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Nonreflexive Banach SSD spaces

by S. Simons

Abstract

In this paper, we unify the theory of SSD spaces, part of the theory of strongly representable
multifunctions, and the theory of the equivalence of various classes of maximally monotone
multifunctions.

0 Introduction

In this paper, we unify three different lines of investigation: the theory of SSD spaces as
expounded in [11] and [13], part of the theory of strongly representable multifunctions as
expounded in [15] and [4], and the equivalence of various classes of maximally monotone
multifunctions, as expounded in [5].

The purely algebraic concepts of SSD space and q–positive set are introduced in
Definition 1.2. These were originally defined in [11], and the development of the theory
was continued in [13]. Apart from the fact that we write “P” instead of “pos”, we use
the notation of the latter of these references. We show in Lemma 1.9 how certain proper
convex functions f on an SSD space lead to a q–positive set, P(f). In Definition 1.10,
we define the intrinsic conjugate, f@, of a proper convex function on an SSD space, and
we end Section 1 by proving in Lemma 1.11 a simple, but useful, property of intrinsic
conjugates.

In Definition 2.1, we introduce the concept of a Banach SSD space, which is an SSD
space with a Banach space structure satisfying the compatibility conditions (2.1.1) and
(2.1.2). A proper convex function on a Banach SSD space may be a VZ function, which
is introduced in Definition 2.5. Our main result on VZ functions, established in Theorem
2.9(c,d), is that if f is a lower semicontinuous VZ function then P(f) is maximally q–
positive, f@ is also a VZ function, and P

(
f@

)
= P(f). Lemma 2.7(b) is an important

stepping–stone to Theorem 2.9. In Definition 2.12 and Lemma 2.13, we introduce and
discuss the properties of various convex functions on a Banach SSD space and its dual, and
show in Theorem 2.15(c) that if f is a lower semicontinuous VZ function on a Banach SSD
then there is a whole family of VZ functions h associated with f such that P(h) = P(f).

If E is a nonzero Banach space then it is shown in Examples 1.4, 2.3, and 2.4 that
E × E∗ is a Banach SSD space under various different norms. We show in Section 3 how
the definitions and results of Section 2 specialize to this case. Theorem 3.1 extends some
concepts and results from [1] and [5]. The definition of VZ function involves the norm of B
in an essential way. Looking ahead, we will see in Theorem 5.3 that there is a large class
of norms on E × E∗ for which the classes of VZ functions coincide. This follows from the
analysis in Section 4, which we will now discuss.

In Definition 4.1, we introduce the concept of a Banach SSD dual space, which is the
dual of a Banach SSD space which has an SSD structure in its own right, satisfying the
compatibility conditions (4.1.1) and (4.1.2). In this situation, a proper convex function on
the (original) Banach SSD space may be an MAS function, which is introduced in Definition
4.8. The main result here is Theorem 4.9(c), in which we prove that, under the p̃–density
condition (4.2.1), a function is an MAS function if, and only if, it is a VZ function. The
main stepping stone to Theorem 4.9 is Lemma 4.7, which relies on Rockafellar’s formula
for the conjugate of the sum of two convex functions.
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Nonreflexive Banach SSD spaces

The subtlety of the analysis outlined in the previous paragraph is that definition of
MAS function does not use the norm of B explicitly — it only uses the knowledge of B∗.
In a certain sense, the analysis of Section 2 is isometric, while the analysis of Section 4
is isomorphic, though it would be a mistake to push this analogy too far because, despite
the fact that the definition of MAS function does not use the norm of B, the conditions
(4.1.2) and (4.2.1) referred to above do use the norm very strongly.

In Section 5, we show how the results of Section 4 specialize to the E × E∗ case. In
Theorem 5.5, we show how the negative alignment analysis introduced in [10, Section 8,
pp. 274–280] and [13, Section 42, pp. 161–167] can be used to obtain, and in some cases
strengthen, results from [4] and [15]. In Theorem 5.8, we generalize some equivalencies
from [5, Theorem 1.2]. In particular, we give a proof of the very nice result from [5] that
a maximally monotone multifunction is strongly representable if, and only if, it is of type
(NI).

At one point in this paper, we will use the Fenchel–Moreau theorem for a not neces-
sarily Hausdorff locally convex space. For the convenience of the reader, we give a proof
of this result in the Appendix, Section 6.

The author would like to thank Constantin Zălinescu for making him aware of the
preprints [4] and [15], and Benar Svaiter for making him aware of the preprint [5]. He
would also like to thank Constantin Zălinescu for some very perceptive comments on an
earlier version of this paper.

1 SSD spaces

We first introduce the concepts of an SSD space and q–positive set. As pointed out in the
introduction, these were introduced in [11] and [13]. The first of these references has a
detailed discussion of the finite dimensional case.

Definition 1.1. If X is a nonzero vector space and f : X → ]−∞,∞], we write dom f for
the set

{
x ∈ X : f(x) ∈ R

}
. dom f is the effective domain of f . We say that f is proper

if dom f 6= ∅. We write PC(X) for the set of all proper convex functions from X into
]−∞,∞]. If X is a nonzero Banach space, we write PCLSC(X) for the set

{f ∈ PC(X): f is lower semicontinuous on X},

and PCLSC∗(X∗) for the set

{f ∈ PC(X∗): f is w(X∗, X)–lower semicontinuous on X∗}.

Definition 1.2. We will say that
(
B, ⌊·, ·⌋

)
is a symmetrically self–dual space (SSD space)

(if there is no risk of confusion, we will say simply “B is an SSD space”) if B is a nonzero
real vector space and ⌊·, ·⌋: B × B → R is a symmetric bilinear form. We define the
quadratic form q on B by q(b) := 1

2
⌊b, b⌋. Let A ⊂ B. We say that A is q–positive if A 6= ∅

and
b, c ∈ A =⇒ q(b − c) ≥ 0.

We say that A is maximally q–positive if A is q–positive and A is not properly contained in
any other q–positive set. We make the elementary observation that if b ∈ B and q(b) ≥ 0
then the linear span Rb of {b} is q–positive.
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We now give some examples of SSD spaces and their associated q–positive sets.

Example 1.3. Let B be a Hilbert space with inner product (b, c) 7→ 〈b, c〉 and T : B → B
be a self–adjoint linear operator. Then B is an SSD space with ⌊b, c⌋ := 〈Tb, c〉, and then
q(b) = 1

2 〈Tb, b〉. Here are three special cases of this example:
(a) If, for all b ∈ B, Tb = b then ⌊b, c⌋ := 〈b, c〉, q(b) = 1

2
‖b‖2 and every subset of B

is q–positive
(b) If, for all b ∈ B, Tb = −b then ⌊b, c⌋ := −〈b, c〉, q(b) = −1

2‖b‖2 and the q–positive
sets are the singletons.

(c) If B = R
3 and T (b1, b2, b3) = (b2, b1, b3) then

⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2 + b2c1 + b3c3,

and q(b1, b2, b3) = b1b2 + 1
2b2

3. Here, If M is any nonempty monotone subset of R × R

(in the obvious sense) then M × R is a q–positive subset of B. The set R(1,−1, 2) is a
q–positive subset of B which is not contained in a set M × R for any monotone subset of
R×R. The helix

{
(cos θ, sin θ, θ): θ ∈ R

}
is a q–positive subset of B, but if 0 < λ < 1 then

the helix
{
(cos θ, sin θ, λθ): θ ∈ R

}
is not.

Example 1.4. Let E be a nonzero Banach space and B := E × E∗. For all b = (x, x∗)
and c = (y, y∗) ∈ B, we set ⌊b, c⌋ := 〈x, y∗〉 + 〈y, x∗〉. Then B is an SSD space and

q(b) = 1
2

[
〈x, x∗〉 + 〈x, x∗〉

]
= 〈x, x∗〉.

Consequently, if b = (x, x∗) and c = (y, y∗) ∈ B then

〈x − y, x∗ − y∗〉 = q(x − y, x∗ − y∗) = q
(
(x, x∗) − (y, y∗)

)
= q(b − c).

Thus if A ⊂ B then A is q–positive exactly when A is a nonempty monotone subset of B in
the usual sense, and A is maximally q–positive exactly when A is a maximally monotone
subset of B in the usual sense. We point out that any finite dimensional SSD space of the
form described here must have even dimension. Thus cases of Example 1.3 with finite odd
dimension cannot be of this form.

Example 1.5. R
3 is not an SSD space with

⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2 + b2c3 + b3c1.

(The bilinear form ⌊·, ·⌋ is not symmetric.)

Lemma 1.6. Let B be an SSD space, f ∈ PC(B), f ≥ q on B and b, c ∈ B. Then

−q(b − c) ≤
[√

(f − q)(b) +
√

(f − q)(c)
]2

.

Proof. We can and will suppose that 0 ≤ (f − q)(b) < ∞ and 0 ≤ (f − q)(c) < ∞.
Let

√
(f − q)(b) < β < ∞ and

√
(f − q)(c) < γ < ∞, so that β2 + q(b) > f(b) and
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γ2 + q(c) > f(c). Then

βγ +
γq(b) + βq(c)

β + γ
=

γ

β + γ

(
β2 + q(b)

)
+

β

β + γ

(
γ2 + q(c)

)

>
γ

β + γ
f(b) +

β

β + γ
f(c) ≥ f

(
γb + βc

β + γ

)

≥ q

(
γb + βc

β + γ

)
=

γ2q(b) + γβ⌊b, c⌋ + β2q(c)

(β + γ)2
.

