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A CONTINUUM THEORY OF CHIRAL SMECTIC C LIQUID
CRYSTALS∗

MARIA-CARME CALDERER† AND SOOKYUNG JOO‡

Abstract. We formulate a nonlinear continuum theory of flow of chiral smectic C liquid crystals
(C*) involving molecular director, layer order parameter, polarization vector, flow velocity, and
hydrostatic pressure fields. In addition to chiral orientational ordering, smectic C* phases also present
positional ordering, with molecular centers of mass arranged in one dimensional layers. The nonzero
tilt angle of the molecular director with respect to the layer normal together with the chirality is
responsible for the ferroelectric nature of the phase. This results in a stronger coupling with applied
electric fields than the dielectric nematic. We apply the model to study the molecular reorientation
dynamics in homeotropic geometry under the influence of an applied electric field. The switching
process between states with opposite polarization is understood by the traveling wave solution of
the system. We prove existence and uniqueness of the traveling wave and show that the predicted
switching time is smaller than that when the flow effect is neglected. We also obtain bounds on
the speed of switching and an optimality condition on the parameters of the problem. Numerical
simulations confirm the predictions of the analysis.

Key words. continuum theory, smectic liquid crystals, molecular reorientation dynamics, fer-
roelectric liquid crystals, traveling wave

AMS subject classifications. 35Q35, 35Q51, 76D07, 80A17

DOI. 10.1137/070696477

1. Introduction. We develop a model of smectic C* liquid crystals account-
ing for elastic, hydrodynamic, and electrostatic effects. The free energy includes the
Oseen–Frank energy of nematic liquid crystals, the smectic C energy of the form pro-
posed by Chen and Lubensky, and the ferroelectric electrostatic energy. We apply
the governing equations to study the switching dynamics, in homeotropic geometry,
between two states with opposite electric polarization. We apply a variational method
to characterize the speed of the switching traveling wave and show that the predicted
speed is greater than in the approach that neglects flow. We also obtain an optimal-
ity condition of the speed in terms of the parameters of the problem. We perform
numerical simulations to illustrate the dynamics of switching. A main feature of our
work is the study of the backflow effect due to the spontaneous polarization of the
liquid crystal.

Liquid crystal phases form when a material has a degree of positional or orien-
tational ordering yet stays in a liquid state. In the nematic state, molecules tend
to align themselves along a preferred direction with no positional order of centers
of mass. The unit vector field n, nematic director, represents the average direction
of molecular alignment. Moreover, if the liquid crystal is chiral, n follows a heli-
cal pattern with temperature-dependent pitch. Upon lowering the temperature, or
increasing concentration, according to whether the liquid crystal is thermotropic or
lyotropic, the nematic liquid crystal experiences a transition to the smectic A phase
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with molecules arranged along equally spaced layers. The molecules tend to align
themselves along the direction perpendicular to the layers. Upon transition to the
lower temperature smectic C phase, a symmetry break occurs, with molecules making
a nonzero tilt angle with the layer normal. Values of the tilt angle α are found to be
between 20 and 35 degrees and depend on the material and temperature.

We consider chiral smectic C liquid crystals and label them C*, according to
conventional notation. One relevant feature of liquid crystal molecules that form
smectic C* phases is the presence of a side chain giving a transverse electric dipole
and therefore yielding the polarization field P of the theory. Level surfaces of the
scalar variable φ describe smectic layers. A schematic representation of the fields
of a smectic C* phase is given in Figure 1, where the normal vector to the layers
corresponds to the axis of a cone of semiangle α, with n being allowed to rotate on
the surface. The polarization vector P is perpendicular to both the layer normal
∇φ and the director field [16]. Additional fields of the hydrodynamic theory are the
velocity field u and the hydrostatic pressure p. The latter is the constraint associated
with the assumption of fluid incompressibility.

In chiral configurations, since P rotates with n, the net polarization of the material
is zero. Therefore, ferroelectric states correspond to configurations with constant n.
The electrostatic effects due to polarization dominate the dielectric effects of standard
nematic liquid crystals. Consequently, faster switching devices are achieved with
smectic C* liquid crystals.

In this article, we study the transition between states with opposite polarization
and determine lower bounds for the speed of the connecting traveling wave. The
latter corresponds to a chiral configuration with periodically varying n and P. The
switching takes place upon reversing the direction of the applied electric field. The
stability of the polarized states was studied in [23]. The traveling wave of our problem
represents the backflow effect, that is, the flow generated by changes in the applied
electric field.

The free energy density of the model consists of nematic, smectic C, and elec-
trostatic contributions. The form of the smectic C free energy, FS , that we study
was introduced by Chen and Lubensky in 1976, based on the Landau–de Gennes
model for smectic A [6]. They investigated the nematic to smectic phase transition,
and it was later used by Renn and Lubensky to predict the twist grain boundary
phase in cholesteric smectic [19]. However, the free energy density FS is degener-
ate in that it lacks second order coercivity in the direction n. In order to avoid the
anisotropic quartic order derivatives in the Chen–Lubensky model, Luk’yanchuk pro-
posed a modified model [20]. The new model was later used in [13] to rigorously
analyze the temperature phase transition from chiral nematic to chiral smectic liquid
crystals. The analysis of the ferroelectric smectic C* phases was carried out in [24],
where the energy minimizers are further required to satisfy the electrostatic Maxwell
equations. The hydrodynamic theory that we propose combines the approaches by
Leslie and Ericksen (for details, see [8], [4], and [29]) for nematic and the work by
W. E [9] for smectic A liquid crystals. The latter follows the model by Kleman and
Parodi [14] also for smectic A phases, where the concepts of permeation force and
molecular field were introduced as forces driving smectic A flow. However, since the
layer position completely specifies the director field in smectic A, W. E shows that
only the permeation force is responsible for the dynamics of smectic A liquid crystals.
This is not the case for the smectic C modeling, where both forces are needed to
describe the hydrodynamics. We use a variational approach together with the dis-
sipation inequality to determine the elastic and viscous components, respectively, of
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such forces. Furthermore, the Lorenz force associated with the charge density −divP
enters the equation of balance of linear momentum.

Leslie, Stewart, and Nakagawa also developed a nonlinear continuum theory for
smectic C liquid crystals, using the c director, which is the projection of n onto the
layer, and the unit vector normal to the layers (see [18] and [29]). Their theory is
constrained to exclude variations in the layer spacing thickness and changes in tilt
with respect to the layer. The nonlinear continuum theory in the present paper is
also restricted to the constant tilt angle case, excluding the variation of the tilt angle
between the director and the layer normal as in [18]. However, our model allows the
variation of the layer spacing thickness.

