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ABSTRACT. We show in this paper how the versions of the Fenchel duality theorem due to
Rockafellar and Attouch—Brezis can be applied to the Fitzpatrick function determined by
a maximal monotone multifunction to obtain number of results on maximal monotonicity,
including a number of sufficient conditions for the sum of maximal monotone multifunc-
tions on a reflexive Banach space to be maximal monotone, unifying a number of the
results of “Attouch—Brezis type” that have been obtained in recent years. We also obtain
generalizations of the Brezis—Crandall-Pazy result. We find various explicit formulas in
terms of the Fitzpatrick function for the minimum norm of the solutions z of (S+J)z 3 0,
where F is reflexive, S is maximal monotone on E and J is the duality map. Among the
tools that we develop are a version of the Fenchel duality theorem in which we obtain an
explicit formula for the minimum norm of solutions in certain cases, and a generalization
of the Attouch—Brezis version of the Fenchel duality theorem to a more symmetric result
for convex functions of two variables.

0. INTRODUCTION

We start off by stating a result that is an immediate consequence of Rockafellar’s version
of the Fenchel duality theorem (see [6, Theorem 1, p. 82-83] for the original version and
[10, Theorem 2.8.7, p. 126-127] for more general results):

Theorem 0.1. Let F' be a normed space, f: F +— (—o0,00] be proper and convex,
g: F'— R be convex and continuous, and f+ g > A on F'. Then there exists x* € F* such
that f*(z*) + g*(—x*) < =\

We show in this paper how Theorem 0.1 and the Attouch—Brezis version of the Fenchel
duality theorem (see Theorem 4.1 below) can be used to obtain a number of results on
maximal monotonicity, including a number of sufficient conditions for the sum of maximal
monotone multifunctions on a reflexive Banach space to be maximal monotone.

In Section 1, we show how certain convex functions on E x E* (E reflexive) lead to
graphs of maximal monotone multifunctions. The main results here are Lemma 1.2(c),
which will be used in our work on the Brezis—Crandall-Pazy condition for the sum of max-
imal monotone multifunctions to be maximal monotone (see Theorem 6.2), and Theorem
1.4, which generalizes a result proved by Burachik and Svaiter in [3] (see the discussion
preceding Theorem 1.4 for more details of this).
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Fenchel duality, Fitzpatrick functions and maximal monotonicity

Section 2 is devoted to the single result, Theorem 2.1. Here we bootstrap Theorem
0.1 in the special case where g(z) := %||z||* and X := 0 to find a sharp lower bound on the
norm of the functionals z* that satisfy the conclusion of Theorem 0.1. This lower bound
will be used in Theorem 3.1 to find the minimum norm of the solutions x of (S + J)x 3 0,

where F is reflexive, S is maximal monotone on F and J is the duality map.

Our results on the maximal monotonicity of a sum use the Fitzpatrick function de-
termined by a maximal monotone multifunction. The elementary properties of this will
be explained in Section 3. The main result in this section is Theorem 3.1, which we have
already discussed above, and which will be used in our work on the Brezis—Crandall-Pazy
condition (see Lemma 6.1).

In Theorem 4.2, we show how the Attouch—Brezis version of the Fenchel duality
theorem can be generalized to a more symmetric version for convex functions of two
variables.

We give in Theorem 5.5 a sufficient condition for the sum of maximal monotone
multifunctions on a reflexive Banach space to be maximal monotone, unifying a number
of the results of “Attouch—Brezis type” that have been obtained in recent years. In order
to do this, we start off by combining the results of Theorem 4.2 and Theorem 1.4(a) to
establish a special case in Lemma 5.1, and then bootstrapping Lemma 5.1 with a sequence
of three lemmas in order to obtain Theorem 5.5. We mention paranthetically that we use
Theorem 1.4(a) rather than Theorem 1.4(b) in Lemma 5.1 since we do not know that the
function p is lower semicontinuous.

In Section 6, we use Theorem 3.1(a) and Lemma 1.2(c) to obtain generalizations of
the Brezis—Crandall-Pazy result.

In the final section, we give alternative formulas for the minimum norm of the solutions
x of (S + J)x 2 0 already discussed in Theorem 3.1.

The authors would like to thank Jean—Paul Penot for sending them copies of [5], which
was a considerable source of inspiration.

1. CONVEX FUNCTIONS ON E x E* FOR REFLEXIVE FE

In this section, we assume that F is a reflexive Banach space and E* is its topological
dual space. We norm E x E* by ||(z,z*)|| := \/[|z[|* + [|z*||>. Then the topological dual
of E x E* is E* x E, under the pairing ((z,z*), (u*,u)) = (z,u*) + (u,z*). Further,

[ w)|| = VIlull? + [lur]>.

Notation 1.1. In order to simplify some rather cumbersome algebraic expressions, we will
define A: Ex E* — Rby A(y,y*) :== (y,y*) +3 H(y, y*)Hz. “A” stands for “discriminant”.
We note then that, for all (y,y*) € E x E*,

Alyy™) = slyll® + o u*) + 3y 12 = 5llyll? = vyl + 3 ly*II> > o. (1.1.1)
Clearly A(y,y*) = 0 = ||y*|| = |ly||. Plugging this back into (1.1.1), we have

Aly,y™) =0=(y.y") = —lyll> = = lly"II> = = llylllly]l. (1.1.2)
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The significance of this is that, if J: E' = E* is the duality map, then

Aly,y") =0 < y* € —Jy. (1.1.3)

Lemma 1.2. Let h: E X E* — (—o00, o0] be convex and
(r,2%) € Ex E* = h(x,z") > (z,2"). (1.2.1)
Write M), for the set {(z,2*) € E x E*: h(z,z*) = (z,z*)}.
(a) My, is a monotone subset of E x E*.
(b) Let (w,w*),(z,z*) € E'x E* and
h(z,z*) — (z,2%) + A(w — z,w* —2*) < 0. (1.2.2)

Then (z,z*) € Mj,.
(c) Suppose that G C M), and, for all (w,w*) € E x E* there exists (z,x*) € G satisfying
(1.2.2). Then G is a maximal monotone subset of E x E* (and consequently, G = M},).

