Practice Problems: Integration by Parts (Solutions)

Written by Victoria Kala vtkala@math.ucsb.edu November 25, 2014

The following are solutions to the Integration by Parts practice problems posted November 9.

1. $\int e^x \sin x dx$

Solution: Let $u = \sin x$, $dv = e^x dx$. Then $du = \cos x dx$ and $v = e^x$. Then

$$\int e^x \sin x dx = e^x \sin x - \int e^x \cos x dx$$

Now we need to use integration by parts on the second integral. Let $u = \cos x$, $dv = e^x dx$. Then $du = -\sin x dx$ and $v = e^x$. Then

$$\int e^x \sin x dx = e^x \sin x - e^x \cos x - \int e^x \sin x dx$$

The right integral is the same as the one we started with! Move it over:

$$2\int e^x \sin x dx = e^x \sin x - e^x \cos x$$

And divide by 2:

$$\int e^x \sin x dx = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right)$$

This is our final solution, so make sure to add your constant C:

$$\int e^x \sin x dx = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + C$$

		-	
		н	
		н	
		н	
- 6			

2. $\int (\sin^{-1} x)^2 dx$

Solution: Let $u = (\sin^{-1} x)^2$, dv = dx. Then $du = \frac{2\sin^{-1} x}{\sqrt{1-x^2}} dx$, v = x. Then

$$\int (\sin^{-1} x)^2 dx = x (\sin^{-1} x)^2 - \int \frac{2x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$

We need to use a substitution on the last integral. Let $w = \sin^{-1} x$. Then $dw = \frac{1}{\sqrt{1-x^2}} dx$ and $x = \sin w$. Just looking at the last integral, we have:

$$\int \frac{2x \sin^{-1} x}{\sqrt{1 - x^2}} dx = \int 2w \sin w dw$$

We can use integration by parts on this last integral by letting u = 2w and $dv = \sin w dw$. Tabular method makes it rather quick:

$$\int 2w\sin w dw = 2w\cos w + 2\sin w$$

At this point you can plug back in w:

$$\int 2w\sin w \, dw = 2\sin^{-1}x\cos(\sin^{-1}x) + 2\sin(\sin^{-1}x)$$

OR you can look at the triangle formed by our substitution for w. Since $x = \sin w$ then the hypotenuse will be 1, the opposite side will be x and the adjacent side will be $\sqrt{1-x^2}$. Then

$$\int 2w \sin w \, dw = 2\sqrt{1 - x^2} \sin^{-1} x + 2x$$

Either of these solutions is fine. So then our integral will look like either one of the solutions below:

$$\int (\sin^{-1} x)^2 dx = x(\sin^{-1} x)^2 - (2\sin^{-1} x\cos(\sin^{-1} x) + 2\sin(\sin^{-1} x)) + C$$
$$\int (\sin^{-1} x)^2 dx = x(\sin^{-1} x)^2 - (2\sqrt{1-x^2}\sin^{-1} x + 2x) + C$$

3. $\int x \tan^2 x dx$

Solution: Use the identity $\tan^2 x = \sec^2 x - 1$:

$$\int x \tan^2 x dx = \int x (\sec^2 x - 1) dx = \int x \sec^2 x dx - \int x dx$$

The last integral is no problemo. The first integral we need to use integration by parts. Let $u = x, dv = \sec^2 x$. Then $du = dx, v = \tan x$, so:

$$\int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx$$

You can rewrite the last integral as $\int \frac{\sin x}{\cos x} dx$ and use the substitution $w = \cos x$. $\int \tan x dx = -\ln |\cos x|$, so:

$$\int x \sec^2 x dx = x \tan x + \ln|\cos x|$$

Plug that into the original integral:

$$\int x \tan^2 x \, dx = x \tan x + \ln|\cos x| - \frac{1}{2}x^2 + C$$

4. $\int_0^1 t \cosh t dt$

Solution: This is quick with tabular method. Let u = t, $dv = \cosh t$:

$$\int_{0}^{1} t \cosh t dt = t \sinh t - \cosh t \Big|_{0}^{1} = \sinh(1) - \cosh(1) + \cosh(0)$$

