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Abstract

In this paper, we develop two-level numerical methods for the time-dependent Schrödinger equation (TDSE)
in multi-frequency regimes. This work is motivated by attosecond science [P.B. Corkum and F. Krausz,
Nature Physics, 3 (2007), 381–387], which refers to the interaction of short and intense laser pulses with
quantum particles generating wide frequency spectrum light and allowing for the coherent emission of attosec-
ond pulses (1 attosecond = 10−18 second). The principle of the proposed methods consists in decomposing
a wavefunction into a low/moderate frequency (quantum) contribution, and a high frequency contribution
exhibiting a semi-classical behavior. Low/moderate frequencies are computed through the direct solution of
the quantum TDSE on a coarse mesh, and the high frequency contribution is computed by frozen Gaussian
approximation [M.F. Herman and E. Kluk, Chem. Phys., 91 (1984), 27–34]. This paper is devoted to the
derivation of consistent, accurate and efficient algorithms performing such a decomposition and the time evo-
lution of the wavefunction in the multi-frequency regime. Numerical simulations are provided to illustrate
the accuracy and efficiency of derived algorithms.

Keywords: Geometric optics, frozen Gaussian approximation, Schrödinger equation, multilevel method,
attosecond science

1. Introduction

1.1. Introductory remarks

In this paper, we are interested in developing two-level methods for solving numerically the time-
dependent Schrödinger equation (TDSE) modeling in particular, the interaction of intense electric fields
with quantum particles in attosecond science [5]. In Ω ⊆ R3 and under the Born-Oppenheimer and dipole
approximations [4], the TDSE reads in length gauge [3]





i∂tψ(t,x) = −
1

2
△ψ(t,x) + x · E(t)ψ(t,x) + V (x)ψ(t,x), (t,x) ∈ (0, T )× Ω

ψ(0,x) = φ0(x), x ∈ Ω
ψ(t,x) = 0, (t,x) ∈ (0, T )× ∂Ω

(1)

where V is a space-dependent (nuclear) potential, and E denotes the external electric field the quantum
particle is subject to. It is well-known that the interaction of short and intense electromagnetic fields with
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atoms or molecules leads to complex nonlinear phenomena among which, one of the most important is the
generation of high frequency photons, see [3, 1, 2]. Let us start from a localized state

H0φ0 = λ0φ0

where λ0 (resp. φ0) is the smallest eigenvalue (resp. eigenfunction) of the field-free atomic Schrödinger
Hamiltonian H0 = −△/2 + V . We consider a laser field E(t) = E(t)ex of frequency ω0 and intensity E2

0 ,
interacting with the atom (or the molecule), where ex stands for the unit direction in x. Subject to such
a field, the atom/molecule is first ionized, then the free electrons gain ponderomotive energy e2E2

0/4mω
2
0,

where e is the electron charge and m is the nucleus mass. In a third stage, electrons are recombined with
their parent ion and generate high order harmonics (HHG) by multi-photon ionization. This process is
described for the hydrogen atom in the celebrated paper [10], where strong-field-approximation is used to
derive an accurate 3-step HHG model, using Newton’s law coupled with a tunneling model. It is shown in
[10] that after the laser-hydrogen interaction, the time harmonic spectrum is constituted by a plateau, up to
a cut-off frequency ωc, such that ~ωc = Ncω0~ ≈ 3.17Up + Ip, where Nc ∈ 2N∗ + 1 is the cut-off frequency
order, and Ip is the ionization potential. Starting from a one-frequency problem (associated to the incoming
pulse frequency), high time- and space-frequencies (wavenumbers or Fourier modes) are then generated.
Appropriate numerical methods should tackle this multiscale problem, and deal simultaneously with quantum
and semi-classical regimes. This paper is dedicated to the derivation of two-level methods for this multiscale
problem. The principle is to rigorously couple usual real space methods for relatively low space-and-time
frequency regime, with a geometric optics-type method, the frozen Gaussian approximation (FGA), for high
space-and-time frequency regime. What makes this problem particularly difficult is that high frequencies are
dynamically generated. Fortunately, we can benefit from the 3-step model which provides quite relevant and
precise information on i) when the multi-photon ionization occurs, as well as ii) the recombination energy,
which is related to the highest generated frequencies. This is a very relevant information which allows us
to determine if and when, the FGA should be reinitialized. Between these times, which can accurately be
numerically evaluated, we can solve the Schrödinger equation on two separate frequency levels i) one solving
the Schrödinger equation in the quantum regime on a coarse grid, ii) one solving the Schrödinger equation in
the semi-classical regime, using a FGA, which provides an accurate and cheap (compared to a full quantum
computation on very fine grid) computation of the TDSE solution on wide frequency range. We refer to
[8, 16, 6, 9] for numerical methods for quantum and classical wave equations in the semi-classical regime.

The paper is organized as follows. Subsection 1.2 is dedicated to the presentation of the frozen Gaussian
approximation (FGA) and the discretization for the TDSE in the semi-classical regime. Corkum’s three-

step model is presented in 2. Section 3.2 (resp. 3.3) is devoted to the two-level method without (resp.
with) dynamical generation of high frequency. Numerical experiences are presented in Section 4. We finally
conclude in Section 5.

1.2. Frozen Gaussian approximation for TDSE in semi-classical regime

In this section, we describe the numerical evolution of the TDSE wavefunction, in the semi-classical
regime using the FGA and denoted by ψFGA.

FGA formulation. We here recall the main steps to construct a FGA. This method was originally de-
veloped by Herman-Kluk (HK) [7] and was later mathematically analyzed in [17]. More recently, the HK
formalism was used and analyzed to derive fast numerical solvers in the semi-classical regime for different
classes of partial differential equations: the Schrödinger equation [18], the classical wave equation [14, 13]
and linear hyperbolic systems of conservation laws [15]. FGA was also used to accelerate the convergence
of Schwarz Waveform Relaxation domain decomposition algorithms [12]. FGA allows for the computational
evolution of high frequency wavefunction. More specifically, we start in d-dimensions, from

i
∂ψ

∂t
(t,x) = −

1

2
△ψ(t,x) +W (t,x)ψ(t,x), x ∈ R

d, t ∈ (0, T ),

2



where ψ(0,x) = φ(x) ∈ L2(Rd,C). We rescale the TDSE as follows. For ε≪ 1, we set t′ = εt, x′ = εx, and
we get

iε
∂ψε

∂t′
(t′,x′) = −

ε2

2
△ψε(t,x′) +W ε(t′,x′)ψε(t′,x′), x′ ∈ R

d, t′ ∈ (0, εT ),

with ψε(0,x′) = ψε
0(x

′) := φ0(εx) ∈ L2(Rd,C) and W ε(t′,x′) = W (εx, εt). FGA is computed at (t′,x′),
that is ψFGA(t

