Practice Problems: Integration by Parts (Solutions)

Written by Victoria Kala

vtkala@math.ucsb.edu
November 25, 2014
The following are solutions to the Integration by Parts practice problems posted November 9.

1. $\int e^{x} \sin x d x$

Solution: Let $u=\sin x, d v=e^{x} d x$. Then $d u=\cos x d x$ and $v=e^{x}$. Then

$$
\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x
$$

Now we need to use integration by parts on the second integral. Let $u=\cos x, d v=e^{x} d x$. Then $d u=-\sin x d x$ and $v=e^{x}$. Then

$$
\int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x
$$

The right integral is the same as the one we started with! Move it over:

$$
2 \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x
$$

And divide by 2 :

$$
\int e^{x} \sin x d x=\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)
$$

This is our final solution, so make sure to add your constant C :

$$
\int e^{x} \sin x d x=\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+C
$$

2. $\int\left(\sin ^{-1} x\right)^{2} d x$

Solution: Let $u=\left(\sin ^{-1} x\right)^{2}, d v=d x$. Then $d u=\frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} d x, v=x$. Then

$$
\int\left(\sin ^{-1} x\right)^{2} d x=x\left(\sin ^{-1} x\right)^{2}-\int \frac{2 x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x
$$

We need to use a substitution on the last integral. Let $w=\sin ^{-1} x$. Then $d w=\frac{1}{\sqrt{1-x^{2}}} d x$ and $x=\sin w$. Just looking at the last integral, we have:

$$
\int \frac{2 x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int 2 w \sin w d w
$$

We can use integration by parts on this last integral by letting $u=2 w$ and $d v=\sin w d w$. Tabular method makes it rather quick:

$$
\int 2 w \sin w d w=2 w \cos w+2 \sin w
$$

At this point you can plug back in w :

$$
\int 2 w \sin w d w=2 \sin ^{-1} x \cos \left(\sin ^{-1} x\right)+2 \sin \left(\sin ^{-1} x\right)
$$

OR you can look at the triangle formed by our substitution for w. Since $x=\sin w$ then the hypotenuse will be 1 , the opposite side will be x and the adjacent side will be $\sqrt{1-x^{2}}$. Then

$$
\int 2 w \sin w d w=2 \sqrt{1-x^{2}} \sin ^{-1} x+2 x
$$

Either of these solutions is fine. So then our integral will look like either one of the solutions below:

$$
\begin{gathered}
\int\left(\sin ^{-1} x\right)^{2} d x=x\left(\sin ^{-1} x\right)^{2}-\left(2 \sin ^{-1} x \cos \left(\sin ^{-1} x\right)+2 \sin \left(\sin ^{-1} x\right)\right)+C \\
\int\left(\sin ^{-1} x\right)^{2} d x=x\left(\sin ^{-1} x\right)^{2}-\left(2 \sqrt{1-x^{2}} \sin ^{-1} x+2 x\right)+C
\end{gathered}
$$

3. $\int x \tan ^{2} x d x$

Solution: Use the identity $\tan ^{2} x=\sec ^{2} x-1$:

$$
\int x \tan ^{2} x d x=\int x\left(\sec ^{2} x-1\right) d x=\int x \sec ^{2} x d x-\int x d x
$$

The last integral is no problemo. The first integral we need to use integration by parts. Let $u=x, d v=\sec ^{2} x$. Then $d u=d x, v=\tan x$, so:

$$
\int x \sec ^{2} x d x=x \tan x-\int \tan x d x
$$

You can rewrite the last integral as $\int \frac{\sin x}{\cos x} d x$ and use the substitution $w=\cos x . \int \tan x d x=$ $-\ln |\cos x|$, so:

$$
\int x \sec ^{2} x d x=x \tan x+\ln |\cos x|
$$

Plug that into the original integral:

$$
\int x \tan ^{2} x d x=x \tan x+\ln |\cos x|-\frac{1}{2} x^{2}+C
$$

4. $\int_{0}^{1} t \cosh t d t$

Solution: This is quick with tabular method. Let $u=t, d v=\cosh t$:

$$
\int_{0}^{1} t \cosh t d t=t \sinh t-\left.\cosh t\right|_{0} ^{1}=\sinh (1)-\cosh (1)+\cosh (0)
$$

