ) , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

assuming the compatibility conditions
(5.2)

µ∂xΨI + σ(x)ΨI = σ(x)c(x)ΨI , x
L
< x < x

M
, µ ∈ [−1, 1] ,

ΨI ≡ ΨI(x) , x
M
< x < x

R
, µ ∈ [−1, 1] ,

FL(0, µ) = ΨI(xL
, µ) , µ ∈ (0, 1] ,

FR(0, µ) = ΨI(xR
) , µ ∈ (0, 1] .

The time-dependent coupling algorithm at order O(ε) is as follows:

• on the transport region x
L
< x < x

M
, solve

(5.3)

ε∂tΦε + µ∂xΦε + σΦε = σcΦε ,

Φε(t, xL
, µ) = FL(t, µ) , 0 < µ < 1 ,

Φε(t, xM
,−µ) = R(Φε(t, xM

, ·)
∣

∣

(0,1]
)(µ) , 0 < µ < 1 ,

Φε(0, x, µ) = ΦI(x, µ) ,

where R is the operator defined in Lemma 2.2;

• on the diffusion region x
M
< x < x

R
, solve

(5.4)

∂tΘε = 1
3
∂xxΘε − γΘε ,

Θε

∣

∣

x=x
M

=
√

3
2

∫ 1

0

µH(µ)Φε(t, xM
, µ)dµ ,

Θε

∣

∣

x=x
R

=
√

3
2

∫ 1

0

µH(µ)FR(t, µ)dµ ,

Θε

∣

∣

t=0
= ΨI ,

where H is Chandrasekhar’s function — see Definition 2.1;
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• eventually the global solution is approximated by

(5.5)
Ψε(t, x, µ) = Φε(t, x, µ) , x

L
< x < x

M
,

Ψε(t, x, µ) = Θε(t, x) , x
M
< x < x

R
.

A few remarks on this domain decomposition method are in order.
First, because of the assumption bearing on the boundary and initial
data, if

∂tFL ∈ L2([0, T ] × [0, 1], µdtdµ) for all T > 0 ,

the energy estimate implies that

∂tΦε = O(1) in L2([0, T ] × [x
L
, x

M
] × [−1, 1], dtdxdµ) for all T > 0 ,

Using (5.3) implies that the boundary data for the diffusion equation
is uniformly bounded in H1

loc([0,+∞)) since

∂tΦε

∣

∣

x=x
M

= O(1) in L2([0, T ] × [−1, 1], µdtdµ) .

In particular, the (slow) time scale of the diffusion equation is consistent
with the (slow) time scale of the distribution of particles emerging from
the transport region. A straightforward modification of (4.9) leads to
a boundary layer governed by (2.1)-(2.2) — exactly as in the steady
case.

Secondly, the transport and diffusive regions are decoupled globally
in time up to an O(ε) error by using the appropriate reflection condition
at the interface, that is given in terms of the operator R. One can see
that in the other existing domain decomposition algorithms, there is
an iteration within any given time step so as to match the transport
and diffusive domains. As already mentioned above, avoiding these
iterations is one of the benefits of using the exact asymptotic reflection
operator R instead of other, ad hoc prescriptions for the transmission
condition at the interface.

5.2. The case of higher space dimensions. The methods in this
paper can also be extended to transport equations in space dimen-
sions higher than 1. Consider for example the transport equation with
isotropic scattering

(5.6)

ω · ∇xΨ(x, ω) + σ(x)Ψ(x, ω) = σ(x)c(x)Ψ(x) ,

where Ψ(x) = 1
|SD−1|

∫

§D−1

Ψ(x, ω)dω ,
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ΩT
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x νz
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ΩDTransport region

Diffusion region

F
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σ=Ο(1)
σ=Ο(1/ε)

Figure 2. Geometry of the multi-dimensional interface problem

posed for (x, ω) ∈ Ω × SD−1, where Ω is a smooth, bounded convex
domain in RD. The coefficients σ are of the form
(5.7)
σ(x) = σT (x) , and c(x) = cT (x) ∈ (0, 1) , for x ∈ ΩT ,

σ(x) = ε−1σD(x) , and c(x) = 1 − ε2γ(x) , for x ∈ ΩD .