Clearing of fractions, we obtain

(β + γ)2βγ + (β + γ)
(
γq(b) + βq(c)

)
> γ2q(b) + γβ⌊b, c⌋ + β2q(c),

from which (β + γ)2βγ > −βγq(b) + βγ⌊b, c⌋ − βγq(c) = −βγq(b − c). If we now divide
by βγ, we obtain (β + γ)2 > −q(b − c), and the result follows by letting β →

√
(f − q)(b)

and γ →
√

(f − q)(c). �

Remark 1.7. It follows from Lemma 1.6 and the Cauchy–Schwarz inequality that

−q(b − c) ≤ 2(f − q)(b) + 2(f − q)(c).

In the situation of Example 1.4, we recover [15, Proposition 1].

Definition 1.8. If B be an SSD space, f ∈ PC(B) and f ≥ q on B, we write

P(f) :=
{
b ∈ B: f(b) = q(b)

}
.

The following result is suggested by Burachik–Svaiter, [1, Theorem 3.1, pp. 2381–
2382] and Penot, [7, Proposition 4

(
h)=⇒(a), pp. 860–861].

Lemma 1.9. Let B be an SSD space, f ∈ PC(B), f ≥ q on B and P(f) 6= ∅. Then P(f)
is a q–positive subset of B.

Proof. This is immediate from Lemma 1.6. �

We now introduce a concept of conjugate that is intrinsic to an SSD space without
any topological conditions.

Definition 1.10. If B is an SSD space and f ∈ PC(B), we write f@ for the Fenchel
conjugate of f with respect to the pairing ⌊·, ·⌋, that is to say,

for all c ∈ B, f@(c) := supb∈B

[
⌊b, c⌋ − f(b)

]
.

Our next result represents an improvement of the result proved in [13, Lemma 19.12,
p. 82], and uses a disguised differentiability argument. See Remark 1.12 below for another
proof of Lemma 1.11, due to Constantin Zălinescu.

4



Nonreflexive Banach SSD spaces

Lemma 1.11. Let B be an SSD space, f ∈ PC(B) and f ≥ q on B. Then:

a ∈ P(f) and b ∈ B =⇒ ⌊b, a⌋ ≤ q(a) + f(b).(a)

a ∈ P(f) =⇒ f@(a) = q(a).(b)

Proof. Let a ∈ P(f) and b ∈ B. Let λ ∈ ]0, 1[ . For simplicity in writing, let µ := 1− λ ∈
]0, 1[ . Then

λ2q(b) + λµ⌊b, a⌋ + µ2q(a) = q
(
λb + µa

)
≤ f(λb + µa)

≤ λf(b) + µf(a) = λf(b) + µq(a).

Thus λ2q(b) + λµ⌊b, a⌋ ≤ λf(b) + λµq(a). We now obtain (a) by dividing by λ and
letting λ → 0. Now let a ∈ P(f). From (a), b ∈ B =⇒ ⌊a, b⌋ − f(b) ≤ q(a), and
it follows by taking the supremum over b ∈ B that f@(a) ≤ q(a). On the other hand,
f@(a) ≥ ⌊a, a⌋ − f(a) = 2q(a) − q(a) = q(a), completing the proof of (b). �

Remark 1.12. The author is grateful to Constantin Zălinescu for pointing out to him
the following alternative proof of Lemma 1.11(a). From Lemma 1.6, with c replaced by a,
−q(b) + ⌊b, a⌋ − q(a) = −q(b − a) ≤ (f − q)(b). Thus ⌊b, a⌋ − q(a) ≤ f(b), as required.

2 Banach SSD spaces

Definition 2.1. We say that B is a Banach SSD space if B is an SSD space and ‖ · ‖ is a
norm on B with respect to which B is a Banach space with norm–dual B∗,

1
2‖ · ‖2 + q ≥ 0 on B (2.1.1)

and there exists ι ∈ L(B, B∗) such that

for all b, c ∈ B,
〈
b, ι(c)

〉
= ⌊b, c⌋,

(
from which

∣∣⌊b, c⌋
∣∣ ≤ ‖ι‖‖b‖‖c‖

)
. (2.1.2)

Then, for all d, e ∈ B,

|q(d) − q(e)| = 1
2

∣∣⌊d, d⌋ − ⌊e, e⌋
∣∣ = 1

2

∣∣⌊d − e, d + e⌋
∣∣ ≤ 1

2
‖ι‖‖d − e‖‖d + e‖. (2.1.3)

We define the continuous convex functions g and p on B by g := 1
2
‖ · ‖2 and p := g + q, so

that p ≥ 0 on B. Since p(0) = 0, in fact

infB p = 0. (2.1.4)

Also, for all d, e ∈ B, |g(d) − g(e)| = 1
2

∣∣‖d‖ − ‖e‖
∣∣(‖d‖ + ‖e‖

)
≤ 1

2‖d − e‖
(
‖d‖ + ‖e‖

)
.

Combining this with (2.1.3), for all d, e ∈ B,

|p(d) − p(e)| ≤ 1
2

(
1 + ‖ι‖

)
‖d − e‖

(
‖d‖ + ‖e‖

)
. (2.1.5)

(2.1.2) implies that, for all f ∈ PC(B) and c ∈ B, f@(c) = supb∈B

[〈
b, ι(c)

〉
− f(b)

]
=

f∗(ι(c)
)
, that is to say,

f@ = f∗ ◦ ι on B. (2.1.6)

Remark 2.2. Example 1.3 is a Banach SSD space provided that ‖T‖ ≤ 1. This is the
case with (a), (b) and (c) of Example 1.3.
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Example 2.3. We now continue our discussion of Example 1.4. We suppose that B =
E ×E∗ and

(
B, ‖ · ‖

)
is a Banach SSD space such that B∗ = E∗∗ ×E∗, under the pairing

〈b, c∗〉 := 〈x, y∗〉 + 〈x∗, y∗∗〉
(
b = (x, x∗) ∈ B, c∗ = (y∗∗, y∗) ∈ B∗). (2.3.1)

We recall that, for all (x, x∗) ∈ B, q(x, x∗) = 〈x, x∗〉. It is clear that, for all (x, x∗) ∈ B,
ι(x, x∗) := (x̂, x∗) where x̂ is the canonical image of x in E∗∗. We note that if

(
B, ‖ · ‖

)

is a Banach SSD space and ‖ · ‖′ is a larger norm on B such that
(
B, ‖ · ‖′

)∗
= E∗∗ × E∗

then
(
B, ‖ · ‖′

)
is also a Banach SSD space.

Example 2.4. We now discuss some specific examples of the above concepts. Here it is
convenient to introduce a parameter τ > 0. (τ stands for “torsion”.) Then
E × E∗ is a Banach SSD space if we use the norm ‖(x, x∗)‖1,τ := 1√

2

(
τ‖x‖ + ‖x∗‖/τ

)

or ‖(x, x∗)‖2,τ :=
√

τ2‖x‖2 + ‖x∗‖2/τ2 or ‖(x, x∗)‖∞,τ :=
√

2
(
τ‖x‖ ∨ ‖x∗‖/τ

)
. (These

are arranged in order of increasing size.) Then the dual norm of
(
B, ‖ · ‖1,τ

)
is given

by ‖(y∗∗, y∗)‖∞,τ :=
√

2
(
τ‖y∗∗‖ ∨ ‖y∗‖/τ

)
, the dual norm of

(
B, ‖ · ‖2,τ

)
is given by

‖(y∗∗, y∗)‖2,τ :=
√

τ2‖y∗∗‖2 + ‖y∗‖2/τ2, and the dual norm of
(
B, ‖ · ‖∞,τ

)
is given by

‖(y∗∗, y∗)‖1,τ := 1√
2

(
τ‖y∗∗‖ + ‖y∗‖/τ

)
.

Definition 2.5. Let X be a vector space and h, k: X → ]−∞,∞]. The inf–convolution of
h and k is defined by (h∇ k)(x) := infy∈X

[
h(y) + k(x − y)

]
(x ∈ X). It is clear that

infX k = 0 =⇒ infX

[
h∇ k

]
= infX h. (2.5.1)

Now let
(
B, ‖ · ‖

)
be a Banach SSD space and f ∈ PC(B). We say that f is a VZ function(

with respect to ‖ · ‖
)

if
(f − q)∇ p = 0 on B. (2.5.2)

It follows from (2.1.4) and (2.5.1) that

if f is a VZ function with respect to ‖ · ‖ then infB [f − q] = 0. (2.5.3)

“VZ” stands for “Voisei–Zălinescu”, since (2.5.2) is an extension to Banach SSD spaces of
a condition introduced in [15, Proposition 3].

Definition 2.6. Let A be a subset of a Banach SSD space B. We say that A is p–dense
if, for all c ∈ B, inf p(c − A) = 0.

We now come to our main results on Banach SSD spaces. Lemma 2.7(b) is interesting
since it tells us that we can determine whether f is a VZ function by inspecting P(f).

