New results on q-positivity

Y. García Ramos ${ }^{1}$, J.E. Martínez-Legaz ${ }^{2}$, S. Simons ${ }^{3}$
${ }^{1}$ Centro de Investigación de la Universidad del Pacífico, Lima, Peru
${ }^{2}$ Universitat Autònoma de Barcelona, Spain
${ }^{3}$ University of California, Santa Barbara, USA

Abstract

In this paper we discuss symmetrically self-dual spaces, which are simply real vector spaces with a symmetric bilinear form. Certain subsets of the space will be called q-positive, where q is the quadratic form induced by the original bilinear form. The notion of q-positivity generalizes the classical notion of the monotonicity of a subset of a product of a Banach space and its dual. Maximal q-positivity then generalizes maximal monotonicity. We discuss concepts generalizing the representations of monotone sets by convex functions, as well as the number of maximally q-positive extensions of a q-positive set. We also discuss symmetrically self-dual Banach spaces, in which we add a Banach space structure, giving new characterizations of maximal q-positivity. The paper finishes with two new examples.

1 Introduction

In this paper we discuss symmetrically self-dual spaces, which are simply real vector spaces with a symmetric bilinear form. Certain subsets of the space will be called q-positive, where q is the quadratic form induced by the original bilinear form. The notion of q-positivity generalizes the classical notion of the monotonicity of a subset of a product of a Banach space and its dual. Maximal q-positivity then generalizes maximal monotonicity.
A modern tool in the theory of monotone operators is the representation of monotone sets by convex functions. We extend this tool to the setting of q positive sets. We discuss the notion of the intrinsic conjugate of a proper convex function on an SSD space. To each nonempty subset of an SSD space, we associate a convex function, which generalizes the function originally introduced by Fitzpatrick for the monotone case in [3]. In the same paper he posed a problem on convex representations of monotone sets, to which we give a partial solution in the more general context of this paper.

[^0]We prove that maximally q-positive convex sets are always affine, thus extending a previous result in the theory of monotone operators [1, [5].
We discuss the number of maximally q-positive extensions of a q-positive set. We show that either there are an infinite number of such extensions or a unique extension, and in the case when this extension is unique we characterize it. As a consequence of this characterization, we obtain a sufficient condition for a monotone set to have a unique maximal monotone extension to the bidual.
We then discuss symmetrically self-dual Banach spaces, in which we add a Banach space structure to the bilinear structure already considered. In the Banach space case, this corresponds to considering monotone subsets of the product of a reflexive Banach space and its dual. We give new characterizations of maximally q-positive sets, and of minimal convex functions bounded below by q.
We give two examples of q-positivity: Lipschitz mappings between Hilbert spaces, and closed sets in a Hilbert space.

2 Preliminaries

We will work in the setting of symmetrically self-dual spaces, a notion introduced in [10]. A symmetrically self-dual (SSD) space is a pair $(B,\lfloor\cdot, \cdot\rfloor)$ consisting of a nonzero real vector space B and a symmetric bilinear form $\lfloor\cdot, \cdot\rfloor: B \times B \rightarrow \mathbb{R}$. The bilinear form $\lfloor\cdot, \cdot\rfloor$ induces the quadratic form q on B defined by $q(b)=$ $\frac{1}{2}\lfloor b, b\rfloor$. A nonempty set $A \subset B$ is called q-positive [10, Definition 19.5] if $b, c \in A \Rightarrow q(b-c) \geq 0$. A set $M \subset B$ is called maximally q-positive [10, Definition 20.1] if it is q-positive and not properly contained in any other q positive set. Equivalently, a q-positive set A is maximally q-positive if every $b \in B$ which is q-positively related to A (i.e. $q(b-a) \geq 0$ for every $a \in A$) belongs to A. The set of all elements of B that are q-positively related to A will be denoted by A^{π}. The closure of A with respect to the (possibly non Hausdorff) weak topology $w(B, B)$ will be denoted by A^{w}.
Given an arbitrary nonempty set $A \subset B$, the function $\Phi_{A}: B \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined by

$$
\Phi_{A}(x):=q(x)-\inf _{a \in A} q(x-a)=\sup _{a \in A}\{\lfloor x, a\rfloor-q(a)\} .
$$

This generalizes the Fitzpatrick function from the theory of monotone operators. It is easy to see that Φ_{A} is a proper $w(B, B)$-lsc convex function. If M is maximally q-positive then

$$
\begin{equation*}
\Phi_{M}(b) \geq q(b), \quad \forall b \in B \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{M}(b)=q(b) \Leftrightarrow b \in M \tag{2}
\end{equation*}
$$

A useful characterization of A^{π} is the following:

$$
\begin{equation*}
b \in A^{\pi} \text { if and only if } \Phi_{A}(b) \leq q(b) \tag{3}
\end{equation*}
$$

The set of all proper convex functions $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ satisfying $f \geq q$ on B will be denoted by $\mathcal{P} \mathcal{C}_{q}(B)$ and, if $f \in \mathcal{P} \mathcal{C}_{q}(B)$,

$$
\begin{equation*}
\mathcal{P}_{q}(f):=\{b \in B: f(b)=q(b)\} \tag{4}
\end{equation*}
$$

We will say that the convex function $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ is a q-representation of a nonempty set $A \subset B$ if $f \in \mathcal{P C}_{q}(B)$ and $\mathcal{P}_{q}(f)=A$. In particular, if $A \subset B$ admits a q-representation, then it is q-positive [10, Lemma 19.8]. The converse is not true in general, see for example [10, Remark 6.6].
A q-positive set in an SSD space having a $w(B, B)$-lsc q-representation will be called q-representable (q-representability is identical with \mathcal{S} - q-positivity as defined in [9, Def. 6.2] in a more restrictive situation). By (1) and (2), every maximally q-positive set is q-representable.
If B is a Banach space, we will denote by $\langle\cdot, \cdot\rangle$ the duality products between B and B^{*} and between B^{*} and the bidual space $B^{* *}$, and the norm in B^{*} will be denoted by $\|\cdot\|$ as well. The topological closure, the interior and the convex hull of a set $A \subset B$ will be denoted respectively by $\bar{A}, \operatorname{int} A$ and $\operatorname{conv} A$. The indicator function $\delta_{A}: B \rightarrow \mathbb{R} \cup\{+\infty\}$ of $A \subset B$ is defined by

$$
\delta_{A}(x):=\left\{\begin{array}{cl}
0 & \text { if } x \in A \\
+\infty & \text { if } x \notin A
\end{array}\right.
$$

The convex envelope of $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ will be denoted by conv f.

3 SSD spaces

Following the notation of [6], for a proper convex function $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$, we will consider its intrinsic (Fenchel) conjugate $f^{@}: B \rightarrow \mathbb{R} \cup\{+\infty\}$ with respect to the pairing $\lfloor\cdot, \cdot\rfloor$:

$$
f^{@}(b):=\sup \{\lfloor c, b\rfloor-f(c): c \in B\} .
$$

Proposition $1([\mathbf{1 0}, \mathbf{6}])$ Let A be a q-positive subset of an $S S D$ space B. The following statements hold:
(1) For every $b \in B, \Phi_{A}(b) \leq \Phi_{A}^{@}(b)$ and $q(b) \leq \Phi_{A}^{@}(b)$;
(2) For every $a \in A, \Phi_{A}(a)=q(a)=\Phi_{A}^{@}(a)$;
(3) $\Phi_{A}^{@}$ is the largest $w(B, B)$-lsc convex function majorized by q on A;
(4) A is q-representable if, and only if, $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset A$;
(5) A is q-representable if, and only if, for all $b \in B$ such that, for all $c \in B$, $\lfloor c, b\rfloor \leq \Phi_{A}(c)+q(b)$, one has $b \in A$.

Proof. (1) and (2). Let $a \in A$ and $b \in B$. Since A is q-positive, the infimum $\inf _{a^{\prime} \in A} q\left(a-a^{\prime}\right)$ is attained at $a^{\prime}=a$; hence we have the first equality in (2). Using this equality, one gets

$$
\Phi_{A}^{@}(b)=\sup _{c \in B}\left\{\lfloor c, b\rfloor-\Phi_{A}(c)\right\} \geq \sup _{a \in A}\left\{\lfloor a, b\rfloor-\Phi_{A}(a)\right\}=\sup _{a \in A}\{\lfloor a, b\rfloor-q(a)\}=\Phi_{A}(b),
$$

which proves the first inequality in (1). In view of this inequality, given that $\Phi_{A}^{@}(b)=\sup _{c \in B}\left\{\lfloor c, b\rfloor-\Phi_{A}(c)\right\} \geq\lfloor b, b\rfloor-\Phi_{A}(b)=2 q(b)-\Phi_{A}(b)$, we have $\Phi_{A}^{@}(b) \geq \max \left\{2 q(b)-\Phi_{A}(b), \Phi_{A}(b)\right\}=q(b)+\left|q(b)-\Phi_{A}(b)\right| \geq q(b)$, so that the second inequality in (1) holds true. From the definition of Φ_{A} it follows that $\Phi_{A}(c) \geq\lfloor c, a\rfloor-q(a)$ for every $c \in B$; therefore

$$
\Phi_{A}^{@}(a)=\sup _{c \in B}\left\{\lfloor c, a\rfloor-\Phi_{A}(c)\right\} \leq q(a) .
$$

