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SUMMARY

We present a systematic introduction on applying frozen Gaussian approximation (FGA)

to compute synthetic seismograms in three-dimensional earth models. In this method,

seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which

propagate along ray paths. Rather than the coherent state solution to the wave equation,

this method is rigorously derived by asymptotic expansion on phase plane, with analysis

of its accuracy determined by the ratio of short wavelength over large domain size. Simi-

lar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively

small number of Gaussians to get accurate approximations of high-frequency wavefield.

The algorithm is embarrassingly parallel, which can drastically speed up the computation

with a multicore-processor computer station. We illustrate the accuracy and efficiency of

the method by comparing it to the spectral element method for a three-dimensional (3D)

seismic wave propagation in homogeneous media, where one has the analytical solution

as a benchmark. As another proof of methodology, simulations of high-frequency seis-



2 L. Chai, P. Tong and X. Yang

mic wave propagation in heterogeneous media are performed for 3D waveguide model

and smoothed Marmousi model respectively. The second contribution of this paper is

that, we incorporate the Snell’s law into the FGA formulation, and asymptotically derive

reflection, transmission and free surface conditions for FGA to compute high-frequency

seismic wave propagation in high contrast media. We numerically test these conditions

by computing traveltime kernels of different phases in the 3D crust-over-mantle model.

Key words: frozen Gaussian approximation, seismic wave propagation, high-frequency

wavefield, reflection and transmission, free surface condition.

1 INTRODUCTION

Simulation of seismic wave propagation is a core component of many scientific applications, including

investigation of seismic wave propagation in the Earth’s interior, exploration of subsurface structures

from global to engineering scales, and mitigation of seismic risk with accurate quantitative estimates of

seismic hazard (Virieux & Operto 2009). Development of efficient and accurate methods is constantly

necessary to improve the modeling of seismic wave propagation in different situations, especially in

complex media. So far, two mainstreams of numerical methods have been developed and intensively

studied to fulfill this purpose, one of which is direct computational methods including finite differ-

ence methods (e.g. Alford et al. 1974; Virieux 1984), pseudospectral methods (e.g. Kolsloff & Baysal

1982; Carcione 1994), boundary integral methods (e.g. Bouchon & Sanchez-Sesma 2007), finite ele-

ment methods (e.g. Bao et al. 1998) and spectral element methods (e.g. Komatitsch & Tromp 1999;

Komatitsch et al. 2005; Tromp et al. 2008). These methods have been widely used with inherent ad-

vantages and limitations. For example, finite difference methods are probably the most wildly used in

seismic modeling (e.g. Olsen & Archuleta 1996; Graves 1996; Yang et al. 2002), but with limitations

from numerical dispersion and finite numerical size of mesh grids as commented in Virieux (1986).

Pseudospectral methods approximate the spacial operator up to the Nyquist frequency with high ac-

curacy, but subject to difficulties of implementing free-surface boundary conditions (e.g. Komatitsch

et al. 1996). Finite element methods can easily deal with natural boundaries or discontinuous inner

interfaces in background media, and thus are suitable for earth models with complex geometric struc-

tures. However, they usually have high memory and computational costs, which make them difficult

to be used for high dimensional cases or large-scale modeling.

Another category of numerical methods in seismic modeling is based on ray theory (e.g. Cerveny

2001; Popov 2002; Engquist & Runborg 2003). The idea is to decompose the wavefield into elemen-
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tary waveforms (e.g. rays or localized Gaussians around rays), propagate the rays and then construct

Green’s functions or wavefield according to the dynamic information on rays (e.g. path trajectory, am-

plitude and phase). Compared to direct computational methods as mentioned above, ray-based meth-

ods are less restricted by memory load and computational costs for high-frequency (short-wavelength)

wave propagation. Famous seismic applications include traveltime seismic tomography (e.g. Aki et al.

1977; Tong et al. 2011), Kirchhoff migration (e.g. Gray 1986; Keho & Beydoun 1988; ten Kroode

et al. 1994) and Gaussian beam migration (e.g. Hill 1990, 2001; Nowack et al. 2003; Gray 2005; Gray

& Bleistein 2009; Popov et al. 2010). Classic Kirchhoff migration based on dynamic ray tracing is

an effective method, however, produces unbounded amplitudes at caustics. Gaussian beam migration

(GBM) used localized Gaussian functions around ray paths, and thus can handle multipathing and pro-

vide accurate wavefield at caustics. However, when beams spread significantly in the process of wave

propagation, one needs to tune the width parameter of Gaussian beams to obtain a good resolution

of wavefield (Cerveny et al. 1982; Hill 1990; Fomel & Tanushev 2009). Since the background media

is usually heterogeneous in practical applications, the parameter tuning becomes difficult due to the

nonlinearity of the Riccati equation involved in the beam construction. The accuracy of GBM relies

on a Taylor expansion error determined by the width of beams, and thus the error of the approximation

increases when beams spread. This was shown in Qian & Ying (2010) and Lu & Yang (2011) where,

even in a simple velocity model, the error of GBM may grow rapidly in time.

Frozen Gaussian approximation (FGA) discussed in this paper has been used in quantum chem-

istry for propagation of time-dependent Schrödinger equation since the works of Heller (1981); Her-

man & Kluk (1984), with systematic justifications by Kay (1994, 2006); Swart & Rousse (2009). Later

on, the formula was generalized to study general linear hyperbolic systems by Lu & Yang (2011,

2012a,b), with preliminary applications in two-dimensional (2D) seismic wave propagation (Yang

et al. 2013) and 2D multi-level particle swarm optimization for seismic inversion (Li et al. 2015).

Compared to 2D simulations, 3D seismic high-frequency wave propagation is rather computationally

challenging due to the drastic increase in both simulation time and storage memory, which is the main

motivation of this paper. The main idea of FGA is to decompose seismic wavefield into frozen (fixed-

width) Gaussian functions and propagate them along ray paths. This overcomes the difficulty of tuning

the width parameter in GBM while maintains the accuracy at caustics. Despite its superficial simi-

larity to coherent state method (CSM) previously applied in seismic imaging (Foster & Huang 1991;

Albertin et al. 2001; Foster et al. 2002), FGA is different at a fundamental level: CSM directly applied

coherent state transform to wave operator which yielded complex-valued eikonal equation with com-

plex source and receiver positions; FGA uses fixed-width Gaussian functions (also called coherent

states in quantum chemistry) as building blocks and approximate wavefield by asymptotic expansion
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on phase plane. This actually does not require to solve the eikonal equation, and produces essentially

the same set of ray equations used in GBM except the dynamics of amplitude factor. We will illustrate

these differences with more details during the derivation of FGA given in the following sections.