Proof. (a) Let (z,2*), (y,y*) € M}p,. Then, from the convexity of h and (1.2.1),

s(z, ) + 5y, y") = hlz,z*) + Sh(y, y")
> h(5 + 3y, 52% + 5y*) > (324 3y, 327 + 597).

This implies that (z —y,z* — y*) > 0, and so M}, is monotone.

(b) (1.2.2) and (1.1.1) give h(z,z*) < (x,z*), and it is clear from (1.2.1) that (z,z*) € M.
(c) Since G C My, it follows from (a) that G is monotone. In order to prove that G is
maximal monotone, we suppose that (w,w*) € E x E* and

(x,2") e G = (w—z,w"—2")>0, (1.2.3)

(i.e., (w,w*) is “monotonically related” to G) and we will deduce that
(w,w*) € G. (1.2.4)

To this end, we choose (z,2*) € G as in (1.2.2). Using (1.2.1), we derive from this that
A(w—z,w*—z*) < 0 thus, from (1.2.3), 1||(w—=, w* —2* H2 0, so (w,w*) = (z,z*) € G.
This establishes (1.2.4), and completes the proof of (c). I

Lemma 1.3. Let E be a reflexive Banach space, k: E x E* — (—o00, 00| be proper and
convex, (w,w*) € E x E* and

(x,z*) e EX E* = k(z,z%)— (x,2") + Alw — z,w* —2*) > 0. (1.3.1)
Then
there exists (z,x*) € E'x E* such that k™ (z*,x) — (z,2") + A(w —z,w* —2*) < 0. (1.3.2)
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Proof. Define §(,, ,+): £ x E* — R by

S(w,w) (T, 2%) 1= —(x, ") + A(w — z,w* —z¥). (1.3.3)

Then the identity 8¢, ) (2, 2*) = (w, w*) = ((z,2*), (w*, w))+ || (w, w*) — (z, z*) ? shows
that

O(w,w+) is convex and norm-continuous, hence weakly lower semicontinuous.  (1.3.4)

(The weak lower semicontinuity will be used in Theorem 6.2.) By direct computation,
(,2") € EXE* = Spuwe) (=2, =) = d(uw) (T, 7). (1.3.5)

Now (1.3.1) gives infgy p= [k: + 5(w’w*)] > 0, thus we can deduce from Theorem 0.1 that
min,-ep-x g [K*(1*)+6(w,w (—*)] < 0. Consequently, (1.3.2) now follows from (1.3.5). |

Theorem 1.4(b) below was first established in [3, Theorem 3.1]. The proof given here
avoids having to use a renorming theorem. The interest of Theorem 1.4(a) is that the
function k is not required to be lower semicontinuous, which fact will be very useful to
us in Lemma 5.1. In fact, Theorem 1.4(a) can be deduced from Theorem 1.4(b) using a
technique similar to that of [5, Theorem 15].

Theorem 1.4. (a) Let k: E x E* — (—00, 00| be proper and convex,

(x,2") € E X B* = k(z,2") > (x,x"). (1.4.1)
and

(x,2%) € E X E* = k™ (2", z) > (x,z"). (1.4.2)
Then G := {(z,2*) € E x E*: k*(z*,z) = (x,2*)} Is a maximal monotone subset of
E x E*.
(b) Let h: E x E* — (—o00, 00| be proper, convex and lower semicontinuous,

(r,z*) € Ex E* = h(x,z*) > (x,z"). (1.2.1)
and

(x,2") € E X B* = h*(z",z) > (z,x"). (1.4.3)
Then Mj, := {(z,2*) € E x E*: h(z,2*) = (x,2*)} is a maximal monotone subset of
E x E*.

Proof. (a) Let (w,w*) be an arbitrary element of E x E*. Then (1.3.1) follows from
(1.4.1) and (1.1.1), and so Lemma 1.3 gives (1.3.2). Combining this with (1.1.1) and
(1.4.2), we have k*(z*,x) = (z,x*), that is to say (z,2*) € G, and (1.2.2) is satisfied with
h(z,x*) := k*(z*,x). (a) now follows from Lemma 1.2.

(b) Let k(z,x*) := h*(x*,x). k is proper and convex on E x E* and (1.4.1) follows
from (1.4.3). Since h is lower semicontinuous, the Fenchel-Moreau formula shows that
k*(x*, ) = h(x,z*), and so (1.4.2) follows from (1.2.1). (b) is now immediate from (a). |
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2. FENCHEL DUALITY WITH A SHARP LOWER BOUND ON THE NORM

It is immediate from Theorem 0.1 that (2.1.1) below implies the existence of z* € F*
satisfying (2.1.3). Theorem 2.1(a) gives the additional information that there exists such
a functional z* with [|z*|| < M. This information will be used in Theorem 3.1 and Lemma
6.1. Theorem 2.1(b) shows that this value of M is best possible. Of course, the crux of
the proof of Theorem 2.1 is the advance knowledge of the “magic number” M. In what
follows, for all A € R we write A™ for A V0.

Theorem 2.1. (a) Let F' be a normed space, f: F — (—o00,00] be proper and convex
and
reF = f(z)+3|z]*>0. (2.1.1)

Let +
M :=sup ||zl - v/2f@) + [alP] - (2.12)

TeF

Then there exists * € F* such that ||z*|| < M and

[ (z*) + %Hx*HQ < 0. (2.1.3)
Further,
: 2
M < int |llo] + v2f@) + 2. (2.14)

(b) If z* € F* satisfies (2.1.3), then ||z*|| > M.