′,x′) = ψFGA(εt, εx) with t
′ ∈ (0, εT ). FGA reads for t′ > 0

ψFGA,ε(t
′,x′) =

1

(2πε)3d/2

∫

Rd×B(0d,ε−1)

a(t′,q,p)e
i
ε
Φ(t′,x′,y′,q,p)ψε

0(y
′)dy′dpdq,

with

Φ(t′,x′,y′,q,p) = S(t′,q,p) +
i

2

∣∣x′ −Q(t′,q,p)
∣∣2 +P(t′,q,p) · (x′ −Q(t′,q,p))

+
i

2

∣∣y′ − q
∣∣2 − p · (y′ − q),

where the Hamiltonian reads

H(t′,Q,P) =
|P|2

2
+W (t′,Q),

with W (t,Q) = V (Q) +Q ·E(t′) and the Hamiltonian flow satisfies





dQ

dt′
= P, Q(0,q,p) = q,

dP

dt′
= −∂QW (t′,Q), P(0,q,p) = p.

(2)

The classical action function satisfies

dS

dt′
=

|P|2

2
−W (t′,Q),

and the amplitude

da

dt′
(t′,q,p) =

1

2
a(t′,q,p)Tr

(
Z−1

(
∂zP(t′,q,p)− i∂zQ∂

2
qQ(t′,q,p)

))
, (3)

where ∂z = ∂q − i∂p and Z = ∂z
(
Q+ iP

)
.

Discretization of FGA. The discretization of FGAs is extensively discussed in the literature [18, 15, 14, 13].

We denote by (j,k, l) the elements of the index sets denoted by Dx ×Dq × D̃p
1, then the FGA reads as, at

time t′n and discretization nodes denoted xj,

φεFGA(t
′
n,x

j) =

∑

(k,l)∈Dq×D̃p

ak,l(t
′
n)rθ(|x

j − qk|)

(2πε)3d/2
wε(qk,pk,l)e

i
ε

(
Sk,l(t

′

n)+Pk,l(t
′

n)·(x
j−Qk,l(t

′

n))
)
− 1

2ε |x
j−Qk,l(t

′

n)|
2

|δq||δp|, (4)

1The notation D̃p is used to precise that the integrand in the FGA is usually localized with respect to p, see [18, 15].
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where ak,l(t
′
n) (resp. Pk,l(t

′
n),Qk,l(t

′
n)) denotes the approximation of a in (3) (resp. P, Q in (2)) at (qk,pk,l)

at time t′n, δq and δp denote the elementary increment in q and p, and rθ is the local truncation function
with a radius θ [18]. In addition, for any k ∈ Dq and l ∈ Dp,

wε(qk,pk,l) =
∑

j∈Dx

e

i

ε

(
−pk,l·(y

j−qk)+
i
2 |y

j−qk|
2

)

φ0(yj)rθ
(
|yj − qk|

)
|δy|.

Then
(
Qk,l(t

′
n),Pk,l(t

′
n)
)
and ak,l(t

′
n) are updated using a fourth order Runge-Kutta (RK4) scheme, for

solving at time t′n:




dQk,l/dt
′ = Pk,l,

dPk,l/dt
′ = −∂QWk,l,

dak,l/dt
′ = ak,lTr

(
Z−1
k,l

(
∂zPk,l − i∂zQk,l∂

2
QWk,l

))
/2.

(5)

In 1-d, x, q, p, δx, δq, δp, i, j, k is respectively denoted by x, q, p, h, δq, δp, i, j, k.

We recall that from [17], denoting by Ψe the exact solution to the TDSE, there exists a positive constant
C(T ) such that

sup
t′∈(0,εT )

∥∥∥Ψe(t
′, ·)− ψFGA(t

′, ·)
∥∥∥
L2(Rd)

6 εC(T )‖φ0‖L2(Rd). (6)

In the quantum regime, we will construct an approximate solution to (1), typically using a finite difference
scheme. Denoting ψn

Q an approximation of ψQ(tn, ·) on a coarse mesh at time tn, we have

i

ψn+1
Q − ψn

Q

∆t
= −

1

4
△h

(
ψn+1
Q + ψn

Q

)
+

1

2
x ·E(tn)ψ

n
Q

+
1

2
x ·E(tn+1)ψ

n+1
Q +

1

2
V (xh)

(
ψn+1
Q + ψn

Q

)
,

(7)

where △h is a discrete Laplace operator.

2. Three-step model

We recall the main features of Corkum’s three-step model [10] in one dimension, which will be useful for
deriving the two-level method in the framework of field-particle interaction. Some numerical experiments
will then be presented to illustrate the model. Although this model is well-known by laser physicists, this
summary may be useful for the non-specialists.

2.1. Three-step model: theory

In the strong field approximation, it is assumed that a quantum particle subject to intense oscillating
laser field is modeled by a classical+tunneling model as follows. We assume that an electron is initially
localized at x = x0 with velocity denoted by v0. The ionization potential of the atom is denoted by Ip.
In the classical mechanics framework, the dynamics of the electron of mass m and charge e is modeled by
Newton’s law: mẍ(t) = −eE(t). The electric field E, assumed to be time-dependent only, is modeled by

E(t) = E0f(t) cos
(
ω0t+ φ0

)
,

where f is the pulse envelope, φ0 the initial phase and ω0 the pulse frequency. In general f is a Gaussian or
sin2 function [11], such as

f(t) = 1, f(t) = sin2
(
π
T − t

αT

)
, f(t) = exp

(
− α(t− T/2)2

)
,

4



where T is the pulse duration and α some strictly positive constant. For instance, for f(t) = 1 and x0 =
v0 = 0, we easily get

v(t) =
E0

ω0

(
cos(φ0)− cos(ω0t+ φ0)

)
, x(t) =

E0

ω0
cos(φ0)t−

E0

ω2
0

(
sin(ω0t+ φ0)− sin(φ0)

)
.

