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Abstract

For Riemannian manifolds with a measure (M, g, e−fdvolg) we prove mean curvature and
volume comparison results when the ∞-Bakry-Emery Ricci tensor is bounded from below and
f is bounded or ∂rf is bounded from below, generalizing the classical ones (i.e. when f is
constant). This leads to extensions of many theorems for Ricci curvature bounded below to
the Bakry-Emery Ricci tensor. In particular, we give extensions of all of the major comparison
theorems when f is bounded. Simple examples show the bound on f is necessary for these
results.

1 Introduction

In this paper we study smooth metric measure spaces (Mn, g, e−fdvolg), where M is a complete
n-dimensional Riemannian manifold with metric g, f is a smooth real valued function on M , and
dvolg is the Riemannian volume density on M . In this paper by the Bakry-Emery Ricci tensor we
mean

Ricf = Ric + Hessf.

This is often also referred to as the ∞-Bakry-Emery Ricci Tensor. Bakry and Emery [4] extensively
studied (and generalized) this tensor and its relationship to diffusion processes. The Bakry-Emery
tensor also occurs naturally in many different subjects, see e.g. [23] and [29, 1.3]. The equation
Ricf = λg for some constant λ is exactly the gradient Ricci soliton equation, which plays an im-
portant role in the theory of Ricci flow. Moreover Ricf has a natural extension to metric measure
spaces [22, 37, 38].

When f is a constant function, the Bakry-Emery Ricci tensor is the Ricci tensor so it is natural
to investigate what geometric and topological results for the Ricci tensor extend to the Bakry-Emery
Ricci tensor. Interestingly, Lichnerowicz [20] studied this problem at least 10 years before the work
of Bakry and Emery. This has also been actively investigated recently and there are a number of
interesting results in this direction which we will discuss below. Also see [8] for another modification
of the Ricci tensor and Appendix A for a discussion of the N -Bakry-Emery Ricci tensor RicN

f (see
(1.6) for the definition). We thank Matthew Gursky for making us aware of [20].

Although there is a Bochner formula for the Bakry-Emery Ricci tensor [23] (see also (5.10)), the
other basic geometric tools for Ricci curvature do not extend for a completely general function f .
In Section 7 we give a quick overview with examples where the Myers’ theorem, Bishop-Gromov’s
volume comparison, Cheeger-Gromoll’s splitting theorem, and Abresch-Gromoll’s excess estimate
are not true even though Ricf has the appropriate lower bound. In this paper we are concerned
with finding conditions on f that imply versions of these theorems. In particular, we give versions
of these theorems when f or the radial derivative of f is bounded.1 These results give new tools for

∗Partially supported by NSF grant DMS-0505733
1After writing the original version of this paper, we learned that Lichnerowicz had proven the splitting theorem

for f bounded. We think this result is very interesting and does not seem to be well known in the literature, so we
have retained our complete proof here.
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studying the Bakry-Emery tensor and lead to generalizations of many of the classical topological and
geometric theorems for manifolds with a lower Ricci curvature bound, and generalize all previous
topological results for the Bakry-Emery tensor.

For Ricci curvature all of the theorems listed above can be proven from the mean curvature
(or Laplacian) comparison, see [46]. Recall that the mean curvature measures the relative rate of
change of the volume element. Therefore, for the measure e−fdvol, the associated mean curvature is
mf = m− ∂rf, where m is the mean curvature of the geodesic sphere with inward pointing normal
vector. Note that mf = ∆f (r), where r is the distance function and ∆f = ∆−∇f ·∇ is the naturally
associated (f -)Laplacian which is self-adjoint with respect to the weighted measure.

In this paper we prove three mean curvature comparisons. The first (see Theorem 2.1) is the
most general and is quite simple to prove. Still, it has some interesting applications for manifolds
with positive Bakry-Emery tensor (Corollaries 4.1 and 4.2). The other two are more delicate and
have many applications.

Theorem 1.1 (Mean Curvature Comparison.) Let p ∈Mn Assume Ricf (∂r, ∂r) ≥ (n− 1)H,
a) if ∂rf ≥ −a (a ≥ 0) along a minimal geodesic segment from p (when H > 0 assume r ≤

π/2
√
H) then

mf (r)−mH(r) ≤ a (1.1)

along that minimal geodesic segment from p. Equality holds if and only if the radial sectional cur-
vatures are equal to H and f(t) = f(p)− at for all t < r.

b) if |f | ≤ k along a minimal geodesic segment from p (when H > 0 assume r ≤ π/4
√
H) then

mf (r) ≤ mn+4k
H (r) (1.2)

along that minimal geodesic segment from p. In particular when H = 0 we have

mf (r) ≤ n+ 4k − 1
r

(1.3)

Here mn+4k
H is the mean curvature of the geodesic sphere in Mn+4k

H , the simply connected model
space of dimension n + 4k with constant curvature H and mH is the mean curvature of the model
space of dimension n. See (2.20) in Section 2 for the case H > 0 and r ∈ [ π

4
√

H
, π

2
√

H
] in part b.

As in the classical case, these mean curvature comparisons have many applications. First, we
have volume comparison theorems. Let Volf (B(p, r)) =

∫
B(p,r)

e−fdvolg, the weighted (or f -)volume
and VolnH(r) be the volume of the radius r-ball in the model space Mn

H .

Theorem 1.2 (Volume Comparison.) Let (Mn, g, e−fdvolg) be complete smooth metric measure
space with Ricf ≥ (n− 1)H. Fix p ∈Mn.

a) If ∂rf ≥ −a along all minimal geodesic segments from p then for R ≥ r > 0 (assume
R ≤ π/2

√
H if H > 0) ,

Volf (B(p,R))
Volf (B(p, r))

≤ eaR VolnH(R)
VolnH(r)

. (1.4)

Moreover, equality holds if and only if the radial sectional curvatures are equal to H and ∂rf ≡
−a. In particular if ∂rf ≥ 0 and Ricf ≥ 0 then M has f-volume growth of degree at most n.

b) If |f(x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4
√
H if H > 0),

Volf (B(p,R))
Volf (B(p, r))

≤ Voln+4k
H (R)

Voln+4k
H (r)

. (1.5)

In particular, if f is bounded and Ricf ≥ 0 then M has polynomial f-volume growth.
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Remark 1 When Ricf ≥ 0 the condition f is bounded or ∂rf ≥ 0 is necessary to show polynomial
f -volume growth as shown by Example 7.4. Similar statements are true for the volume of tubular
neighborhood of a hypersurface. See Section 3 for another version of volume comparison which holds
for all r > 0 even when H > 0.
Remark 2 To prove the theorem we only need a lower bound on Ricf along the radial directions.
Given any manifold Mn with Ricci curvature bounded from below one can always choose suitable
f to get any lower bound for Ricf along the radial directions. For example if Ric ≥ −1 and p ∈M ,
if we choose f(x) = r2 = d2(p, x), then Ricf (∂r, ∂r) ≥ 1. Also see Example 7.3.
Remark 3 Volume comparison theorems have been proven for manifolds with N -Bakry Emery Ricci
tensor bounded below. See Qian [34], Bakry-Qian [6], Lott [23], and Appendix A. The N -Bakry
Emery Ricci tensor is

RicN
f = Ricf −

1
N
df ⊗ df for N > 0. (1.6)

For example, Qian shows that if RicN
f ≥ 0 then Volf (B(p, r)) is of polynomial growth with degree

≤ n +N . Note that Ricf = Ric∞f so one does not expect polynomial volume growth for Ricf ≥ 0.
Since RicN

f ≥ 0 implies Ricf ≥ 0 our result greatly improves the volume comparison result of Qian
when N is big and f is bounded, or when ∂rf ≥ 0.