Here ΩD is a smooth, convex domain whose closure ΩD is included in Ω,
and ΩT = Ω \ ΩD. The functions σT , σD, γ are assumed to be smooth
and positive; likewise, the function cT is assumed to be smooth.

The problem (5.13) is supplemented with the boundary condition

(5.8) Ψ(x, ω) = Fb(x, ω) , for (x, ω) ∈ Σ− .

Here

(5.9) Σ− = {(x, ω) ∈ ∂Ω × SD−1 |ω · nx < 0}

where nx is the unit outward normal at the point x of ∂Ω.
In this problem, the interface is ∂ΩD (see figure 2); further, we need

the notations

(5.10)
Σ+
i = {(x, ω) ∈ ∂ΩD × SD−1 |ω · νx > 0} ,

Σ−
i = {(x, ω) ∈ ∂ΩD × SD−1 |ω · νx < 0} .



20 F. GOLSE, S. JIN, AND C. D. LEVERMORE

where νx is the unit outward normal to ΩD at the point x ∈ ∂ΩD.
We first describe the analog of Chandrasekhar’s H-function and of

the boundary layer response operator R for this problem. Given ν ∈
SD−1, consider the auxiliary problem

(5.11)
−(ω · ν)∂zΓ + Γ − Γ = 0 , z > 0 , ω ∈ SD−1 ,

Γ(0, ω) = G(ω) , ω · ν < 0 .

Denote by S−
ν = {ω ∈ SD−1 |ω·ν < 0}. Proceeding exactly as in section

2, one sees that, given G ∈ L2(S−
ν , |ω · ν|dω), the problem (5.11) has

a unique solution Γ ∈ L∞(R+;L2(SD−1, |ω · ν|dω)). In addition, there
exists a linear functional Λν and a bounded operator Rν both acting
on L2(S−

ν , |ω · ν|dω) such that

(5.12)
Γ(z, ω) → Γ∞ = Λν(G) for each ω ∈ SD−1 and

Γ(0, sν(ω)) = (RνG)(ω) for each ω ∈ S−
ν ,

with the notation sν(ω) = ω−2(ω·ν)ν. The linear functional Λν and the
operator Rν are expressed in terms of a variant of the Chandrasekhar
H function which can be computed numerically by solving a nonlinear
integral equation that is analogous to (2.6): see Appendix B.

The coupling algorithm at order O(ε) for this problem is as follows:

• on the transport domain ΩT , solve
(5.13)
ω · ∇xΦ(x, ω) + σ(x)Φ(x, ω) = σ(x)c(x)Φ(x) , for (x, ω) ∈ ΩT × SD−1 ,

Φ(x, ω) = Fb(x, ω) , for (x, ω) ∈ Σ− ,

Φ(x, sνx
(ω)) = Rνx

Φ(x, ω) , for (x, ω) ∈ Σ+
i ;

• on the diffusion domain ΩD, solve
(5.14)

γ(x)Θ(x) − 1
D
∇x ·

(

1

σ(x)
∇xΘ(x)

)

= 0 , on ΩD ,

Θ(x) = Λνx
(Φ(x, ·)) , on ∂ΩT ,

• finally the solution Ψε of (5.13)-(5.8)-(5.7) on Ω × SD−1 is approxi-
mated to within O(ε) by

(5.15)
Ψε(x, ω) = Φ(x, ω) if x ∈ ΩT ,

Ψε(x, ω) = Θ(x) if x ∈ ΩD .

There is also a O(ε2) coupling, whose formulation follows essentially
Theorem 3.2, and which can be easily worked out with the material
presented in this paper.
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5.3. The discrete-ordinate method. We return to the steady prob-
lem (1.1)-(1.2) with coefficients as in (1.3), and discuss the domain de-
composition algorithms for the discrete-ordinate method. The discrete-
ordinate method is a semi-discrete version of (1.1) where only the an-
gle variable µ is discretized. In this method, the variable µ is dis-
cretized by a set M of 2M quadrature points µm with quadrature
weights αm > 0. These points and weights are indexed by m ∈ M =
{−M, · · · ,−1, 1, · · · ,M} ordered as follows:

(5.16) −1 < µ−M < . . . < µ−1 < 0 < µ1 < . . . < µM < 1 ,

with the symmetry

(5.17) µ−m = −µm , and α−m = αm , for m ∈ M .