In order to benefit from this model in our two-level method, we first define the times of return of the classical
electron tr ∈ (0, T ), such that x(tr) = x0, see [11]. There will be referred as classical recombination times

and defined by

Tr =
{
t(i)r ∈ (0, T ) : x

(
t(i)r

)
= x0, i ∈ N

∗
}
. (8)

In addition, it is possible to define the ponderomotive energy of the particle in the field, Up = e2E2
0/4mω

2
0;

see [10]. The energy of return at time, say t = tr is then defined by Ip +m
(
ẋ(tr)

)2
/2. We consequently

define

Er =
{
E(i)

r = Ip +
m

2

(
ẋ(tr)

)2
for t(i)r ∈ Tr, i ∈ N

∗
}
. (9)

This set of energy is used to estimate the cut-off frequency at each return time t
(i)
r , and is given by ω

(i)
c =

N
(i)
c ω0 ≈ E

(i)
r /~. The fact that the cut-off frequency can be expressed as a function of the incoming pulse

frequency (which is not obvious) is a consequence of an ultrafast (typically femtosecond) process called multi-
photon ionization [10]. The recombination times will give us information about when it is a priori necessary
to reinitialize the FGA. However, even at some of these times of return, it may be useless to reinitialize the
FGA, if the energy of return is not large enough to generate enough high frequency photons. For this reason,
we define the set

T ε
r =

{
t(i)r ∈ Tr : E(i)

r > ~ε−1
}
⊆ Tr. (10)

Only at times t in T ε
r , which will be very easily numerically estimated, it will be necessary to reinitialize the

FGA. In atomic units, which will be used hereafter, m = 1, ~ = 1 and e = −1.

2.2. Three-step model: numerical experiments

This section is devoted to some numerical experiments of harmonic generation by intense laser-quantum
particle interaction. We consider a H+

2 -molecule with fixed inter-nuclear distance R0. The chosen Cauchy
data is the ground state (Fig. 1) defined by the eigenfunction of minimal energy

H0φ0 = λ0φ0

where H0 = −△/2 + V and V (x) = −1/|x − R0/2| − 1/|x + R0/2|. The electric field is defined by

E(t) = E0 cos(ω0t)e
−ν(t−T/2)2 , where T is the pulse duration, ω0 its central frequency, E0 its amplitude, and

ν a non-negative real parameter. The spatial domain is denoted (−L,L) and the domain is assumed to be
large enough to avoid any spurious reflection at its boundary ±L.

The physical parameters in atomic units, are ν = 4× 10−5, E0 = 0.1 (corresponding to ≈ 2× 1014W·cm−2),
ω = 0.06 (corresponding to a 800 nm wavelength pulse) and T = 800 (corresponding to ≈ 20 femtoseconds).
The internuclear distance is fixed to R0 = 2 and l = 20. Numerical data are performed using a time step
∆t = 1/30 (≈ 0.8 attosecond) and space step h = 1/3 (≈ 17 picometers). We first numerically report in
Fig. 2, the electric field (Up), the classical electron position x(t) (middle) and the kinetic energy mv2(t)/2
(Down) by solving Newton’s law. The recombination times, corresponding to zeros of x(t), are represented
in Fig. 2 (up). As recalled above, harmonics will mainly be generated close to these recombination times. In
Fig. 3, we represent at time T , the wavefunction (up), the electric field and recombination times (middle),
and the temporal harmonics of the dipole moment defined by d(t) =

∫
R
x|ψ(t, x)|2dx, which is denoted by

5
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Figure 1: H
+

2
-groundstate for R0 = 2 a.u.

ω the Fourier co-variable associated to t, that is (ω, |d̂(ω)|2) with logscale in the y-axis (Down). The latter
illustrates the generation of high order harmonics, by electron-nucleus recombination. In order to point out
the generation of high frequencies close to recombination times, a wavelet decomposition is also performed.
More specifically, in Fig. 4 (up), we show the dipole moment as a function of time, with the recombination
times (as classically computed) and in Fig. 4 (Down), we report Haar’s wavelet decomposition of the dipole
moment, d(t), where the smaller the scale number, the higher the frequency. We observe that the higher the
kinetic energy, the higher the generated frequencies. As expected, we observe that new high frequencies are
generated close to the recombination times estimated using Corkum’s classical model. As a last illustration
of HHG in the laser-molecule interaction, we present another test with a more intense external field, in order
to enhance high order harmonic generation. The data are the same as above, except that the computational
domain is now (−40, 40), I = 0.2 and N = 640, that is dx ≈ 0.125. We report in Fig. 5 (Up), the initial
state modulus and the wavefunction modulus at final time T = 800, and the corresponding spatial spectrum
(Fourier modes) in logscale (Down).

3. Two-level FGA-based method

This section is devoted to the derivation of two two-level methods for multi-frequency TDSE with or
without generation of high frequency, from initial time 0 to final time T > 0. We consider the evolution
of the wavefunction, where i) we initially (t = 0) separate the Cauchy data into the high spatial frequency
contribution from the other spatial frequency contributions (low and moderate), and ii) we independently
make evolve in time, these 2 contributions, up to time T . The low and moderate frequency contributions
will be computed by solving the Schrödinger equation in the quantum regime at (t, x), (t ∈ (0, T )). The high
frequency contribution will be computed using FGA at any (εt, εx). At any time t, both contributions are
consistently added. The general algorithm that we propose is summarized as follows.

1. Initial decomposition of the Cauchy data, by Fourier filtering into a low/moderate spatial frequency
(wavenumber) contribution on a coarse mesh, ψQ, and a high spatial frequency contribution on a fine
mesh. The latter allows for defining the initial FGA, denoted ψFGA.

6



0 100 200 300 400 500 600 700 800
−0.1

−0.05

0

0.05

0.1

Time  (atomic units)

In
te

ns
ity

 

 
Laser field
Recombination time

0 100 200 300 400 500 600 700 800
−40

−20

0

20

40

Time  (atomic units)

x(
t)

 

 
Electron position

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

Time (atomic units)

m
v(

t)
/2

 

 
Electron kinetic energy

Figure 2: As a function of time, and using classical mechanics. (Up) Electric field and recombination times. (Middle) Electronic
position. (Down) Kinetic energy.

2. Time evolution of ψQ on the coarse mesh by numerical computation of the TDSE in the quantum
regime on the coarse mesh.