Lemma 2.7. Let B be a Banach SSD space and f ∈ PCLSC(B).
(a) Let f be a VZ function. Then P(f) is a q–positive subset of B and

c ∈ B =⇒ dist(c,P(f)) ≤
√

2
√

(f − q)(c). (2.7.1)

(b) The following three conditions are equivalent:
(i) f is a VZ function.
(ii) f ≥ q on B and, for all c ∈ B there exists a bounded sequence {an}n≥1 of

elements of P(f) such that limn→∞ p(c − an) = 0.
(iii) f ≥ q on B and P(f) is p–dense.
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Proof. (a) (2.5.3) implies that f ≥ q on B, and so P(f) is defined. Since (2.7.1) is
trivial if c ∈ B \ dom f , we can and will suppose that c ∈ dom f . Let ε ∈ ]0, 1[ . We first
prove that there exists a Cauchy sequence {bn}n≥1 such that, for all n ≥ 1,

(f − q)(bn) ≤ (f − q)(c)/16n and ‖c − bn‖ ≤ (1 + ε)
√

2
√

(f − q)(c). (2.7.2)

Since we can take bn = c if (f − q)(c) = 0, we can and will suppose that

α :=
√

(f − q)(c) > 0. (2.7.3)

Let λ := ε/(3+ε) ∈ ]0, 1/4[ and write b0 := c. Then we can choose inductively b1, b2, . . . ∈
B such that, for all n ≥ 1, (f − q)(bn) + p(bn−1 − bn) ≤ λ2nα2. It follows from this and
(2.5.3) that,

for all n ≥ 1, p(bn−1 − bn) ≤ λ2nα2, (2.7.4)

and, combining with (2.1.4),

for all n ≥ 0, (f − q)(bn) ≤ λ2nα2 ≤ α2/16n. (2.7.5)

Substituting the first inequality of (2.7.5) into Lemma 1.6, for all n ≥ 1,

−q(bn−1 − bn) ≤
[√

(f − q)(bn−1) +
√

(f − q)(bn)
]2

≤ (1 + λ)2λ2n−2α2.

Consequently, since g(bn−1 − bn) = p(bn−1 − bn) − q(bn−1 − bn), (2.7.4) gives,

for all n ≥ 1, g(bn−1 − bn) ≤ (1 + λ)2λ2n−2α2 + λ2nα2 ≤ (1 + 2λ)2λ2n−2α2,

and so, for all n ≥ 1, ‖bn−1 − bn‖ ≤
√

2(1 + 2λ)λn−1α. Adding up this inequality for
n = 1, . . . , m, we derive that, for all m ≥ 1, ‖c − bm‖ ≤

√
2(1 + 2λ)α/(1 − λ). Since

(1 + 2λ)/(1 − λ) = 1 + ε, this and (2.7.5) give (2.7.2). Now set a = limn bn, so that
‖c − a‖ ≤ (1 + ε)

√
2
√

(f − q)(c). (2.7.5) and the lower semicontinuity of f − q now imply
that (f − q)(a) ≤ 0, that is to say, a ∈ P(f). Since dom f 6= ∅, it follows that P(f) 6= ∅
and so, from Lemma 1.9, P(f) is a q–positive subset of B. We also have

dist(c,P(f)) ≤ (1 + ε)
√

2
√

(f − q)(c),

and so if we now let ε → 0, we obtain (2.7.1). This completes the proof of (a).

(b) Suppose first that (i) is satisfied. (2.5.3) implies that f ≥ q on B. Let c ∈ B.
We choose inductively b1, b2, . . . ∈ B such that, for all n ≥ 1,

f(bn) + g(c − bn) + q(c) − ⌊c, bn⌋ = (f − q)(bn) + p(c − bn) < 1/n2.

Consequently, using (2.1.4) and (2.1.2), for all n ≥ 1,

(f − q)(bn) < 1/n2, p(c − bn) < 1/n2 (2.7.6)

7
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and
f(bn) + g(c − bn) + q(c) − ‖ι‖‖c‖‖bn‖ < 1/n2. (2.7.7)

Since f ∈ PCLSC(B), f dominates a continuous affine function, and so (2.7.7) and the
usual coercivity argument imply that K := supn≥1 ‖bn‖ < ∞. From (a) and (2.7.6), there

exists an ∈ P(f) such that ‖an − bn‖ ≤
√

2/n. Now, from (2.1.5), for all n ≥ 1,

|p(c − an) − p(c − bn)| ≤ 1
2(1 + ‖ι‖)‖an − bn‖(2‖c‖ + ‖an‖ + ‖bn‖)

≤ 1
2(1 + ‖ι‖)

(
2‖c‖ +

(
K +

√
2
)

+ K
)√

2/n.

Thus limn→∞
[
p(c − an) − p(c − bn)

]
= 0, and (ii) follows by combining this with (2.7.6).

It is trivial that (ii)=⇒(iii). Suppose, finally, that (iii) is satisfied. Then, for all c ∈ B,
(
(f − q)∇ p

)
(c) ≤ infa∈P(f)

[
(f − q)(a) + p(c − a)

]
= inf p(c −P(f)) = 0,

from which (f − q)∇ p ≤ 0 on B. On the other hand, since f − q ≥ 0 on B and,
from (2.1.4), p ≥ 0 on B, we have (f − q)∇ p ≥ 0 on B. Thus f is a VZ function,
giving (i). �

Lemma 2.8. Let A be a closed, p–dense and q–positive subset of a Banach SSD space B.

(a) For all c ∈ B, inf q(c − A) ≤ 0 and dist(c, A) ≤
√

2
√

− inf q(c − A).

(b) Let h ∈ PC(B), h ≥ q on B, and P(h) ⊃ A. Then h is a VZ function.

(c) A is a maximally q–positive subset of B.

Proof. (a) Let c ∈ B. Then inf g(c − A) + inf q(c − A) ≤ inf p(c − A) = 0. Thus
1
2dist(c, A)2 = inf g(c− A) ≤ − inf q(c − A), from which (a) is an immediate consequence.

(b) Clearly, P(h) is also p–dense, and it follows as in Lemma 2.7(b)
(
(iii)=⇒(i)

)
(which

does not use any semicontinuity) that h is a VZ function, which gives (b).

(c) We suppose that c ∈ B and inf q(c−A) ≥ 0, and we must prove that c ∈ A. From
(a), in fact inf q(c − A) = 0 and dist(c, A) = 0. Since A is closed, c ∈ A. This completes
the proof of (c). �

Theorem 2.9. Let B be a Banach SSD space and f ∈ PCLSC(B) be a VZ function.
Then:

(a) For all c ∈ B, inf q(c − P(f)) ≤ 0 and dist(c,P(f)) ≤
√

2
√

− inf q(c −P(f)).

(b) Let h ∈ PC(B), h ≥ q on B, and P(h) ⊃ P(f). Then h is a VZ function.

(c) P(f) is a maximally q–positive subset of B.

(d) f@ ∈ PCLSC(B), f@ is a VZ function and P
(
f@

)
= P(f).

Proof. (a), (b) and (c) are immediate from Lemma 2.7(b)
(
(i)=⇒(iii)

)
and the correspond-

ing parts of Lemma 2.8.

(d) Let c ∈ B. Then, since q ≤ p on B, Definition 1.10 gives

q(c) − f@(c) = infb∈B

[
f(b) − ⌊b, c⌋ + q(c)

]
=

(
(f − q)∇ q

)
(c) ≤

(
(f − q)∇ p

)
(c) = 0,

and so f@ ≥ q on B. It now follows from Lemma 1.11(b) that P
(
f@

)
⊃ P(f), and so

(b) and (c) imply that f@ is a VZ function and P
(
f@

)
= P(f). Since P(f) 6= ∅, it is

evident that f@ ∈ PCLSC(B). (P(f) is closed because f is lower semicontinuous.) �
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Remark 2.10. In general, Theorem 2.9(a) is strictly stronger than Lemma 2.7(a). While
this can be proved directly, we will see in Remark 2.17 that it follows easily from the
properties of the Φ–functions. We will also see in Remark 2.17 that the constant

√
2 in

(2.7.1) is sharp.

The proof of Theorem 2.9 relies heavily on the lower semicontinuity of f . We will
show in Corollary 2.11 below that part of Theorem 2.9(d) can be recovered even if f is not
assumed to be lower semicontinuous.

Corollary 2.11. Let B be a Banach SSD space and f ∈ PC(B) be a VZ function. Then
f@ ∈ PCLSC(B), f@ is a VZ function and P

(
f@

)
is a maximally q–positive subset of B.

Proof. Let f be the lower semicontinuous envelope of f . Since q is continuous and f ≥ q
on B, it follows that f ≥ f ≥ q on B. Thus, from (2.1.4),

0 = (f − q)∇ p ≥ (f − q)∇ p ≥ 0∇ p = 0 on B,

and so f is a VZ function. Since f ∈ PCLSC(B), Theorem 2.9(d) implies that f
@

is a

VZ function also. It is well known that f
∗

= f∗ on B∗ thus, composing with ι and using

(2.1.6), f
@

= f@ on B. The result now follows from Theorem 2.9(d,c), with f replaced by
f@. �

Definition 2.12. Let B be a Banach SSD space and A be a nonempty q–positive subset
of B. We define the function ΘA: B∗ → ]−∞,∞] by: for all b∗ ∈ B∗,

ΘA(b∗) := supa∈A

[
〈a, b∗〉 − q(a)

]
.