You can leave your answer like this. If you want to evaluate it further, remember that $\sinh x = \frac{e^x - e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$. Then we see that $\sinh(1) = \frac{1}{2}(e^1 - e^{-1})$, $\cosh(1) = \frac{1}{2}(e^1 + e^{-1})$, and $\cosh 0 = 1$. Then

$$\int_0^1 t \cosh t dt = \sinh(1) - \cosh(1) + \cosh(0) = 1 - \frac{1}{4}$$

5. $\int z^3 e^z dx$

Solution: Tabular is the way to go with this baby. Let $u = z^3$, $dv = e^z dz$. Then

$$\int z^3 e^z dx = z^3 e^z - 3z^2 e^z + 6z e^z - 6e^z + C = e^z (z^3 - 3z^2 + 6z - 6) + C$$

6. $\int_{1}^{\sqrt{3}} \arctan(1/x) dx$

Solution: Let $u = \arctan(1/x), dv = dx$. Then $du = \frac{-dx}{x^2+1}$ (using chain rule), v = x:

$$\int_{1}^{\sqrt{3}} \arctan(1/x) dx = x \arctan(1/x) \Big|_{1}^{\sqrt{3}} + \int_{1}^{\sqrt{3}} \frac{x}{x^2 + 1} dx$$

The last integral you can use the substitution $w = x^2 + 1$. Then:

$$\int_{1}^{\sqrt{3}} \arctan(1/x) dx = x \arctan(1/x) + \frac{1}{2} \ln(x^2 + 1) \Big|_{1}^{\sqrt{3}}$$
$$= \sqrt{3} \arctan(\sqrt{3}) + \frac{1}{2} \ln 4 - \arctan(1) + \frac{1}{2} \ln 2 = \frac{\sqrt{3}\pi}{3} + \frac{1}{2} \ln 2 - \frac{\pi}{4}$$

7. $\int \cos x \ln (\sin x) dx$

Solution: We first need to do a substitution. Let $w = \sin x$, then $dw = \cos x dx$:

$$\int \cos x \ln (\sin x) dx = \int \ln w dw$$

Next use integration by parts with $u = \ln w, dv = dw$. Then $du = \frac{1}{w}dw, v = w$:

$$\int \ln w dw = w \ln w - \int dw = w \ln w - w$$

We need to plug back in w:

$$\int \cos x \ln (\sin x) dx = \sin x \ln(\sin x) - \sin x + C$$

_		_	
г		٦	
L		1	
-	-	-	

8. $\int_{1}^{2} \frac{(\ln x)^2}{x^3} dx$

You can do this problem a couple different ways. I will show you two solutions. Solution I: First do the substitution $w = \ln x$. Then $dw = \frac{1}{x}dx$ and $x = e^w$. Then

$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} dx = \int_{0}^{\ln 2} \frac{w^{2}}{e^{2w}} dw = \int_{0}^{\ln 2} w^{2} e^{-2w} dw$$

Tabular is easy on this guy:

$$\int_{0}^{\ln 2} w^2 e^{-2w} dw = -\frac{w^2}{2} e^{-2w} - \frac{w}{2} e^{-2w} - \frac{1}{4} e^{-2w} \Big|_{0}^{\ln 2} = -\frac{e^{-2w}}{2} \left(w^2 + w + \frac{1}{2} \right) \Big|_{0}^{\ln 2}$$
$$= -\frac{1}{8} \left((\ln 2)^2 + \ln 2 + \frac{3}{2} \right)$$

Solution II: Start of with integration by parts. Let $u = (\ln x)^2$, $dv = \frac{1}{x^3} dx$. Then $du = \frac{2\ln x}{x} dx$, $v = -\frac{1}{2x^2}$:

$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} dx = -\frac{(\ln x)^{2}}{2x^{2}}\Big|_{1}^{2} + \int_{1}^{2} \frac{\ln x}{x^{3}} dx$$

Do integration by parts again. Let $u = \ln x$, $dv = \frac{1}{x^3}dx$. Then $du = \frac{1}{x}dx$, $v = -\frac{1}{2x^2}$:

$$\int \frac{\ln x}{x^3} dx = -\frac{\ln x}{2x^2} \Big|_1^2 + \int_1^2 \frac{1}{2x^3} dx = \left(-\frac{\ln x}{2x^2} - \frac{1}{4x^2}\right) \Big|_1^2$$