3. Time evolution of ψFGA, approximating the solution of the TDSE in the semi-classical regime.

4. Reconstruction of the global solution on a fine mesh from ψFGA and ψQ.

5. If high frequencies are dynamically generated, the above steps should be repeated. See Section 3.2.

3.1. Geometry and notations in 1-d

We denote by {xhj }j∈Ih
x
(resp. {xhε

j }j∈Ihε
x
) the mesh points of a coarse (resp. fine) mesh Ωh (resp. Ωhε

)

of step size h (resp. hε) and where hε ≪ h, with typically hε = hε and ε ≪ 1. The set Ih
x ⊆ Z (resp.

Ihε
x ⊆ Z) denotes the index sets on Ωh (resp. Ωhε

). For {fj}j∈Ihε
x

defined on Ωhε
and for any k ∈ Ih

x , the
projector from Ωhε

to Ωh reads

(
Lhε→hf

)
k
=

1

E[ε−1]

E[ε−1]∑

j=1

f(k−1)E[ε−1]+j ,

where E[ε−1] denotes the integer part of ε−1. Inversely Lh→hε
is a discrete polynomial interpolation operator

from Ωh to Ωhε
.

In order to compute the FGA, we have to solve (5) on a (q, p)-grid, Ddq
q × D̃dp

p : i) D̃dp
p with grid points

{pk}k∈Idp
p

and ii) Ddq
q with grid points {qk}k∈Idq

q
, where the corresponding index sets are denoted by Idp

p ⊆ Z

7
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Figure 3: At final time. (Up) Wavefunction modulus. (Middle) Electric field and recombination times. (Down) Dipole moment
time-harmonics.

and Idq
q ⊆ Z. For k ∈ Idp

p , we have pk = kdp with dp = 2π/|Ω|. For the sake of simplicity, we will identify

{qj}j∈Idq
q

with {xhj }j∈Ih
x
and dq = h, although in practice Ddq

q may be finer than Ωh, but much coarser for

efficiency reason than Ωhε
, see details in [18].

We denote by ∆t, the constant time step used for solving the TDSE in the quantum regime. Discrete times
are denoted tn = n∆t, with n ∈ N.

We denote by ψh =
{
ψh
j

}
j∈Ih

x

(resp. ψhε =
{
ψh
j

}
j∈Ihε

x
) the global discrete solution of (1) at

{
xhj

}
j∈Ih

x

on Ωh (resp.
{
xhε

j

}
j∈Ihε

x
on Ωhε

), and time t, that is

ψh
j (t) ≈ ψ(t, xhj ), (resp. ψhε

j (t) ≈ ψ(t, xhε

j )).

We denote by ψh,n (resp. ψhε,n) the discrete solution of (1) at
{
xhj

}
j∈Ih

x

∈ Ωh (resp. Ωhε
), at time tn, that

is

ψh,n
j ≈ ψ(tn, x

h
j ), (resp. ψhε,n

j ≈ ψ(tn, x
hε

j ))

We denote by ψh,n
FGA =

{
ψh,n
FGA,j

}
j∈Ih

x

(resp. ψhε,n
FGA =

{
ψhε,n
FGA,j

}
j∈Ihε

x
) the FGA of (1) in the semi-classical

limit defined on Ωh (resp. Ωhε
), including frequencies higher than ε−1. For lower frequencies, we denote by

ψh,n
Q =

{
ψh,n
Q,j

}
j∈Ih

x

(resp. ψhε,n
Q =

{
ψhε,n
Q,j

}
j∈Ihε

x
) the solution to (1) in the quantum regime on Ωh (resp.

8
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Ωhε
). The global solution ψh,n (resp. ψhε,n) on Ωh (resp. Ωhε

) at time tn, satisfies

ψh,n = ψh,n
FGA + ψh,n

Q , (resp. ψhε,n = ψhε,n
FGA + ψhε,n

Q ).

3.2. Two-level algorithm without frequency generation

We now describe the first algorithm, for a given ε ≪ 1, and with hε = εh. For the sake of notation
simplicity, we will denote the initial data, φ (= φ0), and we then start from φhε := ψhε,0 =

{
φhε

j

}
j∈Ihε

x
, the

Cauchy data projected on the fine mesh Ωhε
.

Step 1. Initially φhε is decomposed in i) low/moderate spatial frequency and ii) high spatial frequency
contributions. This is easily achieved by Fourier transform, filtering the frequencies below and above ε−1.
Notice that FGA is accurate for wavenumbers at most equal to ε−1. We can then introduce a free parameter
η & ε, and construct a FGA to approximate the contribution of frequencies higher than η−1 (. ε−1) rather
than ε−1 in order to give more flexibility to the algorithm. Lower frequency contribution will be computed
on Ωh. With pk = kdp, we then define:

vhε

η,k =

{
hε

∑
j∈Ihε

x
e−ipk·x

hε
j φhε

Q,j , for |pk| 6 η−1,

0 for |pk| > η−1.
(11)

Next, we define for j ∈ Ihε
x (omitting the index η in the LHS to lighten the notations)

φhε

Q,j =
dp

(2π)d

∑

k∈Idp
p

eipk·x
hε
j vhε

η,k,

and, we project this function onto the coarse mesh Ωh

φhQ = Lhε→hφ
hε

Q . (12)
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Figure 5: (Up) Initial wavefunction modulus and wavefunction modulus at time T = 800. (Down) Corresponding spatial Fourier
modes.

This gives us the Cauchy data for computing the low/moderate frequency contribution in the quantum
regime. We next define the initial FGA contribution.
Step 1. According to [18], we define the FGA contribution at xhε

j in Ωhε
, as

φhε

FGA,j =
1

(2πε)3/2
∑

(k,l)×Ih
q ×Ih

p
a(0, qk, pl)w

hε
η (qk, pl)

×e
i
ε

(
S(0,qk,pl)+P (0,qk,pl)·(x

hε
j

−Q(0,qk,pl))
)
e−

1
2ε |x

hε
j

−Q(0,qk,pl)|
2

dpdq,

(13)

with

whε

η (qk, pl) = hε
∑

j∈Ihε
x

e−
i
ε
pl·(x

hε
j

−qk)−
1
2ε |x

hε
j

−qk|
2(
φhε

j − φhε

Q,j

)
, (14)

and where we have chosen qj = xhj and dq = h. In order to determine a and S in the above expression, it is
necessary to rewrite the initial data φ0 as follows:

φ0(x) = A(x) exp
(
iS(x)

)
.

Setting x′ = εx, the coordinates in which FGA are usually expressed, we have

φ0(x
′) = A

(
x′/ε

)
exp

(
iS

(
x′/ε

))
= A

(
x′/ε

)
exp

(
iεS

(
x′/ε

)
/ε
)
.