We define the function ΦA: B → ]−∞,∞] by ΦA := ΘA ◦ ι.
We define the function ∗ΘA: B → ]−∞,∞] by: for all c ∈ B,

∗ΘA(c) := supb∗∈B∗

[
〈c, b∗〉 − ΘA(b∗)

]
.

We collect together in Lemma 2.13 some elementary properties of ΘA, ΦA, ∗ΘA, and
Φ@

A. The properties of ΦA and Φ@
A have already appeared in [13].

Lemma 2.13. Let B be a Banach SSD space and A be a nonempty q–positive subset of
B.

(a) For all b ∈ B, ΦA(b) = supa∈A

[
⌊a, b⌋ − q(a)

]
= q(b) − inf q(b − A).

(b) ΦA ∈ PCLSC(B) and ΦA = q on A.

(c) ΘA ∈ PCLSC∗(B∗).

(d) (∗ΘA)∗ = ΘA and (∗ΘA)@ = ΦA.

(e) ∗ΘA ≤ q on A. Consequently, ∗ΘA ∈ PCLSC(B).

(f) ∗ΘA ≥ ΦA
@ ≥ ΦA ∨ q on B.

(g) ∗ΘA = ΦA
@ = q on A.

(h) Let A be maximally q–positive. Then ∗ΘA ≥ ΦA
@ ≥ ΦA ≥ q on B and A ⊂ P

(∗
ΘA

)
.

(i) Let A be maximally q–positive. Then P
(∗

ΘA

)
= P

(
ΦA

@
)

= P
(
ΦA

)
= A.

9
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Proof. (a) is immediate from (2.1.2), (b) from (a), and (c) from (b) and the definition of
ΘA.

The first assertion in (d) follows from (c) and the Fenchel–Moreau theorem for the
locally convex space

(
B∗, w(B∗, B)

)
, while the second assertion follows from the first by

composing with ι, and using (2.1.6) and the definition of ΦA.

(e) Let a ∈ A. The definition of ΘA implies that, for all b∗ ∈ B∗, 〈a, b∗〉 − ΘA(b∗) ≤
q(a). Taking the supremum over b∗ ∈ B∗, ∗ΘA(a) ≤ q(a), as required.

(f) Let c ∈ B. Then, from (2.1.2), the definition of ΦA and (b),

∗ΘA(c) ≥ supb∈B

[
〈c, ι(b)〉 − ΘA(ι(b))

]

= supb∈B

[
⌊c, b⌋ − ΦA(b)

] (
= ΦA

@(c)
)

≥
[
⌊c, c⌋ − ΦA(c)

]
∨ supa∈A

[
⌊c, a⌋ − ΦA(a)

]

=
[
2q(c) − ΦA(c)

]
∨ supa∈A

[
⌊c, a⌋ − q(a)

]

=
[
2q(c) − ΦA(c)

]
∨ ΦA(c).

Now if ΦA(c) = ∞ then obviously
[
2q(c)−ΦA(c)

]
∨ΦA(c) ≥ q(c), while if ΦA(c) ∈ R then[

2q(c)−ΦA(c)
]
∨ΦA(c) ≥ 1

2 [2q(c)−ΦA(c)
]
+ 1

2ΦA(c) = q(c). Thus ΦA
@(c) ≥ Φ(c)∨ q(c).

This completes the proof of (f).

(g) is immediate from (e) and (f).

(h) In this case, for all b ∈ B \ A, there exists a ∈ A such that q(b − a) < 0, and so
inf q(b − A) < 0. Thus, from (a), ΦA > q on B \ A. Combining this with (b), ΦA ≥ q
on B and P

(
ΦA

)
= A. Thus (h) follows from (f) and (g).

It is clear from (h) that A ⊂ P
(∗

ΘA

)
⊂ P

(
ΦA

@
)
⊂ P

(
ΦA

)
, and so (i) follows from

the maximality of A. �

Remark 2.14. We will see in (2.15.2) and (2.15.3) that ∗Θ and ΦA
@ are both “up-

per limiting” functions in various situations, so the question arises whether these two
functions are identical. If ∗ΘA = ΦA

@ then ∗ΘA is obviously w(B, B)–lower semicon-
tinuous. If, conversely, ∗ΘA is w(B, B)–lower semicontinuous then the Fenchel–Moreau
theorem for the (possibly nonhausdorff) locally convex space

(
B, w(B, B)

)
and Lemma

2.13(d) imply that ∗ΘA =
(∗

ΘA

)@@
= ΦA

@. The author is grateful to Constantin

Zălinescu for the following example showing that, in general, the functions ∗Θ and ΦA
@

are not identical. Let B be a Banach space, ⌊·, ·⌋ = 0 on B × B and A be a nonempty
proper closed convex subset of B. Then ∗ΘA is the indicator function of A and ΦA

@ = 0
on B. We do not know what the situation is if A is maximally q–positive, or in the special
situation of Example 2.4. For the convenience of the reader, we will give a proof of the
Fenchel–Moreau theorem for nonhausdorff locally convex spaces in Theorem 6.1.

Theorem 2.15. Let B be a Banach SSD space.
(a) Let f ∈ PCLSC(B), f ≥ q on B and A := P(f) 6= ∅. Then ∗ΘA ≥ f ≥ ΦA on B
and ΦA

∗ ≥ f∗ ≥ ΘA on B∗.

(b) Let A be a maximally q–positive subset of B, h ∈ PC(B) and ∗ΘA ≥ h ≥ ΦA on B.
Then h ≥ q on B, h@ ≥ q on B and P(h) = P

(
h@

)
= A.

10
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(c) Let f ∈ PCLSC(B) be a VZ function and A := P(f). Then

∗ΘA ≥ f ≥ ΦA ≥ q on B and ΦA
∗ ≥ f∗ ≥ ΘA on B∗. (2.15.1)

Now let h ∈ PC(B) and ∗ΘA ≥ h ≥ ΦA on B. Then h and h@ are VZ functions.
In particular, P

(∗
ΘA

)
= P

(
ΦA

@
)

= P
(
ΦA

)
= P(f) and ΦA, ΦA

@ and ∗ΘA are all VZ
functions.

Proof. (a) Let b ∈ B and a ∈ P(f). Then, from Lemma 1.11(a), f(b) ≥ ⌊b, a⌋ − q(a).
Taking the supremum over a ∈ P(f) and using Lemma 2.13(a), f(b) ≥ ΦA(b). Thus
f ≥ ΦA on B and, taking conjugates, ΦA

∗ ≥ f∗ on B∗. Now, for all b∗ ∈ B∗,

f∗(b∗) = supb∈B

[
〈b, b∗〉 − f(b)

]
≥ supa∈P(f)

[
〈a, b∗〉 − f(a)

]

= supa∈P(f)

[
〈a, b∗〉 − q(a)

]
= ΘA(b∗).

Thus f∗ ≥ ΘA on B∗. Taking conjugates and using the Fenchel–Moreau theorem for
the normed space B, ∗ΘA ≥ f on B. This completes the proof of (a).

(b) From Lemma 2.13(h),

∗ΘA ≥ h ≥ ΦA ≥ q on B, from which P
(∗

ΘA

)
⊂ P(h) ⊂ P

(
ΦA

)
. (2.15.2)

It is clear from our assumptions that ΦA
@ ≥ h@ ≥ (∗ΘA)@ on B. If we now combine this

with Lemma 2.13(d,h), we derive that

ΦA
@ ≥ h@ ≥ ΦA ≥ q on B, from which P

(
ΦA

@
)
⊂ P

(
h@

)
⊂ P

(
ΦA

)
. (2.15.3)

(b) now follows from (2.15.2), (2.15.3) and Lemma 2.13(i).

(c) The assertions about f follow from (2.5.3), Theorem 2.9(c), (a) and Lemma 2.13(h),
the assertions about h and h@ follow from Theorem 2.9(c,b) and (b), and then the asser-
tions about ΦA, ΦA

@ and ∗ΘA follow from Theorem 2.9(c) and Lemma 2.13(h,i). �

In Theorem 2.16 below, we show that ∗ΘA has a certain maximal property. This result
was motivated by results originally proved by Burachik and Svaiter in [1] for maximally
monotone multifunctions.

Theorem 2.16. Let A be a nonempty q–positive subset of a Banach SSD space B and

σA := sup
{
h: h ∈ PCLSC(B), h ≤ q on A

}
.

Then ∗ΘA = σA on B.

Proof. Let h ∈ PCLSC(B) and h ≤ q on A. The Fenchel Young inequality implies that,
for all b∗ ∈ B∗ and a ∈ A, h∗(b∗) ≥ 〈a, b∗〉 − h(a) ≥ 〈a, b∗〉 − q(a). Thus, taking the
supremum over a ∈ A, h∗(b∗) ≥ ΘA(b∗). In other words, h∗ ≥ ΘA on B∗. Taking
conjugates and using the Fenchel Moreau theorem for the normed space B, ∗ΘA ≥ h
on B. It follows by taking the supremum over h that ∗ΘA ≥ σA on B. On the other
hand, it is clear from Lemma 2.13(e) that σA ≥ ∗ΘA on B. �
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Remark 2.17. Let B be a Banach SSD space and f ∈ PCLSC(B) be a VZ function. We
know from Theorem 2.15(c) that P

(
ΦP(f)

)
= P(f), ΦP(f) is a VZ function and ΦP(f) ≤ f

on B. Thus Lemma 2.7(a) implies that, for all c ∈ B,

dist(c,P(f)) = dist
(
c,P

(
ΦP(f)

))
≤

√
2
√(

ΦP(f) − q
)
(c) ≤

√
2
√

(f − q)(c).