The second part of the paper is devoted to the study of the switching dynamics of
a smectic C* sample confined between parallel bounding planes. We assume that the
electric field is applied parallel to the smectic layers. We derive the governing equation
of the director and the flow equation in the homeotropic geometry, where the smectic
layers are parallel to the bounding plates. When the flow is neglected, the director
profile can be understood by the traveling wave solution of the resulting nonlinear
reaction diffusion equation (see [7], [21], [25], and [26]). This equation also represents
the gradient flow of the energy. One main goal of our work is to study the traveling
wave solutions, taking flow and ferroelectric effects into account and estimating the
speed of the corresponding traveling wave. The variational characterization of the
speed follows the approach in [2] for reaction-diffusion equations. Furthermore, we
obtain an optimal lower bound of the speed in terms of the viscous and smectic
parameters of the model. Numerical simulations of the problem explore ranges of
parameters, from the case in which flow is neglected to cases in which parameters
approach the optimal lower bound of the speed. We find a very good agreement with
the predictions of the analysis.

Section 2 is devoted to static theory, and dissipation and hydrodynamics are
discussed in section 3. The analysis of traveling waves of the switching problem and
the corresponding numerical simulations are developed in section 4.

2. Hydrostatic theory.

2.1. Smectic C* free energy. The total free energy density consists of the
nematic fn and smectic fs parts. The Oseen–Frank energy density for a nematic is
given by

fn =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n + τ)2 +

K3

2
|n × (∇× n)|2,

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.
The parameter τ denotes the cholesteric twist.

In order to associate smectic and nematic structure with a state (n, Ψ), we write

Ψ(x) = ρ(x)eiϕ(x).

Then the molecular mass density is defined by

δ(x) = ρ0(x) +
1
2
(Ψ(x) + Ψ∗(x)) = ρ0(x) + ρ(x) cos ϕ(x),

where ρ0 is a locally uniform mass density, ρ(x) is the mass density of the smectic
layers, and ϕ parametrizes the layers so that ∇ϕ is the direction of the layer normal.
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Now the smectic C energy density is given by

fs =
D

2
|D2

nΨ|2 − C⊥
2

|DnΨ|2 +
C‖
2
|n · DnΨ|2,

where Dn = ∇ − iqn, D2
n = Dn · Dn, and D, C⊥, C‖ are positive constants. The

model for smectic C energy was proposed by Chen and Lubensky [6], but we use
the modified model, introduced by Luk’yanchuk [20]. Since we investigate smectic
structure far from the nematic–smectic transition, we assume that the magnitude of
the smectic order parameter is a constant. We may assume that Ψ = eiϕ. Then fs

becomes

fs =
D

2
|∇ϕ − qn|4 +

D

2
(Δϕ − q∇ · n)2 − C⊥

2
|∇ϕ − qn|2 +

C‖
2

(n · ∇ϕ − q)2

=
D

2

(
|∇ϕ − qn|2 − C⊥

2D

)2

+
C‖
2

(n · ∇ϕ − q)2 +
D

2
(Δϕ − q∇ · n)2.

If n is a constant and ϕ is linear, then we can see that the energy is minimized if
and only if n · ∇ϕ = q and |∇ϕ − qn|2 = C⊥

2D . This corresponds to a uniform smectic
C state with tilt angle α, between the director and the layer normal, determined by
tan2 α = C⊥/(2Dq2) and layer thickness d satisfying (2π

d )2 = q2 + C⊥
2D .

We get the free energy density

fd = fn + fs.

Note that there are two constraints:

(2.1) |n| = 1 and n · ∇ϕ = cosα|∇ϕ|.

We consider the total smectic C free energy density

(2.2) f̃ = fd + fl,

where the last term is present in order to make use of Lagrange multipliers:

fl =
λ

2
(n · n − 1) + β(n · ∇ϕ − cosα|∇ϕ|).

2.2. The molecular field and the permeation force. In the nematic, the
molecular field can be obtained through the deformation of the director field while
the centers of gravity of the molecules are fixed. On the other hand, the directors
are parallel to the layer normal in smectic A. As a result, W. E instead discussed
the permeation forces, the normal forces acting on layers in [9]. In smectic C, the
directors are tilted with respect to the layer normal, and hence both the molecular
field and the permeation force need to be discussed. First we obtain the equilibrium
conditions in bulk by writing the variation of the total free energy with respect to the
director and the layer normal variations, while keeping the material undeformed. Let
D be any region inside the liquid crystal. We get

δ

∫
D

f̃ =
∫

D

(
∂f̃

∂(Δϕ)
δ(Δϕ) +

∂f̃

∂(∂iϕ)
δ(∂iϕ) +

∂f̃

∂(∂inj)
δ(∂inj) +

∂f̃

∂ni
δni

)
dx
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=
∫

D

(
∂i

[
∂i

(
∂f̃

∂(Δϕ)

)
− ∂f̃

∂(∂iϕ)

]
δϕ +

[
∂f̃

∂ni
− ∂j

(
∂f̃

∂(∂jni)

)]
δni

)
dx

+
∫

∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) +

[
∂f̃

∂(∂jϕ)
− ∂j(

∂f̃

∂(Δϕ)
)

]
δϕ +

∂f̃

∂(∂jni)
δni

)
νj ds

=:
∫

D

(−gδϕ − hiδni) dx +
∫

∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ + πijδni

)
νj ds,

where

g = −∇ · τ
= −∇ ·

[
∇
(

∂fd

∂(Δϕ)

)
− ∂fd

∂(∇ϕ)
− β

(
n− cosα

∇ϕ

|∇ϕ|
)]

,(2.3)

hi = −∂fd

∂ni
+ ∂jπij − λni − β∂iϕ,

using the notation

(2.4) πij =
∂fd

∂(∂jni)
.

2.3. The elastic stress. We now calculate the elastic stress associated with the
infinitesimal deformation of the body, while holding the location of the layers and the
director field fixed. For this, we let

r′ = r + u(r),
n′(r′) = n′(r + u) = n(r),
ϕ′(r′) = ϕ(r + u) = ϕ(r).

Using the relations

∂r′i
∂rj

= δij +
∂ui

∂rj
and

∂ri

∂r′j
� δij − ∂(δui)

∂rj
,

we get

∂ϕ′

∂r′j
� ∂ϕ

∂rj
− ∂ϕ

∂rk

∂uk

∂rj
and

∂n′
i

∂r′j
� ∂ni

∂rj
− ∂ni

∂rk

∂uk

∂rj
.