10



From Section 1.2, we easily deduce S and a on Ωh. Thus, we have defined φ
hε

FGA =
{
φhε

FGA,j

}
j∈Ihε

x
. Moreover,

by construction we have:

φhε = φhε

Q + φhε

FGA.

Step 2. In order to make evolve the global wavefunction in time, we need to consistently update the
low/moderate frequency contribution to the high frequency one. As we have assumed that there is no high
frequency generation during the time evolution, and setting t′ = εt

ψhε

FGA,j(t
′) =

1

(2πε)3/2
∑

(k,l)∈Ih
q ×Ih

p
a(t′, qk, pl)w

hε
η (qk, pl)

×e
i
ε

(
S(t′,qk,pl)+P (t′,qk,pl)·(x

hε
j

−Q(t′,qk,pl))
)
e−

1
2ε |x

hε
j

−Q(t′,qk,pl)|
2

dpdq,

which is an approximate solution to

iε
∂ψε

∂t′
(t′, x′) = −

ε2

2
△ψε(t′, x′) + V ε(t′, x′)ψε(t′, x′),

with the Cauchy data (13). This is numerically performed by solving (5) on Ddq
q × D̃dp

p , with dq = h. Note
that as there is no frequency generation, this reconstruction can be performed only at final time. Regarding
low/moderate frequencies, φhQ is computed at any time t 6 T , by solving

i
∂ψ

∂t
(t, x) = −

1

2
△ψ(t, x) + V (t, x)ψ(t, x),

with the Cauchy data defined in (12). It is important to recall that ψh
Q(t) and ψhε

FGA(εt) are computed at

different positions and times. At any t 6 T , we then denote by t̃ := t/ε, and we have

ψhε(t) = Lh→hε
ψh
Q(t) + ψhε

FGA(εt̃), ψ
h(t) = ψh

Q(t) + Lhε→hψ
hε

FGA(εt̃).

At the discrete level in time, for tn = n∆t, and tε,n = n∆t/ε with k ∈ N∗,

ψhε,n = Lh→hε
ψh,n
Q + ψhε,n

FGA, ψ
h,n = ψh,n

Q + Lhε→hψ
hε,n
FGA.

3.3. Two-level scheme with frequency generation

In this subsection, we use similar notations as in Section 3.2, and we assume that harmonics, including
high harmonics, are generated by recombination during the field-particle interaction. As a consequence, and
unlike Section 3.2, FGA can not be computed from φ0 only, but additional reinitializations are necessary.
It is also important to notice that unlike the previous case (no harmonic generation), we intend to use this
two-level approach, only when very high frequencies are generated. The latter will be computed using a FGA
and then should be seen as an improvement of standard solvers for TDSE in the fully quantum regime. All
the other frequencies, from low to high will be treated by a standard real space method. We now introduce

a small parameter 1 ≫ δ > ε > 0, and we recall that {t
(k)
r }k ∈ T ε

r denote the recombination times (10).

Step 0. The very first step consists of the estimation of the recombination times and the correspond-

ing return energies allowing to determine T ε
r . In the following indices n

(i)
r denote the integer part of t

(i)
r /∆t,

where t
(i)
r ∈ T ε

r . We also denote by ∆n the integer part of δ/∆t. This can very rapidly and efficiently be
performed by a RK4 scheme.
Step 1. By definition, for all n ∈

(
0, n(1) − δ

)
, there is no high frequency generation. As a consequence,

the strategy presented in Section 3.2, is applicable in this time interval. That is, at any n 6 n
(1)
r −∆n, we

perform Steps 1. and 2. from Section 3.2, and we determine:

11



• ψh
Q on Ωh up to time t

(1)
r − δ, by solving (1) in the quantum regime that is: ψ

h,n(1)
r −∆n

Q ≈ ψh
Q(t

(1)
r − δ).

• ψhε

FGA using Section 1.2, and such that ψ
hε,n

(1)
r −∆n

FGA ≈ ψhε

FGA(t
(1)
r − δ).

• ψhε,n
(1)
r −∆n is then constructed from ψ

h,n(1)
r −∆n

Q and ψ
hε,n

(1)
r −∆n

FGA .

Step 2. If t
(1)
r ∈ T ε

r , harmonics higher than η−1 . ε−1 are generated in the time interval
(
t
(1)
r − δ, t

(1)
r + δ

)
,

then for t ∈
(
t
(1)
r −δ, t

(1)
r +δ

)
, we construct ψhε(t) by solving (1) on Ωhε

with Cauchy data ψhε
(
t
(1)
r −δ

)
. The

computation on the fine mesh, but on a very short time interval (2δ), of the quantum Schrödinger equation

will allow for an accurate numerical generation of high harmonics. Then, for t ∈
(
t
(1)
r + δ, t

(2)
r − δ

)
, high

frequency generation is not expected, and the FGA can then be used on this new time interval, and we apply

the same the strategy as Step 1 from t = t
(1)
r + δ to t

(2)
r − δ. At the discrete level, we proceed as follows.

• From Step 1, we get: ψ
h,n(1)

r −∆n
Q and ψ

hε,n
(1)
r −∆n

FGA . We interpolate ψ
h,n(1)

r −∆n
Q on Ωhε

, and then recon-
struct the wavefunction on the fine mesh Ωhε

ψhε,n
(1)
r −∆n = Lh→hε

ψ
h,n(1)

r −∆n
Q + ψ

hε,n
(1)
r −∆n

FGA

• We compute ψhε,n, for n such that n
(1)
r − ∆n 6 n 6 n

(1)
r + ∆n, by solving (1) on Ωhε

by finite
differences.

• From ψhε,n
(1)
r +∆n, we then construct: i) the quantum contribution ψ

h,n(1)
r +∆n

Q using the projection

operator Lhε→h, and ψ
hε,n

(1)
r +∆n

FGA using the same strategy as Step 1.

• Evolution of ψh
Q and ψhε

FGA follow Step 2. of Section 3.2, for computing ψhε,n and ψhε,n
FGA for n such

that n
(1)
r +∆n 6 n 6 n

(2)
r −∆n.

Step 3. Now for any t
(i)
r ∈ T ε

r , with i > 1, the principle is similar as above:

• Reconstruction of the global wavefunction ψhε,n
(i)
r −∆n on Ωhε

.

• Evolution of ψhε,n, by solving (1) on Ωhε
by finite differences, for n such that n

(i)
r −∆n 6 n 6 n

(i)
r +∆n.