From this inequality and the second one in (1) we obtain the second equality in (2).
(3). Let f be a $w(B, B)$-lsc convex function majorized by q on A. Then, for all $b \in B$,

$$
\begin{aligned}
\Phi_{A}(b) & =\sup _{a \in A}\{\lfloor b, a\rfloor-q(a)\}=\sup _{a \in A}\{\lfloor a, b\rfloor-q(a)\} \\
& \leq \sup _{a \in A}\{\lfloor a, b\rfloor-f(a)\} \leq \sup _{c \in B}\{\lfloor c, b\rfloor-f(c)\}=f^{@}(b) .
\end{aligned}
$$

Thus $\Phi_{A} \leq f^{@}$ on B. Consequently $f^{@ @} \leq \Phi_{A}^{@}$ on B. Since f is $w(B, B)$-lsc, from the (non Hausdorff) Fenchel-Moreau theorem [11, Theorem 10.1], $f \leq \Phi_{A}^{@}$ on B.
(4). We note from (1) and (2) that $\Phi_{A}^{@} \in \mathcal{P} \mathcal{C}_{q}(B)$ and $A \subset \mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$. It is clear from these observations that if $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset A$ then $\Phi_{A}^{@}$ is a $w(B, B)$-lsc q-representation of A. Suppose, conversely, that A is q-representable, so that there exists a $w(B ; B)$-lsc function $f \in \mathcal{P C}_{q}(B)$ such that $\mathcal{P}_{q}(f)=A$. It now follows from (3) that $f \leq \Phi_{A}^{@}$ on A , and so $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset \mathcal{P}_{q}(f)=A$.
(5). This statement follows from (4), since the inequality $\lfloor c, b\rfloor \leq \Phi_{A}(c)+q(b)$ holds for all $c \in B$ if, and only if, $b \in \mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$.

The next results should be compared with [9, Theorems 6.3.(b) and 6.5.(a)].
Corollary 2 Let A be a q-positive subset of an SSD space B. Then $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$ is the smallest q-representable superset of A.

Proof. By Proposition 1. (2), $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$ is a q-representable superset of A. Let C be a q-representable superset of A. Since $A \subset C$, we have $\Phi_{A} \leq \Phi_{C}$ and hence $\Phi_{C}^{@} \leq \Phi_{A}^{@}$. Therefore, by Proposition 1 (4), $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset \mathcal{P}_{q}\left(\Phi_{C}^{@}\right) \subset C$.

Corollary 3 Let A be a q-positive subset of an $S S D$ space B, and denote by C the smallest q-representable superset of A. Then $\Phi_{C}=\Phi_{A}$.

Proof. Since $A \subset C$, we have $\Phi_{A} \leq \Phi_{C}$. On the other hand, by Corollary 2. $C=\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$; hence $\Phi_{A}^{@}$ is majorized by q on C. Therefore, by Proposition 1. (3), $\Phi_{A}^{@} \leq \Phi_{C}^{@}$. Since Φ_{A} and Φ_{C} are $w(B, B)$-lsc, from the (non Hausdorff) Fenchel-Moreau theorem [11, Theorem 10.1], $\Phi_{C}=\Phi_{C}^{@ @} \leq \Phi_{A}^{@ @}=\Phi_{A}$. We thus have $\Phi_{C}=\Phi_{A}$.

We continue with a result about the domain of $\Phi_{A}^{@}$ which will be necessary in the sequel.

Lemma 4 (about the domain of $\Phi_{A}^{@}$) Let A be a q-positive subset of an $S S D$ space B. Then,

$$
\operatorname{conv} A \subset \operatorname{dom} \Phi_{A}^{@} \subset \operatorname{conv}^{w} A
$$

Proof. Since $\Phi_{A}^{@}$ coincides with q in A, we have that $A \subset \operatorname{dom} \Phi_{A}^{@}$, hence from the convexity of $\Phi_{A}^{@}$ it follows that

$$
\operatorname{conv} A \subset \operatorname{dom} \Phi_{A}^{@}
$$

On the other hand, from Proposition $1(3) \Phi_{A}^{@}+\delta_{\text {conv }^{w} A} \leq \Phi_{A}^{@}$, because $\Phi_{A}^{@}+\delta_{c o n v^{w} A}$ is $w(B, B)$-lsc, convex and majorized by q on A. Thus,

$$
\operatorname{dom} \Phi_{A}^{@} \subset \operatorname{dom}\left(\Phi_{A}^{@}+\delta_{c o n v^{w}} A\right) \subset \operatorname{conv}^{w} A
$$

This finishes the proof.

3.1 On a problem posed by Fitzpatrick

Let B be an SSD space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex function. The generalized Fenchel-Young inequality establishes that

$$
\begin{equation*}
f(a)+f^{@}(b) \geq\lfloor a, b\rfloor, \quad \forall a, b \in B . \tag{5}
\end{equation*}
$$

We define the q-subdifferential of f at $a \in B$ by

$$
\partial_{q} f(a):=\left\{b \in B: f(a)+f^{@}(b)=\lfloor a, b\rfloor\right\}
$$

and the set

$$
G_{f}:=\left\{b \in B: b \in \partial_{q} f(b)\right\} .
$$

In this Subsection we are interested in identifying sets $A \subset B$ with the property that $G_{\Phi_{A}}=A$. The problem of characterizing such sets is an abstract version of an open problem on monotone operators posed by Fitzpatrick [3, Problem 5.2].

Proposition 5 Let B be an $S S D$ space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a $w(B, B)$-lsc proper convex function such that $G_{f} \neq \emptyset$. Then the set G_{f} is q-representable.
Proof. Taking the $w(B, B)$-lsc proper convex function $h:=\frac{1}{2}\left(f+f^{@}\right)$, we have that

$$
G_{f}=\mathcal{P}_{q}(h) .
$$

Theorem 6 Let A be a q-positive subset of an SSD space B. Then
(1) $A \subset \mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset G_{\Phi_{A}} \subset A^{\pi} \cap \operatorname{conv}^{w} A$;
(2) If A is convex and $w(B, B)$-closed,

$$
A=G_{\Phi_{A}}
$$

(3) If A is maximally q-positive,

$$
A=G_{\Phi_{A}}
$$

Proof. (1). By Proposition 1(2), we have the first inclusion in (1). Let $b \in$ $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$. Since $\Phi_{A}(b) \leq \Phi_{A}^{@}(b)=q(b)$, we get

$$
2 q(b) \leq \Phi_{A}(b)+\Phi_{A}^{@}(b) \leq 2 q(b)
$$

It follows that $b \in G_{\Phi_{A}}$. This shows that $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \subset G_{\Phi_{A}}$. Using Proposition $1(1)$, we infer that for any $a \in G_{\Phi_{A}}, \Phi_{A}(a) \leq q(a)$, so $G_{\Phi_{A}} \subset A^{\pi}$. On the other hand, since $G_{\Phi_{A}} \subset \operatorname{dom} \Phi_{A}^{@}$, Lemma 4 implies that $G_{\Phi_{A}} \subset \operatorname{conv}^{w} A$. This proves the last inclusion in (1).
(2). This is immediate from (1) since $\operatorname{conv}^{w} A=A$.
(3). This follows directly from Proposition 5 and (1).

Proposition 7 Let A be a nonempty subset of an $S S D$ space B and let D be a $w(B, B)$-closed convex subset of B such that

$$
\begin{equation*}
\Phi_{A}(b) \geq q(b) \quad \forall b \in D \tag{6}
\end{equation*}
$$

Suppose that $A^{\pi} \cap D \neq \emptyset$. Then $A^{\pi} \cap D$ is q-representable.
Proof. We take $f=\Phi_{A}+\delta_{D}$; this function is $w(B, B)$-lsc, proper (because $\left.A^{\pi} \neq \emptyset\right)$ and convex. Let $b \in B$ be such that $f(b) \leq q(b)$, so

$$
\Phi_{A}(b) \leq q(b) \text { and } b \in D
$$

This implies that $b \in A^{\pi} \cap D$. From (6) we infer that $f(b)=\Phi_{A}(b)=q(b)$. It follows that $f \in \mathcal{P} \mathcal{C}_{q}(B)$. It is easy to see that f is a q-representative function for $A^{\pi} \cap D$.

Proposition 8 Let A be a q-positive subset of an $S S D$ space B. If $C=A^{\pi} \cap$ conv $^{w} A$ is q-positive, then

$$
C=G_{\Phi_{C}}=C^{\pi} \cap \operatorname{conv}^{w} C
$$

Proof. Clearly conv ${ }^{w} A \supset C$, from which $\operatorname{conv}^{w} A \supset \operatorname{conv}^{w} C$. Since $C \supset A$, $A^{\pi} \supset C^{\pi}$. Thus $C=A^{\pi} \cap \operatorname{conv}^{w} A \supset C^{\pi} \cap \operatorname{conv}^{w} C$. However, from Theorem 6(1), $C \subset G_{\Phi_{C}} \subset C^{\pi} \cap \operatorname{conv}^{w} C$.