Proof. We observe from (2.1.1) that the square root in (2.1.2) is real (or +00). We start
off by showing that

wveF = |lof = V2f(v) + [[vl|> < lJull + V2 (w) + [[ul]>. (2.1.5)

To this end, let u,v € F. We can clearly suppose that f(u) € R and f(v) € R. Let
A > 2f(u)+ |luf|? > 0 and p > /2f(v) +||v||? > 0, and write « := |lu]| + A and
B = [lv|| — p. Then, since pllul| + Aflv]| = pa + AB,

0 < ’ put v pllull + Aol _ pa+ A8
A p A w4 A p+ A
A
Thus, from (2.1.1) applied to z = uui/\v € F, and the convexity of f and (-)2,
1
pf(u) + Mf(v) - f<uu+)\v> . uu+)\vH (uoﬁ—)ﬁ) - C1pa® + A5
T - w+XN T wt A 2 u+A

Multiplying by 2(u + A) gives

0 < 2uf(u) + 20 f(v) + pa’® + AB% = p(2f(u) + ) + A(2f(v) + 5°)
= p(2f (u) + lull® + 2X[|ull + A?) + A(2f (0) + [|v]|* = 2pljv]| + p?)
< (22 2 [ull) + A2 — 2ploll) = 2A (A + lull + 1 — o]
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On dividing by 2uA, we obtain ||v|]| — u < |lu|| + A, and (2.1.5) follows by letting pu —
2f(v) + [|v]|? and A — /2f(u) + ||u]|?>. Now (2.1.2) and (2.1.5) imply that, for all

x € F,
[zl = v2f(2) + |[=]]> < M and M < [lz]| + /2f (z) + [Jz]|?, (2.1.6)
veF = ||zl - M| < V2f(2) + =]

— (|l - M)* < 2f(x) + |||
—  f(z) + M|jz| > § M2,

from which

Theorem 0.1 now gives the existence of z* € F* such that f*(z*)+(M|-|)*(—z*) < -1 M?2,
thus ||z*|] < M and f*(z*) < —1M?, from which (2.1.3) is immediate. Since (2.1.6) implies
(2.1.4), this completes the proof of (a).

(b) Now suppose that z* € F* satisfies (2.1.3), and let « be an arbitrary element of
F. Tt follows from (2.1.3) that

f@) = (z, ") — f* (") 2 (2,2") + 5lla*)|* > —[l=lll=*]| + 3]la*]?,
x X x 2
and so 2f(z) + ||z[|* > ||=[|* = 2||=||[l*[| + |l=*|* = (=] - [l=*[|)". Thus
2f (@) + [l=)1* = |2l = [l="[],

from which ||z*|| > ||z|| — v/2f(x) + [|z]|?, and (b) follows by taking the supremum over
z € F. I

3. THE FITZPATRICK FUNCTION AND SURJECTIVITY

Let E be a reflexive Banach space and S: E = E* be maximal monotone with graph
G(S) :={(z,2*) € E x E*: 2* € Sx}. We define 1g: E x E* — (—00,00] by

Yg(z,x*):=  sup (x—s,8" —a"),
(8,8*)EG(S)

and the Fitzpatrick function pg: E X E* — (—00, 0] associated with S by

ps(x,z%) := sup [(s,x*) + (x,s") — (s,s*>] = Ys(x,z*) + (x,z").
(s,8*)EG(S)

(This function pg was introduced by Fitzpatrick in [4, Definition 3.1, p. 61] under the
notation Lg.) Then the maximal monotonicity of S gives the statements

(x,2¥) e EX E* = g(x,z2%) >0 <= ¢g(z,z%) > (x,z7), (3.0.1)

and
Ys(x,2%) =0 <= pg(r,z") = (r,2") <= (z,z%) € G(S5). (3.0.2)
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(See [4, Corollary 3.9, p. 62].) We will have frequent occasion to use the identity, immediate
from (3.0.1), that

neEExE = @sn)+zlnll> =vsn) +Amn) = 0. (3.0.3)
Taken together with (3.0.3) and (1.1.3), (3.0.2) implies that
ps(n) + 5> =0 <= ¥s(n) +A(n) =0 < neG(S)NG(-J). (3.0.4)

Clearly, ¢g is proper, convex and lower semicontinuous. Let (z,z*) € E' x E*. Then we
see from (3.0.2) that

ps(z,x*) = sup [(s,m*> + (x,8") — ps(s, s*)}
(s,8*)EG(S)

< sup [(yx") + (2, y") — sy, y)]
(y,y*)EEXE*

= sup [<(y,y*),($*,$)>_@S(y,y*)} :Spg(x*ax)
(y,y*)EEXE*

Combining this with (3.0.1), we have (see [4, Proposition 4.2, p. 63])
(x,2*) e EX E* = oz, z)> ps(x,z”) > (z,z"). (3.0.5)
Further, if (z,2*) € G(S) then, for all (y,y*) € E x E*, the definition of pg(y,y*) yields

es(y,y") > (y, ) + (z, ") — (2, 2%) = ((y, "), (", 2)) — (z,z7).
Thus

(z,2%) € G(S) = s(*z)= sup  [{(y,y"), (=", 2)) — sy, y")] < (z,27).
(y,y*)EEXE*

Combining this with (3.0.2) and (3.0.5) yields (see [4, Proposition 4.3, p. 63])
po(x® x) = (x,2%) <= (z,2%) € G(9). (3.0.6)

The reader may ask why we have introduced both the functions ¢g and /g, which are
so closely related. The reason for this is that ¢ g is convex and weakly lower semicontinuous,
while g is generally neither. On the other hand, g is positive while ¢g is generally not.
So the choice of which of the two functions we use depends on what kind of argument we
are employing. A good example of this can be found in the transition from the use of g
and 1 in (6.2.3) to the use of pg and @7 in (6.2.5).