• Reconstruction of ψ
h,n(i)

r +∆n
Q and ψ

h,n(i)
r +∆n

FGA from ψhε,n
(i)
r +∆n and evolution as in Step 2.

Although this two-level method requires interpolation and computation at the fine level (Ωhε
), the reinitial-

ization of the FGA is only necessary at times t
(i)
r ∈ T ε

r [10].

3.4. Theoretical estimation of the computational complexity

Let us denote by NT , the number of time iterations to reach the final time T . In d dimension, we denote
by Nd

f (resp. Nd
c ) the number of mesh points in the fine (resp. coarse) mesh. We have Nc/Nf ≈ ε. We

denote by Nd
p the number of grid points in D̃dp

p , and Nd
q the number of grid points in Ddq

q , see Section
1.2. Typically, Nq ≈ Nc, and Np/Nq ≪ 1 for localized high frequencies [18]. The overall computational
complexity, Cf, to compute the solution to (1) with a Crank-Nicolson difference scheme on the fine mesh, is
given by

Cf = O
(
NT (N

d
f )

α
)
, (15)

with 3 & α > 1 related to the computational complexity to solve sparse linear systems.
Now, the overall two-level method with recombination respectively requires:
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• C
(1)
c = O

(
NT (N

d
c )

α
)
operations in order to compute the low/moderate frequency contribution on the

coarse mesh, by solving (1) by finite differences.

• C
(2)
c = O

(
NT (N

d
qN

d
p )
)
operations to compute (5) up to final time T .

• Let us denote by Rε
r = #T ε

r the number of recombination times necessitating a reinitialization of the
FGA. Then, the Fourier filtering, window Fourier transforms, projections and interpolations require a

total of C
(3)
c = O

(
Rε

rN
d
f logNd

f

)
operations.

• Finally, in order to properly generate the high order harmonics, it is necessary to solve the TDSE
by finite differences on the fine mesh, during 2∆n iterations, with ∆n ≪ n. The corresponding
computational complexity is given by

C(4)
c = O

(
Rε

r∆n(N
d
f )

α
)
.

The overall computational complexity for the two-level method with recombination, Cr
c , is then

Cr
c =

∑4
i=1 C

(i)
c = O

(
Rε

r∆n(N
d
f )

α
)
+O

(
Rε

rN
d
f logNd

f

)
+O

(
NT

(
Nd

c )
α +Nd

qN
d
p

))
.

We also deduce that the overall computational complexity for the two-level method without recombination,
Co

c , is given by

Co
c = O

(
Nd

f logNd
f

)
+O

(
NT

(
Nd

c )
α +Nd

qN
d
p

))
.

From a practical point of view, for ε≪ 1, we have

Nc ≪ Nf, NT /R
ε
r∆n≫ 1.

We then expect: Co
c 6 Cr

c ≪ Cf.

4. Numerical Simulations

Some numerical illustrations of the proposed two-level techniques are presented in this section.

4.1. Two-level method: initial decomposition

The first test is dedicated to the decomposition of the Cauchy data into high and low/moderate spatial
frequency (wavenumber) contributions and its reconstruction from i) a FGA and ii) the projected Cauchy
data on a coarse mesh. We consider a Cauchy data, φ = φ0 constituted by 3 (low, moderate, high) spatial
frequencies, respectively denoted by νi, i = 1, 2, 3. We also denote εi = 1/2πνi, and Ai the amplitudes such
that

φ0(x) = f(x)

3∑

j=1

Aje
ix/εj . (16)

In (16), f is an envelope function, which is a Gaussian function centered at 0. We denote by φL the
low/moderate frequency component of the Cauchy data, and by φH its high frequency component. That is

φL(x) = f(x)

2∑

j=1

Aje
ix/εj , φH(x) = f(x)A3e

ix/ε3 .

In order to initiate the two-level algorithm, a coarse finite difference grid is introduced which only allows for
the accurate representation of the spatial frequencies ν1 and ν2 (not ν3). The high frequency contribution is

13



reconstructed by FGA in the semi-classical regime. In order to estimate the numerical accuracy of the two-
level reconstruction, we compare the reconstructed Cauchy data, φhε

FGA + Lh→hε
φHQ , with the exact Cauchy

data (16) projected on the fine finite difference grid Ωhε
, that is φhε . The parameters are given by c = −5,

Ai = 1 with i = 1, 2, 3, ν1 = 5, ν2 = 25, ν3 = 50 and ε1 ≈ 3.2× 10−2, ε2 ≈ 6.4× 10−3 and ε3 ≈ 3.2× 10−3.
The domain is given by: (−1, 1) and the envelope function is f(x) = e−10x2

. The numerical parameters are
as follows: hε = 2.5× 10−3 and h = 10−2, N = 600. In Fig. 6, we report the Fourier modes of the Cauchy
data φ0. The first two peaks are referred as the low and moderate frequencies (wavenumbers), and the last
one to the high frequency. We report in Fig. 7 (left), the real part of the exact Cauchy data projected on
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Figure 6: Cauchy data spectrum.

the fine mesh Real
(
φhε

ref

)
, and of the reconstructed Cauchy data Real

(
φ
hε3

Q + φ
hε3

FGA

)
corresponding the sum

of the semi-classical (high frequency) and quantum (low/moderate) contributions. The pointwise error real
part between the reconstructed wavefunction and the wavefunction of reference on the fine mesh φhε

ref, that is

Real
(
φhε

ref−
(
φ
hε3

Q +φ
hε3

FGA

))
, is also reported in Fig. 7 (right). As expected a very good accuracy is obtained.
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Figure 7: Comparison between the Cauchy data of reference on the fine mesh, with the reconstructed Cauchy data from FGA
and the Cauchy data on the coarse mesh: (Left) Real part. (Right) Pointwise error.
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4.2. Two-level method without frequency generation

We now consider the time dependent equation (1) without harmonic generation nor external field, see
Section 3.2. This constitutes the most simple situation, as the initial decomposition is sufficient to separate
at any time, the high and low/moderate frequency contributions.
Test 1. The first test we consider is as follows. The potential V is defined by

V (x) = − exp
(
0.2x2

)
.