From Lemma 2.13(a),
(
ΦP(f) − q

)
(c) = ΦP(f)(c) − q(c) = − inf q(c − P(f)), thus we have

dist(c,P(f)) ≤
√

2
√
− inf q(c − P(f)) ≤

√
2
√

(f − q)(c).

This shows that Theorem 2.9(a) is as least as strong as Lemma 2.7(a). Now let E := R

and B be the Banach SSD space R
2 as in Example 2.4, using the norm ‖ · ‖2,1. Define

f ∈ PCLSC(B) by f(x1, x2) := 1
2
(x2

1 + x2
2). Then (f − q)(x1, x2) = 1

2
(x2

1 + x2
2) − x1x2 =

1
2 (x1 − x2)

2 and p(x1, x2) = 1
2(x2

1 + x2
2) + x1x2 = 1

2 (x1 + x2)
2. Let c := (z1, z2) ∈ B and

b :=
(

1
2
(z1 + z2),

1
2
(z1 + z2)

)
∈ B. Then (f − q)(b) = 0 and p(c − b) = 0. Consequently, f

is a VZ function. Now P(f) is the diagonal of R
2 and so, by direct computation, for all

c = (x1, x2) ∈ R
2, − inf q(c−P(f)) = 1

4 (x1 − x2)
2. Since 1

4 (x1 − x2)
2 < 1

2 (x1 − x2)
2 when

x1 6= x2, Theorem 2.9(a) is strictly stronger than Lemma 2.7(a) in this case.
Now let h := ΦP(f). Lemma 2.13(a) gives us that, for all (x1, x2) ∈ B,

√
(h − q)(x1, x2) =

√
1
4 (x1 − x2)

2 = 1
2 |x1 − x2|.

On the other hand, by direct computation, dist
(
(x1, x2),P(h)

)
= 1√

2
|x1 − x2|. Thus the

constant
√

2 in (2.7.1) is sharp. The genesis of this argument and example can be found
in the results of Mart́ınez-Legaz and Théra in [6].

Remark 2.18. We note that the inequalities for B in (2.15.1) have four functions, while
the inequality for B∗ has only three. The reason for this is that we do not have a function
on B∗ that plays the role that the function q plays on B. We will introduce such a function
in Definition 4.1.

3 Applications of Section 2 to E × E∗

In this section, we suppose that E is a nonzero Banach space, and follow the notation of
Example 2.3. Let A be a nonempty monotone subset of E×E∗. In this case, the definitions
and results obtained in Definition 2.12 and Lemma 2.13 specialize as follows. The function
ΘA ∈ PCLSC∗(E∗∗ × E∗) is defined by:

ΘA(x∗∗, x∗) := sup(s,s∗)∈A

[
〈s, x∗〉 + 〈s∗, x∗∗〉 − 〈s, s∗〉

]
.

The function ΦA ∈ PCLSC(E × E∗) is defined by:

ΦA(x, x∗) = sup(s,s∗)∈A

[
〈x, s∗〉 + 〈s, x∗〉 − 〈s, s∗〉

]
.

12
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ΦA is the Fitzpatrick function of A, first introduced in [2], which has been discussed by
many authors in recent years. The function ∗ΘA ∈ PCLSC(E × E∗) is defined by:

∗ΘA(y, y∗) := sup(x∗∗,x∗)∈E∗∗×E∗

[
〈y, x∗〉 + 〈y∗, x∗∗〉 − ΘA(x∗∗, x∗)

]
.

Then (∗ΘA)∗ = ΘA and (∗ΘA)@ = ΦA. Furthermore,

∗ΘA ≥ ΦA
@ ≥ ΦA ∨ q on E × E∗ and ∗ΘA = ΦA

@ = ΦA = q on A.

If f ∈ PC(E × E∗) and f ≥ q on E × E∗ then we define Mf to be the monotone set
{(x, x∗) ∈ E ×E∗: f(x, x∗) = 〈x, x∗〉}. Mf is identical with P(f) as in Definition 1.8, but
the “M” notation seems more appropriate in this case. Continuing with the consequences
of Lemma 2.13, we have:

∗ΘA ≥ ΦA
@ ≥ ΦA ≥ q on E × E∗ and M

(∗
ΘA

)
= M

(
ΦA

@
)

= M
(
ΦA

)
= A.

The following results are then immediate from Theorems 2.15 and 2.16. The expression
sup

{
h: h ∈ PCLSC(E × E∗), h ≤ q on A

}
that appears in Theorem 3.1(b) was first

introduced by Burachik and Svaiter in [1] (for A maximally monotone) and further studied
by Marques Alves and Svaiter in [5]. The analysis of Lemma 2.13 and Theorem 2.15
suggests that the natural framework in which to consider these results is that of Banach
SSD spaces.

Theorem 3.1. Let E be a nonzero Banach space, E × E∗ be normed as in Example 2.3,
and A be a nonempty monotone subset of E × E∗.

(a) Let f ∈ PCLSC(E × E∗), f ≥ q on E × E∗ and A := Mf 6= ∅. Then

∗ΘA ≥ f ≥ ΦA on E × E∗, and ΦA
∗ ≥ f∗ ≥ ΘA on E∗∗ × E∗.

(b) Let A be maximally monotone, h ∈ PC(E × E∗) and ∗ΘA ≥ h ≥ ΦA on E × E∗.
Then h ≥ q on E × E∗, h@ ≥ q on E × E∗ and Mh = M

(
h@

)
= A.

(c) Let f ∈ PCLSC(E × E∗) be a VZ function and A := Mf . Then

∗ΘA ≥ f ≥ ΦA ≥ q on E × E∗ and ΦA
∗ ≥ f∗ ≥ ΘA on E∗∗ × E∗

Now let h ∈ PC(E × E∗) and ∗ΘA ≥ h ≥ ΦA on E × E∗. Then h and h@ are VZ
functions. In particular, M

(∗
ΘA

)
= M

(
ΦA

@
)

= M
(
ΦA

)
= A, and ΦA, ΦA

@ and ∗ΘA

are all VZ functions.

(d) ∗ΘA = sup
{
h: h ∈ PCLSC(E × E∗), h ≤ q on A

}
.

4 Banach SSD dual spaces
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Definition 4.1. Let (B, ‖ · ‖) be a Banach SSD space and (B∗, ‖ · ‖) be the norm–dual of
B. We say that (B∗, ⌈·, ·⌉) is a Banach SSD dual of B if ⌈·, ·⌉: B∗×B∗ → R is a symmetric
bilinear form,

for all b ∈ B and c∗ ∈ B∗, ⌈ι(b), c∗⌉ = 〈b, c∗〉. (4.1.1)

Writing q̃(c∗) := 1
2⌈c∗, c∗⌉ and p̃(c∗) := 1

2‖c∗‖2 + q̃(c∗), we suppose also that

p̃ ≥ 0 on B∗. (4.1.2)

Now if we take c∗ = ι(c) in (4.1.1) and use (2.1.2), we obtain

for all b, c ∈ B, ⌈ι(b), ι(c)⌉ =
〈
b, ι(c)

〉
= ⌊b, c⌋, (4.1.3)

from which
q̃ ◦ ι = q. (4.1.4)

It is easy to see from these definitions that,

for all b∗ ∈ B∗, ΘA(b∗) = q̃(b∗) − inf q̃(b∗ − ι(A)). (4.1.5)

This should be compared with Lemma 2.13(a).

Definition 4.2. Let (B, ‖ · ‖) be a Banach SSD space and (B∗, ⌈·, ·⌉) be a Banach SSD
dual of B. We say that ι(B) is p̃–dense in B∗ if

for all b∗ ∈ B∗, inf p̃
(
b∗ − ι(B)

)
= 0. (4.2.1)

Remark 4.3. In Example 1.3 with ‖T‖ ≤ 1 (see also Remark 2.2), for all c ∈ B, ι(c) = Tc.
Suppose now that T 2 is the identity on B. Since B∗ = B,

for all b ∈ B and c∗ ∈ B∗ = B, ⌊ι(b), c∗⌋ = ⌊Tb, c∗⌋ = 〈T 2b, c∗〉 = 〈b, c∗〉.

Thus (4.1.1) is satisfied with ⌈·, ·⌉ := ⌊·, ·⌋, and so
(
B, ⌊·, ·⌋

)
is its own Banach SSD dual.

We note that T 2 is the identity on B in (a), (b) and (c) of Example 1.3.

Example 4.4. We now continue our discussion of Examples 1.4, 2.3 and 2.4. We recall
that B = E × E∗, B∗ = E∗∗ × E∗ and, for all (x, x∗) ∈ B, ι(x, x∗) = (x̂, x∗). We define
the symmetric bilinear form ⌈·, ·⌉: B∗ × B∗ → R by

⌈b∗, c∗⌉ := 〈y∗, x∗∗〉 + 〈x∗, y∗∗〉
(
b∗ = (x∗∗, x∗) ∈ B∗, c∗ = (y∗∗, y∗) ∈ B∗).