Hence

δ(∂iϕ) � − ∂ϕ

∂rk

∂uk

∂ri
,

δ(∂inj) � −∂nj

∂rk

∂uk

∂ri
,

δ(Δϕ) � −2(∂ikϕ)(∂iuk) − (∂kϕ)Δuk.

Taking these approximations into account, we now calculate the corresponding varia-
tion of the energy of a subdomain D in Ω. For this, we use integration by parts. This
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gives

δ

∫
D

f̃ =
∫

D

(
∂f̃

∂(Δϕ)
δ(Δϕ) +

∂f̃

∂(∂iϕ)
δ(∂iϕ) +

∂f̃

∂(∂jni)
δ(∂jni)

)
dx

=
∫

D

(
∂fd

∂(Δϕ)
[−2(∂jkϕ)(∂juk) − (∂kϕ)(∂2

j uk)
])

dx

+
∫

D

([
∂fd

∂(∂jϕ)
+ β

(
nj − cosα

∂jϕ

|∇ϕ|
)] (−(∂kϕ)(∂juk)

))
dx

+
∫

D

(
∂fd

∂(∂inj)
(−(∂kni)(∂juk)

))
dx −

∫
∂D

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)νj ds

=:
∫

D

(
σd

kj(∂juk)
)

dx −
∫

∂D

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)νj ds,

where

(2.5) σd
kj =

[
− ∂fd

∂(Δϕ)
∂jkϕ + τj(∂kϕ) − πij(∂kni)

]

is the deviatoric part of the stress tensor. To take this incompressibility constraint into
account, we modify the previous calculations to include the corresponding Lagrange
multiplier term. For this, let us consider the free energy density

f = f̃ − p∇ · u,

where p is a Lagrange multiplier. This leads to a modified elastic stress

(2.6) σe
kj = σd

kj − pδkj .

2.4. The equilibrium equations. By combining all variations from the previ-
ous sections, we have the total variation of f̃ :

δ

∫
D

f̃ =
∫

D

(
σe

kj(∂juk) − hkδnk − gδϕ
)

dx

+
∫

∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ + πkjδnk − ∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

(2.7)

By integration by parts, it becomes

δ

∫
D

f̃ =
∫

D

(
−∂j(σe

kj)uk − hkδnk − gδϕ
)

dx

+
∫

∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ + πkjδnk

)
νj ds

+
∫

∂D

(
σe

kjuk − ∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

Then the hydrostatic equilibrium condition is

δ

∫
D

f̃ = 0
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for all D ⊆ Ω and for admissible variations. Taking variations such that δn = 0,
δϕ = 0, and u and its gradient vanish at the boundary gives the system of partial
differential equations

(2.8) h = 0, g = 0,

and

(2.9) ∂jσkj = 0.

These, together with two constraint relations (2.1), give the equilibrium equations for
smectic C without the external fields. In three dimensions, the system (2.1) and (2.8)
consists of six scalar equations for the six unknowns n, ϕ, λ, and β. Well posedness of
this system, in its variational form, was studied in [13] and [24]. Moreover, in [13], the
authors performed an extensive phase transition and stability analysis of equilibrium
states. In [24], the role of permanent polarization was a main focus of the work.

Notice that the combined system (2.1), (2.8), and (2.9) is overdetermined. This
issue in nematic liquid crystals was addressed by Ericksen in [10]. He argues that
artificial body forces have to be included in the equations for the system to be closed.

2.5. The balance of torques. We integrate by parts (2.7) to obtain

δ

∫
D

f̃ =
∫

D

(
σe

kj(∂juk) − hkδnk − τk∂k(δϕ)
)

dr

+
∫

∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) + πkjδnk − ∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

(2.10)

Notice that f̃ is invariant under the rotation of the centers of gravity, the directors,
and the layers by the same angle ω. Now the energy is unchanged under the following
replacement:

u(r) = ω × r,
δn(r) = ω × n,

δϕ = 0,

where ω is the rotation vector. Then we have

∂juk = εkpjωp.

Therefore, we have, from (2.10),

δ

∫
D

fd = εkpjωp

∫
D

[
σd

kj − hknj + β

(
nj − cosα

∂jϕ

|∇ϕ|
)

∂kϕ − λnknj − β∂kϕnj

]
dr

+ ωp

∫
∂D

(
εkpqπkjnqνj − ∂f

∂(Δϕ)
εkpj(∂kϕ)νj

)
ds

= εkpjωp

∫
D

[
σd

kj − hknj

]
dr

+ ωp

∫
∂D

(
εkpqπkjnqνj − ∂f

∂(Δϕ)
εkpj(∂kϕ)νj

)
ds = 0.

(2.11)
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From the equilibrium condition (2.8), we obtain∫
D

εkpj(σd
kj)dr +

∫
∂D

εkpq (sknq + (∂qϕ)mk) ds = 0,

where si = πijνj and mi = ∂f
∂(Δϕ)νi. Using the notation Γ for the antisymmetric part

of the elastic stress, we have

(2.12) εpjiσ
d
ij = Γp(σd),

and using the fact Γp(σe) = Γp(σd), we have

(2.13)
∫

D

Γp(σe) dr +
∫

∂D

(n× s + ∇ϕ × m) = 0.

From (2.9), we have

0 =
∫

D

εjpq (∂i(σe
ji)) rq

= εjpq

(
−
∫

D

(σe
ji + φji)∂irq +

∫
∂D

(σe
ji) rq νi

)

= −
∫

D

εjpi(σe
ji) + εjpq

∫
∂D

(σe
ji) rq νi.

Therefore, ∫
D

Γp(σe) dr =
∫

∂D

r × t dx,

where tj = (σe
ji) νi. Inserting this equation into (2.13), we finally obtain

(2.14)
∫

∂D

(r× t + n × s + ∇ϕ × m)ds = 0.

This indicates that there are three contributions to these surface torques: mechanical
torque (due to the stress tensor), director torque, and layer torque. This is the
analogue of the balance of torques in nematic liquid crystals given by equation (3.115)
of [8].

3. Hydrodynamic theory. In this section, we derive the hydrodynamic equa-
tions for smectic C liquid crystals following previous work by Ericksen and Leslie (see
[8], [4], [29], and [17]) for nematics and work by W. E [9] for smectic A. As we men-
tioned in the introduction, both the director and the layer functions are hydrodynamic
variables.

