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Abstract

This is the second paper on the study of gradient recovery for elliptic interface
problem. In our previous work [H. Guo and X. Yang, 2016, arXiv:1607.05898],
we developed a novel gradient recovery technique for finite element method
based on body-fitted mesh. In this paper, we propose new gradient recovery
methods for two immersed interface finite element methods: symmetric and
consistent immersed finite method [H. Ji, J. Chen and Z. Li, J. Sci. Comput.,
61 (2014), 533–557] and Petrov-Galerkin immersed finite element method [T.Y.
Hou, X. H. Wu and Y. Zhang, Commun. Math. Sci., 2 (2004), 185–205, and S.
Hou and X. D. Liu, J. Comput. Phys., 202 (2005), 411–445]. Compared to body-
fitted mesh based gradient recover methods, immersed finite element methods
provide a uniform way of recovering gradient on regular meshes. Numerical
examples are presented to confirm the superconvergence of both gradient recov-
ery methods. Moreover, they provide asymptotically exact a posteriori error
estimators for both immersed finite element methods.

Keywords: elliptic interface problem, immersed finite element method,
gradient recovery, superconvergence, a posteriori error estimator
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1. Introduction

We are interested in developing gradient recovery methods for the following
elliptic interface problem

−∇ · (β(z)∇u(z)) = f(z), z in Ω \ Γ, (1.1)

u = 0, z on ∂Ω, (1.2)

where Ω is a bounded polygonal domain with Lipschitz boundary ∂Ω in R2, and
Γ is the interface which splits Ω into two disjoint subdomains Ω− and Ω+. Note
that the interface Γ can be given by a zero level of level set function [33, 38].

∗Corresponding author
Email addresses: hlguo@math.ucsb.edu (Hailong Guo), xuyang@math.ucsb.edu (Xu

Yang)

Preprint submitted to Journal of Computational Physics March 6, 2017



The interface problem is characterized by the following piecewise smooth
diffusion coefficient β(z) ≥ β0,

β(z) =

{
β−(z) if z ∈ Ω−,
β+(z) if z ∈ Ω+,

(1.3)

which has a finite jump of function value across the interface Γ. We consider
homogeneous jump conditions at the interface Γ as below,

[u]Γ = u+ − u− = 0, (1.4)

[β∂nu]Γ = β+u+
n − β−u−n = 0, (1.5)

where ∂nu = ∇u ·n denotes the normal flux with n being the unit outer normal
vector of the interface Γ.

Simulation of the interface problem (1.1)–(1.5) is an important problem in
the fields of fluid dynamics and material science, where background is composed
by rather different materials. Discontinuities of coefficients at interface lead to
nonsmooth solutions in general, and thus raise a challenge for designing efficient
numerical methods for (1.1)–(1.5).

Two mainstreams of existing numerical methods for (1.1)–(1.5) are body-
fitted mesh-based methods and immersed boundary/interface methods. Body-
fitted mesh-based methods resolve discontinuities by generating mesh grids to
align with interface, and then use standard finite element methods. This type of
methods can provide high order accuracy, with nearly optimal error estimates
established in, for example, [2, 4, 9, 41]. Despite its merit of accuracy, a main
drawback of such methods is the requirement of a body-fitted mesh generator,
which can be technically involved and time consuming especially when the geom-
etry of interface becomes complicated. Therefore, it will be more convenient to
develop numerical methods based unfitted mesh (e.g. Cartesian mesh). A rich
literature can be found in this direction including immersed boundary method
(IBM) by Peskin [34, 35] and immersed interface method (IIM) by Leveque and
Li [25], just to name a few.

In IBM, Dirac δ-function is used to model discontinuity and discretized to
distribute a singular source to nearest grid point. In IIM, a special finite dif-
ference scheme is constructed near interface to get an accurate approximation
of the solution. Moreover, IIM was also developed in the framework of finite
element method [26, 29, 28]. Interested readers are referred to [27] for a review
of this type of methods. In [28], Li, Lin and Wu proposed a nonconforming
immersed finite element method (IFEM) by modifying the basis functions on
elements crossing interface. Chou etc. established optimal error estimates in
L2 and H1 norms in [13]. However, it only achieved first order (suboptimal)
convergence in L∞ norm due to discontinuities of test functions. To overcome
this drawback, Ji, Chen, and Li added a correction term into the bilinear for-
m of the nonconforming IFEM to penalize the discontinuities at interface [23],
which showed optimal convergence rate in L2 and H1 norms. They also numer-
ically verified that the method achieved second order convergence in L∞ norm.
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Another weak form formulation was derived in [20, 21, 22] based on Petrov-
Galerkin method for the discretization of elliptic interface problem, which has
been numerically verified to have optimal convergence rate in L2, H1 and L∞

norms.
Superconvergence analysis of elliptic interface problem has been a challeng-

ing problem due to the of lack regularity of solution at interface. Standard
gradient recovery methods [43, 44, 42, 32, 1, 18] only work well for elliptic prob-
lems with smooth coefficient. As far as we know, only limited work has been
done in the development of gradient recovery methods for elliptic interface prob-
lem. For example, [11, 12] proposed two special interpolation formula to recover
flux for linear and quadratic immersed finite element method in one-dimension.
A more recent work [39] showed a supercloseness between finite element solu-
tion and linear interpolation of the true solution for linear finite element method
based on body-fitted mesh. In our previous work [17], we developed an immerse
polynomial preserving recovery (IPPR) method based on body-fitted mesh and
proved its superconvergence for both mildly unstructured and adaptive refined
meshes.