We now show how (g can be used to establish Rockafellar’s surjectivity theorem
that R(S + J) > 0 and give a sharp lower bound in terms of ¢g for the norm of the
solutions, s, of (S + J)s > 0. This can, of course, be bootstrapped into a proof that
E x E* = G(S) + G(—J) (see [7, Theorem 10.6, p. 37] and [9, Theorem 1.2]), with the
appropriate sharp numerical estimates. The numerical estimates obtained in Theorem 3.1
will be used in Lemma 6.1. We emphasize that we have not assumed that E has been
renormed in any particular way.
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Theorem 3.1. Let E be a non—trivial reflexive Banach space, S: E = E* be a maximal
monotone multifunction and

_|_
N = Zssup,cpup- |Inll = v20s(n) + Il

(a) There exists n* € E* x E such that ||n*|| < v2N and
es(n) + zln*? <. (3.1.1)
Let (z,2*) € E x E* be such that n* = (z*,z). Then
(2
(2, 29| < N? (3.1.2)

and
es(z,2%) + 1||(z,2%)||” = vs(z,2) + Az, 2%) < 0. (3.1.3)

Finally,

N < s infyemxp |Inll +v/2ps() + P
= L infuepx- |Inll +v/20s() + 2A()|.

(b) There exists x € E such that (S + J)x 3 0, and further

(3.1.4)

min {||z||: z € E, (S+ J)z >0} = N.

Proof. (a) It is immediate from (3.0.3) and Theorem 2.1(a) with F' := ExE* and f := ¢g
that there exists n* € E* x E satisfying (3.1.1) such that ||n*|| < v/2N. (3.1.2) is also clear
since H(z,z*)”2 = ||[n*||%. (3.1.3) now follows from (3.1.1), (3.0.5) and (3.0.3), and (3.1.4)
follows from (2.1.4). This completes the proof of (a).
(b) If (z,2*) is as in (a), then (3.1.3), (3.0.3) and (3.0.4) give us that (z,2*) € G(95)
and —z* € Jz. Since 0 = z* + (—2%), it is now immediate that (S 4+ J)z 3 0, and (1.1.2)
and (3.1.2) imply that [|z|| < N. In order to complete the proof of (b), we must show
that
re€Fand (S+J)x30 = |z||>N (3.1.5)

So suppose that z € F and (S + J)x > 0 Then there exists 2* € Sz such that —z* € Jz.

* * * 2 * *
From (3.0.6), (2", 2) + 3| (2", @) = (z,2") + 3| (@, 2)||* = 3]} = [2llll* || + & ]l* |
= 2 (l|lzll - Hac"‘||)2 = 0. Theorem 2.1(b) now gives v2||z|| = ||(z*, z)|| = V2N, from which
(3.1.5) follows, completing the proof of (b). |

4. A MORE SYMMETRIC VERSION OF A RESULT OF ATTOUCH AND BREZIS

For the initial results of this section we consider (possibly) nonreflexive Banach spaces.
Theorem 4.1 below was first proved by Attouch—Brezis (this follows from [1, Corollary 2.3,
p. 131-132]) — there is a somewhat different proof in [7, Theorem 14.2, p. 51|, and a much
more general result was established in [10, Theorem 2.8.6, p. 125-126]:
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Theorem 4.1. Let K be a Banach space, f, g: K — (—o00,00] be convex and lower
semicontinuous,

U)\>O )\[domf — dom g] be a closed subspace of K

and
f+g>0o0nK.

Then
there exists z* € K* such that f*(—2z")+ g*(z*) <0.

Our next result is a generalization of Theorem 4.1 to functions of two variables. We
note that p(z,-) is the inf-convolution (=episum) of o(z,-) and 7(z, -), and the conclusion
of Theorem 4.2 is that p*(-,y*) is the exact inf-convolution of o*(-,y*) and 7*(-, y*).

Theorem 4.2. Let E and F be Banach spaces, o, 7: E x F — (—o0,00| be proper,
convex and lower semicontinuous and, for all (x,y) € E X F,

p(z,y) = inf {o(z,u) + 7(z,v): u,v € F, u+v=y} > —o0.
It is easy to see that p is convex. Defining prq(x,y) := z, let

L= U)\>O )\[prl dom o — pr; dom 7'} be a closed subspace of E.

(Note that this implies that pr; dom o N pry dom T # (), and so p is proper.) Then, for all
(x*,y*) c E* X F*,

p*(z*,y") = min {o*(s*,y") + 75 (t",y*): s*, t* € E*, s + 1" =a"}.
Proof. Let (z*,y*) € E* x F*. We leave to the reader the simple verification that
p*(z*,y*) <inf {o*(s*,y*) + 77 (t",y*): s*, t* € E*, s* +1" =z"}.
So what we have to prove that there exists t* € E* such that
o (@" =ty ) + T yT) < pt(at YT, (4.2.1)

Since p is proper, p*(z*,y*) > —oo, so we can suppose that p*(z*,y*) € R. Define
f, g0 EXF X F — (—00,00] by

f(‘g?uvv) = p*(a:*,y*) - <57x*> - <u + Uay*> + O'(S,U)

and
g(s,u,v) :=7(s,0).

We note then that
dom f = {(s,u,v): (s,u) €domo} and domg={(s,u,v): (s,v) € domr}.
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We next prove that
U/\>0 Aldom f —domg] = L x F x F, (4.2.2)

which is a closed subspace of £ x F' x F'. Since the inclusion “C” is immediate, it remains
to prove “D”. To this end, let (s,u,v) € L x F' x F. The definition of L gives A > 0,
(s1,u1) € domo and (t1,v1) € dom7 such that s = A(s; — 7). Let ug := uq — u/\ and
vy := v1 +v/A. Then (s,u,v) = )\[(sl,ul,vz) — (tl,UQ,'Ul)} € )\[domf — domg}, which
completes the proof of (4.2.2). Now let (s,u,v) € E X F' x F. Then

(f+9)(s,u,v)=p (z",y") — (s,2") — (u+v,y") + o(s,u) + 7(s,v)
> p* (™, y") — (s,2") — (u+v,y") + p(s,u +v) > 0.
Theorem 4.1 now gives (t*,u*,v*) € E* x F* x F* such that
(=t —u*, =) + g" (t",u",v™) < 0. (4.2.3)

Since this implies that f*(—t*, —u*, —v*) < 0o, we must have

* *

v =y* and f*(—t*,—u",—0v") =" (" —t",y" —u¥) — p*(z¥,y").
(4.2.3) also implies that ¢g*(t*,u*,v*) < oo, from which
u* =0 and g"(t*,u",v*) =71"(t",v").
Thus (4.2.3) reduces to
o (x" =1, y" = 0) = p"(z%,y") + 77 (7, y7) < 0.