Plugging this into the original integral we get:

$$\int_{1}^{2} \frac{(\ln x)^{2}}{x^{3}} dx = \left(-\frac{(\ln x)^{2}}{2x^{2}} - \frac{\ln x}{2x^{2}} - \frac{1}{4x^{2}}\right)\Big|_{1}^{2} = -\frac{1}{2x^{2}}\left((\ln x)^{2} + \ln x + \frac{1}{2}\right)\Big|_{1}^{2}$$
$$= -\frac{1}{8}\left((\ln 2)^{2} + \ln 2 + \frac{3}{2}\right)$$

9. $\int \cos \sqrt{x} dx$

Solution: First do the substitution $w = \sqrt{x}$. Then $dw = \frac{1}{2\sqrt{x}}dx \Rightarrow 2\sqrt{x}dw = dx \Rightarrow 2wdw = dx$:

$$\int \cos \sqrt{x} dx = \int 2w \cos w dw$$

Using tabular with $u = 2w, dv = \cos w dw$ we get:

$$\int 2w\cos w dw = 2w\sin w + 2\cos w + C$$

Plug back in w to get the final solution:

$$\int \cos\sqrt{x} dx = 2\sqrt{x}\sin\sqrt{x} + 2\cos\sqrt{x} + C$$

10.
$$\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) d\theta$$

Note: There was a typo on the original, it should be $d\theta$ instead of dx. *Solution:* Rewrite: $\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) d\theta = \int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \theta \cdot \theta^2 \cos(\theta^2) d\theta$. Then use the substitution $w = \theta^2$, so we have $dw = 2\theta d\theta$:

$$\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) d\theta = \frac{1}{2} \int_{\pi/2}^{\pi} w \cos w dw$$

Tabular makes this easy with u = w, $dv = \cos w dw$:

$$\frac{1}{2} \int_{\pi/2}^{\pi} w \cos w dw = \frac{1}{2} \left(w \sin w + \cos w \right) \Big|_{\pi/2}^{\pi} = -\frac{1}{2} - \frac{\pi}{4}$$

r	-	-	
L			
L			
L			

11. $\int x \ln(1+x) dx$

Solution: Use the substitution w = 1 + x. Then dw = dx and x = w - 1:

$$\int x \ln(1+x) dx = \int (w-1) \ln w dw$$

Next use integration by parts with $u = \ln w$, dv = (w - 1)dw. Then $du = \frac{1}{w}dw$ and $v = \left(\frac{1}{2}w^2 - w\right)$: $\int (w - 1)\ln w dw = \left(\frac{1}{2}w^2 - w\right)\ln w - \int \left(\frac{1}{2}w - 1\right)dw$ The right integral is straightforward, so

$$\int (w-1)\ln w \, dw = \left(\frac{1}{2}w^2 - w\right)\ln w - \frac{1}{4}w^2 + w + C$$

Next, plug back in w:

$$\int x \ln(1+x) dx = \left(\frac{1}{2}(1+x)^2 - (1+x)\right) \ln(1+x) - \frac{1}{4}(1+x)^2 + 1 + x + C$$

This answer is fine. You can simplify it a bit more for kicks and giggles:

$$\int x \ln(1+x) dx = \frac{1}{2}(x^2 - 1) \ln(1+x) - \frac{1}{4}x^2 + \frac{1}{2}x + C$$

12. $\int \sin(\ln x) dx$

Solution: Use the substitution $w = \ln x$. Then $dw = \frac{1}{x}dx \Rightarrow xdw = dx \Rightarrow e^w dw = dx$ since $x = e^w$ from our substitution. Then we have:

$$\int \sin(\ln x) dx = \int e^w \sin w dw$$

This is the same as Problem #1, so

$$\int e^w \sin w dw = \frac{1}{2} (e^w \sin w - e^w \cos w) + C$$

Plug back in w:

$$\int \sin(\ln x) dx = \frac{1}{2} \left(x \sin(\ln x) - x \cos(\ln x) \right) + C$$

13. $\int x^3 \sqrt{1+x^2} dx$

You can do this problem a couple different ways. I will show you two solutions.