Proposition 9 Let A be a q-positive subset of an SSD space B. If

$$
\begin{equation*}
\Phi_{A}(b) \geq q(b) \quad \forall b \in \operatorname{conv}^{w} A \tag{7}
\end{equation*}
$$

then

$$
G_{\Phi_{A}}=\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)
$$

Proof. It is clear from Theorem [6(1) and (7) that, for all $b \in G_{\Phi_{A}}, \Phi_{A}(b)=$ $q(b)$; thus $\Phi_{A}^{@}(b)=\lfloor b, b\rfloor-\Phi_{A}(b)=q(b)$, so $G_{\Phi_{A}} \subset \mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$. The opposite inclusion also holds, according to Theorem 6(1).

Corollary 10 Let A be a q-positive subset of an $S S D$ space B. If $\Phi_{A} \in \mathcal{P C}_{q}(B)$, then

$$
G_{\Phi_{A}}=\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)
$$

Proposition 11 Let A be a q-representable subset of an SSD space B. If $\Phi_{A}(b) \geq q(b)$ for all $b \in$ conv $^{w} A$, then

$$
A=G_{\Phi_{A}}
$$

Proof. Since A is a q-representable set, $A=\mathcal{P}_{q}(f)$ for some $w(B, B)$-lsc $f \in \mathcal{P C}_{q}(B)$. By Proposition $1(3), f \leq \Phi_{A}^{@}$; hence, by Corollary ??, $\mathcal{P}_{q}(f) \supset$ $\mathcal{P}_{q}\left(\Phi_{A}^{@}\right) \supset A=\mathcal{P}_{q}(f)$, so that $A=\mathcal{P}_{q}\left(\Phi_{A}^{@}\right)$. The result follows by applying Proposition 9 ,

Lemma 12 Let A be a q-positive subset of an SSD space B. If for some topological vector space Y there exists a $w(B, B)$-continuous linear mapping $f: B \rightarrow Y$ satisfying
(1) $f(A)$ is convex and closed,
(2) $f(x)=0$ implies $q(x)=0$, then

$$
\begin{equation*}
\Phi_{A}(b) \geq q(b) \quad \forall b \in \operatorname{conv}^{w} A \tag{8}
\end{equation*}
$$

Proof. Since

$$
f(A) \subset f\left(\operatorname{conv}^{w} A\right) \subset \overline{\operatorname{conv}} f(A)=f(A)
$$

it follows that

$$
f\left(c o n v^{w} A\right)=f(A)
$$

Let $b \in \operatorname{conv}^{w} A$. Then there exists $a \in A$ such that $f(b)=f(a)$, hence $f(a-b)=$ 0 . By 2, $q(a-b)=0$, and so we obviously have (8).

Corollary 13 Let $T: X \rightrightarrows X^{*}$ be a representable monotone operator on a Banach space X. If DomT (RanT) is convex and closed, then

$$
T=G_{\varphi_{T}}
$$

Proof. Take $f=P_{X}$ or $f=P_{X^{*}}$, the projections onto X and X^{*}, respectively, in Lemma 12 and apply Proposition 11. Notice that when $X \times X^{*}$ is endowed with the topology $w\left(X \times X^{*}, X^{*} \times X\right), P_{X}$ and $P_{X^{*}}$ are continuous onto X with its weak topology and X^{*} with the weak* topology, respectively.

3.2 Maximally q-positive convex sets

The following result extends [5, Lemma 1.5] (see also [1, Thm. 4.1]).
Theorem 14 Let A be a maximally q-positive convex set in an $S S D$ space B. Then A is actually affine.

Proof. Take $x_{0} \in A$. Clearly, the set $A-x_{0}$ is also maximally q-positive and convex. To prove that A is affine, we will prove that $A-x_{0}$ is a cone, that is,

$$
\begin{equation*}
\lambda\left(x-x_{0}\right) \in A-x_{0} \quad \text { for all } x \in A \text { and } \lambda \geq 0 \tag{9}
\end{equation*}
$$

and that it is symmetric with respect to the origin, that is,

$$
\begin{equation*}
-\left(x-x_{0}\right) \in A-x_{0} \quad \text { for all } x \in A \tag{10}
\end{equation*}
$$

Let $x \in A$ and $\lambda \geq 0$. If $\lambda \leq 1$, then $\lambda\left(x-x_{0}\right)=\lambda x+(1-\lambda) x_{0}-x_{0} \in A-x_{0}$, since A is convex. If $\lambda \geq 1$, for every $y \in A$ we have $q\left(\lambda\left(x-x_{0}\right)-\left(y-x_{0}\right)\right)=$ $\lambda^{2} q\left(x-\left(\frac{1}{\lambda}\left(y-x_{0}\right)+x_{0}\right)\right) \geq 0$, since $\frac{1}{\lambda}\left(y-x_{0}\right) \in A-x_{0}$. Hence, as $A-x_{0}$ is maximally q-positive, $\lambda\left(x-x_{0}\right) \in A-x_{0}$ also in this case. This proves (9). To prove (10), let $x, y \in A$. Then $q\left(-\left(x-x_{0}\right)-\left(y-x_{0}\right)\right)=q\left(\left(x+y-x_{0}\right)-x_{0}\right) \geq$ 0 , since $x+y-x_{0} \in A$ (as $A-x_{0}$ is a convex cone) and $x_{0} \in A$. Using that $A-x_{0}$ is maximally q-positive, we conclude that $-\left(x-x_{0}\right) \in A-x_{0}$, which proves (10).

3.3 About the number of maximally q-positive extensions of a q-positive set

Proposition 15 Let $x_{1}, x_{2} \in B$ be such that

$$
\begin{equation*}
q\left(x_{1}-x_{2}\right) \leq 0 \tag{11}
\end{equation*}
$$

Then $\lambda x_{1}+(1-\lambda) x_{2} \in\left\{x_{1}, x_{2}\right\}^{\pi \pi}$ for every $\lambda \in[0,1]$.
Proof. Let $x \in\left\{x_{1}, x_{2}\right\}^{\pi}$. Since
$q\left(x_{1}-x_{2}\right)=q\left(\left(x_{1}-x\right)-\left(x_{2}-x\right)\right)=q\left(x_{1}-x\right)-\left\lfloor x_{1}-x, x_{2}-x\right\rfloor+q\left(x_{2}-x\right)$,
(11) implies that

$$
\left\lfloor x_{1}-x, x_{2}-x\right\rfloor \geq q\left(x_{1}-x\right)+q\left(x_{2}-x\right)
$$

Then, writing $x_{\lambda}:=\lambda x_{1}+(1-\lambda) x_{2}$,

$$
\begin{aligned}
q\left(x_{\lambda}-x\right)= & q\left(\lambda\left(x_{1}-x\right)+(1-\lambda)\left(x_{2}-x\right)\right) \\
= & \lambda^{2} q\left(x_{1}-x\right)+\lambda(1-\lambda)\left\lfloor x_{1}-x, x_{2}-x\right\rfloor+(1-\lambda)^{2} q\left(x_{2}-x\right) \\
\geq & \lambda^{2} q\left(x_{1}-x\right)+\lambda(1-\lambda)\left(q\left(x_{1}-x\right)+q\left(x_{2}-x\right)\right) \\
& +(1-\lambda)^{2} q\left(x_{2}-x\right) \\
= & \lambda q\left(x_{1}-x\right)+(1-\lambda) q\left(x_{2}-x\right) \geq 0 .
\end{aligned}
$$

We will use the following lemma:
Lemma 16 Let $A \subset B$. Then $A^{\pi \pi \pi}=A^{\pi}$.

Proof. Since q is an even function, from the definition of A^{π} it follows that $A \subset A^{\pi \pi}$. Replacing A by A^{π} in this inclusion, we get $A^{\pi} \subset A^{\pi \pi \pi}$. On the other hand, since the mapping $A \longmapsto A^{\pi}$ is inclusion reversing, from $A \subset A^{\pi \pi}$ we also obtain $A^{\pi \pi \pi} \subset A^{\pi}$.

Proposition 17 Let A be a q-positive set. If A has more than one maximally q-positive extension, then it has a continuum of such extensions.

Proof. Let M_{1}, M_{2} be two different maximally q-positive extensions of A. By the maximality of M_{1} and M_{2}, there exists $x_{1} \in M_{1}$ and $x_{2} \in M_{2}$ such that $q\left(x_{1}-x_{2}\right)<0$. Notice that $\left\{x_{1}, x_{2}\right\} \subset A^{\pi}$; hence, using proposition 15 and Lemma [16, we deduce that, for every $\lambda \in[0,1], \lambda x_{1}+(1-\lambda) x_{2} \in$ $\left\{x_{1}, x_{2}\right\}^{\pi \pi} \subset A^{\pi \pi \pi}=A^{\pi}$. This shows that, for each $\lambda \in[0,1], A \cup\left\{x_{\lambda}\right\}$, with $x_{\lambda}:=\lambda x_{1}+(1-\lambda) x_{2}$, is a q-positive extension of A; since $q\left(x_{\lambda_{1}}-x_{\lambda_{2}}\right)=$ $q\left(\left(\lambda_{1}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\right)=\left(\lambda_{1}-\lambda_{2}\right)^{2} q\left(x_{1}-x_{2}\right)<0$ for all $\lambda_{1}, \lambda_{2} \in[0,1]$ with $\lambda_{1} \neq \lambda_{2}$, the result follows using Zorn's Lemma.