This gives (4.2.1), and completes the proof of Theorem 4.2. |

Remark 4.3. We noted in the comments preceding Theorem 4.2 that Theorem 4.2 is,
in fact, a generalization of Theorem 4.1. To see this, suppose that f, g and K are as in
the statement of Theorem 4.1. Then we can obtain the result of Theorem 4.1 by applying
Theorem 4.2 with £ = K, F = {0}, for all x € E, 0(x,0) = f(x) and 7(x,0) = g(x), and
(x*,y*) = (0,0) € E* x F*.

5. THE MAXIMAL MONOTONICITY OF A SUM IN REFLEXIVE SPACES

We start this section by using Fitzpatrick functions to obtain a sufficient condition for the
sum of maximal monotone multifunctions on a reflexive space to be maximal monotone.
However, the main result in this section is the “sandwiched closed subspace theorem”,
Theorem 5.5, a template for such existence theorems obtained by bootstrapping Lemma
5.1 through a sequence of four lemmas. Lemma 5.1 can also be established using a technique
similar to that of [5, Theorem 15].
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Lemma 5.1. Let E be a reflexive Banach space, S: E = E* andT: F = E* be maximal
monotone and, writing pry(x,z*) := x,

U)\>O Alpr; dom g — pry domr| be a closed subspace of E. (5.1.1)

Then S + T is maximal monotone.

Proof. Let p(z,z*) := inf {¢s(z, s*)+or(z,t*): s*, t* € E*, s*+t* = z*}. From (3.0.1),
p(z,z*) > inf {(z,s*) + (@, t*): s*, t* € B, s" +t" =a*} = (z,2").
We now derive from Theorem 4.2 and (3.0.5) that, for all (z,2*) € E x E*,

p*(x*,x) = min {@§(s*, 2) + o7 (1", x): s ¢ € B*, s* +1* ="}
> inf {(z, s*) + (z,t"): s*, t* € E*, s* +t* =2} = (z,27).

Theorem 1.4(a) with k := p now gives that the set {(z,2*) € E x E*: p*(z*,z) = (z,z*)}
is maximal monotone. However, by direct computation from (3.0.6), this set is exactly
G(S + T), which completes the proof of Lemma 5.1. |

Lemma 5.2 is the first of the lemmas that we use to bootstrap Lemma 5.1 in our proof
of Theorem 5.5, and is purely algebraic in character. In fact Lemma 5.2 is equivalent to
the known fact that if C' is convex then a € C' and b € icr C =>]a, b] C icr C.

Lemma 5.2. Let C be a convex subset of a vector space E, and F := |J,,,AC be a
subspace of E. Let ¢ € C and a € (0,1). Then

U, MO —ac =F. (5.2.1)

Proof. C — ac C F — F = F, which gives the inclusion “C” in (5.2.1). Now let y € F.
Then there exist © > 0 and a € C such that y = pa. Thus

(1-a)a=[1-a)a+a]—-aceC —ac

and so

]
Yy = pa € E[C—ac} CU/\>O)\[C—ac},

which gives the inclusion “D” in (5.2.1), and thus completes the proof of Lemma 5.2. |

Lemma 5.3 gives some connections between the sets used in Lemma 5.1. The technique
used in Lemma 5.3(b) is taken from [7, Section 16, p. 57-62]. The technique used in Lemma
5.3(c) is taken from [7, Theorem 23.2, p. 87-88|, which is not surprising given the identity
“pr; dom pg = dom xs” that we will establish in Remark 5.6.

Lemma 5.3. Let E be a reflexive Banach space and S: E = E* be maximal monotone.
Then, writing pry(z*,z) := x, D(S) := pr;G(S) = {z € E: Sz # 0},“o0” for “convex
hull” and “lin” for “linear span”:
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(a) D(S) C coD(S) C prydom ¢ C pry dom pg.
(b) If F is a closed subspace of E, w € E and D(S) C F + w then pr, dompg C F + w.
(c) Let T: E = E* also be maximal monotone. Then

U,\>o Alpry dom g — pry domgr| C lin (D(S) — D(T)).

Proof. It is clear from (3.0.5) that prydom¢¥§ C pr;domeg so, since pr,dom ¢% is
convex, in order to prove (a) it remains to show that D(S) C pry dom ¢¥%. To this end, let
x € D(S). Then there exists z* € Sz. From (3.0.6), ¢§(z*, ) € R, and so x € pr, dom ¢¥.
This completes the proof of (a). In order to prove (b), we shall write F- for the subspace
{y* € E*: (F,y*) = {0}} of E*. Let x be an arbitrary element of pr; dom¢g and u €
D(S). Then there exists u* € Su, and there also exists * € E* such that pg(z,z*) < co.
Let y* be an arbitrary element of F+. We first prove that

u* 4 y" € Su. (5.3.1)
To this end, let (s,s*) be an arbitrary element of G(S). Then, since
u—se€DS)~DS)CF+w— (F+w)=F—-F=F and y*¢€F™,
we must have (u — s,y*) = 0 and so, since u* € Su, s* € Ss and S is monotone,
(u—s,(u" +y*)—s")=(u—s,u"—s*) >0.