Solution I: You can actually do this problem without using integration by parts. Use the substitution $w = 1 + x^2$. Then dw = 2xdx and $x^2 = w - 1$:

$$\int x^3 \sqrt{1+x^2} dx = \int x \cdot x^2 \sqrt{1+x^2} dx = \frac{1}{2} \int (w-1)\sqrt{w} dw = \frac{1}{2} \int (w^{3/2} - w^{1/2}) dw$$
$$= \frac{1}{5} w^{5/2} - \frac{1}{3} w^{3/2} + C = \frac{1}{5} (1+x^2)^{5/2} - \frac{1}{3} (1+x^2)^{3/2} + C$$

Solution II: You can use integration by parts as well, but it is much more complicated. Rewrite the integral:

$$\int x^3 \sqrt{1+x^2} dx = \int \frac{1}{2} x^2 \cdot 2x \sqrt{1+x^2} dx$$

Let $u = \frac{1}{2}x^2$, $dv = 2x\sqrt{1+x^2}dx$. Then du = xdx, $v = \frac{2}{3}(1+x^2)^{3/2}$ (using a substitution on dv):

$$\int \frac{1}{2}x^2 \cdot 2x\sqrt{1+x^2}dx = \frac{1}{3}x^2(1+x^2)^{3/2} - \frac{2}{3}\int x(1+x^2)^{3/2}dx$$

You can use a substitution on the last integral:

$$\int \frac{1}{2}x^2 \cdot 2x\sqrt{1+x^2}dx = \frac{1}{3}x^2(1+x^2)^{3/2} - \frac{2}{15}(1+x^2)^{5/2} + C$$

14. Find the area between the given curves: $y=x^2\ln x,\,y=4\ln x$

Solution: We need to find when the two curves intersect, so set them equal to each other:

$$x^{2} \ln x = 4 \ln x \Rightarrow (x^{2} - 4) \ln x = 0 \Rightarrow (x - 2)(x + 2) \ln x = 0$$

The solutions to this equation are x = -2, 2, 1. But, x = -2 isn't in our domain (since $\ln x$ has the domain $(0, \infty)$), so we are going to toss that solution out. This means we are going to integrate from x = 1 to x = 2. You can just guess which function is on the top or bottom:

$$A = \int_{1}^{2} (\text{top function} - \text{bottom function}) \, dx = \int_{1}^{2} (4 \ln x - x^2 \ln x) \, dx = \int_{1}^{2} (4 - x^2) \ln x \, dx$$

Using integration by parts, let $u = \ln x$, $dv = (4 - x^2)dx$. Then $du = \frac{1}{x}dx$, $v = 4x - \frac{1}{3}x^3$:

$$\int_{1}^{2} (4 - x^{2}) \ln x dx = \left(4x - \frac{1}{3}x^{3}\right) \ln x \Big|_{1}^{2} - \int_{1}^{2} \left(4 - \frac{1}{3}x^{2}\right) dx$$
$$= \left[\left(4x - \frac{1}{3}x^{3}\right) \ln x - 4x + \frac{1}{9}x^{3}\right] \Big|_{1}^{2} = \frac{16}{3} \ln 2 - \frac{29}{9}$$

15. Use the method of cylindrical shells to the find the volume generated by rotating the region bounded by the given curves about the specified axis: $y = e^{-x}$, y = 0, x = -1, x = 0 about x = 1.

Solution: Draw a picture of what is happening. Recall that the volume for a cylinder is $V = 2\pi RH$. In this scenario, R = 1 - x and $H = e^{-x}$ (since H is the top function minus the bottom function). x is going from -1 to 0:

$$V = \int_{-1}^{0} 2\pi (1-x)e^{-x} dx$$

Using tabular is pretty quick with u = 1 - x, $dv = e^{-x} dx$:

$$\int_{-1}^{0} 2\pi (1-x)e^{-x} dx = 2\pi x e^{-x} \Big|_{-1}^{0} = 2\pi e$$