As a continuous study of [17], we propose new gradient recovery methods in
this paper based on two immersed finite element methods: symmetric and con-
sistent immersed finite element (SCIFEM) [23] and Petrov-Galerkin immersed
finite element method (PGIFEM) [20, 21, 22]. The development of the meth-
ods is based on the following two observations: firstly, the solution is piecewise
smooth on each subdomain despite of its low global regularity; secondly, finite
element solution is discontinuous at interface even though the exact solution is
continuous. Accordingly, we design the gradient recovery methods by two steps:
enriching and smoothing. We first define an enriching operator to enrich the
discontinuous finite element solution into continuous one on a local body-fitted
mesh obtained by adding extra nodes [28]. Such type of enriching operator
has been well studied for nonconforming finite element and plays an important
role in a priori error estimates [16] and convergence analysis of multigrid meth-
ods [5, 6, 7]. Then we apply the IPPR gradient recovery operator developed
in [17] to the enriched finite element solution. We prove that the proposed
gradient recovery operator is a bounded linear operator, and numerically ver-
ify that the recovered gradient is O(h1.5) superconvergent to exact gradient.
As a byproduct, we observe the O(h1.5) supercloseness between finite elemen-
t solution and linear interpolation of true solution for both SCIFEM [23] and
PGIFEM [20, 21, 22].

The rest of the paper is organized as follows. In Section 2, we briefly review
two immersed finite element methods, SCIFEM and PGIFEM, as a preparation
for designing gradient recovery methods. In Section 3, we first define an enrich-
ing operator and prove several properties of the operator. Then, we propose the
gradient recovery methods for SCIFEM and PGIFEM and prove that the gradi-
ent recovery operator is a linear, bounded and consistent operator. In Section 4,
serval numerical examples are presented to confirm the superconvergence of the
gradient recovery methods. We make conclusive remarks in Section 5.
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2. Review on immersed finite element methods

In this section, we briefly review two immersed finite element methods, sym-
metric and consistent immersed finite element method [23] and Petrov-Galerkin
immersed finite element method [20, 21, 22], based on which we shall develop
superconvergent gradient recovery methods for elliptic interface problem (1.1)–
(1.5) in Section 3.

2.1. Notations

We first summarize the notations that will be used in this paper. We will
use standard notations for Sobolev spaces and their associate norms given in
[8, 14, 15] . For a subdomain A of Ω, let Pm(A) be the space of polynomials
of degree less than or equal to m in A and nm be the dimension of Pm(A)
which equals to 1

2 (m + 1)(m + 2). W k,p(A) denotes the Sobolev space with
norm ‖ · ‖k,p,A and seminorm | · |k,p,A. When p = 2, W k,2(A) is simply denoted
by Hk(A) and the subscript p is omitted in its associate norm and seminorm.
As in [39], denote W k,p(Ω− ∪Ω+) as the function space consisting of piecewise
Sobolev function w such that w|Ω− ∈ W k,p(Ω−) and w|Ω+ ∈ W k,p(Ω+). For
the function space W k,p(Ω− ∪ Ω+), define its associated norm as

‖w‖k,p,Ω−∪Ω+ =
(
‖w‖pk,p,Ω− + ‖w‖k,p,Ω+

)1/p

,

and associated seminorm as

|w|k,p,Ω−∪Ω+ =
(
|w|pk,p,Ω− + |w|k,p,Ω+

)1/p

.

Let C denote a generic positive constant which may be different at different
occurrences. For the sake of simplicity, we use x . y to mean that x ≤ Cy for
some constant C independent of mesh size and the location of interface.

Without loss of generality, we simply suppose Th is a uniform triangulation
of Ω with h = diam(T ). Assume h is small enough so that the interface Γ never
crosses any edge of Th more than two times. The elements of Th can be divided
into categories : regular element and interface element. We call an element T
interface element if the interface Γ passes the interior of T ; otherwise we call it
regular element. Remark that if Γ only passes two vertices of an element T , we
treat the element T as a regular element. Let T ih and T rh denote the set of all
interface elements and regular elements respectively. The set of all vertices of
Th is denoted by Nh.

2.2. Variational formula

The variational formulation to elliptic interface problem (1.1)–(1.5) is given
by finding u ∈ H1

0 (Ω) such that

(β∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω), (2.1)
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where (·, ·) is standard L2-inner product in the spaces L2(Ω). By the positiveness
of β, Lax-Milgram Theorem implies (2.1) has a unique solution. [9, 37] proved
that u ∈ Hr(Ω− ∪ Ω+) for 0 ≤ r ≤ 2 and

‖u‖r,Ω−∪Ω+ . ‖f‖0,Ω + ‖g‖r−3/2,Γ, (2.2)

if f ∈ L2(Ω) and g ∈ Hr−3/2(Γ).