3.1. Balance laws. The equations of balance of mass, linear momentum, energy,
and angular momentum are given by

d

dt

∫
D

ρ dx = 0,(3.1)

d

dt

∫
D

ρvi dx =
∫

∂D

σijdsj ,(3.2)

d

dt

∫
D

E dx =
∫

∂D

(σv + ϕ̇τ + ṅπ) · ds −
∫

∂D

q · ds,(3.3)

d

dt

∫
D

(r × ρv) dr =
∫

∂D

(r × t + n × s + ∇ϕ × m) ds,(3.4)
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where D ⊆ Ω. We neglect body forces for simplicity, but they can easily be included
as needed. Here, σ, τ , π, t, s, and m consist of the equilibrium components obtained
in the previous sections and the dissipative components to be calculated next. The
energy density in (3.3) is given by E = 1

2 |v|2 + e, where e denotes the internal energy
per unit mass. The terms on the right-hand side of (3.3) represent the work done
by the stress, the layer permeation force, and the director force, respectively, on the
material. The vector field q denotes the heat flux.

Since the above balance laws are valid for any D ⊆ Ω, by the Reynolds transport
theorem, (3.1), (3.2), and (3.3) yield

ρt + ∇ · (ρv) = 0 or ρ̇ = −ρ∇ · v,(3.5)
ρv̇ = ∇ · σ or ρv̇i = ∂jσij ,(3.6)

ρ

(
1
2
v2 + e

)·
= ∇ · (σv + ϕ̇τ + ṅπ) −∇ · q,(3.7)

where ḟ = ∂f
∂t + v · ∇f is a material derivative. The local form of (3.4) becomes

a symmetry relation on constitutive equations, analogous to (2.28) of [10] for the
nematic liquid crystal in the static case. It is guaranteed to hold for fields satisfying the
balance of linear momentum, provided that the constitutive equations are invariant
under rigid body rotations. It will be used later in the connection with the entropy
inequality. In this paper, we assume incompressibility of the flow; that is, ∇ · v = 0
holds, and consequently, ρ is constant.

3.2. The entropy inequality. We assume that the second law of thermody-
namics in the form of the Clausius–Duhem inequality

(3.8) ρṠ + ∇ ·
( q

T

)
≥ 0

holds for all processes. Here field S denotes the entropy of the system per unit mass.
We use this inequality to determine the forms of the dissipative contribution to stresses
and forces [17]. Taking (3.6) into account, we rewrite the balance of energy (3.7) as
follows:

ρė = −∇ · q + Tr(σ∇v) + ∇ · (ϕ̇τ + ṅπ).

We let

(3.9) H = e − TS

denote the Helmholtz free energy density. Substituting (3.9) into inequality (3.8),
using the balance of energy, and omitting the pure divergence terms, we obtain

ρḢ = ρ(ė − T Ṡ − SṪ )

≤ Tr(σ∇v) −∇ · q + ∇ ·
( q

T

)
T − ρSṪ

= Tr(σ∇v) − ρSṪ − q · ∇T

T
.

Since H = H(ρ,n,∇n,∇ϕ, Δϕ, T ),

Ḣ =
∂H

∂T
Ṫ +

∂H

∂n
ṅ +

∂H

∂(∇n)
(∇n)· +

∂H

∂(∇ϕ)
(∇ϕ)· +

∂H

∂(Δϕ)
(Δϕ)· +

∂H

∂ρ
ρ̇.
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A direct computation gives

∇ϕ̇ = (∇ϕ)· + ∇v∇ϕ,

∇ṅ = (∇n)· + ∇v∇n,

Δϕ̇ = (Δϕ)· + 2Tr(∇2ϕ∇v) + Δv · ∇ϕ.

So, we get

Tr(σ∇v) − 1
T

q · ∇T − ρṪ

(
S +

∂H

∂T

)

−ρ
∂H

∂n
ṅ− ρ

∂H

∂(∇n)
{∇ṅ−∇v∇n} − ρ

∂H

∂(∇ϕ)
{∇ϕ̇ − (∇v)(∇ϕ)}

−ρ
∂H

∂(Δϕ)

{
Δϕ̇ − 2Tr(∇2ϕ∇v) − Δv · ∇ϕ − ρ

∂H

∂ρ
ρ̇

}
≥ 0.

Since, in particular, such an inequality holds for all possible choices of Ṫ , we find that
S = −∂H

∂T . For smectic C liquid crystals, we take f̃ = ρH , as in (2.2). Moreover,
since the density is constant, the previous inequality becomes

Tr

[(
σ +

∂f̃

∂(∇n)
∇n +

∂f̃

∂(Δϕ)
∇2ϕ −∇

{
∂f̃

∂(Δϕ)
∇ϕ

})
∇v

]
− 1

T
q · ∇T

−
(

∂f̃

∂n
−∇ ∂f̃

∂(∇n)

)
ṅ−

(
−∇ · ∂f̃

∂(∇ϕ)
+ Δ

∂f̃

∂(Δϕ)

)
ϕ̇ ≥ 0.

Assuming that the stress consists of elastic and dissipative parts, σe (equation (2.6))
and σv, respectively, we write

σ = σe + σv.

This, together with substituting (2.3), (2.4), and (2.5) into the inequality, gives

Tr(σv∇v) − 1
T

q · ∇T + h · ṅ + gϕ̇ ≥ 0.

Let us introduce the notation

2σsym = σv + (σv)T ,

2D = ∇v + (∇v)T , 2w = ∇× v.

We denote D = (dij). From (2.12), we have

(3.10) Γ(σ) = (σ32 − σ23, σ13 − σ31, σ21 − σ12).

Therefore,

(3.11) Tr(σsymD) + Γ(σv) ·w + h · ṅ + gϕ̇ − 1
T

q · ∇T ≥ 0.

Following de Gennes [8], in order to characterize Γ(σv), we need to consider the
balance of angular momentum. Using integration by parts, (3.4) becomes∫

D

r × ρv̇ dr =
∫

D

(Γ(σ) + r × (∇ · σ)) dr +
∫

∂D

(n× s + ∇ϕ × m) ds.
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By substituting (3.6) into this, we get∫
D

Γ(σ) dx +
∫

∂D

(n × s + ∇ϕ × m) ds = 0.

Moreover, using (2.11), we now get

(3.12)
∫

D

Γ(σv) dr =
∫

D

(−n × h) dr,

which, substituted into the inequality, gives

(3.13) Tr(σsymD) + h ·N + gϕ̇ − 1
T

q · ∇T ≥ 0,

where N = ṅ − w × n. Observe that n · N = 0 holds as a result of the constraint
|n| = 1.