You can leave your answer like this. If you want to evaluate it further, remember that $\sinh x=\frac{e^{x}-e^{-x}}{2}$ and $\cosh x=\frac{e^{x}+e^{-x}}{2}$. Then we see that $\sinh (1)=\frac{1}{2}\left(e^{1}-e^{-1}\right), \cosh (1)=$ $\frac{1}{2}\left(e^{1}+e^{-1}\right)$, and $\cosh 0=1$. Then

$$
\int_{0}^{1} t \cosh t d t=\sinh (1)-\cosh (1)+\cosh (0)=1-\frac{1}{e}
$$

5. $\int z^{3} e^{z} d x$

Solution: Tabular is the way to go with this baby. Let $u=z^{3}, d v=e^{z} d z$. Then

$$
\int z^{3} e^{z} d x=z^{3} e^{z}-3 z^{2} e^{z}+6 z e^{z}-6 e^{z}+C=e^{z}\left(z^{3}-3 z^{2}+6 z-6\right)+C
$$

6. $\int_{1}^{\sqrt{3}} \arctan (1 / x) d x$

Solution: Let $u=\arctan (1 / x), d v=d x$. Then $d u=\frac{-d x}{x^{2}+1}$ (using chain rule), $v=x$:

$$
\int_{1}^{\sqrt{3}} \arctan (1 / x) d x=\left.x \arctan (1 / x)\right|_{1} ^{\sqrt{3}}+\int_{1}^{\sqrt{3}} \frac{x}{x^{2}+1} d x
$$

The last integral you can use the substitution $w=x^{2}+1$. Then:

$$
\begin{gathered}
\int_{1}^{\sqrt{3}} \arctan (1 / x) d x=x \arctan (1 / x)+\left.\frac{1}{2} \ln \left(x^{2}+1\right)\right|_{1} ^{\sqrt{3}} \\
=\sqrt{3} \arctan (\sqrt{3})+\frac{1}{2} \ln 4-\arctan (1)+\frac{1}{2} \ln 2=\frac{\sqrt{3} \pi}{3}+\frac{1}{2} \ln 2-\frac{\pi}{4}
\end{gathered}
$$

7. $\int \cos x \ln (\sin x) d x$

Solution: We first need to do a substitution. Let $w=\sin x$, then $d w=\cos x d x$:

$$
\int \cos x \ln (\sin x) d x=\int \ln w d w
$$

Next use integration by parts with $u=\ln w, d v=d w$. Then $d u=\frac{1}{w} d w, v=w$:

$$
\int \ln w d w=w \ln w-\int d w=w \ln w-w
$$

We need to plug back in w :

$$
\int \cos x \ln (\sin x) d x=\sin x \ln (\sin x)-\sin x+C
$$

8. $\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x$

You can do this problem a couple different ways. I will show you two solutions.
Solution I: First do the substitution $w=\ln x$. Then $d w=\frac{1}{x} d x$ and $x=e^{w}$. Then

$$
\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x=\int_{0}^{\ln 2} \frac{w^{2}}{e^{2 w}} d w=\int_{0}^{\ln 2} w^{2} e^{-2 w} d w
$$

Tabular is easy on this guy:

$$
\begin{aligned}
\int_{0}^{\ln 2} w^{2} e^{-2 w} d w=-\frac{w^{2}}{2} e^{-2 w} & -\frac{w}{2} e^{-2 w}-\left.\frac{1}{4} e^{-2 w}\right|_{0} ^{\ln 2}=-\left.\frac{e^{-2 w}}{2}\left(w^{2}+w+\frac{1}{2}\right)\right|_{0} ^{\ln 2} \\
= & -\frac{1}{8}\left((\ln 2)^{2}+\ln 2+\frac{3}{2}\right)
\end{aligned}
$$

Solution II: Start of with integration by parts. Let $u=(\ln x)^{2}, d v=\frac{1}{x^{3}} d x$. Then $d u=$ $\frac{2 \ln x}{x} d x, v=-\frac{1}{2 x^{2}}$:

$$
\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x=-\left.\frac{(\ln x)^{2}}{2 x^{2}}\right|_{1} ^{2}+\int_{1}^{2} \frac{\ln x}{x^{3}} d x
$$