In this paper, we aim to introduce the frozen Gaussian approximation (FGA) systematically for

the modeling of 3D seismic wave propagation. As a proof of accuracy and efficiency, we compare

FGA to the spectral element method in homogeneous media (Komatitsch & Tromp 1999; Komatitsch

et al. 2005; Tromp et al. 2008), where one can have an analytical solutions as a benchmark. The im-

plemented algorithm is embarrassingly parallel, and thus drastically speed up the computation using a

multicore-processor computer station. We also demonstrate the performance of the method by simu-

lating high-frequency seismic wave propagation in 3D heterogeneous waveguide model and smoothed

Marmousi model respectively. In addition, free surface, reflection and transmission conditions of

FGA will be derived asymptotically for simulating high-frequency seismic wave propagation in high

contrast media, and numerically tested by computing traveltime kernels of different phases in the 3D

crust-over-mantle model.

2 MATHEMATICAL THEORY

We introduce the frozen Gaussian approximation (FGA) formula for the following 3D scalar wave

equation,

∂2
t u− c2(x)∆xu = 0, x = (x, y, z) ∈ R3, (1)

with initial wavefield given by  u(0,x) = fk0 (x),

∂tu(0,x) = fk1 (x),
(2)

where c(x) is sound velocity, ∆x is the Laplace operator in x and the wave number k � 1 indi-

cates that we are considering seismic wave propagation of high-frequency (corresponding to short

wavelengths).

Solution ansatz. FGA approximates the wavefield u in (1) by the following integral,

ukF(t,x) =

∫∫
a+ψ

k
+

(2π/k)9/2
eikP+·(x−Q+)− k

2
|x−Q+|2 dq dp

+

∫∫
a−ψ

k
−

(2π/k)9/2
eikP−·(x−Q−)− k

2
|x−Q−|2 dq dp,

(3)
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where

ψk
±(q,p) =

∫
uk±,0(y, q,p)e−ikp·(y−q)− k

2
|y−q|2 dy, (4)

uk±,0(y, q,p) =
1

2

(
fk0 (y)± i

kc(q)|p|
fk1 (y)

)
. (5)

In (3), i =
√
−1 is the imaginary unit, and we use superscripts “+” and “−” to indicate two wave

branches respectively, and superscripts k to indicate quantities depending on wave number k. Re-

mark that eikp·(y−q)− k
2
|y−q|2 can be understood as complex localized wave-packet centered at q with

propagation vector p, and ψk
± is the projection of initial wavefield onto each wave-packet computed

by (4) with y serving as the dummy variable in the integration. Then ukF(t,x) in (3) can be treated

as an approximation to seismic wavefield by a summation of dynamic localized wave-packets with

fixed width. Associated with each frozen Gaussian wave-packet, the time-dependent quantities are the

position centerQ±, propagation vector P±, and amplitude a±.

Formulation. The evolution ofQ±(t, q,p) and P±(t, q,p) satisfies the ray tracing equations
dQ±

dt
= ±c(Q±)

P±
|P±|

,

dP±
dt

= ∓∂Qc(Q±)|P±|,
(6)

with initial conditions

Q±(0, q,p) = q and P±(0, q,p) = p. (7)

Note that (4) is in a form of coherent state transform (also called FBI transform, Martinez 2002), and

(6) are the ray equations corresponding to the Hamiltonian of two wave branches,

H±(Q±,P±) = ±c(Q±)|P±| . (8)

Remark that, if one applies the WKB expansion used in geometric optics (e.g. Engquist & Runborg

2003),

u(t,x) = A(t,x) exp
(
ikS(t,x)

)
,

then S(t,x) satisfies the real-valued eikonal equation,

S2
t − c2|∇xS|2 = 0,

which actually has two Hamiltonians given by (8) with corresponding ray equations given by (6) on

phase plane.

Evolution of the amplitude factor a±(t, q,p) is given by

da±
dt

= a±
∂P±H± · ∂QH±

H±
+
a

2
Tr

(
Z−1
±

dZ±
dt

)
, (9)

with initial condition a±(0, q,p) = 2d/2. Note that the choice of initial conditions for a is to guarantee
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(3) is consistent with (2) initially, i.e., ukF = u, ∂tu
k
F = ∂tu at t = 0 (e.g. Folland 1989). In (9), we

have used the shorthand notations

∂z = ∂q − i∂p, Z± = ∂z(Q± + iP±). (10)

Here ∂zQ and ∂zP are understood as matrices with the (j, k) component of matrix ∂zQ given by

∂zjQk. Matrices ∂zQ and ∂zP can be solved by the following dynamic ray-tracing equations:

d(∂zQ)

dt
= ∂zQ

∂2H

∂Q∂P
+ ∂zP

∂2H

∂P 2 , (11)

d(∂zP )

dt
= −∂zQ

∂2H

∂Q2 − ∂zP
∂2H

∂P ∂Q
. (12)

with a componentwise form as

d(∂zQ)jk
dt

= ∂zjQl

∂2H

∂Ql∂P k
+ ∂zjP l

∂2H

∂P lP k
,

d(∂zP )jk
dt

= −∂zjQl

∂2H

∂QlQk

− ∂zjP l
∂2H

∂P l∂Qk

,

where Einstein’s index summation convention has been applied. Note that (11)-(12) are exactly the

dynamic ray tracing equations used in Gaussian beam method (Cerveny et al. 1982), but serve as a

rather different purpose here for computing
dZ

dt
in (9).

The key component of FGA is to derive the dynamics (9) of amplitude factors a±, which distin-

guishes it from coherent state method and Gaussian beam method. We leave the details of derivation

to Appendix A, and refer interested readers to Lu & Yang (2012a) for a non-dimensional mathematical

version of derivation.

Remark. A dimensional version of (3)-(4) can be given by in the following generalized FGA integral,

with width-tuning parameters σ1 = 1 km−1 and σ2 = 1 km−1,

ukF(t,x) =

∫∫
a+ψ

k
+

(2π/k)9/2
eikP+·(x−Q+)− kσ1

2
|x−Q+|2 dq dp

+

∫∫
a−ψ

k
−

(2π/k)9/2
eikP−·(x−Q−)− kσ1

2
|x−Q−|2 dq dp,

(13)

where

ψk
±(q,p) = σ

3/2
2

∫
uk±,0(y, q,p)e−ikp·(y−q)− kσ2

2
|y−q|2 dy, (14)

and k is in dimension km−1, x, y and q are in km, and p is the dimensionless propagation vector.