3.4 Premaximally q-positive sets

Let $(B,\lfloor\cdot, \cdot\rfloor)$ be an SSD space.
Definition 18 Let P be a q-positive subset of B. We say that P is premaximally q-positive if there exists a unique maximally q-positive superset of P. It follows from [9, Lemma 5.4] that this superset is P^{π} (which is identical with $\left.P^{\pi \pi}\right)$. The same reference also implies that

$$
\begin{equation*}
P \text { is premaximally } q \text {-positive } \Longleftrightarrow P^{\pi} \text { is } q \text {-positive. } \tag{12}
\end{equation*}
$$

Lemma 19 Let P be a q-positive subset of B and

$$
\begin{equation*}
\Phi_{P} \geq q \text { on } B \tag{13}
\end{equation*}
$$

Then P is premaximally q-positive and $P^{\pi}=\mathcal{P}_{q}\left(\Phi_{P}\right)$.
Proof. Suppose that M is a maximally $q-$ positive subset of B and $M \supset P$. Let $b \in M$. Since M is q-positive, $b \in M^{\pi} \subset P^{\pi}$, thus $\Phi_{P}(b) \leq q(b)$. Combining this with (13), $\Phi_{P}(b)=q(b)$, and so $b \in \mathcal{P}_{q}\left(\Phi_{P}\right)$. Thus we have proved that $M \subset \mathcal{P}_{q}\left(\Phi_{P}\right)$. It now follows from the maximality of M and the q-positivity of $\mathcal{P}_{q}\left(\Phi_{P}\right)$ that $P^{\pi}=\mathcal{P}_{q}\left(\Phi_{P}\right)$.

The next result contains a partial converse to Lemma 19 .
Lemma 20 Let P be a premaximally q-positive subset of B. Then either (13) is true, or $P^{\pi}=\operatorname{dom} \Phi_{P}$ and P^{π} is an affine subset of B.

Proof. Suppose that (13) is not true. We first show that

$$
\begin{equation*}
\operatorname{dom} \Phi_{P} \text { is } q \text {-positive. } \tag{14}
\end{equation*}
$$

Since (13) fails, we can first fix $b_{0} \in B$ such that $\left.\left(\Phi_{P}-q\right)\right)\left(b_{0}\right)<0$. Now let $b_{1}, b_{2} \in \operatorname{dom} \Phi_{P}$. Let $\left.\lambda \in\right] 0,1[$. Then

$$
\begin{equation*}
\left(\Phi_{P}-q\right)\left((1-\lambda) b_{0}+\lambda b_{1}\right) \leq(1-\lambda) \Phi_{P}\left(b_{0}\right)+\lambda \Phi_{P}\left(b_{1}\right)-q\left((1-\lambda) b_{0}+\lambda b_{1}\right) . \tag{15}
\end{equation*}
$$

Since $\Phi_{P}\left(b_{1}\right) \in \mathbb{R}$ and quadratic forms on finite-dimensional spaces are continuous, the right-hand expression in (15) converges to $\Phi_{P}\left(b_{0}\right)-q\left(b_{0}\right)$ as $\lambda \rightarrow$ $0+$. Now $\Phi_{P}\left(b_{0}\right)-q\left(b_{0}\right)<0$ and so, for all sufficiently small $\left.\lambda \in\right] 0,1[$, $\left(\Phi_{P}-q\right)\left((1-\lambda) b_{0}+\lambda b_{1}\right)<0$, from which $(1-\lambda) b_{0}+\lambda b_{1} \in P^{\pi}$. Similarly, for all sufficiently small $\lambda \in] 0,1\left[,(1-\lambda) b_{0}+\lambda b_{2} \in P^{\pi}\right.$. Thus we can choose $\left.\lambda_{0} \in\right] 0,1\left[\right.$ such that both $\left(1-\lambda_{0}\right) b_{0}+\lambda_{0} b_{1} \in P^{\pi}$ and $\left(1-\lambda_{0}\right) b_{0}+\lambda b_{2} \in P^{\pi}$. Since P^{π} is q-positive,

$$
0 \leq q\left(\left[\left(1-\lambda_{0}\right) b_{0}+\lambda_{0} b_{1}\right]-\left[\left(1-\lambda_{0}\right) b_{0}+\lambda b_{2}\right]\right)=\lambda_{0}^{2} q\left(b_{1}-b_{2}\right)
$$

So we have proved that, for all $b_{1}, b_{2} \in \operatorname{dom} \Phi_{P}, q\left(b_{1}-b_{2}\right) \geq 0$. This establishes (14). Therefore, since $\operatorname{dom} \Phi_{P} \supset P$, we have $\operatorname{dom} \Phi_{P} \subset P^{\pi}$. On the other hand, if $b \in P^{\pi}$, then $\Phi_{P}(b) \leq q(p)$, and so $b \in \operatorname{dom} \Phi_{P}$. This completes the proof that $P^{\pi}=\operatorname{dom} \Phi_{P}$. Finally, since $P^{\pi}\left(=\operatorname{dom} \Phi_{P}\right)$ is convex, Theorem 14 implies that P^{π} is an affine subset of B.

Our next result is a new characterization of premaximally q-positive sets.
Theorem 21 Let P be a q-positive subset of B. Then P is premaximally $q-$ positive if, and only if, either (13) is true or P^{π} is an affine subset of B.

Proof. "Only if" is clear from Lemma 20, If, on the other hand, (13) is true then Lemma 19 implies that P is premaximally q-positive. It remains to prove that if P^{π} is an affine subset of B then P is premaximally q-positive. So let P^{π} be an affine subset of B. Suppose that $b_{1}, b_{2} \in P^{\pi}$, and let $p \in P$. Since P is q-positive, $p \in P^{\pi}$, and since P^{π} is affine, $p+b_{1}-b_{2} \in P^{\pi}$, from which $q\left(b_{1}-b_{2}\right)=q\left(\left[p+b_{1}-b_{2}\right]-p\right) \geq 0$. Thus we have proved that P^{π} is q-positive. It now follows from (12) that P is premaximally q-positive.

Corollary 22 Let P be an affine q-positive subset of B. Then P is premaximally q-positive if and only if P^{π} is an affine subset of B.

Proof. In view of Theorem 21, we only need to prove the "only if" statement. Assume that P is premaximally q-positive. Since the family of affine sets A such that $P \subset A \subset P^{\pi}$ is inductive, by Zorn's Lemma it has a maximal element M. Let $b \in P^{\pi}, m_{1}, m_{2} \in M, p \in P$ and $\lambda, \mu, \nu \in \mathbb{R}$ be such that $\lambda+\mu+\nu=1$. If $\lambda \neq 0$ then $q\left(\lambda b+\mu m_{1}+\nu m_{2}-p\right)=\lambda^{2} q\left(b-\frac{1}{\lambda}\left(p-\mu m_{1}-\nu m_{2}\right)\right) \geq 0$, since $\frac{1}{\lambda}\left(p-\mu m_{1}-\nu m_{2}\right) \in M \subset P^{\pi}$ and P^{π} is q-positive (by [9, Lemma 5.4]). If, on the contrary, $\lambda=0$ then $q\left(\lambda b+\mu m_{1}+\nu m_{2}-p\right)=q\left(\mu m_{1}+\nu m_{2}-p\right) \geq 0$, because in this case $\mu m_{1}+\nu m_{2} \in M \subset P^{\pi}$. Therefore $\lambda b+\mu m_{1}+\nu m_{2} \in P^{\pi}$. We have thus proved that the affine set generated by $M \cup\{b\}$ is contained in P^{π}. Hence, by the maximality of M, we have $b \in M$, and we conclude that $P^{\pi}=M$.

Definition 23 Let E be a nonzero Banach space and A be a nonempty monotone subset of $E \times E^{*}$. We say that A is of type (NI) if,

$$
\text { for all }\left(y^{*}, y^{* *}\right) \in E^{*} \times E^{* *}, \quad \inf _{\left(a, a^{*}\right) \in A}\left\langle a^{*}-y^{*}, \widehat{a}-y^{* *}\right\rangle \leq 0 .
$$

We define $\iota: E \times E^{*} \rightarrow E^{*} \times E^{* *}$ by $\iota\left(x, x^{*}\right)=\left(x^{*}, \widehat{x}\right)$, where \widehat{x} is the canonical image of x in $E^{* *}$. We say that A is unique if there exists a unique maximally monotone subset M of $E^{*} \times E^{* *}$ such that $M \supset \iota(A)$. We now write $B:=E^{*} \times$ $E^{* *}$ and define $\lfloor\cdot, \cdot\rfloor: B \times B \rightarrow \mathbb{R}$ by $\left\lfloor\left(x^{*}, x^{* *}\right),\left(y^{*}, y^{* *}\right)\right\rfloor:=\left\langle y^{*}, x^{* *}\right\rangle+\left\langle x^{*}, y^{* *}\right\rangle$. $(B,\lfloor\cdot, \cdot\rfloor)$ is an SSD space. Clearly, for all $\left(y^{*}, y^{* *}\right) \in E^{*} \times E^{* *}, q\left(y^{*}, y^{* *}\right)=$ $\left\langle y^{*}, y^{* *}\right\rangle$. Now $\iota(A)$ is q-positive, A is of type (NI) exactly when $\Phi_{\iota(A)} \geq q$ on B, and A is unique exactly when $\iota(A)$ is premaximally q-positive. In this case, we write $\iota(A)^{\pi}$ for the unique maximally monotone subset of $E^{*} \times E^{* *}$ that contains $\iota(A)$.