2.3. Immersed finite element methods

The key idea of immersed interface methods is to construct special basis
functions in interface elements to incorporate jump conditions (1.4) and (1.5).
As an illustration, we consider a typical interface element T as in Figure 1.
Let z4 and z5 be the intersection points between the interface Γ and edges of
the element. Connect the line segment z4z5 and it forms an approximation of
interface Γ in the element T , denoted by Γh|T . Then the element T is spitted
into two parts: T− and T+. The special basis φi on the interface element T is
constructed as the following piecewise linear function

φi(z) =

{
φ+
i = a+ + b+x+ c+y, z = (x, y) ∈ T+,
φ−i = a− + b−x+ c−y, z = (x, y) ∈ T−, (2.3)

where the coefficients are determined by the following linear system

φi(z1) = δi1, φi(z2) = δi2, φi(z3) = δi3, (2.4)

φ+
i (z4) = φ−i (z4), φ+

i (z5) = φ−i (z5), β+∂nφ
+
i = β−∂nφ

−
i , (2.5)

for i = 1, 2, 3. The immersed finite element space Vh [28] is defined as

Vh := {v ∈ Vh : v|T ∈ Vh(T ) and v is continuous on Nh, } , (2.6)

Vh,0 = {v ∈ Vh : v(z) = 0 for all z ∈ Nh ∩ ∂Ω} , (2.7)

where

Vh(T ) :=

{
{v|v ∈ P1(T )} , if T ∈ T rh ;
{v|v is defined by (2.3)− (2.5)} , if T ∈ T ih .

(2.8)

Note that in general Vh is a nonconforming finite element space and [29] shows
it has optimal approximation capability.

2.3.1. Symmetric and consistent immersed finite element method

Let Eh denote the set of all edges in Th, and then Eh consists of interface
edge E ih and regular edge Erh, defined by

E ih = {e ∈ Eh : e̊ ∩ Γ 6= ∅}, , Erh = Eh \ E ih. (2.9)

For any interior edge e, there exist two triangles T1 and T2 such that T1∩T2 = e.
Denote ne as the unit normal of e pointing from T1 to T2, and define

{∇u} =
1

2
(∇u|T1

+∇u|T2
) , (2.10)

[u] = u|T1 − u|T2 . (2.11)
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Figure 1: Typical example of interface element.

The symmetric and consistent immersed finite element method (SCIFEM) [23]
seeks usch ∈ Vh,0 such that

asch (usch , vh) = (f, vh), ∀vh ∈ Vh,0, (2.12)

where

asch (u, v) =
∑
T∈Th

∫
T

β∇u · ∇vdx+
∑
e∈Eih

∫
e

({β∇u}[u] + {β∇v}[u]) · neds (2.13)

In [23], Ji, Chen, and Li showed the bilinear form (2.13) was consistent and
numerically verified its coercivity. Moreover, [23] proved the following conver-
gence results:

Theorem 2.1. Let u be the solution of (1.1)–(1.5) and uh be the solution of
(2.12). Then the following error estimates hold:(∑

T∈Th

|u− usch |2H1(T )

)1/2

. h‖u‖2,Ω+∪Ω− , (2.14)

‖u− usch ‖0,Ω . h2‖u‖2,Ω+∪Ω− . (2.15)

Remark 2.2. The main difference between SCIFEM and classical immersed finite
element method [28] is that the bilinear form of SCIFEM (2.13) contains one
more term to penalize the discontinuous of basis function at the intersecting
points of interface and edge. Numerical results in [23] show that SCIFEM has
O(h2) convergence in L∞-norm.
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2.3.2. Petrov-Galerkin immersed finite element method

Denote the standard C0 linear finite element space on Th by Sh and Sh,0 =
Sh∩H1

0 (Ω). Then the Petrov-Galerkin immersed finite element method (PGIFEM)
[22, 20, 21] is to find upgh ∈ Vh,0 such that

ah(upgh , vh) = (f, vh), ∀vh ∈ Sh,0, (2.16)

where

ah(u, v) =
∑
T∈Th

∫
T

β∇u · ∇vdx. (2.17)

Remark 2.3. To our best knowledge, there has been no analytical results on
estimating PGIFEM, however, plenty of numerical simulations indicate that it
can achieve optimal convergence rate in both L2, H1 and L∞ norms [22, 20, 21].

3. Gradient recovery for immersed finite element methods

In the section, we systematically introduce gradient recovery methods for
SCIFEM and PGIFEM reviewed in last section. We first define an enriching
operator, and then apply the immersed polynomial preserving recovery operator
[17] to the enriched finite element solution.

3.1. Enriching operator

To define the enriching operator, one needs to generate a local body-fitted
mesh T̂h based on Th by adding new vertices into Nh which divides interface
element into three subtriangles. Then the new triangulation is constructed as
below [28]:

1. Keep all regular elements unchanged.

2. For each interface element T , split it into a small triangle and a quadri-
lateral by connecting two intersection points, and then divide the quadri-
lateral into two subtriangles by an auxiliary line connecting a vertex and
an intersection point. The choice of auxiliary line is made so that there
at least exists one angle between π

4 and 3π
4 in the two new subtriangles.