The FGA formulation for (13)-(14) can be derived similarly as in Appendix A, which is the same

as (6)-(12) but with (10) modified to

∂z = σ−1
2 ∂q − i∂p, Z± = ∂z(σ1Q± + iP±). (15)
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Asymptotic accuracy. With proper smoothness assumptions on sound velocity c(x) and high-frequency

initial conditions (2), energy estimate of the wave equation (1) can show that FGA has the first order

accuracy of k−1, which implies FGA has better accuracy for high-frequency (large k) seismic wave

propagation, and mathematically, one has

‖u(t,x)− ukF (t,x)‖E ≤ C(kL)−1, for t > 0, (16)

where ‖·‖E stands for the scaled energy norm, andC > 0 is a constant depending on final prorogation

time T , gradients of velocity c and scaled initial wave energy. Including the computational domain

size L in (16) is to make its right-hand-side dimensionless, and we refer interested readers to (Lu &

Yang 2012a, Theorem 4.1) for the details of mathematical proof.

Remark. The choice of k in (13)-(14) does not have to be exactly the wave number, but can be any

constant times wave number. Indicated by (16), choosing a larger k provides better accuracy, but

increases the number of wave packets to discretize (13) since the Gaussian wave packet is narrower.

In general, large k is preferred for simulating wave pulse propagation because the wavefield is rather

localized; see Section 5.5 for example.

3 ALGORITHMS

The main FGA algorithm consists of three steps:

Step 1. Initial decomposition. Choose the sets G± of (q,p) pair to discretize (3) and calculate ψk
±

defined in equation (4).

To choose the proper sets G±, we use the fast FBI transform algorithm introduced in (Yang et al.

2013, Page 2) to decompose the initial wavefields into Gaussians. For a purpose of convenience, we

summarize the algorithm as below in consistent notations with this paper.

Define a Fourier transform of a function g(y) as

ĝ(p) =

∫
g(y)e−ip·y dy,

then (4) can be rewritten as

ψk
±(q,p) = ĝkq,±(kp), (17)

with

gkq,±(y) = uk±,0(y + q, q,p) exp(−k
2 |y|

2). (18)

Notice that gkq,± decays exponentially in y, and thus one can neglect the function value outside a small

domain of size O(k−1/2) centered at zero, e.g., a small box

B = [−`/2, `/2]3 ⊂ R3, with ` ∼ O(k−1/2).
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Then ψk
± can be efficiently computed by applying Fast Fourier Transform of gkq,± restricted on the

small box Bk, and the sets G± can be selected by applying a simple thresholding where ψk
± have

relatively large values. In practice, we chose a threshold ratio so that the approximation to the FGA

formula (3) at t = 0 by the selected Gaussians gives a good approximation to the initial conditions

(2).

Step 2. Time propagation. Solve (6)-(12) numerically by, e.g., the fourth-order Runger-Kutta method.

Note that the 3-by-3 matrices ∂zQ and ∂zP can also be solved at each time by divided difference

instead of using (11)-(12), which would save some computational cost for not solving ordinary differ-

ential equations (ODEs), but introduce more numerical errors from divided difference.

Step 3. Reconstruction. Compute the wave field at time T by the following approximation,

ukF(t,x) ≈
∑

(q,p)∈G+

a+ψ
k
+

(2π/k)9/2
eikP+·(x−Q+)− k

2
|x−Q+|2δqδp

+
∑

(q,p)∈G−

a−ψ
k
−

(2π/k)9/2
eikP−·(x−Q−)− k

2
|x−Q−|2δqδp.

Remark. Notice that (6)-(12) are uncoupled ODEs, and therefore one can solve them by parallel imple-

mentation in a multicore-processor computer station, which will drastically speed up the computation.

Moreover, solving the ODEs does not impose any stability limitation on the ratio of time step over

spacial resolution, and thus FGA can be used for large domain simulation.

4 INTERFACE, FREE SURFACE AND TRANSPARENT BOUNDARY CONDITIONS

To simulate seismic wave propagation on a bounded domain, one needs to impose reflection and

transmission conditions at interfaces of background media, free surface condition on top boundary,

and transparent boundary condition on side and bottom boundaries.

Reflection and transmission conditions. When waves hit the interface where the wave speed c(x) is

discontinuous, proper interface conditions should be incorporated to capture reflected and transmitted

waves in the FGA formulation. Without loss of generality, we assume the interface is located at z = z0,

with

c(x) =

c1(x), if z > z0,

c2(x), if z < z0,
(19)

where c1 and c2 are two smooth functions. Denote the FGA solutions for the incident, reflected, and

transmitted waves by uin, ure, and utr respectively. For different wave indexes w = in, re, tr, define

uw(t,x) =

∫∫∫
awu0

(2π/k)9/2
eikΦw(t,x,y,q,p) dy dq dp, (20)
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with Φw(t,x,y, q,p) given by

Φw = Pw · (x−Qw)− p · (y − q) +
i

2
|x−Qw|2 +

i

2
|y − q|2.

Suppose at time t, an incident Gaussian hits the interface at (x, y, z0) from above, then

Qre = Qtr = Qin = (x, y, z0),

P in = (px, py, p
in
z ), P re = (px, py, p

re
z ), P tr = (px, py, p

tr
z ).

(21)

Denote C1 = lim
z→z+0

c1(x) and C2 = lim
z→z−0

c2(x), then Snell’s law gives

C1|P in| = C1|P re| = C2|P tr|,

which implies

pre
z = −pin

z , and ptr
z = pin

z

√
C2

1

C2
2

+

(
C2

1

C2
2

− 1

)
p2
x + p2

y

(pin
z )2 . (22)

The continuity of wavefield and its normal derivative produces

uin(t, x, y, z0) + ure(t, x, y, z0) = utr(t, x, y, z0),

∂zu
in(t, x, y, z0) + ∂zu

re(t, x, y, z0) = ∂zu
tr(t, x, y, z0),

(23)

then (A.10)-(A.11) and (20)-(23) yield, after ignoring high order terms in asymptotic expansion,

ain + are = atr,

pin
z a

in − pin
z a

re = ptr
z a

tr.
(24)

Therefore

are = Rain, and atr = Tain, (25)

with the reflection coefficient R and transmission coefficient T given by

R =
pin
z − ptr

z

pin
z + ptr

z

, and T =
2pin

z

pin
z + ptr

z

. (26)

Note that when C2
1

C2
2

+
(
C2

1

C2
2
− 1
)

p2x+p2y

(pinz )2
< 0, waves hitting the interface z = z0 will be totally reflected,

and then one needs to modify (20)-(23) as

uin(t, x, y, z0) + ure(t, x, y, z0) = 0, (27)

which implies R = −1 and T = 0 in this case.