Corollary 24(a) appears in [8], and Corollary 24(c) appears in [5, Theorem 1.6].
Corollary 24 Let E be a nonzero Banach space and A be a nonempty monotone subset of $E \times E^{*}$.
(a) If A is of type (NI) then A is unique and $\iota(A)^{\pi}=\mathcal{P}_{q}\left(\Phi_{\iota(A)}\right)$.
(b) If $\iota(A)^{\pi}$ is an affine subset of $E^{*} \times E^{* *}$ then A is unique.
(c) Let A be unique. Then either A is of type (NI), or

$$
\begin{equation*}
\iota(A)^{\pi}=\left\{\left(y^{*}, y^{* *}\right) \in E^{*} \times E^{* *}: \inf _{\left(a, a^{*}\right) \in A}\left\langle a^{*}-y^{*}, \widehat{a}-y^{* *}\right\rangle>-\infty\right\} \tag{16}
\end{equation*}
$$

and $\iota(A)^{\pi}$ is an affine subset of $E^{*} \times E^{* *}$.
(d) Let A be maximally monotone and unique. Then either A is of type (NI), or A is an affine subset of $E \times E^{*}$ and $A=\operatorname{dom} \varphi_{A}$, where φ_{A} is the Fitzpatrick function of A in the usual sense.

Proof. (a), (b) and (c) are immediate from Lemmas 19 and 20 and Theorem 21, and the terminology introduced in Definition 23 ,
(d). From (c) and the linearity of $\iota, \iota^{-1}\left(\iota(A)^{\pi}\right)$ is an affine subset of $E \times E^{*}$. Furthermore, it is also easy to see that $\iota^{-1}\left(\iota(A)^{\pi}\right)$ is a monotone subset of $E \times$ E^{*}. Since $A \subset \iota^{-1}\left(\iota(A)^{\pi}\right)$, the maximality of A implies that $A=\iota^{-1}\left(\iota(A)^{\pi}\right)$. Finally, it follows from (16) that $\iota^{-1}\left(i(A)^{\pi}\right)=\operatorname{dom} \varphi_{A}$.

3.5 Minimal convex functions bounded below by q

This section extends some results of [7].
Lemma 25 Let B be an $S S D$ space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex function. Then, for every $x, y \in B$ and every $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, one has

$$
\alpha \max \{f(x), q(x)\}+\beta \max \left\{f^{@}(y), q(y)\right\} \geq q(\alpha x+\beta y)
$$

Proof. Using (5) one gets

$$
\begin{aligned}
q(\alpha x+\beta y) & =\alpha^{2} q(x)+\alpha \beta\lfloor x, y\rfloor+\beta^{2} q(y) \\
& \leq \alpha^{2} q(x)+\alpha \beta\left(f(x)+f^{@}(y)\right)+\beta^{2} q(y) \\
& =\alpha(\alpha q(x)+\beta f(x))+\beta\left(\alpha f^{@}(y)+\beta q(y)\right) \\
& \leq \alpha \max \{f(x), q(x)\}+\beta \max \left\{f^{@}(y), q(y)\right\} .
\end{aligned}
$$

Corollary 26 Let B be an $S S D$ space, $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex function such that $f \geq q$ and $x \in B$. Then there exists a convex function $h: B \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f \geq h \geq q \quad \text { and } \quad \max \left\{f^{@}(x), q(x)\right\} \geq h(x) .
$$

Proof. Let $h:=\operatorname{conv} \min \left\{f, \delta_{\{x\}}+\max \left\{f^{@}(x), q(x)\right\}\right\}$. Clearly, h is convex, $f \geq h$, and $\max \left\{f^{@}(x), q(x)\right\} \geq h(x)$; so, we only have to prove that $h \geq q$. Let $y \in B$. Since the functions f and $\delta_{\{x\}}+\max \left\{f^{@}(x), q(x)\right\}$ are convex, we have

$$
\begin{aligned}
h(y) & =\inf _{\substack{u, v \in B \\
\alpha, \beta \geq 0, \alpha+\beta=1 \\
\alpha u+\beta v=y}}\left\{\alpha f(u)+\beta\left(\delta_{\{x\}}(v)+\max \left\{f^{@}(x), q(x)\right\}\right)\right\} \\
& =\inf _{\substack{u \in B \\
\alpha, \beta \geq 0, \alpha+\beta=1 \\
\alpha u+\beta x=y}}\left\{\alpha f(u)+\beta \max \left\{f^{@}(x), q(x)\right\}\right\} \\
& \geq \inf _{\substack{u \in B \\
\alpha, \beta \geq 0, \alpha+\beta=1 \\
\alpha u+\beta x=y}} q(\alpha u+\beta x)=q(y),
\end{aligned}
$$

the above inequality being a consequence of the assumption $f \geq q$ and Lemma 25. We thus have $h \geq q$.

Theorem 27 Let B be an $S S D$ space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a minimal element of the set of convex functions minorized by q. Then $f^{@} \geq f$.

Proof. It is easy to see that f is proper. Let $x \in B$ and consider the function h provided by Corollary 26. By the minimality of f, we actually have $h=f$; on the other hand, from (5) it follows that $\frac{1}{2}\left(f(x)+f^{@}(x)\right) \geq \frac{1}{2}\lfloor x, x\rfloor=q(x)$. Therefore $f(x)=h(x) \leq \max \left\{f^{@}(x), q(x)\right\} \leq \max \left\{f^{@}(x), \frac{1}{2}\left(f(x)+f^{@}(x)\right)\right\}$; from these inequalities one easily obtains that $f(x) \leq f^{@}(x)$.

Proposition 28 Let B be an $S S D$ space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex function such that $f \geq q$ and $f^{@} \geq q$. Then

$$
\operatorname{conv} \min \left\{f, f^{@}\right\} \geq q .
$$

Proof. Since f and $f^{@}$ are convex, for every $x \in B$ we have

$$
\begin{aligned}
\text { conv } \min \left\{f, f^{@}\right\}(x) & =\inf _{\substack{u, v \in B \\
\alpha, \beta \geq 0, \alpha+\beta=1 \\
\alpha u+\beta v=x}}\left\{\alpha f(u)+\beta f^{@}(v)\right\} \\
& \geq \inf _{\substack{u, v \in B \\
\alpha, \beta \geq 0, \alpha+\beta=1 \\
\alpha u+\beta v=x}} q(\alpha u+\beta v)=q(x),
\end{aligned}
$$

the inequality following from the assumptions $f \geq q$ and $f^{@} \geq q$ and Lemma 25.

4 SSDB spaces

We say that $(B,\lfloor\cdot, \cdot\rfloor,\|\cdot\|)$ is a symmetrically self-dual Banach (SSDB) space if $(B,\lfloor\cdot, \cdot\rfloor)$ is an SSD space, $(B,\|\cdot\|)$ is a Banach space, the dual B^{*} is exactly $\{\lfloor\cdot, b\rfloor: b \in B\}$ and the map $i: B \rightarrow B^{*}$ defined by $i(b)=\lfloor\cdot, b\rfloor$ is a surjective isometry. In this case, the quadratic form q is continuous. By [6, Proposition 3] we know that every SSDB space is reflexive as a Banach space. If A is convex in an SSDB space then $A^{w}=\bar{A}$.
Let B be an SSDB space. In this case, for a proper convex function $f: B \rightarrow$ $\mathbb{R} \cup\{+\infty\}$ it is easy to see that $f^{@}=f^{*} \circ i$, where $f^{*}: B^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the Banach space conjugate of f. Define $g_{0}: B \rightarrow \mathbb{R}$ by $g_{0}(b):=\frac{1}{2}\|b\|^{2}$. Then for all $b^{*} \in B^{*}, g_{0}^{*}\left(b^{*}\right)=\frac{1}{2}\left\|b^{*}\right\|^{2}$.

4.1 A characterization of maximally q-positive sets in SSDB spaces

Lemma 29 The set $\mathcal{P}_{q}\left(g_{0}\right)=\left\{x \in B: g_{0}(x)=q(x)\right\}$ is maximally q-positive and the set $\mathcal{P}_{-q}\left(g_{0}\right)=\left\{x \in B: g_{0}(x)=-q(x)\right\}$ is maximally $-q$-positive.

Proof. To prove that $\mathcal{P}_{q}\left(g_{0}\right)$ is maximally q-positive, apply [9, Thm. 4.3(b)] (see also [6, Thm. 2.7]) after observing that $g_{0}^{@}=g_{0}^{*} \circ i=g_{0}$. Since replacing q by $-q$ changes $\mathcal{P}_{q}\left(g_{0}\right)$ into $\mathcal{P}_{-q}\left(g_{0}\right)$, it follows that $\mathcal{P}_{-q}\left(g_{0}\right)$ is maximally $-q$ positive too.