The mean curvature and volume comparison theorems have many other applications. We high-
light two extensions of theorems of Calabi-Yau [44] and Myers’ to the case where f is bounded.

Theorem 1.3 If M is a noncompact, complete manifold with Ricf ≥ 0 for some bounded f then
M has at least linear f-volume growth.

Theorem 1.4 (Myers’ Theorem) If M has Ricf ≥ (n−1)H > 0 and |f | ≤ k then M is compact
and diamM ≤ π√

H
+ 4k

(n−1)
√

H
.

Examples 7.1 and 7.2 show that the assumption of bounded f is necessary in both theorems. Qian
[34] has proven versions of both theorems for RicN

f . For other Myers’ theorems see [12, 45, 19, 26].
The paper is organized as follows. In the next section we state and prove the mean curvature

comparisons. In Sections 3 and 4 we prove the volume comparison theorems and discuss their
applications, including Theorem 1.3. In Section 5 we apply the mean curvature comparison to prove
the splitting theorem for the Bakry-Emery tensor that is originally due to Lichnerowicz. In Section 6
we discuss some other applications of the mean curvature comparison including the Myers’ theorem
and an extension Abresch-Gromoll’s excess estimate to Ricf . In Section 7 we discuss examples and
questions. Finally in Appendix A we state the mean curvature comparison for RicN

f . This is a
special case of an estimate in [6], but we have written the result in more Riemannian geometry
friendly language. This gives other proofs of the comparison theorems for RicN

f mentioned above.
After posting the original version of this paper we learned from Fang, Li, and Zhang about their

work which is closely related to some of our work here. We thank them for sharing their work with
us. Their paper is now posted, see [10]. Motivated from their paper we were able to strengthen the
original version of Theorem 1.1 and Theorem 1.2 and give a new proof to Theorem 1.1. This proof
of the mean curvature comparison seems to us to be new even in the classical Ricci curvature case.
We have moved our original proof using ODE methods to an appendix because we feel it might be
useful in other applications.

From the work of [32] one expects that the volume comparison and splitting theorem can be
extended to the case that Ricf is bounded from below in the integral sense. We also expect similar
versions for metric measure spaces. These will be treated in separate paper.

Acknowledgment: The authors would like to thank John Lott, Peter Petersen and Burkhard
Wilking for their interest and helpful discussions.
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2 Mean Curvature Comparisons

In this section we prove the mean curvature comparison theorems. First we give a rough estimate
on mf which is useful when Ricf ≥ λg and λ > 0.

Theorem 2.1 (Mean Curvature Comparison I.) If Ricf (∂r, ∂r) ≥ λ then given any minimal
geodesic segment and r0 > 0,

mf (r) ≤ mf (r0)− λ(r − r0) for r ≥ r0. (2.1)

Equality holds for some r > r0 if and only if all the radial sectional curvatures are zero, Hessr ≡ 0,
and ∂2

rf ≡ λ along the geodesic from r0 to r.

Proof: Applying the Bochner formula

1
2
∆|∇u|2 = |Hessu|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u) (2.2)

to the distance function r(x) = d(x, p), we have

0 = |Hess r|2 +
∂

∂r
(∆r) + Ric(∇r,∇r). (2.3)

Since Hess r is the second fundamental from of the geodesic sphere and ∆r is the mean curvature,
with the Schwarz inequality, we have the Riccati inequality

m′ ≤ − m2

n− 1
− Ric(∂r, ∂r). (2.4)

And equality holds if and only if the radial sectional curvatures are constant. Since m′f = m′ −
Hessf (∂r, ∂r), we have

m′f ≤ − m2

n− 1
− Ricf (∂r, ∂r). (2.5)

If Ricf ≥ λ, we have

m′f ≤ −λ.

This immediately gives the inequality (2.1).
To see the equality statement, suppose m′f ≡ −λ on an interval [r0, r], then from (2.5) we have

m ≡ 0 and

m′f = −∂2
rf = −Ricf (∂r, ∂r) = −λ. (2.6)

So we also have Ric(∂r, ∂r) = 0. Then by (2.3) Hess r = 0, which implies the sectional curvatures
must be zero.

Proof of Theorem 1.1. Let snH(r) be the solution to

sn′′H +HsnH = 0

such that snH(0) = 0 and sn′H(0) = 1. Then

mn
H = (n− 1)

sn′H
snH

. (2.7)
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So we have(
sn2

Hm
)′

= 2sn′HsnHm+ sn2
Hm

′ (2.8)

≤ 2sn′HsnHm− sn2
Hm

2

n− 1
− sn2

HRic(∂r, ∂r) (2.9)

= −
(

snHm√
n− 1

−
√
n− 1sn′H

)2

+ (n− 1)(sn′H)2 − sn2
HRic(∂r, ∂r) (2.10)

≤ (n− 1)(sn′H)2 − (n− 1)Hsn2
H + sn2

H∂r∂rf. (2.11)

Here in the 2nd line we have used (2.4), and in the last we used the lower bound on Ricf .
On the other hand (2.7) implies that

(sn2
HmH)′ = (n− 1)(sn′H)2 − (n− 1)Hsn2

H .

Therefore we have(
sn2

Hm
)′ ≤ (sn2

HmH

)′
+ sn2

H∂t∂tf. (2.12)

Integrating from 0 to r yields

sn2
H(r)m(r) ≤ sn2

H(r)mH(r) +
∫ r

0

sn2
H(t)∂t∂tf(t)dt. (2.13)

When f is constant (the classical case) this gives the usual mean curvature comparison. This quick
proof does not seem to be in the literature.