Remark 3.1. Note that the new triangulation can contain narrow triangles, and
thus standard linear finite element method deteriorates on T̂h. However, the
propose of introducing the body-fitted mesh T̂h is just for enriching existing
immersed finite element solution instead of solving interface problem directly
on it.

Let X̂h be the C0 linear finite element space defined on T̂h. We construct
an enriching operator Eh : Vh → X̂h by averaging the discontinuous values at
intersection points. Let N̂h denote all vertices in T̂h, and one has Nh ⊂ N̂h. For
any z ∈ N̂h, let T̂z denote the set of all triangles in T̂h having z as their vertex
and define

(Ehv)(z) =
1

|T̂z|
∑
T̂∈T̂z

vT̂ (z), (3.1)
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with |T̂z| being the cardinality of T̂z and vT̂ = v|T̂ . We can define Ehv on Ω

by standard linear finite element interpolation in X̂h after obtaining the values
(Ehv)(z) at all vertices. It is easy to see that (Ehv)(z) = v(z) for all z ∈ N̂h∩Nh,

which means (Ehv)(z) = v(z) for all z ∈ N̂h provided that v is continuous.

Remark 3.2. The purpose of the enriching operator is to make the discontinuous
immersed finite element solution become continuous as the true solution.

For the enriching operator Eh, we can prove the following error estimate.

Theorem 3.3. For any v ∈ Vh, one has∑
T∈T̂h

‖Ehv − v‖20,T . h2
∑
T∈Th

|v|21,T . (3.2)

Proof. For any z ∈ N̂h \ Nh, there exists an e ∈ E ih so that z ∈ e. Let T1 and

T2 be the two triangles in Th so that T1 ∩ T2 = e. Then T̂ ⊂ T1 or T̂ ⊂ T2 for
any T̂ ∈ T̂z. Hence vT̂ (z) = vT1

(z) or vT̂ (z) = vT2
(z). Then for any T̂a, T̂b ∈ T̂z,

we can find p ∈ Nh such that

[vT̂a
(z)− vT̂b

(z)]2

≤[vT1
(z)− vT2

(z)]2

≤[vT1
(z)− vT1

(p)]2 + [vT1
(p)− vT2

(p)]2 + [vT2
(p)− vT2

(z)]2

=[vT1(z)− vT1(p)]2 + [vT2(p)− vT2(z)]2

.|v|21,T1∪T2
,

(3.3)

where we have used the fact that vT1(p) = vT2(p) since p ∈ Nh in the first
equality and the mean value theorem [7] in the last inequality.

Combining (3.1) and (3.3) gives, for any T̂ ∈ T̂z,

[(Ehv − vT̂ )(z)]2 . |v|21,T1∪T2
,∀v ∈ Vh, (3.4)

which implies that

‖Ehv − v‖20,T̂ ≤ |T̂ |
∑

z∈N (T̂ )

[(Ehv − vT̂ )(z)]2

. h2
∑

T∈T (T̂ )

|v|21,T ,
(3.5)

where T (T̂ ) = {T ∈ Th : T ∩ T̂ 6= ∅}. Taking summation over all T̂h produces
the inequality (3.2).

Corollary 3.4. For any v ∈ Vh, we have

‖Ehv‖0,Ω . ‖v‖0,Ω, (3.6)

|Ehv|1,Ω . |v|1,Ω. (3.7)
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Proof. We first prove the inequality (3.6). Notice that

‖Ehv‖0,Ω . ‖Ehv − v‖0,Ω + ‖v‖0,Ω
. h‖∇v‖0,Ω + ‖v‖0,Ω
. ‖v‖0,Ω,

(3.8)

where we have used the standard inverse estimate [14, 8] in the last inequality.
Using (3.2) and standard inverse estimate yields

|Ehv|1,Ω ≤ |Ehv − v|1,Ω + |v|1,Ω
. h−1‖Ehv − v‖0,Ω + |v|1,Ω
. |v|1,Ω,

(3.9)

which completes our proof.

3.2. Gradient Recovery Operator

The edges of T̂h with both ending points lying on Γ form an approximation
of the interface Γ, denoted by Γh, then the triangulation T̂h is divided into the
following two disjoint sets by Γh:

T̂ −h :=
{
T ∈ T̂h| all three vertices of T are in Ω−

}
, (3.10)

T̂ +
h :=

{
T ∈ T̂h| all three vertices of T are in Ω+

}
. (3.11)

Suppose X̂−h and X̂+
h are the continuous linear finite element spaces defined on

T̂ −h and T̂ +
h respectively.

Let GIh : X̂h → (X̂−h ∪ X̂+
h ) × (X̂−h ∪ X̂+

h ) be the immersed polynomial
preserving recovery (IPPR) operator introduced in [17]. Let uh be the solution
of either symmetric and consistent immersed finite element method or Petrov-
Galerkin immersed finite element method. The recovered gradient of uh is
defined as

Rhuh = GIh(Ehuh). (3.12)

Remark 3.5. The proposed gradient recovery method consists of two steps: first-
ly, we enrich the immersed finite element solution by the enriching operator; then
we recover the gradient of the enriched solution.