From now on, to distinguish the function Φ_{A} of $A \subset B$ corresponding to q from that corresponding to $-q$, we will use the notations $\Phi_{q, A}$ and $\Phi_{-q, A}$, respectively. Notice that $\Phi_{-q, \mathcal{P}_{-q}\left(g_{0}\right)}$ is finite-valued; indeed,

$$
\begin{aligned}
\Phi_{-q, \mathcal{P}_{-q}\left(g_{0}\right)}(x) & =\sup _{a \in \mathcal{P}_{-q}\left(g_{0}\right)}\{-\lfloor x, a\rfloor+q(a)\} \\
& =\sup _{a \in \mathcal{P}_{-q}\left(g_{0}\right)}\left\{-\langle x, i(a)\rangle-g_{0}(a)\right\} \\
& =\sup _{a \in \mathcal{P}_{-q}\left(g_{0}\right)}\left\{-\langle x, i(a)\rangle-g_{0}^{*}(i(a))\right\} \leq g_{0}(x) .
\end{aligned}
$$

Theorem 30 Let B be an $S S D B$ space and A be a q-positive subset of B, and consider the following statements:
(1) A is maximally q-positive.
(2) $A+C=B$ for every maximally $-q$-positive set $C \subseteq B$ such that $\Phi_{-q, C}$ is finite-valued.
(3) There exists a set $C \subseteq B$ such that $A+C=B$, and there exists $p \in C$ such that

$$
q(z-p)<0 \quad \forall z \in C \backslash\{p\}
$$

Then (1), (2) and (3) are equivalent.
Proof. (1) \Longrightarrow (2). Let $x_{0} \in B$ and $A^{\prime}:=A-\left\{x_{0}\right\}$. We have

$$
\Phi_{q, A^{\prime}}(x)+\Phi_{-q, C}(-x) \geq q(x)-q(-x)=0 \quad \forall x \in C
$$

Hence, as $\Phi_{-q, C}$ is continuous because it is lower semicontinuous and finitevalued, by the Fenchel-Rockafellar duality theorem there exists $y^{*} \in B^{*}$ such that

$$
\Phi_{q, A^{\prime}}^{*}\left(y^{*}\right)+\Phi_{-q, C}^{*}\left(y^{*}\right) \leq 0
$$

Since, by Proposition $1(1), \Phi_{q, A^{\prime}}^{*} \circ i=\Phi_{q, A^{\prime}}^{@} \geq \Phi_{q, A^{\prime}}$ and, correspondingly, $\Phi_{-q, C}^{*} \circ(-i)=\Phi_{-q, C}^{@} \geq \Phi_{-q, C}$, we thus have

$$
\begin{aligned}
0 & \geq\left(\Phi_{q, A^{\prime}}^{*} \circ i\right)\left(i^{-1}\left(y^{*}\right)\right)+\left(\Phi_{-q, C}^{*} \circ(-i)\right)\left(-i^{-1}\left(y^{*}\right)\right) \\
& \geq \Phi_{q, A^{\prime}}\left(i^{-1}\left(y^{*}\right)\right)+\Phi_{-q, C}\left(-i^{-1}\left(y^{*}\right)\right) \geq q\left(i^{-1}\left(y^{*}\right)\right)-q\left(-i^{-1}\left(y^{*}\right)\right)=0
\end{aligned}
$$

Therefore

$$
\Phi_{q, A^{\prime}}\left(i^{-1}\left(y^{*}\right)\right)=q\left(i^{-1}\left(y^{*}\right)\right) \text { and } \Phi_{-q, C}\left(-i^{-1}\left(y^{*}\right)\right)=-q\left(-i^{-1}\left(y^{*}\right)\right)
$$

that is,

$$
i^{-1}\left(y^{*}\right) \in A^{\prime} \text { and }-i^{-1}\left(y^{*}\right) \in C
$$

which implies that

$$
x_{0}=x_{0}+i^{-1}\left(y^{*}\right)-i^{-1}\left(y^{*}\right) \in x_{0}+A^{\prime}+C=A+C .
$$

(2) \Longrightarrow (3). Take $C:=\mathcal{P}_{-q}\left(g_{0}\right)$ (see Lemma 29) and $p:=0$.
(3) \Longrightarrow (1). Let $x \in A^{\pi}$, and take p as in (3). Since $x+p \in B=A+C$, we have $x+p=y+z$ for some $y \in A$ and $z \in C$. We have $x-y=z-p$; hence, since $x \in A^{\pi}$ and $y \in A$, we get $0 \leq q(x-y)=q(z-p) \leq 0$. Therefore $q(z-p)=0$, which implies $z=p$. Thus from $x+p=y+z$ we obtain $x=y \in A$. This proves that $A^{\pi} \subset A$, which, together with the fact that A is q-positive, shows that A is maximally q-positive.

Corollary 31 One has

$$
\mathcal{P}_{q}\left(g_{0}\right)+\mathcal{P}_{-q}\left(g_{0}\right)=B
$$

Proof. Since the set $\mathcal{P}_{q}\left(g_{0}\right)$ is maximally q-positive by Lemma 29, the result follows from the implication (1) \Longrightarrow (2) in the preceding theorem.

4.2 Minimal convex functions on SSDB spaces bounded below by q

Theorem 32 If B is an $S S D B$ space and $f: B \rightarrow \mathbb{R} \cup\{+\infty\}$ is a minimal element of the set of convex functions minorized by q then $f=\Phi_{M}$ for some maximally q-positive set $M \subset B$.

Proof. We first observe that f is lower semicontinuous; indeed, this is a consequence of its minimality and the fact that its lower semicontinuous closure is convex and minorized by q because q is continuous. By Theorem 27 and [9, Thm. 4.3(b)] (see also [6, Thm. 2.7]), the set $\mathcal{P}_{q}(f)$ is maximally q-positive, and hence $\Phi_{\mathcal{P}_{q}(f)} \geq q$. From [6, Thm. 2.2] we deduce that $\Phi_{\mathcal{P}_{q}(f)} \leq f$, which, by the minimality of f, implies that $\Phi_{\mathcal{P}_{q}(f)}=f$.

5 Examples

5.1 Lipschitz mappings between Hilbert spaces

Let $K>0$. Let H_{1}, H_{2} be two real Hilbert spaces and let $f: D \subset H_{1} \rightarrow H_{2}$ be a K-Lipschitz mapping, i.e.

$$
\begin{equation*}
\left\|f\left(x_{1}\right)-f\left(y_{1}\right)\right\|_{H_{2}} \leq K\left\|x_{1}-y_{1}\right\|_{H_{1}}, \quad \forall x_{1}, y_{1} \in D \tag{17}
\end{equation*}
$$

Remark 33 It is well known that there exists an extension $\tilde{f}: H_{1} \rightarrow H_{2}$ which is K-Lipschitz (see [4, [12]). Let $D \subset H_{1}$; we will denote by $\mathcal{F}(D)$ the family of K-Lipschitz mappings defined on D and by $\mathcal{F}:=\mathcal{F}\left(H_{1}\right)$ the family of K Lipschitz mappings defined everywhere on H_{1}.

Proposition 34 Let H_{1}, H_{2} be two real Hilbert spaces, let $B=H_{1} \times H_{2}$ and let $\lfloor\cdot, \cdot\rfloor: B \times B \rightarrow \mathbb{R}$ be the bilinear form defined by

$$
\begin{equation*}
\left\lfloor\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rfloor=K^{2}\left\langle x_{1}, y_{1}\right\rangle_{H_{1}}-\left\langle x_{2}, y_{2}\right\rangle_{H_{2}} \tag{18}
\end{equation*}
$$

Then
(1) A nonempty set $A \subset B$ is q-positive if and only if there exists $f \in \mathcal{F}\left(P_{H_{1}}(A)\right)$ such that $A=\operatorname{graph}(f)$;
(2) A set $A \subset B$ is maximally q-positive if and only if there exists $f \in \mathcal{F}$ such that $A=\operatorname{graph}(f)$.

Proof. (1). If $A=\operatorname{graph}(f)$ with $f \in \mathcal{F}\left(P_{H_{1}}(A)\right)$, it is easy to see that A is q-positive.
Assume that $A \subset B$ is q-positive. From the definition we have that for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A$,

$$
0 \leq q\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right)=\frac{1}{2}\left(K^{2}\left\|x_{1}-x_{2}\right\|_{H_{1}}^{2}-\left\|y_{1}-y_{2}\right\|_{H_{2}}^{2}\right)
$$

Equivalently,

$$
\begin{equation*}
\left\|y_{1}-y_{2}\right\|_{H_{2}} \leq K\left\|x_{1}-x_{2}\right\|_{H_{1}} \tag{19}
\end{equation*}
$$

For $x \in P_{H_{1}}(A)$ we define $f(x)=\{y:(x, y) \in A\}$. We will show that f is a K-Lipschitz mapping. If $y_{1}, y_{2} \in f(x)$, from (19) $y_{1}=y_{2}$, so f is single-valued. Now, for $x_{1}, x_{2} \in P_{H_{1}}(A)$ from (19) we have that

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|_{H_{2}} \leq K\left\|x_{1}-x_{2}\right\|_{H_{1}}
$$

which shows that $f \in \mathcal{F}\left(P_{H_{1}}(A)\right)$.
(2). Let $A \subset B$ be maximally q-positive. From (1), there exists $f \in \mathcal{F}\left(P_{H_{1}}(A)\right)$ such that $A=\operatorname{graph}(f)$, and from the Kirszbraun-Valentine extension theorem [4, 12] f has a K-Lipschitz extension \tilde{f} defined everywhere on H_{1}; since $\operatorname{graph}(\tilde{f})$ is also q-positive we must have $f=\tilde{f}$. Now, let $f \in \mathcal{F}$ and $(x, y) \in H_{1} \times H_{2}$ be q-positively related to every point in $\operatorname{graph}(f)$. We have that $\operatorname{graph}(f) \cup\{(x, y)\}$ is q-positive, so from (1) we easily deduce that $y=f(x)$. This finishes the proof of (2).