Proof or Part a. Using integration by parts on the last term we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r)−
∫ r

0

(sn2
H(t))′∂tf(t)dt. (2.14)

Under our assumptions (sn2
H(t))′ = 2sn′H(t)snH(t) ≥ 0 so if ∂tf(t) ≥ −a we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + a

∫ r

0

(sn2
H(t))′dt = sn2

H(r)mH(r) + sn2
H(r)a (2.15)

This proves the inequality.
To see the rigidity statement suppose that ∂tf ≥ −a and mf (r) = mH(r) + a for some r. Then

from (2.14) we see

asn2
H ≤

∫ r

0

(sn2
H(t))′∂tf(t)dt ≤ asn2

H . (2.16)

So that ∂tf ≡ −a. But then m(r) = mf − a = mH(r) so that the rigidity follows from the rigidity
for the usual mean curvature comparison.

Proof of Part b. Integrate (2.14) by parts again

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r)− f(r)(sn2
H(r))′ +

∫ r

0

f(t)(sn2
H)′′(t)dt. (2.17)

Now if |f | ≤ k and r ∈ (0, π
4
√

H
] when H > 0, then (sn2

H)′′(t) ≥ 0 and we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + 2k(sn2
H(r))′. (2.18)

From (2.7) we can see that

(sn2
H(r))′ = 2sn′HsnH =

2
n− 1

mHsn2
H .
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so we have

mf (r) ≤
(

1 +
4k
n− 1

)
mH(r) = mn+4k

H (r). (2.19)

Now when H > 0 and r ∈ [ π
4
√

H
, π

2
√

H
],∫ r

0

f(t)(sn2
H)′′(t)dt ≤ k

(∫ π
4
√

H

0

(sn2
H)′′(t)dt−

∫ r

π
4
√

H

(sn2
H)′′(t)dt

)

= k

(
2√
H
− snH(2r)

)
.

Hence

mf (r) ≤
(

1 +
4k
n− 1

· 1
sin(2

√
Hr)

)
mH(r). (2.20)

This estimate will be used later to prove the Myers’ theorem in Section 5.
Remark In the case H = 0, we have snH(r) = r so (2.17) gives the estimate in [10] that

mf (r) ≤ n− 1
r

− 2
r
f(r) +

2
r2

∫ r

0

f(t)dt. (2.21)

Remark The exact same argument gives mean curvature comparison for the mean curvature of
distance sphere of hypersurfaces with Ricf lower bound.

3 Volume Comparisons

In this section we prove the volume comparison theorems.
For p ∈ Mn, use exponential polar coordinate around p and write the volume element d vol =

A(r, θ)dr ∧ dθn−1, where dθn−1 is the standard volume element on the unit sphere Sn−1(1). Let
Af (r, θ) = e−fA(r, θ). By the first variation of the area (see [46])

A′

A
(r, θ) = (ln(A(r, θ)))′ = m(r, θ). (3.1)

Therefore

A′f
Af

(r, θ) = (ln(Af (r, θ)))′ = mf (r, θ). (3.2)

And for r ≥ r0 > 0

Af (r, θ)
Af (r0, θ)

= e
R r

r0
mf (r,θ)

. (3.3)

The volume comparison theorems follow from the mean curvature comparisons through this equation.
First applying the mean curvature estimate Theorem 2.1 we have the following basic volume

comparison theorem.

Theorem 3.1 (Volume Comparison I) Let Ricf ≥ λ then for any r there are constants A, B,
and C such that

Volf (B(p,R)) ≤ A+B

∫ R

r

e−λt2+Ctdt.
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The version of Theorem 3.1 for tubular neighborhoods of hypersurfaces is very similar and has
been proven by Morgan [25], also see [26]. As Morgan points out, the theorem is optimal and the
constants can not be uniform as the Gaussian soliton shows, see Example 7.1.
Proof: Using the mean curvature estimate (2.1)∫ r

r0

mf (r) ≤ mf (r0)r −
1
2
λr2.

Hence

Af (r, θ) ≤ Af (r0, θ)emf (r0,θ)r− 1
2 λr2

.

Now let A(p, r0, r) be the the annulus A(p, r0, r) = B(p, r) \B(p, r0). Then

Volf (A(p, r0, r)) =
∫ r

r0

∫
Sn−1

Af (s, θ)dθds (3.4)

≤
∫ r

r0

∫
Sn−1

Af (r0, θ)emf (r0,θ)r− 1
2 λr2

dθds (3.5)

≤ Af (r0)
∫ r

r0

eCr− 1
2 (n−1)λr2

ds. (3.6)

Where Af (r0) is the surface area of the geodesic sphere induced from the f -volume element and
C is a constant such that C ≥ mf (r0, θ) for all θ where it is defined. Since Volf (B(p, r)) =
Volf (Vol(B(p, r0)) + Volf (A(p, r0, r)) this proves the theorem.

We also have a rigidity statement for (3.5). That is, if the inequality (3.5) is an equality then
we must have equalities in the mean curvature comparison along all the geodesics, this implies that
Hess r ≡ 0 which implies that

A(p, r0, r) ∼= S(p, r0)× [r0, r] (3.7)

where S(p, r0) is the geodesic sphere with radius r0. Moreover, f(x, t) = f(x) + ∂rf(x)(r − r0) +
λ
2 (r − r0)2.

Now we prove Theorem 1.2 using Theorem 1.1.
Proof of Theorem 1.2: For Part a) we compare with a model space, however, we modify the
measure according to a. Namely, the model space will be the pointed metric measure space Mn

H,a =
(Mn

H , gH , e
−hdvol, O) where (Mn

H , gH) is the n-dimensional simply connected space with constant
sectional curvature H, O ∈ Mn

H , and h(x) = −a · d(x,O). We make the model a pointed space
because the space only has Ricf (∂r, ∂r) ≥ (n − 1)H in the radial directions from O and we only
compare volumes of balls centered at O.

Let Aa
H be the h-volume element inMn

H,a. Then Aa
H(r) = earAH(r) where AH is the Riemannian

volume element in Mn
H . By the mean curvature comparison we have (ln(Af (r, θ))′ ≤ a + mH =

(ln(Aa
H))′ so for r < R,

Af (R, θ)
Af (r, θ)

≤ Aa
H(R, θ)
Aa

H(r, θ)
. (3.8)

Namely Af (r,θ)
Aa

H(r,θ) is nonincreasing in r. Using Lemma 3.2 in [46], we get for 0 < r1 < r, 0 < R1 < R,
r1 ≤ R1, r ≤ R,∫ R

R1
Af (t, θ)dt∫ r

r1
Af (t, θ)dt

≤
∫ R

R1
Aa

H(t, θ)dt∫ r

r1
Aa

H(t, θ)dt
. (3.9)
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Integrating along the sphere direction gives

Volf (A(p,R1, R))
Volf (A(p, r1, r))

≤ VolaH(R1, R)
VolaH(r1, r)

. (3.10)

Where VolaH(r1, r) is the h-volume of the annulus B(O, r) \ B(O, r1) ⊂ Mn
H . Since VolH(r1, r) ≤

VolaH(r1, r) ≤ earVolH(r1, r) this gives (1.4) when r1 = R1 = 0 and proves Part b).
In the model space the radial function h is not smooth at the origin. However, clearly one can

smooth the function to a function with ∂rh ≥ −a and ∂2
rh ≥ 0 such that the h-volume taken with

the smoothed h is arbitrary close to that of the model. Therefore, the inequality (3.10) is optimal.
Moreover, one can see from the equality case of the mean curvature comparison that if the annular
volume is equal to the volume in the model then all the radial sectional curvatures are H and f is
exactly a linear function.