Remark 3.6. The gradient recovery method require doing a least-squares fitting
at very vertex of Th with computation cost of order O(1). Hence, the total
computational cost of recovery procedure is of order O(N). It can be ignored
compared to the cost of solving original problem.

It is easy to see that Rh is a linear operator from Vh to (X̂−h ∪ X̂+
h )× (X̂−h ∪

X̂+
h ), and one can prove the following boundedness results.

Theorem 3.7. Denote Rh to be the recovered operator defined in (3.12), and
then

‖Rhuh‖0,Ω−∪Ω+ . |uh|1,h. (3.13)
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Proof. By the definition of IPPR recovery operator in [17], we have

‖Rhuh‖0,Ω− = ‖GIhEhuh‖0,Ω− . |Ehuh|1,Ω− ,

and
‖Rhuh‖0,Ω+ = ‖GIhEhuh‖0,Ω+ . |Ehuh|1,Ω+ .

Then the estimate follows by that

‖Rhuh‖0,Ω−∪Ω+ ≤‖Rhuh‖0,Ω− + ‖Rhuh‖0,Ω−

.|Ehuh|1,Ω− + |Ehuh|1,Ω+

.|Ehuh|1,Ω

.|uh|1,Ω,

(3.14)

where we have used Corollary 3.4.

Theorem 3.7 implies Rh is a linear bounded operator. Moreover, we have
the following consistency result:

Theorem 3.8. Let Rh : Vh → (X̂−h ∪X̂+
h )×(X̂−h ∪X̂+

h ) be the gradient recovery
operator defined in (3.12). Given u ∈ H3(Ω− ∪ Ω+) ∩ C0(Ω), one has

‖RhuI −∇u‖0,Ω . h2‖u‖3,Ω−∪Ω+ , (3.15)

where uI is interpolation of u into linear finite element space X̂h.

Proof. Since u ∈ C0(Ω), one has that uI ∈ C0(Ω) and then EhuI = uI . There-
fore, we have RhuI = GIhEhuI = GhuI . Theorem 3.6 in [17] implies that

‖RhuI −∇u‖0,Ω = ‖GIhuI −∇u‖0,Ω ≤ h2‖u‖3,Ω−∪Ω+ ,

which completes our proof.

Remark 3.9. Theorem 3.8 implies Rh is consistent. In addition, it is a local
gradient recovery operator. Therefore, Rh satisfies the three conditions of a
good gradient recovery operator described in [1], and should serve as an ideal
candidate of gradient recovery operator for both SCIFEM and PGIFEM.

Remark 3.10. One of the most practical applications of gradient recovery tech-
niques is to construct asymptotically exact a posteriori error estimators [1, 3,
19, 31, 43, 44] for adaptive computational methods. Based on the recovery op-
erator Rh, one can define a local a posteriori error estimator on element T ∈ Th
as

ηT =


‖β1/2(Rhuh −∇uh)‖0,T , if T ∈ T rh ,( ∑
T̂⊂T,T̂∈T̂h

‖β1/2(Rhuh −∇uh)‖2
0,T̂

) 1
2

, if T ∈ T ih ,

and the corresponding global error estimator as

ηh =

(∑
T∈Th

η2
T

)1/2

,
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which provides an asymptotically exact a posteriori error estimator for SCIFEM
and PGIFEM. The readers are referred to [10, 40] for residual-type a posteriori
error estimator for immersed finite element methods.

4. Numerical Results

In the section, we give several numerical examples to verify the superconver-
gence of gradient recovery methods for both SCIFEM and PGIFEM. The com-
putational domain of the first four examples are chosen as Ω = [−1, 1]× [−1, 1].
The uniform triangulation of Ω is obtained by dividing Ω into N2 subsquares
and then dividing each subsquare into two right triangles. In the first four tests,
we take N = 2k with k = 5, 6, 7, 8, 9, 10, 11. In the last example, we consider a
nonlinear interface problem with homogeneous jump conditions on an annulus
domain. For convenience, we shall use the following error norms in all examples:

De := ‖u−uh‖1,Ω, Die := ‖∇uI−∇uh‖0,Ω, Dre := ‖∇u−Rhuh‖0,Ω. (4.1)

Example 4.1. In this example, we consider the elliptic interface problem
(1.1) with a circular interface of radius r0 = 0.6 as studied in [28]. The exact
solution is

u(z) =

{
r3

β− if z ∈ Ω−,
r3

β+ +
(

1
β− − 1

β+

)
r3
0 if z ∈ Ω+,

where r =
√
x2 + y2.

Tables 1–6 show the numerical results of both SCIFEM and PGIFEM with
three typical different jump ratios: β−/β+ = 1/10 (moderate jump), β−/β+ =
1/1000 (large jump), and β−/β+ = 1000 (large jump). In all different cases,
optimal O(h) convergence can be observed for H1-semi error of finite element
solution, which consists with the numerical results in [23, 20, 22]. The recovered
gradient superconverges to the exact gradient at a rate of O(h1.5). Moreover, we
numerically observe the supercloseness between gradient of the finite element
solution and its finite element interpolation for both SCIFEM and PGIFEM;
see column 5 of Tables 1–6.

Table 1: Numerical results of SCIFEM for Example 4.1 with β+ = 10, β− = 1.