The maximality of S now gives (5.3.1). We now derive from the definition of pg(z,z*)
that
00 > pg(x, ") > (u,z") + (z,u* +y*) — (u,u” +y")

from which
00 > pg(z, ") — (u, ™) — (z,u*) + (u,u*) > (x —u,y").

Since F'* is a subspace of E*, it follows that (z — u, F'-) = {0}, and the bipolar theorem
now implies that x — u € F'. Thus

r=(x—-u)+ucF+DS)CF+F+w)=F+F)+w=F+w. (5.3.2)

(b) now follows since (5.3.2) holds for all x € pr; dom ¢g. For (c), we write F' for the closed

linear subspace lin (D(S) — D(T')) of E. Let = be an arbitrary element of pr; dom ¢g and
y be an arbitrary element of pr; dom . Let ¢ be an arbitrary element of D(T'). Then
D(S) —t € D(S)— D(T) C F. Consequently, D(S) C F +t, and it follows from (b)
that © € F+t, and so t € F 4+ x. Since t is an arbitrary element of D(T"), we have in
fact proved that D(T) C F + x, and it follows from (b) (again) that y € F' + z, and so
x—y € F. Since this holds for all z € pr; dom pg and y € pr; dom ¢, we have established

that pry dom ¢g — pry dom @r C lin (D(S) — D(T)), from which (c) follows immediately. |

Lemma 5.4 explores how the concepts introduced in Lemma 5.1 react under a trans-
lation in the domain space.

FFMMS run on 3/29/2004 at 11:59 Page 12



Fenchel duality, Fitzpatrick functions and maximal monotonicity

Lemma 5.4. Let E be a reflexive Banach space, S: E = E* be maximal monotone and
w € E. Define the maximal monotone multifunction U: E = E* by

(u,u*) € GU) <= (u+w,u”) € G(S).

Then:

(a) (z,2*) e Ex E* = opy(z,2%) =ps(x+w,z*) — (w,z*).
(b) pr; dom gy = pry dompg — w.

(c) D(U) = D(S) — w.

Proof. (a) Let (z,2*) € E x E*. Then

0 (2,5%) = SUD ey L(1:27) + (0" — ()]
= Sup(s,s*)EG(S) [(S — 'lU,.fIf*> + <.f13, S*> — <S —w, S*>j|
= SUD(5 s+)eG(S) [(s,:r;*> + (x4 w,s™) — (s,s*}} —(w,x™)
= ps(r+w,x*) — (w,z").
(b) follows from (a), and (c) is immediate from the definition of U. ||

We now come to the main result of this section, the “sandwiched closed subspace
theorem”. We shall show in Remark 5.6 how different choices for F' lead to known sufficient
conditions for S + T to be maximal monotone.

Theorem 5.5. Let E be a reflexive Banach space, S: E = E* and T: E = E* be
maximal monotone. Suppose there exists a closed subspace F' of ¥ such that

D(S)—D(T)C F C U,\>0 Alpr; dom g — pry dom gr]. (5.5.1)
Then S + T is maximal monotone. Furthermore, for all € > 0,
D(S) — D(T) C prydom g — pry dompr C (1 +¢)[D(S) — D(T)], (5.5.2)

(that is to say, pr; dom g — pry dom pp and D(S) — D(T') are almost identical) and

U)\>0 Alpr; dom g — pry dom | = U)\>0 A[D(S) — D(T)]. (5.5.3)

Proof. (5.5.1) gives lin (D(S) — D(T)) C F. We then obtain from Lemma 5.3(c) that
Uxso )\[prl dom pg — pry dom @T] C F, and another application of (5.5.1) implies that

UA>0 )\[prl dom ¢g — pr; dom ng} =F, (5.5.4)
so (5.1.1) is satisfied, and the maximal monotonicity of S + T follows from Lemma 5.1.

Let e >0 and a:=1/(14+¢) € (0,1). Let ¢ € C := pr; domypg — pr; dom pr. We now
apply Lemma 5.2 and obtain from (5.5.4) that

U,\>o )\[prl dom pg — pry dom 7 — ac] = U,\>o )\[prl dom pg — pr; dom goT} =F.
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Define U as in Lemma 5.4, with w := ac. Lemma 5.4(b) now gives that
U)\>O A [pr1 dom ¢y — pry dom ng} = U)\>O A [pr1 dom ¢g — avc — pry dom goT} =F,

and so Lemma 5.1 (with S replaced by U) implies that U + T is maximal monotone and,
in particular, D(U) N D(T) # 0. Using Lemma 5.4(c), we derive that

(D(S) — ac) N D(T) # 0,

from which ac € D(S) — D(T), that is to say ¢ € (1 +¢)(D(S) — D(T)). Since this holds
for any ¢ € pr; dom g — pry; dom ¢, we have proved that

pry dom g — pry dom ¢ C (1+¢)(D(S) — D(T)).

(5.5.2) now follows from Lemma 5.3(a), and (5.5.3) is an immediate consequence of (5.5.2). |

Remark 5.6. We end up with some comments about possible choices for F' in Theorem
5.5, recalling from Lemma 5.3(a) that D(S) C coD(S) C prydomeg C pr;domg.
If we take F' = |Jyoo A[D(S) — D(T)], we obtain [7, (23.2.2), p. 87], while the choice
F = UyooA[coD(S) — coD(T)] gives us [7, (23.2.4), p. 87]. Either of these cases can
be used to establish [5, Theorem 15] (but without the need to renorm E). We now
discuss the choice F' = (J,, )\[pr2 dom ¢ — pry dom go*T] Here, we define the function
cs: B x E* — (—o00, 0] by

(x,z*), if (z,x*) € G(S);

0, otherwise.

cs(z,2%) == {

Then (see [4, Proposition 4.1, p. 63]) ¢§(z*,x) = c5(z,2*) = Teg (in the notation
of [11]) and so we obtain [11, Corollary 4]. Lemma 5.3(a) also leads us to the choice
F =<0 )\[prl dom ¢g — pr; dom gpﬂ. In order to examine this, we must discuss briefly
the technique of the big convexification. It was shown in [7, Section 9] how to define a
convex subset C' of a vector space, §: G(S) — C, affine maps p: C — E, ¢: C — E* and
r: C'— R such that