In addition, these quadrature points and weights are assumed to satisfy
the quadrature conditions

(5.18)

M
∑

m=1

µ 2k
m αm = 1 for k = 0 ,

M
∑

m=1

µ 2k
m αm = 1

3
for k = 1 .

Additional conditions might also be assumed (see [14]-[15]-[12]). The
conditions above are met by many quadrature sets, for instance, by
the classical Gauss quadrature over [−1, 1], or the so-called “double
Gauss” quadrature over [−1, 0]∪ [0, 1] provided that each half interval
range contains at least 2 quadrature points.

The value of the exact solution Ψε(x, µ) of the steady transport equa-
tion (1.1)-(1.2)-(1.3) at the quadrature points µm is then formally ap-
proximated by the discrete particle densities ψε ≡ ψεm(x) that satisfy
the so-called discrete-ordinate equation

(5.19) µm∂xψ
ε
m + σ(x)ψεm = σ(x)c(x)ψε ,

where

ψε(x) = 1
2

∑

1≤|n|≤M
ψεn(x)αn ,

and with boundary conditions given by

(5.20) ψεm(x
L
) = fL,m , ψε−m(x

R
) = fR,m , for m > 0 .

The discretized boundary data fL,m and fR,m can be defined in various
ways from the original boundary data FL and FM , as discussed in [14],
[12].
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The analysis of (5.19)-(5.20) under the conditions (5.17) and (5.18)
exactly parallels that of (1.1)-(1.2), at the expense of replacing the
measure dµ by its discrete analogue

∑

1≤|k|≤M δµk
.

In the diffusive domain x
M
< x < x

R
, σ(x) = ε−1 while c(x) =

1 − ε2γ(x); hence

(5.21)

µm∂xψ
ε
m + ε−1ψεm = ε−1(1 − ε2γ)ψε , x

M
< x < x

R
,

ψεm(x
M

) = gm , for m > 0 ,

ψε−m(x
R
) = fR,m , for m > 0 .

The boundary data gm will be determined later.
The diffusion approximation to the discrete-ordinate equation (5.21)

is (see [20], [14], [12])

ψεm = θε − εµm∂xθ
ε +O(ε2) ,

where θε satisfies the diffusion equation

(5.22) −1
3
∂xxθ

ε + γθε = 0 , x ∈ (x
M
, x

R
)

and the boundary conditions

(5.23)

θε − ελdisc∂xθ
ε
∣

∣

∣

x=x
M

=
M
∑

m=1

ψεm(x
M

)wm ,

θε + ελdisc∂xθ
ε
∣

∣

∣

x=x
R

=

M
∑

m=1

fR,mwm .

Obtaining the boundary conditions (5.23) can be done exactly as in
the case of a continuous angular variable µ: see [14]. This involves
discrete ordinate analogs of the half-space problem studied in section
2. In particular, one obtains discrete versions of the Chandrasekhar
H-function and of the operator R, by replacing the measure dµ with
its discrete analog

∑

1≤|k|≤M δµk
in the procedure described in section

2.
Alternately, one can follow the analysis in [6], originally done in the

context of the discrete ordinate equation. We review this analysis below
in its slightly modified form to be found in [14].

The extrapolated endpoint distance λdisc in (5.23) measured in mean
free paths is given by (see [14])

(5.24) λdisc =
M
∑

m=1

µm −
M−1
∑

n=1

1

ξn+ 1

2

,
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where ξ = ξn+ 1

2

is the unique (positive, simple) root of the characteristic

equation (see [6], chapter III, fla. (6))

(5.25) 1 = 1
2

∑

m∈M

αm
1 − µmξ

,

that lies in the open interval (1/µn+1, 1/µn).
The weights wm that appear in (5.23) are computed in terms of the

µm and the ξn+1/2 by the formula

(5.26) wm =

M−1
∏

n=1

(

µm −
1

ξn+ 1

2

)

M
∏

k=1

k 6=m

(

1

µm − µk

)

> 0 .