For convenience, we define

Θr =

{
P

∣∣∣∣∣ C2
1

C2
2

+

(
C2

1

C2
2

− 1

)
p2
x + p2

y

(pin
z )2 < 0

}
, (28)
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and summarize R and T for reflection and transmission conditions

R =


−1, if P in ∈ Θr,

pin
z − ptr

z

pin
z + ptr

z

, otherwise,
and T =


0, if P in ∈ Θr,

2pin
z

pin
z + ptr

z

, otherwise.
(29)

To compute FGA at the interface, one also needs interface conditions for (11) and (12) as below,

∂zQ
re = ∂zQ

in F,

∂zP
re = ∂zP

in F +
|P in|2

C1pin
z

(
∂zQ

re − ∂zQin
)
· ∇c1(Qin)e3,

∂zQ
tr = ∂zQ

inG,

∂zP
tr = ∂zP

inW − |P
tr|

C2ptr
z

(
∂zQ

tr · ∇c2(Qtr)− ∂zQin · ∇c1(Qin)
)
e3,

(30)

where e3 = (0, 0, 1) is a row vector, F = diag{1, 1,−1}, G and W are two 3× 3 matrices given by

G =


1

1(
C2

2

C2
1
− 1
)

pinx
pinz

(
C2

2

C2
1
− 1
)

piny
pinz

C2
2

C2
1

ptrz
pinz

 , W =


1

(
C2

1

C2
2
− 1
)

pinx
ptrz

1
(
C2

1

C2
2
− 1
)

piny
ptrz

C2
1

C2
2

pinz
ptrz

 .
Remark. 1. One needs to use the Eulerian formulation of frozen Gaussian approximation (Lu & Yang

2012a) to derive the interface conditions (30), which is quite technically involved, and thus we leave

the details to Appendix B.

2. For a reflecting geometry of general shape, one needs to apply the formulation (29)-(30) in the local

tangent-normal coordinates by treating the tangential direction as the local flat horizontal interface.

Free surface conditions. The free surface boundary condition is equivalent to modify (20)-(23) as

∂zu
in(t, x, y, z0) + ∂zu

re(t, x, y, z0) = 0, (31)

which implies R = 1 and T = 0 as a special case of reflection and transmission conditions.

The transparent boundary conditions can be handled easily as follows: If at computational time

step, a Gaussian exits the boundary, then we remove this Gaussian from computation.

5 NUMERICAL EXAMPLES

In this section, five numerical tests are given to confirm the computational performance of frozen

Gaussian approximation (FGA) method. First, to show accuracy and efficiency, we compare it to the

spectral element method (e.g. Komatitsch & Tromp 1999; Komatitsch et al. 2005; Tromp et al. 2008)

in a homogeneous media, where one can have an analytical solution as a benchmark. We also present

the performance of FGA in a 3D heterogeneous waveguide model and a smoothed Marmousi model
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respectively, and numerically test the free surface, reflection and transmission conditions of FGA by

computing traveltime kernels of different phases in the 3D crust-over-mantle model. All numerical

examples presented in this section are implemented on a computer equipped by Intel(R) Xeon(R)

E5-2670 (2.60GHz) with a 62GB RAM.

5.1 Homogeneous media

We consider the wave equation (1) with c(x) ≡ c0 as a constant, in which analytical solution is

available as a benchmark. Denote φ(t) to be a function that rapidly decays, with φ′ as its derivative.

For t0 > 0 and x0 ∈ R3, if one takes fk0 and fk1 in (2) as below, with φ(t) compactly supported on

[−t0, t0],

fk0 (x) =
1

4π|x− x0|
φ

(
t0 −

|x− x0|
c0

)
,

fk1 (x) =
1

4π|x− x0|
φ′
(
t0 −

|x− x0|
c0

)
,

(32)

then the solution to (1)-(2) can be given by

uk(t,x) =
1

4π|x− x0|
φ

(
t0 + t− |x− x0|

c0

)
. (33)

Also if φ decays fast enough (nearly compactly supported), one can still use (33) as a reference solution

to (1)-(2).

Accuracy. We shall take φ as an exponential function as below and c0 = 3.2 km/s in (32), and thus

can use (33) as a benchmark solution,

φ(t) = exp

(
− t2

2σ2

)
cos
(
2πft

)
, (34)

with frequency f = 2.0372 Hz, pulse width σ = 0.625 s, and pulse center x0 = (64, 64, 64) km.

We solve (1)-(2) using FGA from time t = 0 s to t = 10 s to get the approximate solution

ukF(t,x), and compute the numerical error between the FGA solution and the reference solution (33)

by

Error(t) =
1

D(t)

(∫∫∫
|uk(t,x)− ukF(t,x)|2 dx

) 1
2

,

where D(t) is a normalized factor as

D(t) =

(∫∫∫
|uk(t,x)|2 dx

) 1
2

.

The total number of Gausians used in the FGA simulation is 1161188, the time step used in solving

the ODEs is chosen as ∆t = 0.01 s, and we take σ1 = σ2 = 1 km−1 and k = 28 km−1 in (13)-(14).
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Figure 1. Accuracy of FGA and SPECFEM3D. SPECFEM3D-n refers to the simulation by SPECFEM3D with

n elements in each spatial direction.

An average computational time on 8 processors is 172.03 s, and the error is shown as a function of

time t in Figure 1.

In comparison, we also simulate the same problem by using the spectral element software package

SPECFEM3D (https://geodynamics.org/cig/software/specfem3d/). We use 53 nodes in each element

for the SPECFEM3D and solve (1)-(2) in a domain centered at x0 of size 128 km×128 km×128 km.

The time step is chosen as the same as that of FGA, i.e. ∆t = 0.01 s. As shown in Figure 1, to achieve

a comparable accuracy as FGA, SPECFEM3D needs 128 elements in each spatial direction, which re-

quires an average computational time on 8 processors of 698.38 s – around three times longer than that

of FGA. Decreasing the number of elements in each direction from 128 to 112 reduces computational

time to 489.90 s (still longer than FGA), but increases the error larger than FGA. Further coarsening

the mesh may reduce computational time but deteriorate accuracy because of lack of resolution of the

initial conditions.

Parallelizability. FGA approximates the seismic wavefield by a set of Gaussians, which propagate

according to the ODEs (6)-(12). Notice that there is no coupling between the ODEs for any two

different Gaussians, and thus FGA is embarrassingly parallel, i.e., except the initial decomposition

and final summation of Gaussians, no communication is needed between the parallel ODE solvers.

In this subsection, we investigate the same problem as in homogeneous media with different num-

ber of processors and the computational time is shown in Table 1. One can see that, as the number of

processors increases, there is a significant reduction in computational time for FGA. Denoting TN as
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the computational time that a method runs with N processors, we use the following to compute the

speed-up ratio,

SN =
TN
TN/2

.