N De order Die order Dr
re order

32 5.71e-02 – 1.47e-02 – 2.19e-02 –
64 2.94e-02 0.96 4.48e-03 1.72 7.48e-03 1.55
128 1.47e-02 1.00 1.84e-03 1.28 2.31e-03 1.69
256 7.38e-03 0.99 6.46e-04 1.51 7.40e-04 1.64
512 3.70e-03 1.00 2.36e-04 1.45 2.93e-04 1.34
1024 1.85e-03 1.00 8.11e-05 1.54 1.02e-04 1.52
2048 9.26e-04 1.00 2.83e-05 1.52 3.44e-05 1.57
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Table 2: Numerical results of PGIFEM for Example 4.1 with β+ = 10, β− = 1.

N De order Die order Dr
re order

32 5.92e-02 – 2.15e-02 – 3.09e-02 –
64 2.98e-02 0.99 6.61e-03 1.71 1.01e-02 1.61
128 1.48e-02 1.01 2.59e-03 1.35 3.33e-03 1.61
256 7.41e-03 1.00 9.00e-04 1.53 1.08e-03 1.63
512 3.71e-03 1.00 3.27e-04 1.46 4.11e-04 1.39
1024 1.85e-03 1.00 1.13e-04 1.54 1.43e-04 1.52
2048 9.26e-04 1.00 3.99e-05 1.50 4.92e-05 1.54

Table 3: Numerical results of SCIFEM for Example 4.1 with β+ = 1000, β− = 1.

N De order Die order Dr
re order

32 5.69e-02 – 2.43e-02 – 2.46e-02 –
64 2.77e-02 1.04 3.50e-03 2.79 6.44e-03 1.93
128 1.38e-02 1.00 1.61e-03 1.12 1.95e-03 1.72
256 6.95e-03 0.99 5.36e-04 1.58 6.34e-04 1.62
512 3.49e-03 1.00 1.95e-04 1.46 2.54e-04 1.32
1024 1.75e-03 1.00 6.61e-05 1.56 8.76e-05 1.53
2048 8.74e-04 1.00 2.29e-05 1.53 2.98e-05 1.55

Table 4: Numerical results of PGIFEM for Example 4.1 with β+ = 1000, β− = 1.

N De order Die order Dr
re order

32 5.95e-02 – 3.27e-02 – 4.55e-02 –
64 2.91e-02 1.03 9.35e-03 1.81 1.21e-02 1.91
128 1.44e-02 1.02 4.03e-03 1.21 4.54e-03 1.41
256 7.10e-03 1.02 1.45e-03 1.48 1.48e-03 1.62
512 3.53e-03 1.01 5.68e-04 1.35 5.94e-04 1.31
1024 1.76e-03 1.01 1.90e-04 1.58 1.95e-04 1.60
2048 8.76e-04 1.00 6.80e-05 1.48 6.96e-05 1.49

Table 5: Numerical results of SCIFEM for Example 4.1 with β+ = 1, β− = 1000.

N De order Die order Dr
re order

32 1.95e-01 – 1.35e-02 – 1.92e-02 –
64 9.79e-02 1.00 3.60e-03 1.91 8.14e-03 1.24
128 4.90e-02 1.00 1.48e-03 1.28 2.21e-03 1.88
256 2.45e-02 1.00 5.56e-04 1.42 7.46e-04 1.57
512 1.23e-02 1.00 1.81e-04 1.61 2.38e-04 1.65
1024 6.13e-03 1.00 6.44e-05 1.49 8.57e-05 1.48
2048 3.06e-03 1.00 2.33e-05 1.47 2.99e-05 1.52

Example 4.2. In this example, we consider the elliptic interface problem
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Table 6: Numerical results of PGIFEM for Example 4.1 with β+ = 1, β− = 1000.

N De order Die order Dr
re order

32 5.95e-02 – 3.27e-02 – 4.55e-02 –
64 2.91e-02 1.03 9.35e-03 1.81 1.21e-02 1.91
128 1.44e-02 1.02 4.03e-03 1.21 4.54e-03 1.41
256 7.10e-03 1.02 1.45e-03 1.48 1.48e-03 1.62
512 3.53e-03 1.01 5.68e-04 1.35 5.94e-04 1.31
1024 1.76e-03 1.01 1.90e-04 1.58 1.95e-04 1.60
2048 8.76e-04 1.00 6.80e-05 1.48 6.96e-05 1.49

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1

(b)

Figure 2: Example 2 with β+ = 10, β− = 1: (a) Shape of interface; (b) Numer-
ical solution of PGIFEM on the coarsest mesh used in Table 8.

Table 7: Numerical results of SCIFEM for Example 4.2.

N De order Die order Dr
re order

32 3.04e-02 – 7.01e-03 – 1.12e-02 –
64 1.54e-02 0.98 4.63e-03 0.60 4.16e-03 1.42
128 7.44e-03 1.05 8.71e-04 2.41 1.02e-03 2.03
256 3.71e-03 1.01 3.55e-04 1.30 4.28e-04 1.25
512 1.85e-03 1.00 1.27e-04 1.49 1.52e-04 1.49
1024 9.24e-04 1.00 4.31e-05 1.56 5.50e-05 1.47
2048 4.62e-04 1.00 1.55e-05 1.48 1.99e-05 1.47

(1.1) with shape edge as in [23, 24]. The level set function of the interface
is φ = −y2 + ((x − 1) tan(θ))2x with θ being a parameter. The interface is
displayed in Figure 2(a). The right hand function f is chosen to fit the exact
solution u(x, y) = φ(x, y)/β.