Proof of Part b): In this case let An+4k
H be the volume element in the simply connected model

space with constant curvature H and dimension n+ 4k.
Then from the mean curvature comparison we have ln(Af (r, θ))′ ≤ ln(An+4k

H (r))′. So again
applying Lemma 3.2 in [46] we obtain

Volf (A(p,R1, R))
Volf (A(p, r1, r))

≤
V oln+4k

H (R1, R)
V oln+4k

H (r1, r)
. (3.11)

With r1 = R1 = 0 this implies the relative volume comparison for balls

Volf (B(p,R))
Volf (B(p, r))

≤
V oln+4k

H (R)
V oln+4k

H (r)
. (3.12)

Equivalently

Volf (B(p,R))
V n+4k

H (R)
≤ Volf (B(p, r))

V n+4k
H (r)

. (3.13)

Since n + 4k > n we note that the right hand side blows up as r → 0 so one does not obtain a
uniform upper bound on Volf (B(p,R)). Indeed, it is not possible to do so since one can always add
a constant to f and not effect the Bakry-Emery tensor.

By taking r = 1 we do obtain a volume growth estimate for R > 1

Volf (B(p,R)) ≤ Volf (B(p, 1))V oln+4k
H (R). (3.14)

Note that, from Part a) Volf (B(p, 1)) ≤ e−f(p)eaωn if ∂rf ≥ −a on B(p, 1).

In the next section we collect the applications of the volume comparison theorems.

4 Applications of the volume comparison theorems.

In the case where λ > 0 Theorem 3.1 gives two very interesting corollaries. The first is also observed
in [25].

Corollary 4.1 If M is complete and Ricf ≥ λ > 0 then Volf (M) is finite and M has finite funda-
mental group.

We note the finiteness of volume is true in the setting of more general diffusion operators [4] and
more general metric measure spaces [15]. Using a different approach the second author has proven
that the fundamental group is finite for spaces satisfying Ric + LXg ≥ λ > 0 for some vector field
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X [42]. This had earlier been shown under the additional assumption that the Ricci curvature is
bounded by Zhang [45]. See also [27]. When M is compact the finiteness of fundamental group was
first shown by X. Li [19, Corollary 3] using a probabilistic method. Also see [45, 12, 34, 23]. We
would like to thank Prof. David Elworthy for bringing the article [19] to our attention.

The second corollary is the following Liouville Theorem, which is a strengthening of a result of
Naber [27].

Corollary 4.2 If M is complete with Ricf ≥ λ > 0, u ≥ 0, ∆f (u) ≥ 0, and there is α < λ such
that u(x) ≤ eαd(p,x)2 for some p ∈M then u is constant.

In particular there are no bounded f-subharmonic functions. Corollary 4.2 follows from Yau’s
proof that a complete manifold has no positive Lp (p > 1) subharmonic functions [44]. The argument
only uses integration by parts and a clever choice of test function and so is valid also for the weighted
measure and Laplacian.

While Theorem 3.1 has applications when λ > 0 it is not strong enough to extend results for a
general lower bound, for these results we apply Theorem 1.2. It is well known that a lower bound on
volume growth for manifolds with Ric ≥ 0 can be derived from the volume comparison for annulli,
see [46]. Thus Theorem 1.3 follows from (3.11). We give the proof here for completeness and to
motivate Theorem 4.3.
Proof of Theorem 1.3: Let M be a manifold with Ricf ≥ 0 for a bounded function f . Let p ∈M
and let γ be a geodesic ray based at p in M . Then, applying the annulus relative volume comparison
(3.11) to annuli centered at γ(t), we obtain

Volf (B(γ(t), t− 1))
Volf (A(γ(t), t− 1, t+ 1))

≥ (t− 1)n+4k

(t+ 1)n+4k − (t− 1)n+4k
≥ c(n, k)t ∀ t ≥ 2.

But B(γ(0), 1) ⊂ A(γ(t), t− 1, t+ 1) so we have

Volf (B(p, t− 1)) ≥ c(n, k)Volf (B(p, 1))t ∀t ≥ 2.

Using the volume comparison (3.10) in place of (3.11) we can also prove a lower bound on the
volume growth for certain convex f .

Theorem 4.3 If Ricf ≥ 0 where f is convex function such that the set of critical points of f is
unbounded, then M has at least linear f-volume growth.

The hypothesis on the critical point set is necessary by Examples 7.1 and 7.2.
Proof: Fix p ∈M . Since the set of critical points of a convex function is connected, for every t there
is x(t), a critical point of f , such that d(p, x(t)) = t. But ∇f(x(t)) = 0 and f is convex so ∂rf ≥ 0
in all the radial directions from x(t), therefore we can apply (3.10) and repeat the arguments in the
proof of Theorem 1.3 to prove the result.

In [24] Milnor observed that polynomial volume growth on the universal cover of a manifold re-
stricts the structure of its fundamental group. Thus Theorem 1.2 also implies the following extension
of Milnor’s Theorem.

Theorem 4.4 Let M be a complete manifold with Ricf ≥ 0.

1. If f is a convex function that obtains its minimum then any finitely generated subgroup of
π1(M) has polynomial growth of degree less than or equal n. In particular, b1(M) ≤ n.

2. If |f | ≤ k then any finitely generated subgroup of π1(M) has polynomial growth of degree less
than or equal to n+ 4k. In particular, b1(M) ≤ n+ 4k.
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Part 1 follows because at a pre-image of the minimum point in the universal cover, ∂rf ≥ 0.
Gromov [13] has shown that a finitely generated group has polynomial growth if and only if it
is almost nilpotent. Moreover, the work of the first author and Wilking shows that any finitely
generated almost nilpotent group is the fundamental group of a manifold with Ric ≥ 0 [39, 40].
Therefore, there is a complete classification of the finitely generated groups that can be realized
as the fundamental group of a complete manifold with Ric ≥ 0. Combining these results with
Theorem 4.4 we expand this classification to a larger class of manifolds.

Corollary 4.5 A finitely generated group G is the fundamental group of some manifold with

1. Ricf ≥ 0 for some bounded f or

2. Ricf ≥ 0 for some convex f which obtains its minimum

if and only if G is almost nilpotent.