The ideal speed-up ratio is 2, and in practice SN decays as N increases due to the time spent on

communications between different cores. One can see that, in Table 1 S8 ≈ 1.9387 and S16 ≈ 1.8983

for FGA, which are slightly smaller than 2 indicating an almost perfectly parallel efficiency. On the

other hand, as a comparison, SPECFEM3D is used with 128 elements in each spatial direction to

achieve a comparable accuracy to FGA. The speed-up ratio for the SPECFEM3D solver is around

1.5668 and 1.4224 for N = 8 and N = 16 respectively, which are smaller than those of FGA. This is

because SPECFEM3D solves (1) on a parallel computer with N processors by partitioning the whole

domain into N slabs with each processor solving the equation in each slab. Therefore, for each time

step, each processor needs to communicate with its neighbors to get necessary boundary information,

which decreases the speed-up ratio. Thus FGA has the advantage of parallel computing when the

problem is of large domain size and for high-frequency wave propagation.

5.2 High-frequency wave propagation

For high-frequency seismic waves, i.e. when kL� 1 with L as the computational domain size, direct

numerical methods for (1) require the mesh size resolve the short wavelength of initial wavefield (2).

This leads to unaffordable computational cost in 3D simulations, i.e. the total number of grid points is

of the order (kL)3. Moreover, the storage of data is another big computational load for high-frequency

seismic wave propagation. While for FGA, since it asymptotically approximates the solution to (1)-

(2), mesh is in general not required for resolution of wavelength. The computational cost depends on

the number of Gaussians in the initial wavefield decomposition. In general, a good accuracy can be

achieved with a much smaller number of Gaussians compared to (kL)3.

In this subsection, we test FGA for initial conditions with different frequencies and present its

performance when frequency f becomes large by comparing it to SPECFEM3D. For each f , FGA uses

k = 128πf/c0 km−1 for an initial decomposition with a relative error less than 4%, and SPECFEM3D

uses πLf/(2c0) elements in each spatial direction in order to resolve the short wavelength of initial

wavefield for a comparable accuracy to FGA. In Figure 2, we plot the one-step computational time with

respect to different number f , from which one can observe that the computational time spent by FGA

increases more or less linearly in f , while that of SPECFEM3D increases like f3. Due to the restriction

of mesh size required by SPECFEM3D, the storage of wavefield data exceeds the size of RAM of our

current computer station when f ≥ 4.0744 Hz, and thus we only estimate the computational time
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Table 1. Runing time of FGA and SPECFEM3D with respect to number of processors.

FGA simulation

Number of processors 4 8 16

cpu time 337.55 168.30 90.338

cpu time 334.26 173.45 96.030

cpu time 328.36 172.70 88.958

cpu time 335.00 175.58 90.430

cpu time 328.37 167.75 90.362

cpu time 335.47 167.57 89.382

cpu time 335.65 178.86 88.862

average time 333.52 172.03 90.623

Speed up – 1.9387 1.8983

SPECFEM3D simulation

Number of processors 4 8 16

cpu time 1344.3 707.75 639.60

cpu time 1020.0 877.94 422.78

cpu time 1011.5 645.68 420.35

cpu time 1318.0 703.97 537.70

cpu time 1044.3 557.44 412.60

cpu time 1017.7 695.77 437.44

cpu time 903.72 700.14 566.50

average time 1094.2 698.38 491.00

Speed up – 1.5668 1.4224

of SPECFEM3D for f ≥ 4.0744 Hz by extrapolation. By this test, one may conclude that FGA has

the advantage of saving both computational time and memory for simulating high-frequency seismic

wave propagation compared to SPECFEM3D.

5.3 A waveguide model

To study the performance of FGA for seismic wave propagation in 3D heterogeneous media, we first

test it in a 3D waveguide model, where one can use a solution to 1D wave equation as an approxima-

tion.
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Figure 2. Dependence of one-step computational time on frequency. The horizontal axis is the frequency f

(Hz) and the vertical axis is the one-step computational time of the solvers. The square line stands for the

FGA simulations and the circle line stands for the SPECFEM3D simulations. Due to the limitation of memory,

SPEFEM3D can not run for f ≥ 4.0744 Hz, and the dashed circle line is obtained by extrapolation.

We consider (1) and choose the velocity c isotropic in y and z directions, i.e. ,

c(x) = c(x, y, z) = c(x) = c0

(
1

2
sin(πx/L) + 1

)
, where c0 = 3.2 km/s and L = 64 km, (35)

with initial conditions f
k
0 (x) = fk(x, y, z) = uk0(x)ϕ(y/L)ϕ(z/L),

fk1 (x) = fk1 (x, y, z) = uk1(x)ϕ(y/L)ϕ(z/L),
(36)

and

uk0(x) = exp
(
−25(x− L)2/L2 + ik(x− L)/64

)
,

uk1(x) = ik exp
(
−25(x− L)2/L2 + ik(x− L)/64

)
.

(37)

In (36), ϕ is taken as

ϕ(s) =
(tanh(γ(s− a)) + 1)(tanh(γ(b− s)) + 1)

4
,

with a = 0.5, b = 1.5 and a relatively large γ = 50. Therefore, ϕ is a smoothed indicator function

which is approximately 1 on (0.5, 1.5) and 0 elsewhere.

With this choice of initial data (see Figure 3) and velocity field, the wavefield of (1) at (y, z) =
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Figure 3. Waveguide initial wavefiled: a 1D cross-section at y = 64 km, z = 64 km. The blue dashed line is

the exact initial wavefield and the red solid line is given by FGA.

(64, 64) km can be treated as a solution to the following 1D wave equation for short-time propagation,

∂2
t u− c2(x)∂xxu =0,

u(0, x) =uk0(x),

∂tu(0, x) =uk1(x),

(38)
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Figure 4. Waveguide wavefiled at t = 5 s: a 1D cross-section at y = 64 km, z = 64 km. The blue dashed line

comes from a numerical solution of (38) by a finite difference method with ∆x = 2−6 km and ∆t = 2−11 s,

and the red solid line is given by FGA.



Frozen Gaussian approximation 17

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

x (km)

E
rr

o
r 

(m
)

Figure 5. Accuracy of FGA for waveguide model: a 1D cross-section at y = 64 km, z = 64 km

which can be easily solved by a finite difference method with fine mesh. We denote the solution to

(38) as uk1d.

We solve (1) with the choice of velocity field and initial conditions in (35) - (37) using FGA for

k = 28 km−1. The total number of Gaussians used in the simulation is 310464, which gives an relative

L2 error at 0.0426.

We denote ũkF(x) = ukF(x, 64, 64) as the FGA solution restricted at (y, z) = (64, 64) km and

compare it to uk1d at time t = 5 s. In Figure 4, we plot the FGA solution ũkF and uk1d, which shows

a good agreement in these two solutions. In Figure 5, we plot the difference of the two solutions

|ũkF − uk1d|, and one can see that has a good accuracy, with the relative L2 error(∫
|uk1d|2dx

)−1/2(∫
|ũkF − uk1d|2dx

)1/2

at time t = 5 s equal to 8% approximately. We show several 2D cross-section snapshots of the FGA

solutions at z = 64 km in Figure 6.