These expressions for λdisc and the wm are derived in [14] — see flas.
(A.17) and (A.18) — through a discrete boundary layer analysis. The
wm’s are the discrete analog of Chandrasekhar’s H-function of Defini-
tion 2.1.

Finally, we need the discrete version of the reflection operator R.
In the discrete case, the problem analogous to determining Γ(0,−µ)
in terms of G (with the notations of Lemma 2.2) reduces to Lagrange
interpolation. One finds that the discrete analog of R is

(5.27) (Rdiscg)m ≡ (−1)M−1

M
∑

k=1

gk







M−1
∏

j=1

1 − ξj+ 1

2

µk

1 + ξj+ 1

2

µm

M
∏

i=1

i6=k

µm + µi
µk − µi






.

This formula can be found by following the argument in Appendix A.A
of [14], after setting b = 0 in fla. (A1) there.

Proceeding as in section 3, we formulate the coupling algorithms:

Order ε coupling.

First solve the discrete ordinate equation

(5.28)

µm∂xφ
0
m + φ0

m − cφ
0

m = 0 , x ∈ (x
L
, x

M
) , m ∈ M ,

φ0
m(x

L
) = fL,m , 1 ≤ m ≤M ,

φ0
−m(x

M
) = Rdisc(φ

0(x
M

))m , 1 ≤ m ≤M .
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Once this is done and the density φ0 has been computed, solve the
diffusion problem

(5.29)

−1
3
∂xxθ

0 + γθ0 = 0 , x ∈ (x
M
, x

R
) ,

θ0(x
M

) =

M
∑

m=1

φ0
m(x

M
)wm ,

θ0(x
R
) =

M
∑

m=1

fR,m(x
M

)wm .

When keeping M fixed and letting ε converge to zero, the solution ψεm
is approximated by

(5.30)
ψ0
m(x) = φ0

m(x) , x ∈ (x
L
, x

M
) , m ∈ M ,

ψ0
m(x) = θ0(x) , x ∈ (x

L
, x

M
) , m ∈ M ,

to within O(ε).

Order ε2 coupling.

With θ0 computed as in the previous step, solve the discrete ordinate
equation
(5.31)

µm∂xφ
1
m + φ1

m − cφ
1

m = 0 , x ∈ (x
L
, x

M
) , m ∈ M ,

φ1
m(x

L
) = 0 , 1 ≤ m ≤M ,

φ1
−m(x

M
) = Rdisc(φ

1(x
M

))m − (λdisc + µm)∂xθ
0(x

M
) , 1 ≤ m ≤M .

Once this is done, φ0 and φ1 have been computed and one can solve
the diffusion problem

(5.32)

−1
3
∂xxθε + γθε = 0 , x ∈ (x

M
, x

R
) ,

θε(xM
) − ελdisc∂xθε

∣

∣

∣

x=x
M

=
M
∑

m=1

(φ0
m + εφ1

m)(x
M

)wm ,

θε(xR
)) + ελdisc∂xθε

∣

∣

∣

x=x
R

=
M
∑

m=1

fR,m(x
M

)wm .

When keeping M fixed and letting ε converge to zero, the solution ψεm
is approximated by

(5.33)
ψ1,ε
m (x) = φ0

m(x) + εφ1
m(x) , x ∈ (x

L
, x

M
) , m ∈ M ,

ψ1,ε
m (x) = θ0

m(x) − εµm∂xθε(x) , x ∈ (x
M
, x

R
) , m ∈ M ,

to within O(ε2).
The error estimates concerning the limit ε → 0 while keeping M

fixed are analogous to those in section 4. What happens if in addition
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one lets M tend to ∞ can be analyzed by using the methods described
in the present paper with those from [12].

6. Appendix A: the transport equation

with reflection boundary conditions

Let A be a bounded, linear operator on L2([0, 1], µdµ) such that

(6.1) ‖A‖L(L2([0,1],µdµ) ≤ 1 .