We conclude this subsection by writing the skew part of the viscous stress. Since
(3.12) holds for all D ⊆ Ω, we have

(3.14) σskw
ij =

1
2
εkjiΓk = −1

2
εkjinjhi.

From now on, we will denote l = ∇ϕ.

3.3. Coefficients of viscosity. We consider linear dependence of the dissipative
forces on their fluxes. We require q and σsym to be invariant under the simultaneous
transformations n → −n and ∇ϕ → −∇ϕ. We impose that h and ϕ̇ change into −h
and −ϕ̇, respectively, under the same transformation. Hence the most general form
of the equations is

σsym
ij = A1

ijkNk + A2
ijkmdkm,(3.15)

hi = B1
ijNj + B2

ijkdjk,(3.16)

qi = C3
ij

1
T

∂T

∂xj
+ C4

i g,(3.17)

ϕ̇ = D3
i

1
T

∂T

∂xi
+ D4g,(3.18)

where A, B, C, and D are functions of ni and ∂iϕ. The most general form of h that
meets the invariance requirement is

h = β1N + β2(N · l)l + β3Dn + β4Dl + β5(n · Dl)l
+ β6(n · Dn)l + β7(l · Dl)l.

(3.19)

The skew-symmetric part of the viscous stress follows from (3.14) together with (3.19).
Writing the symmetric part of the stress tensor explicitly from (3.15) and adding to
it the skew part, gives

σv = α1D + α2Dn⊗ n + α3n ⊗ Dn + α4(Dl ⊗ l + l ⊗ Dl) + α5Dl ⊗ n
+ α6n⊗ Dl + α7(Dn ⊗ l + l ⊗ Dn) + α8(l · Dl)l⊗ n + α9(l · Dl)n⊗ l

+ α10(n · Dl)l ⊗ l + α11(l · Dl)n ⊗ n + α12(n · Dl)l ⊗ n
+ α13(n · Dl)n ⊗ l + α14(n · Dn)l ⊗ l + α15(n · Dl)n ⊗ n(3.20)
+ α16(n · Dn)l ⊗ n + α17(n · Dn)n ⊗ l + α18(n · Dn)n ⊗ n
+ α19(l · Dl)l ⊗ l + α20(l ⊗ N + N ⊗ l) + α21N ⊗ n + α22n⊗ N

+ α23(l · N)l ⊗ l + α24(l · N)l ⊗ n + α25(l · N)n⊗ l + α26(l ·N)n ⊗ n.
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We also get

q =
1
T

(μ1∂iT + μ2ninj∂jT + μ3ϕiϕj∂jT + μ4niϕj∂jT + μ5njϕi∂jT )

+ (γ1ni + γ2ϕi)g,(3.21)

ϕ̇ =
1
T

(γ′
1ni∂iT + γ′

2ϕ∂iT ) + γ′
3g.

The viscosity coefficients α, β, γ, μ, and γ′ cannot be arbitrarily chosen: they sat-
isfy inequalities that follow from (3.13). Further restrictions result from Onsager’s
reciprocal relations (see, for instance, [8], [4], and [22]):

β1 = α22 − α21, β2 = α25 − α24, β3 = α3 − α2 = α21 + α22,

β4 = α6 − α5 = 2α20, β5 = α13 − α12 = α24 + α25,

β6 = α17 − α16 = α26, β7 = α9 − α8 = α23,

γ′
1 = γ1, γ′

2 = γ2.

(3.22)

We end this section by summarizing the governing equations of the hydrodynamic
of smectic C. It consists of 11 equations and 11 unknowns. The latter are the pressure
p, the velocity field v, the director n, the layer ϕ, the temperature T , and Lagrange
multipliers λ and β. The equations are as follows:

• balance of linear momentum equation (3.6):

(3.23) ρv̇ = ∇ · (−pI + σd + σv) + f ,

where the elastic stress σd is given from (2.5), the viscous part σv is from
(3.20), and f is an external force;

• molecular field equation:

(3.24)
∂fd

∂ni
− ∂jπij + λni + β∂iϕ + hi = 0,

where h is given from (3.19);
• permeation force equation:

ϕ̇ =
1
T

(γ′
1ni∂iT + γ′

2ϕ∂iT ) + γ′
3g,

where g is defined in (2.3);
• balance of energy equation:

Et + ∇ · (Ev + q − σv − ϕ̇τ − ṅπ) = 0,

where q is given from (3.21);
• incompressibility condition:

∇ · v = 0;

• two constraints:

|n| = 1 and n · ∇ϕ = cosα|∇ϕ|.
In the isothermal case, this reduces to 10 equations and 10 unknowns.
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Fig. 1. Smectic C* liquid crystals in the homeotropic geometry; the polarization is perpendicular
to both the layer normal and the director.

4. Switching dynamics.

4.1. Electrostatic energy. In order to investigate the electric effect, we con-
sider the electric energy [8], [29],

(4.1) fe = −
∫

Ω

D · dE = −
∫

Ω

(ε⊥E + εa(n · E)n + P) · dE,

where E denotes the electric field, P denotes the ferroelectric polarization, and εa

represents the dielectric anisotropy. Since chiral smectic C liquid crystals are known
to be ferroelectric, they possess a spontaneous polarization P. Dropping the constant
term in the electric energy, (4.1) reduces to

(4.2) fe = −1
2

∫
Ω

εa(n ·E)2 dx −
∫

Ω

P ·E dx.

Since the magnitude of the polarization is small in smectic C* liquid crystals, we
assume that it is constant, P0. Furthermore, since the chiral molecules create a
spontaneous polarization within each layer and the polarization is perpendicular to
the director (see Figure 1), we write

(4.3) P = P0
∇ϕ × n
|∇ϕ × n| .

The polarization P also gives an electrostatic charge density, −∇ · P. The elec-
trostatic effects of chiral smectic C liquid crystals were studied in [24]. As a result of
the electric field, the Lorentz force f = (−∇ ·P)E has to be included in (3.23).

4.2. The model. We consider the homeotropic geometry where the liquid crys-
tal is confined between two parallel plates with the smectic layers parallel to the plates
(Figure 1). Let

n = (cosφ sin α, sin φ sin α, cos α),
v = (v, 0, 0),(4.4)

∇ϕ = (0, 0, k),

with φ = φ(z), v = v(z), p = p(x, y, z), and α and k constant. We consider the
switching dynamics between states with opposite polarization when a uniform electric
field is applied in a direction parallel to the layer, i.e., E = E0(0, 1, 0) in (4.2). We
also restrict our attention to the case when εa < 0, which applies to many smectic C
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liquid crystals. This tends to align the director and polarization fields along directions
perpendicular and parallel to the applied field, respectively. Note that, since ∇·P = 0,
f in (3.23) vanishes.