The computational domain is (−64, 64) and the final computational time is given by T = 10. The domain
is assumed large enough to avoid any spurious reflections. We assume that the Cauchy data possesses again
low, moderate and high spatial frequencies. More specifically, we take:

φ0(x) = exp
(
− 10ε2x2

)(
exp

(
i(x+ εx2

)
) + 4 exp

(
i(ε3/4x+ ε7/4x2)

)
+ 3 exp

(
i(εx+ ε2x2)

))
,

with ε = 2−5. Numerical data are as follows. We take h = 1.28, hε = εh = 0.04, ∆t ≈ 0.067 corresponding
to 150 iterations. The Fourier filtering has been applied at η−1 = 4ε−1/5 ≈ 25.6. That is, the low/moderate
frequency contribution is computed on the coarse mesh for frequencies less than η−1 (11), by FGA for
frequencies higher than η−1, see Step 1. of Section 3.2 for details. The Cauchy data is represented in Fig.
8. More specifically, we report the real and imaginary part of the wavefunction φhε

Q on the fine mesh (Ωhε
),

φhQ on the coarse mesh (Ωh), the filtered FGA, and φhε

FGA + Lh→hε
φhQ the overall reconstructed initial data.

The modulus of the initial pointwise error between the reconstructed wavefunction and the wavefunction of

reference on the fine mesh φhε

ref,
∣∣∣φhε

FGA + Lh→hε
φhQ − φhε

ref

∣∣∣, is represented in Fig. 9. At time T = 10, we

then report the real and imaginary part of the wavefunction ψhε

Q (T ) on the fine mesh (Ωhε
), ψh

Q(T ) on the

coarse mesh (Ωh), the filtered FGA, and ψhε

FGA(T ) + Lh→hε
ψh
Q(T ) the overall reconstructed wavefunction

on the fine mesh. The modulus of the final pointwise error between the reconstructed wavefunction and

the wavefunction of reference computed on the fine mesh ψhε

ref(T ),
∣∣∣ψhε

FGA(T ) + Lh→hε
ψh
Q(T ) − ψhε

ref(T )
∣∣∣, is

represented in Fig. 11. The results show a very good accuracy of the two-level solution. We notice in
particular, that between times 0 and T , the sup-norm in space of the error is almost constant:

∥∥∥φhε

FGA + Lh→hε
φhQ − φhε

ref

∥∥∥
∞

≈
∥∥∥ψhε

FGA(T ) + Lh→hε
ψh
Q(T )− ψhε

ref(T )
∥∥∥
∞

≈ 7× 10−4.

Test 2. The following experiment is an introductory test for external excitation by a laser field. We assume
that a two-frequency wavepacket is subject in vacuum (V = 0) to an external field.

i
∂ψ

∂t
(t, x) = −

1

2
△ψ(t, x) + xE(t)ψ(t, x).

The external field is given by E(t) = I sin
(
ωt

)
exp(−ν(t−T/2)2), where in atomic units, the pulse duration

is T = 16, its central frequency is ω = 1, its intensity is I = 0.2, and the parameter ν is fixed to 5 × 10−3.
The initial wavefunction is given by

φ0(x) = exp
(
− 10ε2x2

)(
exp(ix) + 2 exp(iεx)

)
,

with ε = 2−5. The computational domain is (−64, 64). The numerical data are as follows. We take η−1 =
4/5ε−1 = 25.6, hε = 0.04, h = 0.32, and ∆t = 0.032. We first represent in Fig. 12, the pulse as a function
of time. In Fig. 13, we report the real and imaginary parts of the Cauchy data of reference (projection
on the fine mesh), as well as the reconstruction one from the FGA and the coarse mesh wavefunction. At
final time T = 16, we report in Fig. 14 the wavefunction of reference computed on a fine mesh, and the
reconstructed wavefunction. We also represent in Fig. 15, at initial and final times, the spatial spectrum
of the wavefunction of reference and of the reconstructed one. This last graph shows that, as expected, no
frequency were generated. As a consequence, the method presented in Section 3.2 is perfectly adapted to
this type of problems.
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Figure 8: Comparison at time t = 0 between i) the initial wavefunction on the fine mesh, ii) the reconstructed wavefunction on
the fine mesh from the FGA and the wavefunction on the coarse mesh, iii) the wavefunction on the coarse mesh, and iv) the
FGA contribution. (Up) Real part. (Down) Imaginary part.

4.3. Two-level method with frequency generation: preliminary tests

In this section, we propose some preliminary numerical experiments illustrating the strategy presented in
Section 3.3, for multiscale TDSE with harmonic generation. A forthcoming paper will be dedicated to more
detailed and realistic benchmarks, as well as the optimization of the two-level algorithm with generation
of high frequencies. One of the key points of the algorithm from Section 3.3 is the computation of the
recombination times, when the generation of new high frequencies occurs. As shown in Section 2.2, it
is possible to approximately determine the recombination times in order to determine when we need to
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Figure 9: Pointwise error between the initial wavefunction on the fine mesh, and the reconstructed wavefunction on the fine
mesh.

reinitialize the FGA. Notice that as the Cauchy data is chosen as a low energy eigenfunction, the electronic
wavefunction initially contains usually only low intensity high spatial frequencies. From a practical point of
view, we proceed as follows.

• Wavefunction initialization and time evolution on the coarse mesh, until recombination times.

• Construction of the wavefunction on the fine mesh prior to the harmonic generation (HHG).

• Evolution on the fine mesh during the HHG.

• Construction and evolution of i) the FGA for the high frequency contribution and ii) of the wavefunction
contribution for low/moderate frequency contribution on the coarse mesh.

We consider the following TDSE for 1 electron and 2 fixed nuclei,

i
∂ψ

∂t
(t, x) = H0ψ(t, x) + xE(t)ψ(t, x),

where H0 = −
1

2
△+ V (x) with

V (x) = −10 exp
(
− 10

(
x−R/2

)2)
− 10 exp

(
− 10

(
x+R/2

)2)
. (17)

The initial state φ0 is the ground state of H0, that is H0φ0 = λ0φ0, where λ0 is the smallest eigenvalue of
H0. R denotes the fixed internuclear distance between the two nuclei, which is here given by R = 15/25.
The laser field is given by E(t) = I sin(ωt) exp

(
− ν(t − T/2)2

)
, with t ∈ (0, T ) and T = 32, I = 15/25,

ν = 4× 10−2. In the following we take ε = 2−5 and the computational domain is given
(
− 3ε−1/2, 3ε−1/2

)
.