Clearly, the $w(B, B)$ topology of the SSD space $(B,\lfloor\cdot, \cdot\rfloor)$ coincides with the weak topology of the product Hilbert space $H_{1} \times H_{2}$. Therefore, every q-representable set is closed, so that it corresponds to a K-Lipschitz mapping with closed graph. Notice that, by the Kirszbraun-Valentine extension theorem, a K-Lipschitz mapping between two Hilbert spaces has a closed graph if and only if its domain is closed. The following example shows that not every K-Lipschitz mapping with closed domain has a q-representable graph.

Example 35 Let $H_{1}:=\mathbb{R}=: H_{2}$ and let $f:\{0,1\} \rightarrow H_{2}$ be the restriction of the identity mapping. Clearly, f is nonexpansive, so we will consider the SSD space corresponding to $K=1$. Then we will show that the smallest q-representable set containing graph (f) is the graph of the restriction \widehat{f} of the identity to the closed interval $[0,1]$. Notice that this graph is indeed q-representable, since the lsc function $\delta_{\text {graph }(\widehat{f})}$ belongs to $\mathcal{P C}_{q}(B)$ and one has $\operatorname{graph}(\widehat{f})=\mathcal{P}_{q}\left(\delta_{\operatorname{graph}(\hat{f})}\right)$. We will see that graph $(\widehat{f}) \subset \mathcal{P}_{q}(\varphi)$ for every $\varphi \in \mathcal{P C}_{q}(B)$ such that graph $(f) \subset \mathcal{P}_{q}(\varphi)$. Indeed, for $t \in[0,1]$ one has $\varphi(t, t) \leq(1-t) \varphi(0,0)+t \varphi(1,1)=(1-t) q(0,0)+t q(1,1)=0=q(t, t)$; hence $(t, t) \in \mathcal{P}_{q}(\varphi)$, which proves the announced inclusion.

Our next two results provide sufficient conditions for q-representability in the SSD space we are considering.

Proposition 36 Let H_{1}, H_{2}, B and $\lfloor\cdot, \cdot\rfloor$ be as in Proposition 34 and let f : $D \subset H_{1} \rightarrow H_{2}$ be a K^{\prime}-Lipschitz mapping, with $0<K^{\prime}<K$. If D is nonempty and closed, then graph (f) is q-representable.

Proof. We will prove that $\operatorname{graph}(f)$ coincides with the intersection of all the graphs of K-Lipschitz extensions f of f to the whole of H_{1}. Since any such graph is maximally q-positive, we have $\operatorname{graph}(\tilde{f})=\mathcal{P}_{q}\left(\Phi_{\operatorname{graph}(\tilde{f})}\right)$; hence that intersection is equal to $\mathcal{P}_{q}(\varphi)$, where φ denotes the supremum of all the functions $\Phi_{\operatorname{graph}(\tilde{f})}$; so the considered intersection is q-representable. As one clearly
has $\operatorname{graph}(f) \subset \mathcal{P}_{q}(\varphi)$, we will only prove the opposite inclusion. Let $\left(x_{1}, x_{2}\right) \in$ $\mathcal{P}_{q}(\varphi)$. Then $\tilde{f}\left(x_{1}\right)=x_{2}$ for every \tilde{f}, so it will suffice to prove that $x_{1} \in D$. Assume, towards a contradiction, that $x_{1} \notin D$. By the Kirszbraun-Valentine extension theorem, some \tilde{f} is actually K^{\prime}-Lipschitz. Take any $y \in H_{2} \backslash\left\{x_{2}\right\}$ in the closed ball with center x_{2} and radius $\left(K-K^{\prime}\right) \inf _{x \in D}\left\|x-x_{1}\right\|_{H_{1}}$. This number is indeed strictly positive, since D is closed. Let f_{y} be the extension of f to $D \cup\left\{x_{1}\right\}$ defined by $f_{y}\left(x_{1}\right)=y$. This mapping is K-Lipschitz, since for every $x \in D$ one has $\left\|f_{y}(x)-f_{y}\left(x_{1}\right)\right\|_{H_{2}}=\|f(x)-y\|_{H_{2}} \leq\left\|f(x)-x_{2}\right\|_{H_{2}}+$ $\left\|x_{2}-y\right\|_{H_{2}}=\left\|\tilde{f}(x)-\tilde{f}\left(x_{1}\right)\right\|_{H_{2}}+\left(K-K^{\prime}\right)\left\|x-x_{1}\right\|_{H_{1}} \leq K^{\prime}\left\|x-x_{1}\right\|_{H_{1}}+$ $\left(K-K^{\prime}\right)\left\|x-x_{1}\right\|_{H_{1}}=K\left\|x-x_{1}\right\|_{H_{1}}$. Using again the Kirszbraun-Valentine extension theorem, we get the existence of a K-Lipschitz extension $\widetilde{f}_{y} \in \mathcal{F}$ of f_{y}. Since $\left(x_{1}, x_{2}\right) \in \mathcal{P}_{q}(\varphi) \subset \operatorname{graph}\left(\tilde{f}_{y}\right)$, we thus contradict $\widetilde{f}_{y}\left(x_{1}\right)=f_{y}\left(x_{1}\right)=y$.

Proposition 37 Let H_{1}, H_{2}, B and $\lfloor\cdot$,$\rfloor be as in Proposition 34$ and let f : $D \subset H_{1} \rightarrow H_{2}$ be a K-Lipschitz mapping. If D is nonempty, convex, closed and bounded, then graph (f) is q-representable.
Proof. As in the proof of Proposition 36, it will suffice to show that $\operatorname{graph}(f)$ coincides with the intersection of all the graphs of K-Lipschitz extensions \tilde{f} of f to the whole of H_{1}, and we will do it by proving that for every point $\left(x_{1}, x_{2}\right)$ in this intersection one necessarily has $x_{1} \in D$. If we had $x_{1} \notin D$, by the Hilbert projection theorem there would be a closest point \bar{x} to x_{1} in D, characterized by the condition $\left\langle x-\bar{x}, x_{1}-\bar{x}\right\rangle \leq 0$ for all $x \in D$. Let $C:=$ $\sup _{x \in D}\left\{\left\|x-x_{1}\right\|+\|x-\bar{x}\|\right\}$. Since $x_{1} \neq \bar{x}$ and D is nonempty and bounded, $C \in(0,+\infty)$. For every $x \in D$ we have $\left\|x-x_{1}\right\|-\|x-\bar{x}\|=\frac{\left\|x-x_{1}\right\|^{2}-\|x-\bar{x}\|^{2}}{\left\|x-x_{1}\right\|+\|x-\bar{x}\|}=$ $\frac{\left\|x_{1}-\bar{x}\right\|^{2}+2\left\langle x-\bar{x}, \bar{x}-x_{1}\right\rangle}{\left\|x-x_{1}\right\|+\|x-\bar{x}\|} \geq \frac{\left\|x_{1}-\bar{x}\right\|^{2}}{\left\|x-x_{1}\right\|+\|x-\bar{x}\|} \geq \frac{\left\|x_{1}-\bar{x}\right\|^{2}}{C}$. Take $y \in H_{2} \backslash\left\{x_{2}\right\}$ in the closed ball with center $f(\bar{x})$ and radius $\frac{K\left\|x_{1}-\bar{x}\right\|^{2}}{C}$. Let f_{y} be the extension of f to $D \cup\left\{x_{1}\right\}$ defined by $f_{y}\left(x_{1}\right)=y$. This mapping is K-Lipschitz, since for every $x \in D$ one has $\left\|f_{y}(x)-f_{y}\left(x_{1}\right)\right\|_{H_{2}}=\|f(x)-y\|_{H_{2}} \leq\|f(x)-f(\bar{x})\|_{H_{2}}+$ $\|f(\bar{x})-y\|_{H_{2}} \leq K\|x-\bar{x}\|_{H_{1}}+\|f(\bar{x})-y\|_{H_{2}} \leq K\|x-\bar{x}\|_{H_{1}}+\frac{K\left\|x_{1}-\bar{x}\right\|^{2}}{C} \leq$ $K\|x-\bar{x}\|_{H_{1}}+K\left(\left\|x-x_{1}\right\|-\|x-\bar{x}\|\right)=K\left\|x-x_{1}\right\|$. The proof finishes by applying the same reasoning as at the end of the proof of Proposition 36

In this framework, for $A:=\operatorname{graph}(f)$ the function Φ_{A} is given by

$$
\Phi_{A}\left(x_{1}, x_{2}\right)=\frac{1}{2} \sup _{a_{1} \in \operatorname{domf}}\left\{-K^{2}\left\|a_{1}-x_{1}\right\|_{H_{1}}^{2}+\left\|f\left(a_{1}\right)-x_{2}\right\|_{H_{2}}^{2}\right\}+\frac{K^{2}}{2}\left\|x_{1}\right\|^{2}-\frac{1}{2}\left\|x_{2}\right\|^{2}
$$

It is also evident that $(B,\lfloor\cdot, \cdot\rfloor,\|\cdot\|)$ is an SSDB space if and only if $K=1$.