The balance of linear momentum (3.23) yields

ρvt = − ∂p

∂x
+

∂

∂z
(σd

13 + σv
13),

0 = −∂p

∂y
+

∂

∂z
(σd

23 + σv
23),(4.5)

0 = −∂p

∂z
+

∂

∂z
(σd

33 + σv
33).

The first two equations imply that p is linear on x and y. So, p is of the form

p(x, y, z, t) = k0(t) + k1(t)x + k2(t)y + σd
33 + σv

33.

Hence, (4.5) reduces to

ρvt = −k1(t) +
∂

∂z
(σd

13 + σv
13).

Also, as a result of (4.4), equation (3.24) reduces to a single equation for φ. Hence
the system of governing equations is

(4.6)
ρvt =

∂

∂z

[
g(φ)vz − η3(sin φ)φt

]
− k1(t),

2β1 sin2 αφt = λ1 sin φvz + 2Kφzz − 2P0E0 sin φ − |εa|E2
0 sin2 α sin 2φ,

where

λ1 = sin α((−β1 + β3) cosα + β4k),
K = sin2 α(K2 sin2 α + K3 cos2 α),

g(φ) =
1
2
(η1 + η2 cos2 φ),

η1 = α1 + α4k
2(α2 − α21) cos2 α + (α5 + α7 − α20)k cosα,

η2 = sin2 α
(
α3 + α22 + k2(α13 + α25) + (α15 + 2α17 + α26)k cosα

+2α18 cos2 α
)
,

η3 = sin α(α20 k + α21 cosα),
∂p

∂x
= k1(t).

Onsager reciprocal relation (3.22) now gives

(4.7) λ1 = 2 sinα (α20k + α21 cosα) = 2η3.

Note that we may derive the following inequalities from the dissipation inequality
(3.13):

(4.8) β1 > 0, g(φ) > 0, and β1g(φ) sin2 α − η2
3 sin2 φ > 0.

The first inequality can be obtained from the shear flow alignment.
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Let V = v + K(t)/ρ, where K(t) is an antiderivative of k1(t). Using (4.7) and
new variables

z̄ =
(

P0Ec

K

) 1
2

z, t̄ =
P0Ec

β1 sin2 α
t, u =

β1√
KP0Ec

V, and Ec =
2P0

|εa| sin2 α
,

the system (4.6) becomes

εut̄ =
∂

∂z̄

(
sin2 α

η1
g(φ)uz̄ − η3

η1
(sin φ)φt̄

)
,

φt̄ =
η3

β1
sin φuz̄ + φz̄z̄ − e sinφ − e2 sin 2φ,

(4.9)

where

ε =
ρK

β1η1
and e = E0/Ec.

We may assume that the dimensionless parameter ε 
 1 since the viscous coefficients
are much bigger than the elastic coefficients.

4.3. Traveling wave solution. In this section, we study the traveling wave
solutions of system (4.9) to understand the director profile when the electric field
is applied. For this, we look for a solution of (4.9) in the form w(ζ) = u(z̄, t̄) and
θ(ζ) = φ(z̄, t̄), where ζ = z̄ − ct̄, such that θ connects two bistable states, θ = 0 and
θ = π. Then the traveling wave solution is (w(ζ), θ(ζ)) ∈ C2(R) × C2(R) and c ∈ R

satisfying

−cε w′ =
[
sin2 α

η1
g(θ)w′ + c

η3

η1
sin θ θ′

]′
,(4.10)

−c θ′ =
η3

β1
sin θw′ + θ′′ − e sin θ − e2 sin 2θ,(4.11)

with w(−∞) = w′(−∞) = 0, θ(−∞) = 0, and θ(∞) = π. This is consistent with
the system approaching an equilibrium state. Here the ′ denotes the derivative with
respect to ζ. Integrating (4.10) and using the relations w(−∞) = w′(−∞) = θ(−∞) =
0, equation (4.10) reduces to

(4.12) −cε w =
sin2 α

η1
g(θ)w′ + c

η3

η1
sin θ θ′.

Substituting this into (4.11), we have

(4.13) θ′′ + ch(θ)θ′ − e sin θ − e2 sin 2θ − cε
η3 sin θ

β1 sin2 α g(θ)
w = 0,

where

(4.14) 0 < h(θ) := 1 − η2
3

β1 sin2 α

sin2 θ

g(θ)
≤ 1.

Notice that the inequalities follow from (4.8). Introducing the rescaled variable
v = εw, we rewrite the system (4.12) and (4.13) as follows:

v′ + c εb(θ)v + c εβ1d(θ)θ′ = 0,

θ′′ + ch(θ)θ′ + E(θ) − c d(θ)v = 0,
(4.15)
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where

b(θ) =
η1

sin2 α g(θ)
,

E(θ) = −e sin θ − e2 sin 2θ,

d(θ) =
η3

β1 sin2 α

sin θ

g(θ)
.

If θ(ζ) and v(ζ) are solutions of the system, then so are θ(ζ +ζ0) and v(ζ +ζ0) for any
constant ζ0. Hence we impose a normalized condition, θ(0) = 1

2 [θ(−∞) + θ(∞)] = π
2 .

Using the condition v(−∞) = 0, we solve the first equation for v,

v(ε, c, θ, ζ) = −cεβ1e
−cεβ(ζ)

∫ ζ

−∞
d(θ(s))θ′(s)ecεβ(s) ds,

where

β(ζ) =
∫

b(θ(s)) ds.

Substituting this expression into the second equation of (4.15), we have

(4.16) θ′′ + ch(θ)θ′ + E(θ) − c d(θ)v(ε, c, θ, ζ) = 0.

For ε = 0, equation (4.16) becomes

(4.17) θ′′ + ch(θ)θ′ + E(θ) = 0.

From now on, we will restrict our attention to the case e > 1
2 so that the term E(θ) is

cubic-like. In fact, if e > 1
2 , the term E(θ) = −e sin θ(1+2e cosθ) has an intermediate

zero. In this case, (4.17) with a bistable nonlinearity has an increasing traveling wave
solution (c0, θ0) with c0 > 0 that θ0 → 0 as ζ → −∞ and θ0 → π as ζ → ∞, thanks
to the condition h(θ) > 0 for any θ [15]. Furthermore, we can easily see that [11], [1],
from the phase plane analysis, θ0 satisfies

|θ0(ζ) − π| ≤ Ke−μ1ζ , |θ′0(ζ)| ≤ Ke−μ1ζ

for ζ ≥ 0 and for some constant μ1 > 0, and

|θ0(ζ)| ≤ Keμ2ζ , |θ′0(ζ)| ≤ Keμ2ζ

for ζ ≤ 0 and for some constant μ2 > 0.
Motivated by the work in [12], we look for solutions of (4.16) of the form

θ = θ0 + s(ζ, c, ε),
c = c0 + σ.