C =cod(G(9)) (5.6.1)

and
(s,s") € G(S) = pod(s,s¥)=3s, qgod(s,s")=s"and rod(s,s*) = (s,s%). (5.6.2)

Now z € pr;dom pg if, and only if there exists z* € E* such that pg(x,z*) < oo, or
equivalently, such that, for some M > 0,

(s,57) € G(S) = (s,2")+ (z,s") —(s,8") < M.
Using (5.6.2), this can be rewritten
(s,8") € G(S) = <po a(s, s*),az*> + <x,q o 5(3,5*)> —rod(s,s*) < M.
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(5.6.1) implies that this is equivalent to
ceC = (-p(c),z*) —(z,q(c)) +r(c) > —M.

Since the maps ¢ — —p(c) and ¢ — (z,q(c)) — r(c) are affine, it follows from the new
version of the Hahn—Banach theorem proved in [8, Theorem 1.5] that this is, in turn,
equivalent to

there exists N > 0 such that ceC = Nl|-plo)| —{z, qlc)) +r(c) > —M.

Combining together M and N into a single constant, we derive that x € pr; dom pg if,
and only if

there exists K > 0 such that ceC = K+ K|p(o)| > (z q(c)) —r(c),

that is to say,

(x,q(c)) —r(c)

su < 00, in other words, x) < 00,
I @l Xt

where the convex function xg is as defined in [7, Definition 15.1, p. 53]. So we have proved
that pr; dom ¢g = dom xg, and so this choice of F' gives us [7, (23.2.6), p. 87]. Of course,
there are also valid “hybrid” choices, such as F = J,. o A[D(S) — pr; dom ¢r].

In all these cases, it follows from (5.5.4) that F' is the same set, independently of how
F' is initially defined.

6. THE BREZIS-CRANDALL-PAZY CONDITION

In this section, we investigate sufficient conditions for S+ 7T to be maximal monotone of a
kind different from those considered in previous sections. The most general result in this
section is Theorem 6.2, which is generalization of [7, Theorem 24.3, p. 94]. We show in
Corollary 6.5 how to deduce from this the result of Brezis, Crandall and Pazy, which has
found applications to partial differential equations. We refer the reader to their original
paper, [2], for more details.

Lemma 6.1. Let E be a nontrivial reflexive Banach space, U: E = E* andV: E = E* be
maximal monotone and prydomepy Npr;domey # (). Then there exists R > 0 (independent
of n) with the following property: for alln > 1, there exist (z,,,&,) € Ex E and (z},&") €
E* x E* such that

Izl + 22[1€all* + 123 ]1* < R?, (6.1.1)

and
Yu(2n, 25 — &) + Vv (2n + &0, 65) + Alzn, 25,) + A(néy, &, /n) = 0. (6.1.2)

Proof. Since pr;domepy Nprydomey # 0, we can choose (ug,ug) € dompy and (vg,vy) €
domepy such that that ug = vo. Let @ := +/|Juoll® + [Jug + vil2 + lvglI2. Q is clearly
independent of n. Define S,,: F x E = E* x E* by

G(Sn) = {((s,0),(s*,0%)): (5,58 —no*) € GU), (s+0o/n,nc*) € G(V)}.
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Using the equality ((z,z + (/n), (z* — n¢*,n¢*)) = (z,2*) + (¢, ¢*), which is valid for all
((2,€), (2*,¢*)) € (E x E) x (E* x E*), it is easy to check that S, is maximal monotone
and, for all ((z,(), (z*,¢*)) € (E x E) x (E* x E*),

s, ((z, ), (%, C*)) =ou(z,2" —=nC") + ov(z + (/n,nC") (6.1.3)
and

77Z}Sn ((Z7 C)? (Z*a g*)) = wU(Z7 2" — nC*) + QpV(Z + g/nvnc*) (614)

Let n, = ((uo,0), (uf + v§,v5/n)) € (E x E) x (E* x E*). Then

Iall =/l 2 + flss + 5112 + w5 12/n? < Q.

so, even though 7, depends on n, {||n,|}n>1 is bounded. Furthermore, (6.1.3) gives
s, (M) = wu(ug,ud) + ©v(vo,vs), which is independent of n. Then, from Theorem
3.1(a), there exists ((zn,Cn), (25, () € (E x E) x (E* x E*) such that

(GG (e G < Lglmall o5, 000) + Sl < 5@+ s, (na) + 2Q2, (6.15)
which is independent of n, and

s, (2, Cn), (27, 61)) + A((2n, Ca)s (20, G1)) = 0. (6.1.6)

Let &, := (,/n and & := n}. (6.1.1) follows by expanding out the terms in (6.1.5), and
(6.1.2) follows by expanding out the terms in (6.1.6) and using (6.1.4). |

By saying that j is increasing in the statement of Theorem 6.2 below, we mean that

0<p1<p2, 0<01<0o2and 0< 7 <19 = j(p1,01,71) < j(p2,02,T2).

Theorem 6.2. Let F be a nontrivial reflexive Banach space, S: E = E* andT: F = E*
be maximal monotone and pr;domeyg N prydomer # (). Suppose that there exists an
increasing function j: [0,00) X [0,00) x [0,00) — [0, 00) such that

(z,2" =€) € G(S), (x+&,67) € G(T), £# 0 and (£,£7) = —[|<][[[€7]] } (6.2.1)
= llg" =< (Ml ™[l Nie™ ).

Then S + T is maximal monotone.