5.4 Smoothed Marmousi model

We then consider a smoothed Marmousi model? to demonstrate the performance of FGA for comput-

ing seismic wave propagation in 3D heterogeneous media. Here we choose the velocity field c(x, y, z)

? The smooth model is obtained by convolving a ’hard’ model a spatial Hanning (cos2) filter of radius 150 m. See

http://www.caam.rice.edu/∼benamou/testproblem.html for details.
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(a) t = 0 s (b) t = 1 s

(c) t = 2 s (d) t = 3 s

(e) t = 4 s (f) t = 5 s

Figure 6. Wavefield of waveguide model: 2D cross-section snapshots at z = 64 km.

isotropic in the y-direction, with c(x, y, z) = c(x, z) given by the 2D Marmousi velocity model at

position (x, z). Figure 7 shows the structure of c(x, z) with the velocity varying form 1.5 ∼ 4.5 km/s

in a domain given by 3.984 km ≤ x ≤ 8.016 km, 0 km ≤ y ≤ 4.032 km, and 0 ≤ z ≤ 2.904 km,

where x and y are the two horizontal directions and z is the depth.

Unfortunately no analytical solution is available for 3D smoothed Marmousi model, and as studied
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Figure 7. Marmousi Model: Smoothed velocity. The solid pentagram indicates the location of x0, and the green

dots indicate the station locations.

in Sections 5.1-5.2, computation of reference solution using SPECFEM3D is extremely costly and

memory-demanding for high-frequency seismic wave propagation in large domain. Therefore, we first

choose to compare FGA to SPECFEM3D in a small region for the purpose of verifying the accuracy

of FGA by using wave-guide initial conditions of lower frequency as below.


fk0 (x) = exp

(
−100|x− x0|2

L2

)
cos

(
256x

L

)
,

fk1 (x) = 256 exp

(
−100|x− x0|2

L2

)
cos

(
256x

L

)
,

(39)

where x0 = (4.992, 0.504, 0.5) km, and L = 1.008 km. SPECFEM3D solves this problem in the

domain 3.984 km ≤ x ≤ 6.0 km, 0 km ≤ y ≤ 1.008 km, and 0 km ≤ z ≤ 1.008 km. The element

size is taken uniformly as 15.75 m. The FGA solves the problem with 21368 initial Gaussians, and

k = 256 km−1 and σ1 = σ2 = 1 km−1 in (13)-(14). In Figure 8 we compare the FGA solutions with

the SPECFEM3D solutions and display snapshots at different time, which shows that FGA produces

reasonable good resolution of seismic wavefield.

Then we study the smooth Marmousi model in a larger domain and seismic wave propagation at

a higher frequency using FGA simulation. The initial conditions are now chosen as the form of (32)

with c0 = c(x0) = 2.017 km/s and

φ(t) = exp

(
− t

2

σ2

)
cos (2πft) , (40)

where f = 81.4873 Hz, σ = 2−7 s, t0 = 0.03125 s, and x0 = (6, 6, 0.25) km.

In Figure 9 and Figure 10 we plot the snapshots of wavefield generated by FGA at different time.
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Figure 8. Marmousi Model benchmark test: Wavefield snapshots at y = 2.016 km. Left column: FGA solutions;

Right column: SPECFEM3D solutions. Top row: time t = 0.1 s; Middle row: time t = 0.2 s; Bottom row: time

t = 0.3 s.

We put a series of stations along the line y = 2.016 km, z = 0.05 km and record the seismogram

u(t) at each station. The seismograms recorded by stations are shown in Figure 11. Thanks to the

high-frequency seismic modeling, the direct arrivals and free surface reflections are decoupled and
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Figure 9. Wavefield cross-section snapshots at y = 2.016 km.

can be easily identified on most of the seismograms even though the source is only 250 meters away

from the free surface.

5.5 Crust-over-mantle model

We consider a two-layer velocity model with the Moho discontinuity at a depth of 30.0 km and use

FGA to compute synthetic seismograms and sensitivity kernels for different phases. The P-wave ve-

locities in the crust and the mantle are 5.8 km/s and 7.8 km/s respectively. An earthquake is placed at

the horizontal distance (x, y) = (50.0, 50.0) km and the depth z = 12.0 km. In order to model the

earthquake, we choose the initial conditions as the form of (32) with c0 = c(x0) = 5.8 km/s and

φ(t) = exp

(
− t

2

σ2

)
cos (2πft) , (41)

where f = 9.0541 Hz, σ = 0.0703 s, t0 = 0.2813 s, and x0 = (50.0, 50.0, 12.0) km. Figure
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Figure 10. Wavefield cross-section snapshots at x = 2.016 km.

13 demonstrates the recorded seismograms at the two receivers at (x, y) = (14.0, 50.0) km and

(x, y) = (86.0, 50.0) km on the surface. Three different phases as the direct P arrival, Moho re-

flected phase (PmP), and surface reflection (pPmP) are clearly shown on the two seismograms. We

use FGA to calculate the traveltime kernels for the three different phases (e.g. Tromp et al. 2005; Tong

et al. 2014a). In Figure 14, we can observe that the kernels for different phases are centered by the

geometrical ray paths of the corresponding phase and each kernel is zero along the ray path. This is

consistent with the previous observation that 3D traveltime kernels have zero sensitivity along the ray

paths (Tromp et al. 2005). We can also see that there are isochrons in the kernels for the reflected

phases (PmP, pPmP). It means that any velocity perturbations on the isochrons would delay/advance

the related phase at the receiver. The ability of calculating 3D traveltime kernels makes it straightfor-

ward to conduct full waveform inversion using FGA.
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Figure 11. Seismograms recorded by each station.

6 DISCUSION AND CONCLUSIONS

We proposed an efficient and accurate numerical method, frozen Gaussian approximation (FGA), for

simulating high-frequency seismic waves in 3D earth models. In this method, one decomposes seismic

wavefield into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Inheriting

the merit of ray-based beam methods (e.g. Kirchhoff migration and Gaussian beam methods), one can

use relatively small number of Gaussians to get accurate solutions of high-frequency wavefield. The

algorithm can be drastically speeded up by parallel implementation in a multicore-processor computer

station. Moreover, there is no stability limitation on the ratio of time step over spacial resolution,

and thus can be used for large domain simulation. This method will greatly help us understand the

interactions between high-frequency seismic waves and fine subsurface structures. Reversely, by ana-

lyzing high-frequency seismic data and with the aid of the efficient FGA solver, we can reveal detailed

subsurface structures and have a deep understanding of the Earth’s interior at a variety of scales.