It is then easily checked from (2.3.1) that (4.1.1) is satisfied and, for all c∗ = (y∗∗, y∗) ∈ B∗,
q̃(c∗) = 1

2

[
〈y∗, y∗∗〉 + 〈y∗, y∗∗〉

]
= 〈y∗, y∗∗〉. We now discuss briefly the limitations of this

definition. Let E := R and B be the SSD space R
2 as in Example 1.4, using the norm

2‖ · ‖2,1. As we observed in Example 2.4, R
2 is a Banach SSD space under ‖ · ‖2,1, and

consequently also a Banach SSD space under the larger norm 2‖·‖2,1. Since ι is the identity
on R

2, (4.1.3) implies that ⌈·, ·⌉ := ⌊·, ·⌋. Now the norm on B∗ = B dual to 2‖ · ‖2,1 is

14
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1
2‖ · ‖2,1. Since p̃(1,−1) = 1

8 (2) + (1)(−1) = −3
4 < 0, B does not admit a Banach SSD

dual. We now return to the general case. If c∗ = (y∗∗, y∗) ∈ B∗ then

1
2‖c∗‖2

1,τ + q̃(c∗) ≥ 1
4

(
τ‖y∗∗‖ + ‖y∗‖/τ

)2 − ‖y∗∗‖‖y∗‖ = 1
4

(
τ‖y∗∗‖ − ‖y∗‖/τ

)2 ≥ 0.

Consequently,
(
B∗, ‖·‖1,τ

)
is a Banach SSD dual of

(
B, ‖·‖∞,τ

)
. Since ‖·‖∞,τ ≥ ‖·‖2,τ ≥

‖ · ‖1,τ on B∗,
(
B∗, ‖ · ‖2,τ

)
is a Banach SSD dual of

(
B, ‖ · ‖2,τ

)
and

(
B∗, ‖ · ‖∞,τ

)
is a

Banach SSD dual of
(
B, ‖ · ‖1,τ

)
. Next, if b∗ = (y∗∗, y∗) ∈ B∗ and ε > 0 then there exists

z∗ ∈ E∗ such that ‖z∗‖ ≤ ‖τy∗∗‖ and 〈z∗, τy∗∗〉 ≥ ‖τy∗∗‖2 − ε. Let c := (0, y∗ + τz∗) ∈ B,
so that b∗ − ι(c) = (y∗∗,−τz∗) ∈ B∗. Thus

1
2‖b∗ − ι(c)‖2

∞,τ + q̃(b∗ − ι(c)) =
(
τ‖y∗∗‖ ∨ ‖z∗‖

)2 − 〈τz∗, y∗∗〉
=

(
‖τy∗∗‖ ∨ ‖z∗‖

)2 − 〈z∗, τy∗∗〉 = ‖τy∗∗‖2 − 〈z∗, τy∗∗〉 ≤ ε.

Consequently, if B is normed by ‖ · ‖1,τ then ι(B) is p̃–dense in B∗. Since ‖ · ‖1,τ ≤
‖ · ‖2,τ ≤ ‖ · ‖∞,τ on B∗, the same is true if B is normed by ‖ · ‖2,τ or ‖ · ‖∞,τ .

We now recall Rockafellar’s formula for the conjugate of a sum:

Lemma 4.5. Let X be a nonzero real Banach space and f ∈ PC(X), and let h ∈ PC(X)
be real–valued and continuous. Then, for all x∗ ∈ X∗,

(f + h)∗(x∗) = miny∗∈X∗

[
f∗(y∗) + h∗(x∗ − y∗)

]
.

Proof. See Rockafellar, [8, Theorem 3(a), p. 85], Zălinescu, [16, Theorem 2.8.7(iii), p.
127], or [13, Corollary 10.3, p. 52]. �

Remark 4.6. [13, Theorem 7.4, p. 43] contains a version of the Fenchel duality theorem
with a sharp lower bound on the functional obtained.

Our next result exhibits a certain pleasing symmetry between B and B∗.

Lemma 4.7. Let B be a Banach SSD space with a Banach SSD dual B∗ and f ∈ PC(B).
Then

(
(f − q)∇ p

)
+

(
(f∗ − q̃)∇ p̃

)
◦ ι = 0 on B.

Proof. Let c ∈ B. Define h: B → R by h(b) := g(c − b). Then, by direct computation
using the fact that g is an even function,

for all c∗ ∈ B∗, h∗(c∗) = g∗(c∗) + 〈c, c∗〉. (4.7.1)

Then, using (2.1.2), the continuity of h, Lemma 4.5, (4.7.1), (4.1.4) and the fact that, for
all c∗ ∈ B∗, g∗(c∗) = 1

2
‖c∗‖2,

−
(
(f − q)∇ p

)
(c) = supb∈B

[
− (f − q)(b) − p(c − b)

]

= supb∈B

[
〈b, ι(c)〉 − f(b) − h(b)

]
− q(c) = (f + h)∗

(
ι(c)

)
− q(c)

= minb∗∈B∗

[
f∗(b∗) + h∗(ι(c) − b∗

)]
− q(c)

= minb∗∈B∗

[
f∗(b∗) + g∗(ι(c) − b∗

)
+

〈
c, ι(c) − b∗

〉]
− q(c)

= minb∗∈B∗

[
f∗(b∗) + g∗(ι(c) − b∗

)
− ⌈ι(c), b∗⌉ + q̃

(
ι(c)

)]

= minb∗∈B∗

[
(f∗ − q̃)(b∗) + p̃

(
ι(c) − b∗

)]

=
(
(f∗ − q̃)∇ p̃

)(
ι(c)

)
.

This completes the proof of Lemma 4.7. �
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Definition 4.8. Let B be a Banach SSD space with Banach SSD dual B∗ and f ∈ PC(B).
We say that f is an MAS function if f ≥ q on B and f∗ ≥ q̃ on B∗. This is an
extension to Banach SSD spaces of the concept introduced by Marques Alves and Svaiter
in [4] for the situation described in Example 4.4.

Theorem 4.9. Let B be a Banach SSD space with Banach SSD dual B∗ and f ∈ PC(B).

(a) Let f be an MAS function. Then f is a VZ function.

(b) Let ι(B) be p̃–dense in B∗ and f be a VZ function. Then f is an MAS function.

(c) Let ι(B) be p̃–dense in B∗. Then f is a VZ function if, and only if, f is an MAS
function.

Proof. (a) We have
(
using (2.1.4)

)
f − q ≥ 0 and p ≥ 0 on B, and

(
using (4.1.2)

)
,

f∗ − q̃ ≥ 0 and p̃ ≥ 0 on B∗. Thus (f − q)∇ p ≥ 0 and
(
(f∗ − q̃)∇ p̃

)
◦ ι ≥ 0 on B. It

now follows from Lemma 4.7 that f is a VZ function.

(b) Let b∗ ∈ B∗ and c ∈ B. Then, from Lemma 4.7 again,

(f∗ − q̃)(b∗) + p̃
(
ι(c) − b∗

)
≥

(
(f∗ − q̃)∇ p̃

)(
ι(c)

)
= −

(
(f − q)∇ p

)
(c) = 0.

Taking the infimum over c ∈ B and using (4.2.1), (f∗ − q̃)(b∗) ≥ 0 on B∗. Since this
holds for all b∗ ∈ B∗, f is an MAS function.

(c) is immediate from (a) and (b). �

In Theorem 4.10, we shift the emphasis from the properties of a given function f ∈
PC(B) to the properties of a given maximally q–positive subset A of B. We note that (a),
(b), (c), (f) and (g) of Theorem 4.10 do not involve any functions on B other than those
introduced in Definition 2.12.

Theorem 4.10. Let (B, ‖ · ‖) be a Banach SSD space with Banach SSD dual B∗ and
ι(B) be p̃–dense in B∗. Let A be a maximally q–positive subset of B. Then the following
conditions are equivalent:

(a) For all b∗ ∈ B∗, inf q̃
(
b∗ − ι(A)

)
≤ 0.

(b) ΘA ≥ q̃ on B∗.

(c) ΦA
∗ ≥ q̃ on B∗.

(d) There exists an MAS function f ∈ PCLSC(B) such that P(f) = A.

(e) There exists a VZ function f ∈ PCLSC(B) such that P(f) = A.

(f) ΦA is a VZ function.

(g) ∗ΘA is a VZ function.

(b1) If h ∈ PC(B) and ∗ΘA ≥ h on B then h∗ ≥ q̃ on B∗.

(b2) If h ∈ PCLSC(B) and ∗ΘA ≥ h ≥ ΦA on B then h∗ ≥ q̃ on B∗.

(c1) There exists h ∈ PCLSC(B) such that ∗ΘA ≥ h ≥ ΦA on B and h∗ ≥ q̃ on B∗.

(c2) There exists h ∈ PC(B) such that h ≥ ΦA on B and h∗ ≥ q̃ on B∗.
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Proof. The equivalence of (a) and (b) is immediate from (4.1.5). Taking the conjugate
of the inequality in Lemma 2.13(f) and using Lemma 2.13(d) implies that ΦA

∗ ≥ ΘA on
B∗. Thus (b)=⇒(c). If (c) is satisfied then Lemma 2.13(b,h,i) give (d) with f := ΦA. It
is immediate from Theorem 4.9(c) that (d)=⇒(e). If (e) is satisfied then Theorem 2.15(c)
gives (f) and (g). If (f) or (g) is satisfied then, from Theorem 4.9(c) again, ΦA or ∗ΘA

(respectively) are MAS functions. The first of these possibilities implies (c), and the second
of these possibilities together with Lemma 2.13(d) implies (b). Thus (a), (b), (c), (d), (e),
(f) and (g) are equivalent.