Do integration by parts again. Let $u=\ln x, d v=\frac{1}{x^{3}} d x$. Then $d u=\frac{1}{x} d x, v=-\frac{1}{2 x^{2}}$:

$$
\int \frac{\ln x}{x^{3}} d x=-\left.\frac{\ln x}{2 x^{2}}\right|_{1} ^{2}+\int_{1}^{2} \frac{1}{2 x^{3}} d x=\left.\left(-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}\right)\right|_{1} ^{2}
$$

Plugging this into the original integral we get:

$$
\left.\begin{array}{c}
\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} d x=\left(-\frac{(\ln x)^{2}}{2 x^{2}}\right.
\end{array}-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}\right)\left.\right|_{1} ^{2}=-\left.\frac{1}{2 x^{2}}\left((\ln x)^{2}+\ln x+\frac{1}{2}\right)\right|_{1} ^{2} .
$$

9. $\int \cos \sqrt{x} d x$

Solution: First do the substitution $w=\sqrt{x}$. Then $d w=\frac{1}{2 \sqrt{x}} d x \Rightarrow 2 \sqrt{x} d w=d x \Rightarrow 2 w d w=$ $d x$:

$$
\int \cos \sqrt{x} d x=\int 2 w \cos w d w
$$

Using tabular with $u=2 w, d v=\cos w d w$ we get:

$$
\int 2 w \cos w d w=2 w \sin w+2 \cos w+C
$$

Plug back in w to get the final solution:

$$
\int \cos \sqrt{x} d x=2 \sqrt{x} \sin \sqrt{x}+2 \cos \sqrt{x}+C
$$

10. $\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta^{3} \cos \left(\theta^{2}\right) d \theta$

Note: There was a typo on the original, it should be $d \theta$ instead of $d x$.
Solution: Rewrite: $\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta^{3} \cos \left(\theta^{2}\right) d \theta=\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta \cdot \theta^{2} \cos \left(\theta^{2}\right) d \theta$. Then use the substitution $w=\theta^{2}$, so we have $d w=2 \theta d \theta$:

$$
\int_{\sqrt{\pi / 2}}^{\sqrt{\pi}} \theta^{3} \cos \left(\theta^{2}\right) d \theta=\frac{1}{2} \int_{\pi / 2}^{\pi} w \cos w d w
$$

Tabular makes this easy with $u=w, d v=\cos w d w$:

$$
\frac{1}{2} \int_{\pi / 2}^{\pi} w \cos w d w=\left.\frac{1}{2}(w \sin w+\cos w)\right|_{\pi / 2} ^{\pi}=-\frac{1}{2}-\frac{\pi}{4}
$$

11. $\int x \ln (1+x) d x$

Solution: Use the substitution $w=1+x$. Then $d w=d x$ and $x=w-1$:

$$
\int x \ln (1+x) d x=\int(w-1) \ln w d w
$$

Next use integration by parts with $u=\ln w, d v=(w-1) d w$. Then $d u=\frac{1}{w} d w$ and $v=$ $\left(\frac{1}{2} w^{2}-w\right):$

$$
\int(w-1) \ln w d w=\left(\frac{1}{2} w^{2}-w\right) \ln w-\int\left(\frac{1}{2} w-1\right) d w
$$

The right integral is straightforward, so

$$
\int(w-1) \ln w d w=\left(\frac{1}{2} w^{2}-w\right) \ln w-\frac{1}{4} w^{2}+w+C
$$

Next, plug back in w :

$$
\int x \ln (1+x) d x=\left(\frac{1}{2}(1+x)^{2}-(1+x)\right) \ln (1+x)-\frac{1}{4}(1+x)^{2}+1+x+C
$$

This answer is fine. You can simplify it a bit more for kicks and giggles:

$$
\int x \ln (1+x) d x=\frac{1}{2}\left(x^{2}-1\right) \ln (1+x)-\frac{1}{4} x^{2}+\frac{1}{2} x+C
$$