Standard FGA can only be used to simulate seismic wave propagation in smoothly varying ve-

locity models without strong velocity contrasts. In this paper, we incorporated the Snell’s law into

the FGA formulation, and asymptotically derived free surface, reflection and transmission conditions

of FGA for high-frequency seismic wave propagation in high contrast media. These conditions were

numerically tested by computing traveltime kernels of different phases in the 3D crust-over-mantle

model. We remark that, the application of FGA is limited to the computation of high-frequency/large

domain seismic wave propagation only. As suggested by (16), the accuracy of FGA is inversely pro-

portional to wave number. Meanwhile, the proposed method is for solving 3D acoustic wave equations.
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(a) t = 0.015 s (b) t = 1.965 s

(c) t = 3.915 s (d) t = 5.865 s

(e) t = 7.815 s (f) t = 9.765 s

Figure 12. Wavefield 2D cross-section snapshots at y = 50.0 km.

Sometimes we need to take into account complex wave propagation phenomena, such as wave conver-

sion, coupling of different phases, anisotropy, and attenuation. The extension to FGA for solving 3D

elastic/visoc-elastic wave equations becomes necessary. However, derivation of FGA formulation for

elastic/visoc-elastic wave equations are quite technically involved, and we shall leave them as future

work.

In seismic imaging, the reverse time migration (RTM) and full waveform inversion (FWI) methods

are considered to be the two of the most promising imaging techniques of nowadays (Fei et al. 2015;

Virieux & Operto 2009; Tong et al. 2014a). RTM is a high-fidelity algorithm for accurate imaging in

and below areas with structural complexities and has become the state-of-the-art technique to image

subtle and complex geologic features (Zhang et al. 2014). FWI is able to generate high-resolution

subsurface images at half the propagated wavelength. It is potentially the last-course procedure of

extracting the information of the Earth’s interior from seismograms (Virieux & Operto 2009). The

key ingredient of both RTM and FWI is to efficiently and accurately solve seismic wave equations.
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Figure 13. Seismograms recorded by the stations located at (a) (x, y) = (14, 50) km and (b) (x, y) = (86, 50)

km on the surface .

Except for RTM and FWI, the implementation of some other imaging techniques such as adjoint

tomography using cross-correlation traveltime measurement (Tromp et al. 2005) and wave-equation-

based traveltime tomography (Tong et al. 2014b) also heavily relies on fully solving wave equations. In

addition, wave-equation-based earthquake location methods require the numerical solutions of wave

equations as well (e.g. Liu et al. 2004; Tong et al. 2016). Due to its computational efficiency, FGA can

be used as the forward modeling tool of all the mentioned imaging and earthquake location methods.

FGA can not only increase the efficiency of the numerical modelings at current scales but also make

these wave-equation-based imaging and earthquake location methods applicable to seismic data at

high frequency. This is essential for generating higher-resolution subsurface structures. To confirm

this, a crosswell full waveform inversion study using FGA as the forward modeling tool is under our

investigation.
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Figure 14. Traveltime kernels of three different phases at y = 50.0 km. Left column: direct P arrival; Middle

column: Moho reflected phase (PmP); Right column: sureface reflection (pPmP).

APPENDIX A: DERIVATION OF THE FROZEN GAUSSIAN APPROXIMATION

For a sake of simplicity, we will only derive the equation for a+ by keeping the “+” integral in (3).

We shall also omit the subscript “+” in the derivation for convenience. Note that the derivation for a−

will be essentially the same.

By substituting (4) in (3) and combing the phase function, one can rewrite (3) as,

ukF(t,x) =

∫∫∫
auk0

(2π/k)9/2
eikΦ(t,x,y,q,p) dy dq dp, (A.1)

with Φ(t,x,y, q,p) given by

Φ = P · (x−Q)− p · (y − q) +
i

2
|x−Q|2 +

i

2
|y − q|2, (A.2)

and uk0 given in (5). Taking derivatives of (A.1) produces

∂2
t u

k
F =

∫∫∫
uk0e

ikΦ

(2π/k)9/2

(
∂2
t a+ 2ik∂ta∂tΦ + ika∂2

t Φ− k2a(∂tΦ)2
)

dy dpdq, (A.3)

and

∆xu
k
F =

∫∫∫
auk0e

ikΦ

(2π/k)9/2

(
ik∆xΦ− k2|∂xΦ|2)

)
dy dpdq. (A.4)
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Direct calculations using (A.2) and (6) yield

(∂tΦ)2 = c2|P |2 +
(

(x−Q) ·
(
|P |∂Qc+ ic

P

|P |

))2
+ 2c|P |(x−Q) ·

(
|P |∂Qc+ ic

P

|P |

)
,

(A.5)

∂2
t Φ = cP · ∂Qc+ ic2 − (x−Q) ·

(
−∂QcP · ∂Qc+ c∂2

Qc · P − ic∂Qc+ 2icP
P · ∂Qc
|P |2

)
,

(A.6)

|∂xΦ|2 = |P |2 + 2iP · (x−Q)− |x−Q|2, (A.7)

∆Φ = 3i. (A.8)

To proceed further the asymptotic expansion on phase plane for the equation of a, one needs to relate

different powers of x − Q to the order of k, which is given by the following identities (Lu & Yang

2011, Lemma 3.2).

Let us first introduce the notation f ∼ g to mean that∫∫∫
feikΦ dy dp dq =

∫∫∫
geikΦ dy dp dq, (A.9)

then for any vector v(y, q,p) and matrix M(y, q,p), we have

v(y, q,p) · (x−Q) ∼− k−1∂zk(vjZ
−1
jk ), (A.10)

(x−Q) ·M(y, q,p)(x−Q) ∼k−1∂zlQjMjkZ
−1
kl + k−2∂zm

(
∂zl(MjkZ

−1
kl )Z−1

jm

)
, (A.11)

where Einstein’s summation convention and the following short hand notations have been used

∂z = ∂q − i∂p, Z = ∂z(Q+ iP ). (A.12)

Here ∂zQ and ∂zP are understood as matrices, with the (j, k) component of a matrix ∂zQ given by

∂zjQk.