Substituting these into (4.16) and letting r = (s, σ), we define the operator F :

F (r; ε) = θ′′0 + s′′ + (c0 + σ)h(θ0 + s)(θ′0 + s′) + E(θ0 + s)
−(c0 + σ)d(θ0 + s)v(ε, c0 + σ, θ0 + s).

Note that r satisfies the boundary conditions

(4.18) r(−∞; ε) = r(∞; ε) = 0.
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For a fixed constant μ satisfying 0 < μ < min{μ1, μ2}, we define the function spaces

Bn
μ(R) =

{
u ∈ Cn(R) : ‖u‖Bn

µ(R) ≡
n∑

i=0

sup
x∈R

∣∣eμ|x|
(

d

dx

)i

u(x)
∣∣ < ∞

}
,

Ḃn
μ(R) = {u ∈ Bn

μ(R) : u(0) = 0}.

Note that the mapping F is differentiable from X into Y , where

X = Ḃ2
μ × R,

Y = B0
μ.

The next lemma establishes that F meets the hypotheses of the implicit function
theorem.

Lemma 4.1.

(i) F is a continuous mapping, and ‖F (r; ε) − F (r; 0)‖Y → 0 as ε → 0.
(ii) F is continuously Fréchet differentiable with respect to r, and

‖Fr(r; ε)[r̃] − Fr(r; 0)[r̃]‖Y → 0 as ε → 0.

(iii) Fr(0; 0) has a bounded inverse.
Proof.

(i) We have

|eμ|z|(F (r; ε) − F (r; 0))|
= eμ|z|

∣∣∣∣(c0 + σ)2d(θ0 + s)εβ1g−(z)
∫ z

−∞
d(θ0 + s)(θ′0 + s′)g+(t)eμ|t|e−μ|t| dt

∣∣∣∣
≤ Cε(c0 + σ)‖θ′0 + s′‖B0

µ
eμ|z|

∣∣∣∣
∫ z

−∞
e−μ|t|dt

∣∣∣∣
≤ Cε(c0 + σ)‖θ0 + s‖B2

µ
,

where g±(z) = exp(±ε(c0 + σ)β(z)) and β′(z) = b(θ0 + s)(z). Notice that we used
the fact that β(z) is increasing.

(ii) Note that

eμ|z||Fr(r; ε)r̃ − Fr(r; 0)r̃|
= eμ|z||σ̃d(θ0 + s)vε(z) − (c0 + σ)d′(θ0 + s)vε(z)s̃ + (c0 + σ)d(θ0 + s)v′ε(z)s̃|,

where vε(z) = v(ε, c0 + σ, θ0 + s, z). Since we have

v′ε(z) = −(c0 + σ)εb(θ0 + s)vε(z) − (c0 + σ)εβ1d(θ0 + s)(θ′0 + s′),

the rest of the proof follows as in part (i).
(iii) It suffices to show that for any g ∈ Y , the linear problem

Fr(0; 0)r̃ = g

has a unique solution r̃ ∈ Ḃ2
μ such that

‖r̃‖Ḃ2
µ
≤ C‖g‖Y .
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The above linear problem can be explicitly written as

(4.19) s̃
′′

+ c0h(θ0)s̃′ + (c0h(θ0)θ′0 + E′(θ0))s̃ = G,

where

G = g − h(θ0)θ′0σ̃.

The proof of existence and uniqueness of solution of (4.19) satisfying boundary con-
dition (4.18) follows as that of Lemma 3 in [15].

The proof of the following theorem uses the implicit function theorem together
with Lemma 4.1.

Theorem 4.2. For ε > 0 sufficiently small, there exists a unique (up to transla-
tion in ζ) (cε, θε, vε) satisfying (4.15) such that

‖θε − θ0‖B2
µ

+ ‖vε‖B1
µ

+ |cε − c0| −→ 0 as ε → 0.

4.4. Speed of the traveling wave. In this section, we study the speed of the
traveling front of (4.16). We follow the variational approach in [2] for reaction-diffusion
equations.

We first consider front propagation for the reaction-diffusion equation

(4.20) θ′′ + cθ′ = H(θ),

where H(θ) = e sin θ + e2 sin 2θ. This is the traveling wave equation for a switching
problem for smectic C liquid crystals, when flow effects are neglected (see [25], [26]).
It is known that there exists a unique heteroclinic solution (cs, θs) of (4.20) such that
θ(−∞) = 0, θ(∞) = π, and θ′(ζ) > 0 for |ζ| < ∞. This equation can also be obtained
from our model by neglecting the flow. The authors of [7] found the explicit wave
front solution (θs, cs) of (4.20), given by

θs(ζ) = 2 arctan(e
√

2eζ), cs =
1√
2
.

Following the work by Benguria and Depassier in [2], we obtain the variational ex-
pression of the speed for (4.20):

(4.21) c2
s = max

2
∫ π

0
Hfdθ∫ π

0
f2

f ′ dθ
,

where the maximum is taken over all positive increasing functions f in (0, π). We
denote the maximizing function by f̂ .

With the help of Theorem 4.2, we will investigate c0, the speed of the traveling
wave solution of (4.17). We let θ be a solution of (4.17). The same proof as in [2]
leads to the variational principle for the speed of the traveling wave of (4.17). Noting
that 0 < h(θ) ≤ 1,

(4.22) c2
0 = max

2
∫ π

0 Hfdθ∫ π

0
h2f2

f ′ dθ
,

where the maximum is taken over all positive increasing functions f in (0, π) for which
the integrals exist.
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Now we compare the speeds c0 and cs using (4.21) and (4.22). From (4.22), we
get

c2
0 ≥ 2

∫ π

0 Hf̂dθ∫ π

0
h2f̂2

f̂ ′ dθ
.

Since 0 < h(θ) ≤ 1, we have

h2(θ) ≤ h(θ) = 1 − 2η2
3 sin2 θ

β1 sin2 α (η1 + η2 cos2 θ)
≤ 1 − A sin2 θ,

where

(4.23) A :=
2η2

3

β1 sin2 α (η1 + max{η2, 0})
≥ 0.