It would be interesting to know if Corollary 4.5 holds without any assumption on f . Example 7.4
shows that the Milnor argument can not be applied since the f -volume growth of a manifold with
Ricf ≥ 0 may be exponential, so a different method of proof would be needed.

In [3] Anderson uses similar covering arguments to show, for example, that if Ric ≥ 0 and and
M has euclidean volume growth then π1(M) is finite. He also finds interesting relationships between
the first betti number, volume growth, and finite generation of fundamental group of manifolds with
Ric ≥ 0. These relationships also carry over to manifolds satisfying the hypotheses of Theorem 4.4.
We leave these statements to the interested reader.

Applying the relative volume comparison Theorem 1.2 we also have the following extensions of
theorems of Gromov [14] and Anderson [2].

Theorem 4.6 For the class of manifolds Mn with Ricf ≥ (n − 1)H, diamM ≤ D and |f | ≤
k (|∇f | ≤ a), the first Betti number b1 ≤ C(n, k,HD2) (C(n,HD2, aD)).

Theorem 4.7 For the class of manifolds Mn with Ricf ≥ (n − 1)H, Volf ≥ V , diamM ≤ D and
|f | ≤ k (|∇f | ≤ a) there are only finitely many isomorphism types of π1(M).

Remark In the case when |∇f | is bounded, Ricf bounded from below implies RicN
f is also bounded

from below (with different lower bound). Therefore in this case the results can also been proven
using the volume comparison in [34, 23, 6] for the RicN

f tensor.

5 The Splitting Theorem.

An important application of the mean curvature comparison is the extension of the Cheeger-Gromoll
splitting theorem. After writing the original version of this paper, we learned that Lichnerowicz had
proven the splitting theorem, see [20, 21].

Theorem 5.1 (Lichnerowicz-Cheeger-Gromoll Splitting Theorem) If Ricf ≥ 0 for some
bounded f and M contains a line, then M = Nn−1 × R and f is constant along the line.

For completeness we retain our complete proof here.
Remark In [10] Fang, Li, and Zhang show that only an upper bound on f is needed in the above
theorem. Example 7.2 shows that the upper bound on f is necessary.

Recall that mf = ∆f (r), the f -Laplacian of the distance function. From (1.1), we get a local
Laplacian comparison for distance functions

∆f (r) ≤ n+ 4k − 1
r

for all x ∈M \ {p, Cp}. (5.1)

Where Cp is the cut locus of p. To prove the splitting theorem we apply this estimate to the
Busemann functions.
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Definition 5.2 If γ is a ray then Busemann function associated to γ is the function

bγ(x) = lim
t→∞

(t− d(x, γ(t))). (5.2)

¿From the triangle inequality the Busemann function is Lipschitz continuous with Lipschitz
constant 1 and thus is differential almost everywhere. At the points where bγ is not smooth we
interpret the f -laplacian in the sense of barriers.

Definition 5.3 For a continuous function h on M, q ∈M , a function hq defined in a neighborhood
U of q, is a lower barrier of h at q if hq is C2(U) and

hq(q) = h(q), hq(x) ≤ h(x) (x ∈ U). (5.3)

Definition 5.4 We say that ∆f (h) ≥ a in the barrier sense if, for every ε > 0, there exists a lower
barrier function hε such that ∆f (hε) > a− ε. An upper bound on ∆f is defined similarly in terms
of upper barriers.

The local Laplacian comparison is applied to give the following key lemma.

Lemma 5.5 If M is a complete, noncompact manifold with Ricf ≥ 0 for some bounded function f
then ∆f (bγ) ≥ 0 in the barrier sense.

Remark As in [10], one can use the inequality (2.21) to prove Lemma 5.5 only assuming an upper
bound on f .
Proof: For the Busemann function at a point q we have a family of barrier functions defined as
follows. Given ti → ∞, let σi be minimal geodesics from q to γ(ti), parametrized by arc length.
The sequence σ′i(0) subconverges to some v0 ∈ TqM . We call the geodesic γ such that γ′(0) = v0 an
asymptotic ray to γ.

Define the function ht(x) = t− d(x, γ(t)) + bγ(q). Since γ is a ray, the points q = γ(0) and γ(t)
are not cut points to each other, therefore the function d(x, γ(t)) is smooth in a neighborhood of q
and thus so is ht. Clearly ht(q) = bγ(q), thus to show that ht is a lower barrier for bγ we only need
to show that ht(x) ≤ bγ(x). To see this, first note that for any s,

−d(x, γ(t)) ≤ −d(x, γ(s)) + d(γ(s), γ(t)) = s− d(x, γ(s))− s+ d(γ(s), γ(t)). (5.4)

Taking s→∞ this gives

−d(x, γ(t)) ≤ bγ(x)− bγ(γ(t)). (5.5)

Also,

bγ(q) = lim
i→∞

(ti − d(q, γ(ti)))

= lim
i→∞

(ti − d(q, σi(t))− d(σi(t), γ(ti)))

= −d(q, γ(t)) + lim
i→∞

(ti − d(σi(t), γ(ti)))

= −t+ bγ(γ(t)). (5.6)

Combining (5.5) and (5.6) gives

ht(x) ≤ bγ(x), (5.7)

so ht is a lower barrier function for bγ . By (5.1), we have that

∆f (ht)(x) = ∆f (−d(x, γ(t))) ≥ −n+ 4k − 1
t

. (5.8)
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Taking t→∞ proves the lemma.

Note that since ∆f is just a perturbation of ∆ by a lower order term, the strong maximum
principle and elliptic regularity still hold for ∆f . Namely if h is a continuous function such that
∆f (h) ≥ 0 in the barrier sense and h has an interior maximum then h is constant and if ∆f (h) = 0
(i.e ≥ 0 and ≤ 0) in the barrier sense then h is smooth. We now apply the lemma and these two
theorems to finish the proof of the splitting theorem.
Proof of Theorem 5.1: Denote by γ+ and γ− the two rays which form the line γ and let b+, b−

denote their Busemann functions.
The function b+ + b− has a maximum at γ(0) and satisfies ∆f (b+ + b−) ≥ 0, thus by the

strong maximum principle the function is constant and equal to 0. But then b+ = −b− so that
0 ≤ ∆f (b+) = −∆f (b−) ≤ 0 which then implies, by elliptic regularity, that the functions b+ and b−

are smooth.
Moreover, for any point q we can consider asymptotic rays γ+ and γ− to γ+and γ− and denote

their Busemann functions by b
+

and b
−

. From (5.7) it follows that

b
+
(x) + b+(q) ≤ b+(x). (5.9)

We will show that this inequality is, in fact, an equality when γ+ extends to a line.
First we show that the two asymptotic rays γ+ and γ− form a line. By the triangle inequality,

for any t

d(γ+(s1), γ−(s2)) ≥ d(γ−(s2), γ+(t))− d(γ+(t), γ+(s1))
= t− d(γ+(t), γ+(s1))− (t− d(γ−(s2), γ+(t)),

so by taking t→∞ we have

d(γ+(s1), γ−(s2)) ≥ b+(γ+(s1))− b+(γ−(s2))
= b+(γ+(s1)) + b−(γ−(s2))

≥ b
+
(γ+(s1)) + b+(q) + b

−
(γ−(s2)) + b−(q)

= s1 + s2.