Expanding c2(x) around x = Q,

c2(x) = c2 + 2c∂Qc · (x−Q) + (∂Qc · (x−Q))2 + c(x−Q) · ∂2
Qc(x−Q) +O(|x−Q|)3,

(A.13)

and substituting (A.3)-(A.8) into (1) yield

2ikc|P |∂tau ∼ ika(cP · ∂Qc− 2c2i)u− k2a(x−Q) ·M(x−Q)u, (A.14)

where

M = (|P |∂Qc− icP /|P |)⊗ (|P |∂Qc− icP /|P |) + c2I − |P |2∂Qc⊗ ∂Qc− |P |2c∂2
Qc. (A.15)

Here ⊗ means the tensor product of two 3D vectors.
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Applying (A.11) to (A.14) brings, after ignoring higher order terms,

∂ta =
a

2

( P
|P |
· ∂Qc−

2i

|P |
c
)

+
a

2
Tr

(
Z−1∂zQ

(
2
P

|P |
⊗ ∂Qc−

ic

|P |

(P ⊗ P
|P |2

− I
)
− i|P |∂2

Qc
))

. (A.16)

Notice that, by (10) and (6),

dZ

dt
=∂z

(
dQ

dt
+ i

dP

dt

)
= ∂z

(
c
P

|P |
− i∂Qc|P |

)
=∂zQ

∂Qc⊗ P
|P |

+ c∂zP
( I

|P |
− P ⊗ P
|P |3

)
− i∂zQ∂

2
Qc|P | − i∂zP

P ⊗ ∂Qc
|P |

, (A.17)

and

− 2i

|P |
c = Tr

(
Z−1(∂zQ+ i∂zP )

ic

|P |

(P ⊗ P
|P |2

− I
))

,

then one can reformulate (A.16) as

da

dt
= a

P

|P |
· ∂Qc+

a

2
Tr

(
Z−1 dZ

dt

)
. (A.18)

Here we have used the fact that (A.11) has a quadratic form, which implies

Tr

(
Z−1∂zQ

P

|P |
⊗ ∂Qc

)
= Tr

(
Z−1∂zQ

∂Qc

|P |
⊗ P

)
.

Moreover, differentiating (6) with respect to z implies a set of equations for ∂zQ and ∂zP ,

d(∂zQ)

dt
= ±∂zQ

∂Qc⊗ P
|P |

± c∂zP
(

I

|P |
− P ⊗ P
|P |3

)
, (A.19)

d(∂zP )

dt
= ∓∂zQ∂2

Qc|P | ∓ ∂zP
P ⊗ ∂Qc
|P |

, (A.20)

which can be used for solving
dZ

dt
in (A.18).

APPENDIX B: DERIVATION OF THE INTERFACE CONDITIONS FOR ∂zQ AND ∂zP

First we define the Liouville operator

L± = ∂t + ∂pH± · ∂q − ∂qH± · ∂p,

and recall the 3D Eulerian formulation of the frozen Gaussian approximation in Lu & Yang (2012b),

ukE(t,x) =
1

(2π/k)9/2

∫∫
(a+(t, q,p) + a−(t, q,p)) eikp·(x−q)− k

2
|x−q|2 dp dq. (B.1)

Consider the auxiliary functions

φ±(t, q,p) = (φ±,1, φ±,2, φ±,3),
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which satisfy

L±φ± = 0, with φ±(0, q,p) = p+ iq, (B.2)

then the evolutionary equation for a± is given by

L±a± = ±a±
p

|p|
· ∂qc+

a±
2

Tr

(
Z−1
±

dZ±
dt

)
, (B.3)

where Z± = (∂pφ±)T − i(∂qφ±)T . Theorem 4.1 in Lu & Yang (2012a) provides

∂zQ± = (∂pφ±)T , and ∂zP± = −(∂qφ±)T . (B.4)

Suppose the interface is located at z = z0, and denote qre = qtr = qin = (x, y, z0), pin =

(px, py, p
in
z ), pre = (px, py, p

re
z ), and ptr = (px, py, p

tr
z ), where

pre
z = −pin

z , and ptr
z = pin

z

√
C2

1

C2
2

+

(
C2

1

C2
2

− 1

)
p2
x + p2

y

(pin
z )2 .

Without loss of generality, we consider the “+” branch and omit the subscript “+” in the derivation

for convenience. In order to give a simple and clear presentation of the idea, we assume the initial wave

comes form the above of the interface, and hit the interface only once.

The φre,tr and are,tr shall satisfy the same evolutionary equations as φ and a in (B.2) and (B.3)

with the corresponding interface conditions at qz = z0, which are given as follows:

are(t, qre,pre) = R(pin)are(t, qin,pin),

atr(t, qtr,ptr) = T (pin)atr(t, qin,pin),
(B.5)

φre(t, qre,pre) = φre(t, qin,pin),

φtr(t, qre,pre) = φtr(t, qin,pin),
(B.6)

where the reflection coefficient R(pin) and transmission coefficient T (pin) are given by the Snell’s

Law of Refraction,

R(pin) =


−1, if P in ∈ Θr,

pin
z − ptr

z

pin
z + ptr

z

, otherwise,
and T (pin) =


0, if P in ∈ Θr,

2pin
z

pin
z + ptr

z

, otherwise,

where Θr is given in (28).

The interface conditions (30) for ∂zQ and ∂zP are implied by (B.6) and (B.4). In fact, taking the

transmission for example, since

ptr
z = pin

z

√
C2

1

C2
2

+

(
C2

1

C2
2

− 1

)
p2
x + p2

y

(pin
z )2 ,
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and φtr(t, qtr, qtr) = φtr(t, qin, qin), then by the chain rule

∂pxφ
tr(t, qtr,ptr) =

(
C2

2

C2
1

− 1

)
px
pin
z

∂pzφ
tr(t, qin,pin) + ∂pxφ

tr(t, qin,pin),

∂pyφ
tr(t, qtr,ptr) =

(
C2

2

C2
1

− 1

)
py
pin
z

∂pzφ
tr(t, qin,pin) + ∂pyφ

tr(t, qin,pin),

∂pzφ
tr(t, qtr,ptr) =

C2
2

C2
1

ptr
z

pin
z

∂pzφ
tr(t, qin,pin).

(B.7)

Together with (B.4), (B.7) brings exactly the interface condition (30) for ∂zQ.

By φtr(t, qtr, qtr) = φtr(t, qin, qin), one has

∂tφ
tr(t, qin,pin) = ∂tφ

tr(t, qtr,ptr),

then the Liouville equation yields, at the interface,[
∇pH · ∇qφ

tr
]
qz=z0

=
[
∇qH · ∇pφ

tr
]
qz=z0

, (B.8)

where [·] denotes the jump function. Notice that

∂qxφ
tr(t, qin,pin) = ∂qxφ

tr(t, qtr,ptr), and ∂qyφ
tr(t, qin,pin) = ∂qyφ

tr(t, qtr,ptr), (B.9a)

then

∂qzφ
tr(t, qtr,ptr) =

C2
1p

in
z

C2
2p

tr
z

∂qzφ
tr(t, qin,pin)

+

(
C2

1

C2
2

− 1

)(
px
ptr
z

∂qxφ
tr(t, qin,pin) +

py
ptr
z

∂qyφ
tr(t, qin,pin)

)
+
|ptr|
C2∂tr

z

[
|p|∇qc(q) · ∇pφ

tr(t, q,p)
]
qz=z0

.

(B.9b)

Therefore by (B.4), (B.9) gives exactly the interface condition (30) for ∂zP .
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