5.2 Closed sets in a Hilbert space

Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space.and denote by $\|\cdot\|$ the induced norm on H. Clearly, $(H,\langle\cdot, \cdot\rangle,\|\cdot\|)$ is an SSDB space, and the associated quadratic form q is
given by $q(x)=\frac{1}{2}\|x\|^{2}$. Since q is nonnegative, every nonempty set $A \subset H$ is q-positive. We further have:

Proposition $38 A$ nonempty set $A \subset H$ is q-representable if and only if it is closed.

Proof. The "only if" statement being obvious, we will only prove the converse. Define $h: H \rightarrow \mathbb{R} \cup\{+\infty\}$ by

$$
h(x)=\sup _{y \in H}\left\{q(y)+\langle y, x-y\rangle+\frac{1}{2} d_{A}^{2}(y)\right\},
$$

with $d_{A}(y):=\inf _{a \in A}\|y-a\|$. Clearly, h is convex and lsc.
For all $x \in H$,

$$
h(x) \geq q(x)+\langle x, x-x\rangle+\frac{1}{2} d_{A}^{2}(x)=q(x)+\frac{1}{2} d_{A}^{2}(x) \geq q(x)
$$

which implies that $h \geq q$ and $\mathcal{P}_{q}(h) \subset A$. We will prove that h represents A, that is,

$$
\begin{equation*}
A=\mathcal{P}_{q}(h) \tag{20}
\end{equation*}
$$

To prove the inclusion \subset in (20), let $x \in A$. Then, for all $y \in H$,

$$
\begin{aligned}
q(y)+\langle y, x-y\rangle+\frac{1}{2} d_{A}^{2}(y) & \leq \frac{1}{2}\|y\|^{2}+\langle y, x-y\rangle+\frac{1}{2}\|y-x\|^{2}=\frac{1}{2}\|x\|^{2} \\
& =q(x),
\end{aligned}
$$

which proves that $h(x) \leq q(x)$. Hence, as $h \geq q$, the inclusion \subset holds in (20). We have thus proved (20), which shows that A is q-representable.

Proposition 39 Let $\emptyset \neq A \subset H$. Then
(1) $\Phi_{A}(x)=\frac{1}{2}\|x\|^{2}-\frac{1}{2} d_{A}^{2}(x)$;
(2) $\Phi_{A}^{@}(x)=\frac{1}{2}\|x\|^{2}+\frac{1}{2} \sup _{b \in H}\left\{d_{A}^{2}(b)-\|x-b\|^{2}\right\}$;
(3) $\Phi_{A}^{@}(x)=\frac{1}{2}\|x\|^{2} \Leftrightarrow x \in \bar{A}$;
(4) $G_{\Phi_{A}}=\left\{x \in H: \sup _{b \in H}\left\{d_{A}^{2}(b)-\|b-x\|^{2}\right\}=d_{A}^{2}(x)\right\}$

Theorem 40 Let $\emptyset \neq A \subset H$ be such that $A=G_{\Phi_{A}}$, and let $a_{1}, a_{2} \in A$ be two different points, $x=\frac{1}{2}\left(a_{1}+a_{2}\right)$ and $r=\frac{1}{2}\left\|a_{1}-a_{2}\right\|$. Denote by $B_{r}(x)$ the open ball with center x and radius r. Then,

$$
B_{r}(x) \cap A \neq \emptyset .
$$

Proof. Suppose that

$$
\begin{equation*}
A \cap B_{r}(x)=\emptyset, \tag{21}
\end{equation*}
$$

so, we must have $d_{A}^{2}(x)=\left\|x-a_{1}\right\|^{2}=\left\|x-a_{2}\right\|^{2}$.
For $b \in H$, we have

$$
\text { either }\left\langle b-x, x-a_{1}\right\rangle \leq 0 \text { or }\left\langle b-x, x-a_{2}\right\rangle \leq 0 .
$$

If $\left\langle b-x, x-a_{1}\right\rangle \leq 0$,

$$
d_{A}^{2}(b)-\|b-x\|^{2} \leq\left\|b-a_{1}\right\|^{2}-\|b-x\|^{2} \leq\left\|x-a_{1}\right\|^{2}=d_{A}^{2}(x)
$$

If $\left\langle b-x, x-a_{2}\right\rangle \leq 0$,

$$
d_{A}^{2}(b)-\|b-x\|^{2} \leq\left\|b-a_{2}\right\|^{2}-\|b-x\|^{2} \leq\left\|x-a_{2}\right\|^{2}=d_{A}^{2}(x)
$$

Thus, we deduce that

$$
\sup _{b \in H}\left\{d_{A}^{2}(b)-\|b-x\|^{2}\right\}=d_{A}^{2}(x)
$$

hence by Proposition 39(4) $x \in G_{\Phi_{A}}=A$, which is a contradiction with (21).

Corollary 41 Let $H=\mathbb{R}$ and $\emptyset \neq A \subset \mathbb{R}$. Then,

$$
A=G_{\Phi_{A}} \text { if and only if } A \text { is closed and convex. }
$$

Proof. (\Longrightarrow) Since $A=G_{\Phi_{A}}, A$ is closed. Assume that A is not convex, so there exists $a_{1}, a_{2} \in A$ such that $] a_{1}, a_{2}[\cap A=\emptyset$, hence

$$
A \cap B_{r}(x)=\emptyset, \text { with } x=\frac{1}{2}\left(a_{1}+a_{2}\right) \text { and } r=\frac{1}{2}\left|a_{1}-a_{2}\right|,
$$

which contradicts Theorem 40. Thus A is convex.
(\Longleftarrow) Since A is closed, it is q-positive; hence we can apply Theorem 6(2).
We will show with a simple example that, leaving aside the case $B=\mathbb{R}$, in general $A=G_{\Phi_{A}}$ does not imply that A is convex.

Example 42 Let $H=\mathbb{R}^{2}$, and let $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} x_{2}=0\right\}$. We will show that $A=G_{\Phi_{A}}$. Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \backslash A$. Then

$$
d_{A}(x)=\min \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}
$$

If $\lambda \in \mathbb{R}$, let $f(\lambda):=d_{A}^{2}(\lambda x)-\|\lambda x-x\|^{2}=\lambda^{2} d_{A}^{2}(x)-(\lambda-1)^{2}\|x\|^{2}$. Then $f^{\prime}(1)=2 d_{A}^{2}(x)>0$ and so, if λ is slightly greater than $1, f(\lambda)>f(1)$, that is to say, $d_{A}^{2}(\lambda x)-\|\lambda x-x\|^{2}>d_{A}^{2}(x)$. Hence we have

$$
\sup _{y \in H}\left\{d_{A}^{2}(y)-\|y-x\|^{2}\right\}>d_{A}^{2}(x)
$$

thus, by Proposition[39(4), $x \notin G_{\Phi_{A}}$. We deduce that $A=G_{\Phi_{A}}$, and clearly A is not convex.

References

[1] H. H. Bauschke, X. Wang, L. Yao. Monotone Linear Relations: Maximality and Fitzpatrick Functions. J. Convex Anal., 16(3-4):673-686, 2009.
[2] H. H. Bauschke, X. Wang, L. Yao. Autoconjugate representers for linear monotone operators. Math. Program., Ser. B, 123(1):15-24, 2010.
[3] S. Fitzpatrick. Representing monotone operators by convex functions, In Workshop/Miniconference on Functional Analysis and Optimization, Canberra 1988, Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59-65, Australian National University, Canberra, 1988.
[4] M. D. Kirszbraun. Uber die zusammenziehende und Lipschitzsche Transformationen. Fund. Math., 22:77-108, 1934.
[5] M. Marques Alves, B. F. Svaiter. Maximal monotone operators with a unique extension to the bidual. J. Convex Anal., 16(2): 409-421, 2009.
[6] J. E. Martínez-Legaz. On maximally q-positive sets. J. Convex Anal., 16(3-4):891-898, 2009.
[7] J. E. Martínez-Legaz, B. F. Svaiter. Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136(3):873-878, 2008.
[8] S. Simons. The range of a monotone operator. J. Math. Anal. Appl., 199(1):176-201, (1996).
[9] S. Simons. Positive sets and monotone sets. J. Convex Anal., 14(2):297317, 2007.
[10] S. Simons. From Hahn-Banach to monotonicity, volume 1693 of Lecture Notes in Mathematics. Springer, New York, 2008.
[11] S. Simons. Banach SSD spaces and classes of monotone sets. J. Convex Anal., 18(1):227-258, 2011.
[12] F. A. Valentine. A Lipschitz condition preserving extension for a vector function. Amer. J. Math., 67(1):83-93, 1945.

[^0]: *This author has been supported by the MICINN of Spain, grant MTM2008-06695-C03-03, by the Barcelona Graduate School of Economics and by the Government of Catalonia. He is affiliated to MOVE (Markets, Organizations and Votes in Economics).