Thus, any asymptotic ray to γ+ forms a line with any asymptotic ray to γ−. Applying the same
argument given above for b+ and b− we see that b

+
= −b−. By Applying (5.9) to b−

−b−(x)− b−(q) ≥ −b−(x).

Substituting b+ = −b− and b
+

= −b− we have

b
+
(x) + b+(q) ≥ b+(x).

This along with (5.9), gives

b
+
(x) + b+(q) = b+(x).

Thus, b
+

and b+ differ only by a constant. Clearly, at q the derivative of b
+

in the direction of γ′+(0)
is 1. Since b

+
has Lipschitz constant 1, this implies that ∇b+(q) = γ′+(0).

¿From the Bochner formula (2.2) and a direct computation one has the following Bochner formula
with measure,

1
2
∆f |∇u|2 = |Hessu|2 + 〈∇u,∇(∆fu)〉+ Ricf (∇u,∇u). (5.10)
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Now apply this to b+, since ||∇b+|| = 1, we have

0 = ||Hess b+||2 +∇b+(∆f (b+)) + Ricf (∇b+,∇b+). (5.11)

Since ∆f (b+) = 0 and Ricf ≥ 0 we then have that Hess b+ = 0 which, along with the fact that
||∇b+|| = 1 implies that M splits isometrically in the direction of ∇b+.

To see that f must be constant in the splitting direction note that from (5.11) we now have
Ricf (∇b+,∇b+) = 0 and ∇b+ points in the splitting direction so Ric(∇b+,∇b+) = 0. Therefore
Hessf(∇b+,∇b+) = 0. Since f is bounded f must be constant in ∇b+ direction.

As Lichnerowicz points out, the clever covering arguments in [9] along with Theorem 5.1 imply
the following structure theorem for compact manifolds with Ricf ≥ 0.

Theorem 5.6 If M is compact and Ricf ≥ 0 then M is finitely covered by N × T k where N is a
compact simply connected manifold and f is constant on the flat torus T k.

Theorem 5.6 has the following topological consequences.

Corollary 5.7 Let M be compact with Ricf ≥ 0 then

1. b1(M) ≤ n.

2. π1(M) has a free abelian subgroup of finite index of rank ≤ n.

3. b1(M) or π1(M) has a free abelian subgroup of rank n if and only if M is a flat torus and f
is a constant function.

4. π1(M) is finite if Ricf > 0 at one point.

We also note that the splitting theorem has been used by Oprea [28] to derive information about
the Lusternik-Schnirelmann category of compact manifolds with non-negative Ricci curvature. These
arguments also clearly carry over to the Ricf case.

For noncompact manifolds with positive Ricci curvature the splitting theorem has also been used
by Cheeger and Gromoll [9] and Sormani [36] to give some other topological obstructions. These
results also hold for Ricf with f bounded.

Theorem 5.8 Suppose M is a complete manifold with Ricf > 0 for some bounded f then

1. M has only one end and

2. M has the loops to infinity property.

In particular, if M is simply connected at infinity then M is simply connected.

6 Other applications of the mean curvature comparison.

Theorem 1.1 can be used to prove an excess estimate. Recall that for p, q ∈ M the excess function
is ep,q(x) = d(p, x) + d(q, x)− d(p, q). Let h(x) = d(x, γ) where γ is a fixed minimal geodesic from p
to q, then (1.3) along with the arguments in [1, Proposition 2.3] imply the following version of the
Abresch-Gromoll excess estimate.

Theorem 6.1 Let Ricf ≥ 0, |f | ≤ k and h(x) < min{d(p, x), d(q, x)} then

ep,q(x) ≤ 2
(
n+ 4k − 1
n+ 4k − 2

)(
1
2
Chn+4k

) 1
n+4k−1

where

C = 2
(
n+ 4k − 1
n+ 4k

)(
1

d(p, x)− h(x)
+

1
d(q, x)− h(x)

)
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Remark (1.1) also implies an excess estimate for manifolds with Ric ≥ (n − 1)H and |∇f | ≤ a,
however the constant C will depend on H · d(p, q)2 and eah. The mean curvature comparison for
RicN

f discussed in the appendix also implies an excess estimate.
Theorem 6.1 gives extensions of theorems of Abresch-Gromoll [1] and Sormani [35] to the case

where Ricf ≥ 0 for a bounded f .

Theorem 6.2 Let be M a complete noncompact manifold with Ricf ≥ 0 for some bounded f .

1. If M has bounded diameter growth and sectional curvature bounded below then M is homeo-
morphic to the interior of a compact manifold with boundary.

2. If M has sublinear diameter growth then M has finitely generated fundamental group.

Remark If we consider |f | ≤ k, the arguments in [1] and [35] say slightly more. Namely, the
diameter growth in the first part can be of order ≤ 1

n+4k−1 and in the second part one can derive a
explicity constant Sn,k such that the diameter growth only needs to be ≤ Sn,k · r. Also see [43] and
[41].

We can also apply the mean curvature comparison to the excess function to prove the Myers’
theorem. We note that the excess function was also used to prove a Myers’ theorem in [31]. It is
interesting that this proof is exactly suited to our situation, since we only have a uniform bound on
mean curvature when r ≤ π

2
√

H
, while other arguments do not seem to easily generalize.

Proof of Theorem 1.4 Let p1, p2 are two points in M with d(p1, p2) ≥ π√
H

and set B = d(p1, p2)−
π√
H

. Let r1(x) = d(p1, x) and r2(x) = d(p2, x) and e be the excess function for the points p1 and
p2. By the triangle inequality, e(x) ≥ 0 and e(γ(t)) = 0 where γ is a minimal geodesic from p1 to
p2. Therefore, ∆f (e)(γ(t)) ≥ 0.

Let y1 = γ
(

π
2
√

H

)
and y2 = γ

(
π

2
√

H
+B

)
. For i = 1 and 2, ri(yi) = π

2
√

H
so, by (2.20), we have

∆f (ri(yi)) ≤ 2k
√
H. (6.1)

(1.2) does not give an estimate for ∆f (r1(y2)) since r1(y2) > π
2
√

H
but by (2.1) and (6.1) we have

∆f (r1(y2)) ≤ 2k
√
H −B(n− 1)H. (6.2)

So

0 ≤ ∆f (e)(y2) = ∆f (r1)(y2) + ∆f (r2)(y2) ≤ 4k
√
H −B(n− 1)H (6.3)

which implies B ≤ 4k
(n−1)

√
H

and d(p1, p2) ≤ π√
H

+ 4k
(n−1)

√
H
.