It follows from (4.14) that 0 ≤ A < 1. In fact, if max{η2, 0} = 0, then

A =
2η2

3

β1η1 sin2 α
= 1 − h

(π

2

)
< 1.

Also, if max{η2, 0} = η2, then

A =
2η2

3

β1 sin2 α(η1 + η2)
≤ 1 − h

(π

2

)
< 1.

From (4.21) and (4.22), we have

(4.24) c2
0 ≥ 2

∫ π

0 Hf̂dθ∫ π

0
f̂2

f̂ ′ dθ − A
∫ π

0
sin2 θ f̂2

f̂ ′ dθ
=

2
∫ π

0 Hf̂dθ∫ π

0
f̂2

f̂ ′ dθ(1 − A · M)
=

c2
s

1 − A · M ,

where M is a fixed number given by

M =

∫ π

0
sin2 θ f̂2

f̂ ′ dθ∫ π

0
f̂2

f̂ ′ dθ
.

Notice that 0 < M < 1 is independent of viscosity coefficients, since f̂ is the maxi-
mizing function for cs. We rewrite (4.24) as

(4.25)
(

c0

cs

)2

≥ 1
1 − A · M .

The inequality (4.25) shows that the switching is faster when the flow is taken into
consideration. The value A in (4.23) is the control parameter; i.e., A is the quantity
which measures flow effects. If A is close to 1, then flow effects are expected to be
strong, and if A is close to 0, then flow effects are weak. In particular, we see that the
ratio of c0 to cs increases as A approaches 1. In view of this control parameter, the
optimal switching time is obtained when A = 1. The sufficient condition for this is

η2 ≤ 0 and 2η2
3 = β1η1 sin2 α.

This condition depends only on the viscosity, the tilt angle, and the layer thickness
of the material. In [5], the control parameter was also found. Our control parameter
A is analogous to that given by Carlsson, Clark, and Zou in [5].
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Fig. 2. Director configuration when the initial condition is the linear function connecting 0
and π. The applied electric field corresponds to e = 0.75 on the left column and e = 1.3 on the right
column. The upper row depicts the director profile when flow is neglected, while in the second and
third rows the flow effects are included. For simulations in the second row, the control parameter A
is close to 0, while for the third row, A is close to 1.

4.5. Numerical simulation. In order to solve the system (4.9) numerically,
we use a second order semi-implicit scheme for time discretization. This scheme
requires us to solve two Helmholtz equations at each time step, which we do by
means of a spectral Galerkin method (see [27] and [28]). We impose the homogeneous
boundary and initial conditions on u and assume strong anchoring conditions for φ,
i.e., φ(0, t) = 0 and φ(L, t) = π, where L is the domain size. From (4.3) and (4.4) we
see that the director configurations φ = 0 and φ = π correspond to the polarization
pointing in the same and opposite directions as the applied electric field, respectively.

For ε, we simply take ε = 10−6. For the tilt angle and viscosity coefficients
appearing in the system, we use η1 = 3.8, η2 = −0.2, β1 = 40.9706, and α = π/8.
This set of parameters, employed in [3], gives a value of the control parameter A in
(4.23) of approximately 0.5. In [3], the authors study the macroscopic equations of
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Fig. 3. Director configuration when the sign of the electric field is reversed at t = 0. The
arrangement of the simulations in rows and columns follows the analogous criteria to those in
Figure 2.

smectic C* liquid crystals [18] in a homeotropic geometry to investigate the backflow
effect upon the removal of a strong electric field. Their approach is based on linear
analysis, replacing the nonlinear functions by their initial values. In our simulations,
we vary the parameter η3 in order for A to span the interval (0, 1).

We consider two types of initial conditions for φ corresponding to the simulations
shown in Figures 2 and 3, respectively. In Figure 2, the initial value φ0 is the linear
function connecting two bistable states, 0 and π. When a positive electric field is
applied, the molecules start to switch so that the polarization is parallel to the applied
field in most of the cell except near the top plate where the strong anchoring condition,
φ(L, t) = π, is imposed. Figure 2 depicts the director configuration with e = 0.75 in
the left and e = 1.3 in the right columns, respectively. The flow effect is neglected
in simulations in the first row, and it is included in the second and third rows. The
control parameter A is close to 0 in the middle, while A is close to 1 in the third row.
As we may expect from (4.25), the simulations in first and second rows depict almost
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the same switching time, while the third row describes faster switching dynamics.
In Figure 3, we numerically investigate the switching behavior when the sign of

the electric field is alternating, proceeding as follows: we first obtain the director
profile of the equilibrium state in a positive electric field and then impose it as an
initial condition of the problem with an applied negative electric field. In [21], the
authors investigated the switching time for the static model when alternating fields
are applied.

The simulations show that the predicted switching process is faster when the flow
is taken into consideration. We note that the switching is already faster even with a
very small, but nonzero, value of A.

Zou, Clark, and Carlsson in [30] also performed numerical simulations for reori-
entation dynamics with various boundary conditions, based on the model proposed
by Leslie, Stewart, and Nakagawa [18]. In bookshelf geometry, they showed that the
switching process is generally faster when backflow is present. They also numerically
confirmed that the control parameter found in [5] is a measure of the contribution of
the backflow effects. The control parameter in [30] is defined as the average of 1−h(θ)
over θ. In the previous section, we also identified an analogous control parameter,
which is dependent only on parameters of the problem, but we obtained bounds on
it that rigorously allow us to quantify the backflow effects in the switching time. In
particular, the upper bound on A yields an optimality condition on the parameters.

5. Conclusion. In this paper, we presented a nonlinear continuum theory of
smectic C* liquid crystals. Since the smectic C liquid crystals have molecules tilted
with respect to the layers, we use both the director and the layer functions as variables
in the hydrodynamic theory. For the general framework, we employed the approach
by Ericksen and Leslie for the hydrodynamic theory of the nematic liquid crystals.
Also, motivated by the work of W. E on the continuum theory of the smectic A
liquid crystals, we obtained the dynamic equations for the director n and the layer
variable ϕ.

We applied the model to study the switching dynamics between two states with
opposite polarization in the homeotropic geometry. Even though there are 22 vis-
cosity coefficients in our hydrodynamic theory, the system of equations reduces to
two equations with only four viscosity constants, η1, η2, η3, and β1. These constants
are further constrained by the entropy inequality. We understand the molecular re-
orientation via the propagation of a traveling wave. We proved the existence and
uniqueness of the traveling wave solution and further analyzed the speed of the front.
We showed that the flow generally makes the switching faster and that there is a
control parameter that determines the importance of the flow effect. This analysis
was confirmed by the numerical simulations.
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