Numerically we test the case β− = 1 and β+ = 1000 when θ = 40. The
corresponding numerical results are shown in Tables 7 and 8, from which one
can see that De decays at a optimal rate of O(h), while Die and Dre tend
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Figure 3: Plots of recovered gradient based on PGIFEM for Example 4.2 with
β+ = 10, β− = 1: (a) x-component; (b) y-component.

Table 8: Numerical results of PGIFEM for Example 4.2.

N De order Die order Dr
re order

32 3.57e-02 – 1.98e-02 – 2.09e-02 –
64 1.70e-02 1.08 8.37e-03 1.24 8.09e-03 1.37
128 7.96e-03 1.09 2.95e-03 1.50 2.73e-03 1.57
256 3.82e-03 1.06 9.97e-04 1.57 9.41e-04 1.54
512 1.88e-03 1.02 3.72e-04 1.42 3.54e-04 1.41
1024 9.32e-04 1.02 1.29e-04 1.53 1.24e-04 1.51
2048 4.64e-04 1.01 4.57e-05 1.50 4.31e-05 1.52

to zero at a superconvergent rate of O(h1.5). Figure 2(b) plots the numerical
solution of PGIFEM on the coarsest mesh and Figure 3 shows the recovered
gradient.

Table 9: Numerical results of SCIFEM for Example 4.3.

N De order Die order Dr
re order

32 1.19e+00 – 1.61e-01 – 1.93e-01 –
64 5.93e-01 1.00 5.98e-02 1.43 7.24e-02 1.42
128 2.96e-01 1.00 2.14e-02 1.48 2.69e-02 1.43
256 1.48e-01 1.00 7.80e-03 1.46 9.66e-03 1.48
512 7.41e-02 1.00 2.75e-03 1.50 3.49e-03 1.47
1024 3.70e-02 1.00 9.84e-04 1.48 1.23e-03 1.51
2048 1.85e-02 1.00 3.49e-04 1.50 4.37e-04 1.49

Example 4.3. In the example, we consider the elliptic interface problem
(1.1) with ellipse interface given by the zero level set of the function φ(x, y) =
x2

0.52 + y2

0.252 − 1 as studied in [23, 24]. Here, we choose the case of variable

14



Table 10: Numerical results of PGIFEM for Example 4.3.

N De order Die order Dr
re order

32 1.19e+00 – 1.55e-01 – 1.89e-01 –
64 5.93e-01 1.00 5.81e-02 1.42 7.19e-02 1.39
128 2.96e-01 1.00 2.09e-02 1.48 2.66e-02 1.43
256 1.48e-01 1.00 7.61e-03 1.45 9.56e-03 1.48
512 7.41e-02 1.00 2.68e-03 1.50 3.45e-03 1.47
1024 3.70e-02 1.00 9.61e-04 1.48 1.22e-03 1.51
2048 1.85e-02 1.00 3.41e-04 1.50 4.33e-04 1.49

coefficient β(x, y) as

β(x, y) =

{
1 + 0.5(x2 − xy + y2) if (x, y) ∈ Ω−,
1 if (x, y) ∈ Ω+.

The right hand side function f and boundary condition are given by the exact
solution u(x, y) = φ(x, y)/β(x, y).

Tables 9 and 10 list the numerical errors, which provide a verification of the
O(h) convergence for semi-H1 error, and O(h1.5) supercloseness and supercon-
vergence.
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Figure 4: Example 4.4 with β+ = 10, β− = 1: (a) Shape of interface; (b)
Numerical solution of PGIFEM on the coarsest mesh used in Table 12.

Example 4.4. In this example, we consider the interface problem (1.1)
with a cardioid interface as in [20]. The interface curve Γ is the zero level of the
function

φ(x, y) = (3(x2 + y2)− x)2 − x2 − y2,

as shown Figure 4(a). We choose the exact solution u(x, y) = φ(x, y)/β(x, y),
where

β(x, y) =

{
xy + 3 if (x, y) ∈ Ω−,
100 if (x, y) ∈ Ω+.

15



1

0.5

0

-0.5

-1-1

-0.5

0

0.5

-1

-0.5

0

1.5

1

0.5

1

(a)

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
1

(b)

Figure 5: Plots of recovered gradient based on PGIFEM for Example 4.4 with
β+ = 10, β− = 1: (a) x-component; (b) y-component.

Table 11: Numerical results of SCIFEM for Example 4.4.

N De order Die order Dr
re order

32 5.59e-02 – 9.84e-03 – 2.51e-02 –
64 2.88e-02 0.96 4.09e-03 1.27 7.98e-03 1.65
128 1.47e-02 0.98 1.57e-03 1.38 2.30e-03 1.80
256 7.39e-03 0.99 5.72e-04 1.46 7.21e-04 1.67
512 3.71e-03 0.99 2.05e-04 1.48 2.41e-04 1.58
1024 1.86e-03 1.00 7.25e-05 1.50 8.99e-05 1.42
2048 9.31e-04 1.00 2.54e-05 1.51 3.15e-05 1.51

Table 12: Numerical results of PGIFEM for Example 4.4.