The numerical data are: hε = 4.69× 10−2, h = 32hε = 1.5, ∆t = 8 × 10−3. We fix dp = 8/ε and dq = ∆x
and the threshold is η−1 = 5ε−1/4. The frequency contribution below η−1 is computed by finite differences
(7), and above η−1 by FGA. In Fig. 16, we report the modulus of i) the wavefunction of reference φhε

ref,
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Figure 10: Comparison at time T = 10 between i) the wavefunction of reference on the fine mesh, ii) the reconstructed
wavefunction on the fine mesh from the FGA and the wavefunction on the coarse mesh, iii) the wavefunction on the coarse
mesh, and iv) the FGA contribution. (Up) Real part. (Down) Imaginary part.

which is the projection on the fine mesh of the Cauchy data φ0, ii) φ
h
Q the coarse mesh projection of φ0, iii)

φhε the reconstructed Cauchy data from the FGA and φhQ , and finally iv) φFGA, the FGA corresponding to
the high frequency contribution. The corresponding spatial frequencies of the Cauchy data (groundstate),
reconstructed Cauchy data, and the Cauchy data of reference are reported in Fig. 17. We compare in Fig.
18 the (high) frequency contribution above η−1 of the groundstate of reference with φhε

FGA. We report in Fig.
19, the laser field with corresponding approximate recombination times, that is when the FGA needs to be
reinitialized (Up), the electron position (middle) and the return energy (Down). Similarly we represent at
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Figure 11: Pointwise error between i) the wavefunction of reference on the fine mesh, and ii) the reconstructed wavefunction
on the fine mesh, at time T = 10.
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Figure 12: Laser pulse as a function of time.

time t = 7.7 and t = 12.8, in Fig. 20 (resp. time t = 20.5, and t = 30.7 in Fig. 21) the wavefunction of
reference computed on the fine mesh ψhε

ref, the low/moderate frequency contribution computed on the coarse

mesh ψh
Q, and the reconstructed wavefunction on the fine mesh, ψhε , from ψhε

FGA and Lh→hε
ψh
Q. The

spatial spectrum of i) the Cauchy data φ0, ii) the wavefunction of reference ψhε

ref and of the reconstructed
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Figure 13: Comparison between i) the Cauchy data of reference on the fine mesh, ii) the reconstructed Cauchy data from the
FGA and the Cauchy data on the coarse mesh, iii) the Cauchy data on the coarse mesh, and iv) the FGA contribution. (Up)
Real part. (Down) Imaginary part.

solution ψhε are represented in Fig. 24 at time t = 7.7 and t = 12.8 (resp. at time t = 20.5 and t = 30.7
in Fig. 25). In addition, we compare in Fig. 22 at time t = 7.7 and t = 12.8 (resp. time t = 20.5 and
t = 30.7 in Fig. 23) the high frequency contribution (frequencies above η−1) of the solution of reference ψhε

ref

with ψhε

FGA. These results show the very good accuracy of the proposed reconstruction (coarse mesh+FGA),
when high harmonic generation occurs.
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Figure 14: Comparison at time T = 16 between i) the wavefunction of reference on the fine mesh, ii) the reconstructed
wavefunction on the fine mesh from the FGA and the wavefunction on the coarse mesh, iii) the wavefunction on the coarse
mesh, and iv) the FGA contribution. (Up) Real part. (Down) Imaginary part.

5. Concluding remarks

5.1. Multilevel method for multi-high-frequency regime

The two-level method which was presented in this paper, can easily be extended to a multilevel method,
by considering multiple FGAs. More specifically, we consider a decreasing and real finite sequence {εi}06i6L

associated to increasing frequencies
{
ε−1
i

}
06i6L

. As before the contribution of frequencies smaller than ε−1
0

(which was denoted by ε−1 in Section 3.2) is computed by solving (1) in the quantum regime and on a coarse

21



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Frequency

In
te

ns
ity

 

 
Spectrum: wavefunction of reference
Spectrum: reconstructed wavefunction
Spectrum: Cauchy data

Figure 15: Spectrum of the Cauchy data, of the wavefunction of reference on the fine mesh, and of the reconstructed wavefunction
on the fine mesh, at final time T = 16.
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Figure 16: i) Groundstate of reference on the fine mesh, ii) reconstructed groundstate from the FGA and the groundstate on
the coarse mesh, iii) groundstate on the coarse mesh, iv) and the FGA contribution.

mesh. By Fourier filtering, we construct a finite sequence of FGAs,
{
ψ
hεi

FGA

}
16i6L

respectively associated

to the frequency ranges
((
ε−1
i−1 + εi

)
/2,

(
ε−1
i + εi+1

)
/2

)
, for i > 1. We then follow the same strategy as in

Sections 3.2 and 3.3.
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Figure 17: Spatial frequency of i) the exact groundstate, ii) the groundstate of reference on the fine mesh, and iii) the recon-
structed groundstate.
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Figure 18: High frequency contribution: i) groundstate on the fine mesh, and ii) FGA contribution.

5.2. Conclusion

In this paper, we have derived two two-level algorithms for the numerical computation of the TDSE in
wide frequency regimes, with and without high frequency generation. The strength of the method is that
it allows for the efficient computation of wide frequency range solutions using a coarse mesh approximation
for low/moderate frequencies and a semi-classical approximation, the Frozen Gaussian Approximation, for
the high frequencies. Accurate numerical results were shown in both cases. A forthcoming paper will be
dedicated to extended and more realistic tests and the optimization of the algorithms, in the framework of
intense and short laser-molecule interaction, where high order harmonic generation occur.
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Figure 19: As a function of time, and using classical mechanics: (Up) Electric field and recombination times. (Middle) Electronic
position. (Down) Kinetic energy.
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Figure 20: At time t = 7.7 and t = 12.8: i) wavefunction of reference on the fine mesh, ii) reconstructed wavefunction on the
fine mesh from the FGA and the wavefunction on the coarse mesh, iii) wavefunction on the coarse mesh, iv) FGA contribution.
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Figure 21: At time t = 20.5 and t = 30.7: i) wavefunction of reference on the fine mesh, ii) reconstructed wavefunction on the
fine mesh from the FGA and the wavefunction on the coarse mesh, iii) wavefunction on the coarse mesh, iv) FGA contribution.
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Figure 22: Spatial frequency at time t = 7.7 and t = 12.8 of i) the exact groundstate, ii) the wavefunction of reference on the
fine mesh, and iii) the reconstructed wavefunction on the fine mesh.
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Figure 23: Spatial frequency at time t = 20.5 and t = 30.7 of i) the exact groundstate, ii) the wavefunction of reference on the
fine mesh, and iii) the reconstructed wavefunction on the fine mesh.
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