As we have seen, there is no bound on the distance between two points in a complete manifold with
Ricf ≥ (n− 1)H > 0. However, by slightly modifying the argument above one can prove a distance
bound between two hypersurfaces that depends on the f -mean curvature of the hypersurfaces, here
for a hypersurface N the f -mean curvature at a point x ∈ N with respect to the normal vector n is

Hf
n(x) = Hn(x) + 〈n,∇f〉(x) (6.4)

where Hn is the regular mean curvature. mf is then the f -mean curvature of the geodesic sphere
with respect to the inward pointing normal.

Theorem 6.3 Let Ricf ≥ (n − 1)H > 0 and let N1 and N2 be two compact hypersurfaces in M
then

d(N1, N2) ≤
maxp∈N1 |Hf

n1
(p)|+ maxq∈N2 |Hf

n2
(q)|

2(n− 1)H
(6.5)
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Proof: Let eN1,N2(x) = r1(x) + r2(x) − d(N1, N2) where ri(x) = d(x,Ni). Then, by applying the
Bochner formula to ri in the same way we applied it to the distance to a point in Section 2, we have

∆f (ri)(x) ≤ max
p∈Ni

|Hf
ni

(x)| − (n− 1)Hd(Ni, x)

One now can prove the theorem using a similar argument as in the proof of Theorem 1.4.

A similar argument also shows Frankel’s Theorem is true for Ricf .

Theorem 6.4 Any two compact f-minimal hypersurfaces in a manifold with Ricf > 0 intersect.

One also has a rigidity statement when Ricf ≥ 0 and M has two f -minimal hypersurface which do
not intersect, see [33] for the statement and proof in the Ric ≥ 0 case.

7 Examples and Remarks

The most well known example is the following soliton, often referred to as the Gaussian soliton.

Example 7.1 Let M = Rn with Euclidean metric g0, f(x) = λ
2 |x|

2. Then Hessf = λg0 and
Ricf = λg0.

This example shows that, unlike the case of Ricci curvature uniformly bounded from below by a
positive constant, the manifold could be noncompact when Ricf ≥ λg and λ > 0.

¿From this we construct the following.

Example 7.2 Let M = Hn be the hyperbolic space. Fixed any p ∈ M , let f(x) = (n − 1)r2 =
(n− 1)d2(p, x). Now Hess r2 = 2|∇r|2 + 2rHessr ≥ 2I, therefore Ricf ≥ (n− 1).

This example shows that the Cheeger-Gromoll splitting theorem and Abresch-Gromoll’s excess es-
timate do not hold for Ricf ≥ 0, in fact they don’t even hold for Ricf ≥ λ > 0. Note that the only
properties of hyperbolic space used are that Ric ≥ −(n−1) and that Hess r2 ≥ 2I. But Hess r2 ≥ 2I
for any Cartan-Hadamard manifold, therefore any Cartan-Hadamard manifold with Ricci curvature
bounded below has a metric with Ricf ≥ 0 on it. On the other hand, in these examples Ric < 0.
When Ric < 0 (Ric ≤ 0) and Ricf ≥ 0(Ricf > 0), then Hessf > 0 and f is strictly convex. Therefore
M has to homeomorphic to Rn.

A large class of examples are given by gradient Ricci solitons. Compact expanding or steady
solitons are Einstein (f is constant) [29]. There are nontrivial compact shrinking solitons [16, 7].
These examples also have positive Ricci curvature but in the noncompact case there are Kahler Ricci
shrinking solitons that do not have nonnegative Ricci curvature [11]. Clearly there are examples
with Ricf ≥ 0 but Ricci curvature is not nonnegative, like Example 7.2. One can also construct
example that f is bounded. In fact one can use the following general local perturbation.

Example 7.3 Let Mn be a complete Riemannian manifold with Ric ≥ 0 except in a neighborhood
of a point p, Up. If the sectional curvature is ≤ 1 and Ric ≥ −1 on Up and Up ⊂ B(p, π/4), then the
distance function r(x) = d(p, x) is strictly convex (with a singularity at p) on Up. On B(p, π/4) let
f = r2. If Ric ≥ 1 on the annulus A(p, π/4, π/2), then one can extend f smoothly to M so that f
is constant outside B(p, π/2) and Ricf ≥ 0 on M .

The following example shows that there are manifolds with Ricf ≥ 0 which do not have polyno-
mial f -volume growth.

Example 7.4 Let M = Rn with Euclidean metric, f(x1, · · · , xn) = x1. Since Hess f = 0, Ricf =
Ric = 0. On the other hand Volf (B(0, r)) is of exponential growth. Along the x1 direction, mf −
mH = −1 which does not goes to zero.
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In this example |∇f | ≤ 1, so Ricf ≥ 0 and |∇f | bounded does not imply polynomial f -volume
growth either.

Question 7.5 If Mn has a complete metric and measure such that Ricf ≥ 0 and f is bounded, does
Mn has a metric with Ric ≥ 0?

There is no counterexample even without the f bounded condition.
It is also natural to consider the scalar curvature with measure. As pointed out by Perelman in

[29, 1.3] the corresponding scalar curvature equation is Sf = 2∆f − |∇f |2 + S. Note that this is
different than taking the trace of Ricf which is ∆f + S. However, The Lichnerovicz formula and
theorem naturally extend to Sf . But Ricf ≥ 0 doesn’t imply Sf ≥ 0 anymore. So one can ask the
following question.

Question 7.6 If Mn is a compact spin manifold with Ricf > 0, is the Â-genus zero?

One could try to see if the K3 surface has a metric with Ricf > 0. If this were true it would give
a negative answer to Question 7.5.

A Mean curvature comparison for N-Bakry-Emery Ricci ten-
sor

In [6] the volume comparison theorem and Myers’ theorem for the N -Bakry-Emery Ricci tensor are
proven using what we have called a mean curvature comparison (actually their work is slightly more
general than the cases treated in this paper). In this appendix, for clarity, we state this comparison
in the language we have used above, which is standard in Riemannian geometry.

Recall the definition of the N -Bakry-Emery tensor is

RicN
f = Ricf −

1
N
df ⊗ df for N > 0.

The main idea is that the a Bochner formula holds for RicN
f that looks like the Bochner formula

for the Ricci tensor of an n + N dimensional manifold . This formula seems to have been Bakry
and Emery’s original motivation for the definition of the Bakry-Emery Ricci tensor and for their
more general curvature dimension inequalities for diffusion operators [4]. See [17, 18] for elementary
proofs of the inequality.

1
2
∆f |∇u|2 ≥

(∆f (u))2

N + n
+ 〈∇u,∇(∆fu)〉+ RicN

f (∇u,∇u)

For the distance function, we actually have

m′f ≤ − (mf )2

n+N − 1
− RicN

f (∂r, ∂r).