12. $\int \sin (\ln x) d x$

Solution: Use the substitution $w=\ln x$. Then $d w=\frac{1}{x} d x \Rightarrow x d w=d x \Rightarrow e^{w} d w=d x$ since $x=e^{w}$ from our substitution. Then we have:

$$
\int \sin (\ln x) d x=\int e^{w} \sin w d w
$$

This is the same as Problem $\# 1$, so

$$
\int e^{w} \sin w d w=\frac{1}{2}\left(e^{w} \sin w-e^{w} \cos w\right)+C
$$

Plug back in w :

$$
\int \sin (\ln x) d x=\frac{1}{2}(x \sin (\ln x)-x \cos (\ln x))+C
$$

13. $\int x^{3} \sqrt{1+x^{2}} d x$

You can do this problem a couple different ways. I will show you two solutions.
Solution I: You can actually do this problem without using integration by parts. Use the substitution $w=1+x^{2}$. Then $d w=2 x d x$ and $x^{2}=w-1$:

$$
\begin{gathered}
\int x^{3} \sqrt{1+x^{2}} d x=\int x \cdot x^{2} \sqrt{1+x^{2}} d x=\frac{1}{2} \int(w-1) \sqrt{w} d w=\frac{1}{2} \int\left(w^{3 / 2}-w^{1 / 2}\right) d w \\
=\frac{1}{5} w^{5 / 2}-\frac{1}{3} w^{3 / 2}+C=\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}-\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C
\end{gathered}
$$

Solution II: You can use integration by parts as well, but it is much more complicated. Rewrite the integral:

$$
\int x^{3} \sqrt{1+x^{2}} d x=\int \frac{1}{2} x^{2} \cdot 2 x \sqrt{1+x^{2}} d x
$$

Let $u=\frac{1}{2} x^{2}, d v=2 x \sqrt{1+x^{2}} d x$. Then $d u=x d x, v=\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}$ (using a substitution on $d v)$:

$$
\int \frac{1}{2} x^{2} \cdot 2 x \sqrt{1+x^{2}} d x=\frac{1}{3} x^{2}\left(1+x^{2}\right)^{3 / 2}-\frac{2}{3} \int x\left(1+x^{2}\right)^{3 / 2} d x
$$

You can use a substitution on the last integral:

$$
\int \frac{1}{2} x^{2} \cdot 2 x \sqrt{1+x^{2}} d x=\frac{1}{3} x^{2}\left(1+x^{2}\right)^{3 / 2}-\frac{2}{15}\left(1+x^{2}\right)^{5 / 2}+C
$$

14. Find the area between the given curves: $y=x^{2} \ln x, y=4 \ln x$

Solution: We need to find when the two curves intersect, so set them equal to each other:

$$
x^{2} \ln x=4 \ln x \Rightarrow\left(x^{2}-4\right) \ln x=0 \Rightarrow(x-2)(x+2) \ln x=0
$$

The solutions to this equation are $x=-2,2,1$. But, $x=-2$ isn't in our domain (since $\ln x$ has the domain $(0, \infty)$), so we are going to toss that solution out. This means we are going to integrate from $x=1$ to $x=2$. You can just guess which function is on the top or bottom:

$$
A=\int_{1}^{2}(\text { top function }- \text { bottom function }) d x=\int_{1}^{2}\left(4 \ln x-x^{2} \ln x\right) d x=\int_{1}^{2}\left(4-x^{2}\right) \ln x d x
$$

Using integration by parts, let $u=\ln x, d v=\left(4-x^{2}\right) d x$. Then $d u=\frac{1}{x} d x, v=4 x-\frac{1}{3} x^{3}$:

$$
\begin{gathered}
\int_{1}^{2}\left(4-x^{2}\right) \ln x d x=\left.\left(4 x-\frac{1}{3} x^{3}\right) \ln x\right|_{1} ^{2}-\int_{1}^{2}\left(4-\frac{1}{3} x^{2}\right) d x \\
=\left.\left[\left(4 x-\frac{1}{3} x^{3}\right) \ln x-4 x+\frac{1}{9} x^{3}\right]\right|_{1} ^{2}=\frac{16}{3} \ln 2-\frac{29}{9}
\end{gathered}
$$

15. Use the method of cylindrical shells to the find the volume generated by rotating the region bounded by the given curves about the specified axis: $y=e^{-x}, y=0, x=-1, x=0$ about $x=1$.
Solution: Draw a picture of what is happening. Recall that the volume for a cylinder is $V=2 \pi R H$. In this scenario, $R=1-x$ and $H=e^{-x}$ (since H is the top function minus the bottom function). x is going from -1 to 0 :

$$
V=\int_{-1}^{0} 2 \pi(1-x) e^{-x} d x
$$

Using tabular is pretty quick with $u=1-x, d v=e^{-x} d x$:

$$
\int_{-1}^{0} 2 \pi(1-x) e^{-x} d x=\left.2 \pi x e^{-x}\right|_{-1} ^{0}=2 \pi e
$$