Consider the transport equation

(6.2)

µ∂xψ + σ(x)ψ = σ(x)c(x)ψ , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

ψ(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ,

ψ(x
M
,−µ) = A(ψ(x

M
, ·)
∣

∣

(0,1]
)(µ) + φM(µ) , µ ∈ (0, 1] .

Proposition 6.1. Assume that the measurable functions σ and c sat-
isfy the bounds 0 < σ∗ ≤ σ(x) ≤ σ∗ and 0 ≤ c(x) ≤ c∗ < 1 for
each x ∈ (x

L
, x

R
) and some constants σ∗, σ

∗ and c∗. For each FL
and φM ∈ L2([0, 1], µdµ), there exists a unique solution ψ to (6.2) in
L2((x

L
, x

M
) × [−1, 1]).

Proof. We use the objects and notations from Lemma 4.1. Assume the
existence of a solution ψ ∈ L2((x

L
, x

M
)×[−1, 1]); the transport equation

implies that µ∂ψ is in L2((x
L
, x

M
)× [−1, 1]), so that ψ(x

M
, µ) is a well-

defined element in L2([−1, 1], |µ|dµ). Define FM(µ) = ψ(x
M
,−µ) for

µ ∈ (0, 1]; thus the boundary condition at x
M

is equivalent to the
equality

FM = A ◦ (TLFL + TMFM) + φM .

By Lemma 4.1, ‖A◦TM‖L(L2([0,1],µdµ) < 1, thus I −A◦TM is invertible
in L(L2([0, 1], µdµ). Hence

FM = (I −A ◦ TM)−1(A ◦ TLFL + φM) ;

this shows that FM ∈ L2([0, 1], µdµ) is uniquely defined in terms of FL
and φM , so that there is at most one solution ψ of (6.2) in L2((x

L
, x

M
)×

[−1, 1]). Conversely, let ψ̃ be the solution of

µ∂xψ̃ + σ(x)ψ̃ = σ(x)c(x)ψ̃ , (x, µ) ∈ (x
L
, x

M
) × [−1, 1] ,

ψ̃(x
L
, µ) = FL(µ) , µ ∈ (0, 1] ,

ψ̃(x
M
,−µ) = (I −A ◦ TM)−1(A ◦ TLFL + φM)(µ) , µ ∈ (0, 1] .

Since FL and φM ∈ L2([0, 1], µdµ), the boundary term

(I −A ◦ TM )−1(A ◦ TLFL + φM)
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also belongs to L2([0, 1], µdµ) so that the above transport equation

has a unique solution ψ̃ ∈ L2((x
L
, x

M
) × [−1, 1]). But the boundary

condition at x
M

implies that

ψ̃(x
M
,−µ) = A(ψ̃(x

M
, ·)
∣

∣

(0,1]
)(µ) + φM(µ)

so that ψ̃ coincides with ψ by the uniqueness property proved above.
�

7. Appendix B: the multi-dimensional

Chandrasekhar function

The adjoint problem

(7.1)

(ω · ν)∂zv + v − v = 0 , z > 0 , ω ∈ SD−1 ,

v(0, ω) = 0 , ω · ν > 0 ,

(ω · ν)v = −1 , z > 0 ,

has a unique solution v ≡ v(z, ω) such that

(7.2) (z, ω) 7→ v(z, ω) − 1
K2z belongs to L∞(R+;L2(SD−1, |ω · ν|dω))

where K = ((ω · ν)2)1/2. It is defined by the formula

v(z, ω) = v0(z, ω) + 1
K2 (z − (ω · ν))

where v0 is the unique solution in L∞(R+;L2(SD−1, |ω · ν|dω)) of the
problem

(ω · ν)∂zv0 + v0 − v0 = 0 , z > 0 , ω ∈ SD−1 ,

v0(0, ω) = ω · ν , ω · ν > 0 ,

Let Γ ∈ L∞(R+;L2(SD−1, |ω ·ν|dω)) be the unique solution of (5.11).
Observe that
d

dz

∫

SD−1

(ω · ν)u(z, ω)v(z, ω)dω =

∫

SD−1

(Γ(z, ω) − Γ(z))v(z, ω)dω

−

∫

SD−1

Γ(z, ω)(v(z, ω) − v(z))dω = 0 .