If h ∈ PC(B) and ∗ΘA ≥ h on B then, from Lemma 2.13(d), h∗ ≥ (∗ΘA)∗ = ΘA

on B∗, thus (b) implies (b1). It is trivial that (b1) implies (b2), and it follows by taking
h := ∗ΘA and using Lemma 2.13(f,d) that (b) is true. Thus (b), (b1) and (b2) are
equivalent.

If (c) is true then (c1) follows by taking h := ΦA and using Lemma 2.13(b,f). It is
trivial that (c1) implies (c2). If h ∈ PC(B) and h ≥ ΦA on B then ΦA

∗ ≥ h∗ on B∗,
and (c2) implies (c). Thus (c), (c1) and (c2) are equivalent. �

5 Applications of Section 4 to E × E∗

In this section, we suppose that E is a nonzero Banach space, and show how the results
of Section 4 can be applied to Example 4.4. We refer the reader to Section 3 for the
definitions of ΘA and ΦA in this case.

Remark 5.1. Before proceeding with our analysis, we make some remarks about the
essential difference between the concepts of MAS function introduced in Definition 4.8
and VZ function introduced in Definition 2.5. As observed in Example 4.4, we have
(E × E∗)∗ = E∗∗ × E∗ and q̃(x∗∗, x∗) = 〈x∗, x∗∗〉, so we have all the information needed
to decide whether a function f ∈ PC(E × E∗) is an MAS function. The situation with
VZ functions is different since that involves the function g in an essential way, and this is
determined by the precise norm we are using on E ×E∗. In order to clarify the situation,
we make the following definition.

Definition 5.2. We say that the norm ‖ · ‖ on E ×E∗ is special if, for some τ > 0, ‖ · ‖ is
identical with one of the norms ‖ · ‖1,τ , ‖ · ‖2,τ or ‖ · ‖∞,τ introduced in Example 2.4. As
we pointed out in the comments in Example 4.4, if E × E∗ is normed by a special norm
then ι(E × E∗) is p̃–dense in (E × E∗)∗.

Theorem 5.3. Let E be a nonzero Banach space and f ∈ PC(E × E∗) be a VZ function
with respect to a given special norm on E × E∗. Then f is a VZ function with respect to
all special norms on E × E∗.

Proof. This is clear from the comments above and Theorem 4.9(c). �

Definition 5.4. Let Let E be a nonzero Banach space and f ∈ PC(E × E∗). We say
that f is a VZ function on E × E∗ if f is a VZ function with respect to any one special
norm on E ×E∗ or, equivalently, with respect to all special norms on E ×E∗. This is also
equivalent to the statement that f is an MAS function.
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Theorem 5.5(a) was obtained in [15, Theorem 8] under the VZ hypothesis and, in [4,
Theorem 4.2(2)] under the MAS hypothesis.

Theorem 5.5(c) extends the result proved in [15, Corollary 25] that Mf is of type
(ANA).

Theorem 5.5(d) extends the result proved in [4, Theorem 4.2(2)].
Theorem 5.5(f) was obtained in [15, Corollary 7]. This is a very significant result,

because maximally monotone sets A of E ×E∗ are known such that πE∗(A) is not convex.(
The first such example was given by Gossez in [3, Proposition, p. 360]

)
. Thus

(
as was

first observed in [15]
)

Theorem 5.5(f) implies that there exist maximally monotone sets
A that are not of the form Mf for any lower semicontinuous VZ function on E × E∗ or,
equivalently, not of the form Mf for any lower semicontinuous MAS function on E ×E∗.
Theorem 5.5(f) can also be proved directly from Lemma 2.7(a) rather than from the more
circuitous argument given here.

The techniques used in Theorem 5.5 originated in the negative alignment analysis of
[10, Section 8, pp. 274–280] and [13, Section 42, pp. 161–167].

Theorem 5.5. Let E be a nonzero Banach space and f ∈ PCLSC(E × E∗). Assume
either that f is a VZ function on E × E∗ or, equivalently, that f is an MAS function.
Then:
(a) Mf is a maximally monotone subset of E × E∗.

(b) Let (x, x∗) ∈ E × E∗ and α, β > 0. Then there exists a unique value of ω ≥ 0 for
which there exists a bounded sequence

{
(yn, y∗

n)
}

n≥1
of elements of Mf such that,

lim
n→∞

‖yn − x‖ = αω, lim
n→∞

‖y∗
n − x∗‖ = βω and lim

n→∞
〈yn − x, y∗

n − x∗〉 = −αβω2.

(c) Let (x, x∗) ∈ E × E∗ \ Mf and α, β > 0. Then there exists a bounded sequence{
(yn, y∗

n)
}

n≥1
of elements of Mf ∩

[
(E \ {x}) × (E∗ \ {x∗})

]
such that,

lim
n→∞

‖yn − x‖
‖y∗

n − x∗‖ =
α

β
and lim

n→∞

〈yn − x, y∗
n − x∗〉

‖yn − x‖‖y∗
n − x∗‖ = −1. (5.5.1)

In particular, Mf is of type (ANA)
(
see [13, Definition 36.11, p. 152]

)
.

(d) Let (x, x∗) ∈ E × E∗ \Mf , α, β > 0 and inf(y,y∗)∈Mf 〈y − x, y∗ − x∗〉 > −αβ. Then

there exists a bounded sequence
{
(yn, y∗

n)
}

n≥1
in Mf ∩

[
(E \ {x})× (E∗ \ {x∗})

]
such

that (5.5.1) is satisfied, limn→∞ ‖yn − x‖ < α and limn→∞ ‖y∗
n − x∗‖ < β. In particular,

Mf is of type (BR)
(
see [13, Definition 36.13, p. 153]

)
.

(e) Let (x, x∗) ∈ E ×E∗ \Mf , α, β > 0 and f(x, x∗) < 〈x, x∗〉 + αβ. Then there exists a
bounded sequence

{
(yn, y∗

n)
}

n≥1
of elements of Mf ∩

[
(E \ {x}) × (E∗ \ {x∗})

]
such

that (5.5.1) is satisfied, limn→∞ ‖yn − x‖ < α and limn→∞ ‖y∗
n − x∗‖ < β.

(f) We define the projection maps πE : E×E∗ → E and πE∗ : E×E∗ → E∗ by πE(x, x∗) :=
x and πE∗(x, x∗) := x∗. Then πE(Mf) = πE(dom f) and πE∗(Mf) = πE∗(dom f).
Consequently, the sets πE(Mf) and πE∗(Mf) are convex.
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Proof. (a) is immediate from Theorem 2.9(c).
(b) Let τ :=

√
β/α and use the norm ‖ · ‖∞,τ on E ×E∗. Lemma 2.7(b) provides us

with a bounded sequence
{
(yn, y∗

n)
}

n≥1
of elements of Mf such that

lim
n→∞

[
β‖yn − x‖2/α ∨ α‖y∗

n − x∗‖2/β + 〈yn − x, y∗
n − x∗〉

]
= 0.

By passing to an appropriate subsequence, we can and will suppose that the three limits
ρ := limn→∞ ‖yn − x‖, σ := limn→∞ ‖y∗

n − x∗‖ and limn→∞〈yn − x, y∗
n − x∗〉 all exist.

Consequently, βρ2/α ∨ ασ2/β + limn→∞〈yn − x, y∗
n − x∗〉 = 0, from which

βρ2/α ∨ ασ2/β = − limn→∞〈yn − x, y∗
n − x∗〉 ≤ ρσ =

√
βρ2/α

√
ασ2/β.

It follows easily from this that βρ2/α = ασ2/β and limn→∞〈yn − x, y∗
n − x∗〉 = −ρσ.

The first of these equalities implies that ρ/α = σ/β. We take ω := ρ/α = σ/β, and it is
immediate that ω has the required properties. The uniqueness of ω was established in [10,
Theorem 8.4(b), p. 276] and [13, Theorem 42.2(b), pp. 163–164].

(c) Following on from (b), if ω = 0 then (ρ, σ) = (0, 0), that is to say limn→∞ yn = x
in E and limn→∞ y∗

n = x∗ in E∗. Since Mf is closed, this would contradict the hypothesis
that (x, x∗) 6∈ Mf . Thus ω > 0, from which ρ > 0 and σ > 0. (c) now follows by
truncating the sequences so that, for all n, ‖yn − x‖ > 0 and ‖y∗

n − x∗‖ > 0.
(d) Continuing with the notation of (c), we have

−αβ < inf(y,y∗)∈Mf 〈y − x, y∗ − x∗〉 ≤ limn→∞〈yn − x, y∗
n − x∗〉 = −ρσ,

from which (ρ/α)(σ/β) < 1. Since ρ/α = σ/β, in fact ρ/α < 1. and σ/β < 1, that is to
say ρ = limn→∞ ‖yn − x‖ < α and σ = limn→∞ ‖y∗

n − x∗‖ < β. This gives (d).

(e) is immediate from (d) and the comment in Remark 2.17 that, for all (x, x∗) ∈
E × E∗, − inf(y,y∗)∈Mf 〈y − x, y∗ − x∗〉 ≤ f(x, x∗) − 〈x, x∗〉. .