Thus, using the standard Sturm-Liouville comparison argument, or an argument similar to the one
we give above, one has the mean curvature comparison.

Theorem A.1 (Mean curvature comparison for N-Bakry-Emery) [6] Suppose that N > 0
and RicN

f ≥ (n+N − 1)H, then

mf (r) ≤ mn+N
H (r).
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This comparison along with the methods used above gives proofs of the comparison theorems for
RicN

f .
The Bochner formula for RicN

f has many other applications to other geometric problems not
treated here such as eigenvalue problems and Liouville theorems, see for example [5] and [18] and
the references there in.

In [23] Lott shows that if M is compact with Ricq
f ≥ λ for some positive integer q ≥ 2, then, in

fact, there is a family of metrics on M×Sq with Ricci curvature bounded below by λ. Moreover, the
metrics on the sphere collapse so that M is a Gromov-Hausdorff limit of n+q dimensional manifolds
with Ricci curvature bounded below by λ. This gives an alternate approach to prove many of the
comparison and topological theorems for Ricq

f .

B ODE proof of mean curvature comparison

Theorem B.1 (Mean Curvature Comparison) Assume Ricf (∂r, ∂r) ≥ (n− 1)H,
a) if ∂rf ≥ −a (a ≥ 0) along a minimal geodesic segment from p (when H > 0 assume r ≤

π/2
√
H) then

mf (r)−mH(r) ≤ a (B-1)

along that minimal geodesic segment from p. Equality holds if and only if the radial sectional cur-
vatures are equal to H and f(t) = f(p)− at for all t < r.
In particular when a = 0, we have

mf (r) ≤ mH(r) (B-2)

and equality holds if and only if all radial sectional curvatures are H and f is constant.
b) if |f | ≤ k along a minimal geodesic segment from p (when H > 0 assume r ≤ π/2

√
H) then

mf (r)−mH ≤ (n− 1)e
4k

n−1

(√
|H|snH(2r) + 2|H|r

sn2
H(r)

)
(B-3)

along that minimal geodesic segment from p, where snH(r) is the unique function satisfying

sn′′H(r) +HsnH(r) = 0, snH(0) = 0, sn′H(0) = 1.

In particular when H = 0 we have

mf (r)− n− 1
r

≤ 4(n− 1)e
4k

n−1
1
r
. (B-4)

Proof: We compare mf to the mean curvature of the model space. Note that the mean curvature
of the model space mH satisfies

m′H = − m2
H

n− 1
− (n− 1)H. (B-5)

Using Ricf ≥ (n− 1)H, and subtracting (2.5) by (B-5) gives

(mf −mH)′ ≤ − 1
n− 1

[
(mf + ∂rf)2 −m2

H

]
(B-6)

= − 1
n− 1

[(mf −mH + ∂rf)(mf +mH + ∂rf)] . (B-7)

Proof of Part a): Write (B-7) as the following

(mf −mH − a)′ ≤ − 1
n− 1

[(mf −mH − a+ a+ ∂rf)(mf +mH + ∂rf)] . (B-8)
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Let us define ψa,H = max{mf − mH − a, 0} = (mf − mH − a)+, and declare that ψa,H = 0
whenever it becomes undefined. Since ∂rf ≥ −a, a+ ∂rf ≥ 0. When ψa,H ≥ 0, mf +mH + ∂rf ≥
a+ ∂rf + 2mH ≥ 2mH which is ≥ 0 if mH ≥ 0. Using this and (B-8) gives

ψ′a,H ≤ − 1
n− 1

(mf +mH + ∂rf)ψa,H ≤ 0. (B-9)

Since limr→0 ψa,H(r) = (−∂fr(0) − a)+ = 0, we have ψa,H(r) = 0 for all r ≥ 0. This finishes the
proof of the inequality.

Now suppose that mf = mH + a, then from (B-6) we have that m = mH which implies that
∂rf = −a. So ∂2

rf ≡ 0 which then implies that Ric(∂r, ∂r) = Ricf (∂r, ∂r) ≥ (n − 1)H. Now the
rigidity for the regular mean curvature comparison implies that all the sectional curvatures are con-
stant and equal to H.

Proof of Part b): Write (B-7) as

(mf −mH)′ ≤ − 1
n− 1

[(mf −mH + ∂rf)(mf −mH + 2mH + ∂rf)]

= − 1
n− 1

[
(mf −mH)2 + 2(mH + ∂rf)(mf −mH) + ∂rf(2mH + ∂rf)

]
.(B-10)

Now define ψ = max{mf −mH , 0} = (mf −mH)+, the error from the mean curvature comparison,
and declare that ψ = 0 whenever it becomes undefined. Define

ρ =
[
− 1
n− 1

∂rf(2mH + ∂rf)
]
+

. (B-11)

Using this notation and inequality (B-10) we obtain

ψ′ ≤ − 1
n− 1

ψ2 − 2
n− 1

(mH + ∂rf)ψ + ρ. (B-12)

We would like to estimate ψ in terms of ρ. It is enough to use the linear differential inequality

ψ′ +
2

n− 1
(mH + ∂rf)ψ ≤ ρ. (B-13)

When ∂rf = 0 (in the usual case), we have ρ = 0 and ψ = 0, getting the classical mean curvature
comparison. In general, by (B-11), the definition of ρ, when mH > 0

ρ > 0 ⇐⇒ −2mH < ∂rf < 0. (B-14)

Also

ρ ≤
(
− 2
n− 1

(∂rf)mH

)
+

. (B-15)

Therefore we have

ρ ≤ 4
n− 1

m2
H .

Note that mH = (n− 1) sn′H(r)
snH(r) . Now (B-13) becomes

ψ′ +
(

2
sn′H(r)
snH(r)

+
2

n− 1
∂rf

)
ψ ≤ 4(n− 1)

(
sn′H(r)
snH(r)

)2

.
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Multiply this by the integrating factor sn2
H(r)e

2
n−1 f(r) to obtain(

sn2
H(r)e

2
n−1 f(r)ψ(r)

)′
≤ 4(n− 1)e

2
n−1 f(r)(sn′H(r))2.

Since ψ(0) is bounded, integrate this from 0 to r gives

sn2
H(r)e

2
n−1 f(r)ψ(r) ≤ 4(n− 1)

∫ r

0

e
2

n−1 f(t)(sn′H(r))2dt. (B-16)

Since |f | ≤ k, we have

ψ(r) ≤ (n− 1)e
4k

n−1

(√
|H|snH(2r) + 2|H|r

sn2
H(r)

)
.

When H = 0, snH(r) = r, from (B-16) we get

ψ(r) ≤ 4(n− 1)e
4k

n−1
1
r
.

This completes the proof of Part b).
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