By evaluating the quantity (ω · ν)Γv both at z = 0 and for z → +∞,
one finds that

∫

S
−
ν

(ω · ν)G(ω)v(0, ω)dω = (ω · ν)vΛν(G)

leading to the formula

(7.3) Λν(G) =

∫

S
−
ν

|ω · ν|G(ω)v(0, ω)dω .
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This expression is analogous to the first formula in Lemma 2.2. In
other words, the linear functional Λν is represented on the Hilbert
space L2(S−

ν , |ω · ν|dω) by the function 1
K
Hν(ω), where Hν is defined

by
Hν(ω) = Kv(0, ω) .

Consider next the function

u(z, ω) = (ω · ν)Γ(z, ω) +

∫ z

0

Γ(s)ds ;

it satisfies

−(ω · ν)∂zu+ u− u = 0 , z > 0 , ω ∈ SD−1 ,

u(0, ω) = (ω · ν)G(ω) , ω · ν < 0 ,

(ω · ν)u = K2Λν(G) , z > 0 .

It also verifies the condition

(z, ω) 7→ u(z, ω) − Λν(G)z belongs to L∞(R+;L2(SD−1, |ω · ν|dω)) .

Let w ∈ L∞(R+;L2(SD−1, |ω · ν|dω)) be the solution of

−(ω · ν)∂zw + w − w = 0 , z > 0 , ω ∈ SD−1 ,

w(0, ω) = (ω · ν)G(ω) , ω · ν < 0 .

It must also verify the condition

(ω · ν)w = 0 for all z > 0 .

Indeed, by averaging over SD−1 the equations for w and (ω · ν)w, one
finds that

(ω · ν)w = Cst and
d

dz
(ω · ν)2w = (ω · ν)w ;

one concludes by observing that (ω · ν)2w ∈ L∞(R+).
Hence the function u− w satisfies

−(ω · ν)∂z(u− w) + (u− w) − (u− w) = 0 , z > 0 , ω ∈ SD−1 ,

(u− w)(0, ω) = 0 , ω · ν < 0 ,

(ω · ν)(u− w) = K2Λν(G) , z > 0 .

By uniqueness of the solution of (5.11) in L∞(R+;L2(SD−1, |ω · ν|dω)),
one finds that

(u− w)(z, sνω) = K2Λν(G)v(z, ω) , where sνω = ω − 2(ω · ν)ν .

At z = 0 and for ω · ν < 0, this relation can be recast as

−(ω ·ν)RνG(ω)− (Rν(ω ·ν)G)(ω) = Hν(ω)

∫

S
−
ν

|ω′ ·ν|Hν(ω
′)G(ω′)dω′ ,
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which shows that Rν is of the form

RνG(ω) =

∫

S
−
ν

rν(ω, ω
′)G(ω′)|ω′ · ν|dω′

with

(7.4) rν(ω, ω
′) =

Hν(ω)Hν(ω
′)

|ω · ν| + |ω′ · ν|
.

This expression is analogous to the second formula in Lemma 2.2.
Obviously, the solution Γ of (5.11) corresponding to G ≡ 1 is Γ ≡ 1;

hence Rν1 = 1, which results in the nonlinear integral equation for Hν

1

Hν(ω)
=

∫

S
−
ν

Hν(ω
′)

|ω · ν| + |ω′ · ν|
|ω′ · ν|dω′ .

This shows in fact that Hν depends only on ω · ν: specifically

Hν(ω) = HD(|ω · ν|)

and the nonlinear integral equation for Hν can be recast in terms of
HD in the following manner:

1

HD(µ)
= |SD−2|

∫ 1

0

HD(µ′)

µ+ µ′ µ
′(1 − µ′2)

D−2

2 dµ′ .

This integral equation is analogous to (2.6) and can be solved numeri-
cally by a relaxation method.
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