(f) If x ∈ πE(dom f) then there exists x∗ ∈ E∗ such that f(x, x∗) < ∞, and so it
follows from (e) that there exists (y, y∗) ∈ Mf such that ‖y − x‖ < 1/n. Consequently,
x ∈ πE(Mf). Thus we have proved that πE(dom f) ⊂ πE(Mf). On the other hand,
Mf ⊂ dom f , and so πE(Mf) = πE(dom f). We can prove in an exactly similar way that
πE∗(Mf) = πE∗(dom f). The convexity of the sets πE(Mf) and πE∗(Mf) now follows
immediately. �

Remark 5.6. If we combine Theorem 2.9(a) (using the norm ‖ · ‖2,1 on E ×E∗) with the
comments made in the proof of Theorem 5.5(e) we obtain the following result: Let E be
a nonzero Banach space, f ∈ PCLSC(E ×E∗), and f be a VZ function on E ×E∗. Then,
for all (x, x∗) ∈ E × E∗,

inf(y,y∗)∈Mf

√
‖y − x‖2 + ‖y∗ − x∗‖2 ≤

√
2
√

− inf(y,y∗)∈Mf 〈y − x, y∗ − x∗〉

≤
√

2
√

f(x, x∗) − 〈x, x∗〉.
This strengthens the result proved in [15, Theorem 4], namely that

inf(y,y∗)∈Mf

√
‖y − x‖2 + ‖y∗ − x∗‖2 ≤ 2

√
f(x, x∗) − 〈x, x∗〉.

As we observed in Remark 2.17, the constant
√

2 is sharp.
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Definition 5.7. Let E be a nonzero Banach space and A be a nonempty monotone subset
of E × E∗. We say that A is of type (NI) if, for all (x∗∗, x∗) ∈ E∗∗ × E∗,

inf(s,s∗)∈A〈x∗ − s∗, x∗∗ − ŝ〉 ≤ 0.

This concept was introduced in [9, Definition 10, p. 183]. We say that A is strongly
representable if there exists f ∈ PCLSC(E × E∗) such that f ≥ q on E × E∗, f∗ ≥ q̃
on E∗∗ × E∗ (i.e., f is a lower semicontinuous MAS function) and Mf = A. This
concept was introduced and studied in [4], [5] and [15].

Theorem 5.8 was motivated by and extends that proved in [5, Theorem 1.2]. The most
significant part of it is the fact that (a) implies (d) and (a) implies (e). In particular, if A
is maximally monotone of type (NI), then the conclusions of Theorem 5.5(b–f) hold (with
Mf replaced by A). This leads to a substantial generalization of [10, Theorem 8.6, pp.
277–278] and [13, Theorem 42.6, pp. 163–164]. The fact that πEA and πE∗A are convex
whenever A is of type (NI) was first proved by Zagrodny in [14].

Theorem 5.8. Let E be a nonzero Banach space and A be a maximally monotone subset
of E × E∗. Then the following conditions are equivalent:

(a) A is of type (NI).

(b) For all (x∗∗, x∗) ∈ E∗∗ × E∗, sup(s,s∗)∈A

[
〈s, x∗〉 + 〈s∗, x∗∗〉 − 〈s, s∗〉

]
≥ 〈x∗, x∗∗〉.

(c) For all (x∗∗, x∗) ∈ E∗∗×E∗, sup(y,y∗)∈E×E∗

[
〈y, x∗〉+〈y∗, x∗∗〉−ΦA(y, y∗)

]
≥ 〈x∗, x∗∗〉.

(d) A is strongly representable.

(e) There exists a lower semicontinuous VZ function on E × E∗ such that Mf = A.

(f) ΦA is a VZ function on E × E∗.

(g) ∗ΘA is a VZ function on E × E∗.

(b1) If h ∈ PC(E × E∗) and ∗ΘA ≥ h on E × E∗ then, for all (x∗∗, x∗) ∈ E∗∗ × E∗,

h∗(x∗∗, x∗) = sup(y,y∗)∈E×E∗

[
〈y, x∗〉 + 〈y∗, x∗∗〉 − h(y, y∗)

]
≥ 〈x∗, x∗∗〉. (5.8.1)

(b2) If h ∈ PCLSC(E × E∗) and ∗ΘA ≥ h ≥ ΦA on E × E∗ then, for all (x∗∗, x∗) ∈
E∗∗ × E∗, (5.8.1) is satisfied.

(c1) There exists h ∈ PCLSC(E × E∗) such that ∗ΘA ≥ h ≥ ΦA on E × E∗ and, for
all (x∗∗, x∗) ∈ E∗∗ × E∗, (5.8.1) is satisfied.

(c2) There exists h ∈ PC(E×E∗) such that h ≥ ΦA on E×E∗ and, for all (x∗∗, x∗) ∈
E∗∗ × E∗, (5.8.1) is satisfied.

Proof. These results are all immediate from the corresponding parts of Theorem 4.10. �

6 Appendix: a nonhausdorff Fenchel–Moreau theorem

In Remark 2.14, we referred to the Fenchel–Moreau theorem for (possibly nonhausdorff)
locally convex spaces. We shall give a proof of this result in Theorem 6.1. When we say
that X is a locally convex space, we mean that X is a nonzero real vector space endowed
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with a topology compatible with its vector structure with a base of neighborhoods of 0
of the form

{
x ∈ X : S(x) ≤ 1

}
S∈S(X)

, where S(X) is a family of seminorms on X such

that if S1 ∈ S(X) and S2 ∈ S(X) then S1 ∨ S2 ∈ S(X); and if S ∈ S(X) and λ ≥ 0 then
λS ∈ S(X). If L is a linear functional on X then L is continuous if, and only if, there
exists S ∈ S(X) such that L ≤ S on X .

As an example of the construction above, we can suppose that X and Y are vector
spaces paired by a bilinear form 〈·, ·〉. Then

(
X, w(X, Y )

)
is a locally convex space with

determining family of seminorms
{
|〈·, y1〉| ∨ · · · ∨ |〈·, yn〉|

}
n≥1, y1,...,yn∈Y

.

The author is grateful to Constantin Zălinescu for showing him a proof of Theorem 6.1
based on the standard (Hausdorff) result and a quotient construction. The proof we give
here is a simplification of the result on “Fenchel–Moreau points” of [12, Theorem 5.3, pp.
157–158] or [13, Theorem 12.2, pp. 59–60], which is also valid in the nonhausdorff setting.

Theorem 6.1. Let X be a locally convex space and f ∈ PC(X) be lower semicontinuous.
Write X∗ for the set of continuous linear functionals on X . If L ∈ X∗, define f∗(L) :=
supX

[
L − f

]
. Let y ∈ X . Then

f(y) = supL∈X∗

[
L(y) − f∗(L)

]
. (6.1.1)

Proof. Since, for all L ∈ X∗, L(y) − f∗(L) = infx∈X

[
L(y) − L(x) + f(x)

]
= (f ∇L)(y)

and the inequality “≥” in (6.1.1) is obvious from the definition of f∗(L), we only have to
prove that

f(y) ≤ supL∈X∗(f ∇L)(y)
]
. (6.1.2)

Let λ ∈ R and λ < f(y). Since f is proper, there exists z ∈ dom f . Choose Q ∈ S(X)
such that

Q(z − x) ≤ 1 =⇒ f(x) > f(z) − 1 (6.1.3)

and
Q(y − x) ≤ 1 =⇒ f(x) > λ. (6.1.4)

We first prove that
(f ∇Q)(z) ≥ f(z) − 1. (6.1.5)

To this end, let x be an arbitrary element of X . If Q(z − x) ≤ 1 then (6.1.3) implies
that f(x) + Q(z − x) ≥ f(x) > f(z) − 1. If, on the other hand, Q(z − x) > 1, let
γ := 1/Q(z − x) ∈ ]0, 1[ and put u := γx + (1− γ)z. Then Q(z − u) = γQ(z − x) = 1 and
so, from the convexity of f , and (6.1.3) with x replaced by u,

γf(x) + (1 − γ)f(z) ≥ f
(
γx + (1 − γ)z

)
= f(u) > f(z) − 1.

Substituting in the formula for γ and clearing of fractions yields f(x) + Q(z − x) ≥ f(z).
This completes the proof of (6.1.5).

Now let M ≥ 1 and M ≥ λ + 2 + Q(z − y) − f(z). We will prove that

(f ∇MQ)(y) ≥ λ. (6.1.6)
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To this end, let x be an arbitrary element of X . If Q(y − x) ≤ 1 then (6.1.4) implies that
f(x) + MQ(y − x) ≥ f(x) > λ. If, on the other hand, Q(y − x) > 1 then, from (6.1.5),

f(x) + MQ(y − x) = f(x) + Q(y − x) + (M − 1)Q(y − x)

≥ f(x) + Q(z − x) − Q(z − y) + (M − 1)

≥ f(z) − 1 − Q(z − y) + M − 1 ≥ λ,

which completes the proof of (6.1.6). The “Hahn–Banach–Lagrange theorem” of
[12, Theorem 2.9, p. 153] or [13, Theorem 1.11, p. 21] now provides us with a linear
functional L on X such that L ≤ MQ on X and (f ∇L)(y) ≥ λ. (6.1.2) now follows by
letting λ → f(y). �
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