N De order Die order Dr
re order

32 6.09e-02 – 2.48e-02 – 4.06e-02 –
64 3.01e-02 1.01 9.06e-03 1.45 1.36e-02 1.58
128 1.50e-02 1.01 3.32e-03 1.45 4.25e-03 1.68
256 7.48e-03 1.00 1.16e-03 1.51 1.45e-03 1.55
512 3.73e-03 1.00 4.13e-04 1.49 4.87e-04 1.57
1024 1.87e-03 1.00 1.44e-04 1.52 1.74e-04 1.49
2048 9.32e-04 1.00 5.11e-05 1.49 6.11e-05 1.51

As pointed in [20], the difficulty of the problem is that the interface is not
even Lipschitz-continuous and has a singular point at the origin. Figure 4(b)
plots the numerical solution of PGIFEM and Figure 5 shows the recovered
gradient. The numerical errors are given in Tables 11 and 12, from which,
one can also observe the optimal convergence and superconvergence for both
SCIFEM and PGIFEM even though the interface is not Lipschitz-continuous.

Example 4.5. In this example, we consider the following nonlinear interface
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problem
−∇ · (β(z)∇u(z)) + u2 = f(z), z in Ω \ Γ,

with homogeneous jump conditions (1.4) and (1.5) where Ω = [−2, 2]× [−2, 2] \
[−0.5, 0.5]× [−0.5, 0.5]. The interface curve Γ is a circle centered at origin with
the radius r0 = 2. The exact solution is

u(z) =

{ log(r)
β− , if z ∈ Ω−,

log(r)
β+ +

(
1
β− − 1

β+

)
log(2), if z ∈ Ω+,

where r =
√
x2 + y2. The right hand side function f and boundary condition

are determined by the exact solution.
To generate initial uniform mesh, we first construct a uniform mesh on the

domain [−2, 2] × [−2, 2] with mesh size h = 1
8 and then delete the parts on

the domain [−0.5, 0.5] × [−0.5, 0.5]. The other five level uniform meshes are
obtained from uniformly refining the initial mesh. The discretized nonlinear
problems are solved by Newton’s method. Tables 13 and 14 show the numerical
results for SCIFEM and PGIFEM with β−/β+ = 1/1000 respectively. Note
Dof ≈ h−2 for a two dimensional grid, the corresponding convergent rates with
respect to the mesh size h are twice as many as what we present in the Tables 13
and 14. We can observe the same superconvergence and supercloseness results
as linear problems on uniform meshes.

Table 13: Numerical results of SCIFEM for Example 4.5.

Dof De order Die order Dr
re order

459 1.77e-01 – 2.01e-02 – 7.41e-02 –
1737 8.58e-02 0.55 6.38e-03 0.86 1.44e-02 1.23
6750 4.31e-02 0.51 2.37e-03 0.73 3.79e-03 0.99
26604 2.14e-02 0.51 8.12e-04 0.78 1.11e-03 0.89
105624 1.06e-02 0.51 2.82e-04 0.77 3.55e-04 0.83
420912 5.31e-03 0.50 9.71e-05 0.77 1.24e-04 0.76
1680480 2.65e-03 0.50 3.46e-05 0.75 4.33e-05 0.76

Table 14: Numerical results of PGIFEM for Example 4.5.

Dof De order Die order Dr
re order

459 1.83e-01 – 4.40e-02 – 6.99e-02 –
1737 8.73e-02 0.56 1.58e-02 0.77 1.43e-02 1.19
6750 4.35e-02 0.51 5.61e-03 0.76 4.27e-03 0.89
26604 2.15e-02 0.51 1.98e-03 0.76 1.35e-03 0.84
105624 1.07e-02 0.51 7.21e-04 0.73 4.75e-04 0.76
420912 5.32e-03 0.50 2.52e-04 0.76 1.63e-04 0.77
1680480 2.66e-03 0.50 8.96e-05 0.75 5.65e-05 0.77

17



5. Conclusion

In this paper, we develop gradient recovery methods for both symmetric
consistent immersed finite method and Petrov-Galerkin immersed finite element
method. Theoretically, we prove that the proposed gradient recovery operator
has consistency, localization, and boundedness properties. The superconver-
gence of recovered gradient is confirmed by five numerical examples using both
piecewise constant and piecewise variable diffusion coefficients. Moreover, we
numerically observe the supercloseness between immersed finite element solu-
tion and the linear interpolation of exact solution. Compared to body-fitted
mesh-based gradient recovery methods, the proposed gradient recovery meth-
ods provide a uniform way of recovering gradient on regular meshes. One of
our ongoing research project is to provide a theoretic justification for the ob-
served superconvergence and supercloseness phenomenon. We also remark that
recently there have been very interesting studies on elliptic interface problem
by Professor Zhilin Li and his collaborators based on the idea of mixed finite
element method [30, 36], which produce the same accurate gradient at interface
as our proposed method.
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