Proof. We will first prove that, for all (w,w*) € E x E*, there exists (z,z*,*) € F X
E* x E* such that (see (1.3.3) for the definition of §(y,,+))

os(x, " — &) + (2, ") + d(w,uw+) (T, 27) <0. (6.2.2)

FFMMS run on 3/29/2004 at 11:59 Page 16



Fenchel duality, Fitzpatrick functions and maximal monotonicity

So let (w,w*) be an arbitrary element of E' x E*. Define the maximal monotone multifunc-
tionsU: E = E*and V: E = E* by G(U) := G(S) — (w,w*) and G(V) := G(T') — (w, 0).
From a slight extension of the argument of Lemma 5.4(b),

prydomey N prydomypy = (prydomps —w) N (prydompry —w) # 0.

Let R be as in Lemma 6.1. From Lemma 6.1, for all n > 1, there exist (z,,&,) € Ex E and
(zx,&)) € E* x E* such that (6.1.1) and (6.1.2) are satisfied. For alln > 1, let x,, = w+ 2z,
and x} = w* + z. Then (6.1.2) becomes

Vs(Tn,xy — &) + Ur(xn +60,80) + Az, —w, 2 — w*) + A(né,, & /n) =0.  (6.2.3)
This implies that A(n¢,,&:/n) = 0 and so, from (1.1.2),

(€n6n) = —lI&lllIER ] <0 and  [|&IlIE5 1 = [Ingall*. (6.2.4)

(6.2.3) also implies that g (x,, x) — &) + VY (xn + &0, &) + Az, —w, z) —w*) =0, i.e.,

0s(@Tn, Ty, — &) + or(Tn + &y &) + Oqw,we) (Tn, T,) — (6, &) = 0. Taking (6.2.4) into
account, we derive that

(PS(mej;KL - f:L) + @T(xn + fmfé) + 5(w,w*)(xn7x:1) < 0. (6'2'5)

If there exists n > 1 such that &, = 0 then this gives (6.2.2) with (z,z*,£*) := (z,,, 2}, &).
So we can and will assume that, for all n > 1, &, # 0. It is clear from (6.1.1) that
Supy>1 |0l < B+ [Jwl], sup,sq [log ]| < R+ [[w*[] and sup,,>, [n&a|| < R. Using (6.2.4)
and applying (6.2.1) gives

supp>y 1631 < 5 (R + Jwll, R+ [[w*[|, B?) < oo

Thus, by passing to a subnet, we can suppose that z, = z, {, — 0, z}, = =" and £}, — £*.
For all a, (6.2.5) gives

@S($a7$2 - f:y) + @T(xa + fa,£;) + 5(w,w*)<xaa :I:Z) <0.

We now obtain (6.2.2) by passing to the limit, and using (1.3.4) and the weak lower
semicontinuity of g and ¢p. Combining (1.1.1), (1.3.3), (3.0.1) and (6.2.2) gives us that

0<(w,z" = &) +(2,£") + (w,uw (z,27)
< ps(@,a* — &)+ or(@, ) + S w (@, 27) < 0.

Thus pg(z,z* — €*) = (z,2* — &) and ¢r(z,&") = (2,£*), and (3.0.2) implies that
(x,2* —&*) € G(Y) and (z, f ) € G(T), from which (z,2*) € G(S+1T). Define the convex
function h: E x E* — (—o00, 00| by

h(z,z*) := inf {gpg(x,x* —v*) + or(z,v): v* € E*} > (z,2%).

(h is identical with the function p of Lemma 5.1). It is clear from (3.0.2) that G(S+ 1) C
My, and (6.2.2) implies (1.2.2) since h(z,z*) < pg(z,z* — £*) + pr(x,£*). Lemma 1.2(c)
with G := G(S + T) now gives that G(S + T is maximal monotone. |
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Remark 6.3. We note that (6.2.1) is satisfied if we assume that the first line of (6.2.1)
implies that ||£*|| is bounded by certain special functions of ||£]| only. Let a and b be large
positive numbers, A, x> 0 and p < a V AP. Then

p>a = p<A o= T <A = < ()

Consequently, pu < a\/()\u)Wbl. Thus, if the first line of (6.2.1) implies that ||£*|| < aV[|€]|°,
then (6.2.1) is satisfied with j(-,-,0) :=a Vv T,

In what follows, if U: E = E* and © € E, we write |Uz| = inf |Uz||. The next
result is an implicit version of the Brezis—Crandall-Pazy theorem on the perturbation of
multifunctions (“implicit” because the quantity |Tx| appears on both sides of the inequality

in (6.4.1)). The original explicit version will appear in Corollary 6.5, and a new explicit
version in Corollary 6.6.

Corollary 6.4. Let E be a nontrivial reflexive Banach space, S: £ = E* andT: F = E*
be maximal monotone, D(S) C D(T), and suppose that there exists an increasing function
J: [0,00) % [0,00) — [0,00) such that,

veD(S) = [Ta| < (], (|Sa] - [Tx])"). (6.4.1)
Then S + T is maximal monotone.

Proof. We first note from Lemma 5.3(a) that pr;domyg N prydomer D D(S) # (. We
now show that (6.2.1) is satisfied. To this end, suppose that

(z,2" = &%) € G(S), (x+&,£7) € G(T), £#0and (£,£7) = —[I<]l[I€7]]-

This clearly implies that € D(S) C D(T). Now let t* be an arbitrary element of Tz. We
then have (z,t*) € G(T'). Since (z+¢,£*) € G(T) and T is monotone, (£,* —t*) > 0, and
s0 —(€,6") < —(&,¢7). Thus [[E][[[€*[] < [I€][[[¢*[l, and division by [|£]| gives [[€7[|] < [|¢*]|. Tf
we now take the infimum over t* € T'z, we obtain ||£*|| < |T'z|. Since (z,z* — &*) € G(S5),
we also have [Sz| < ||z — &[] < [la”|| + [|€7]| < [l2*[| + |Tz|, and so |Sz| —|Tz| < |27,
from which (|Sz| — |Tz|)* < ||z*||. Thus (6.4.1) implies that [|£*| < [Tz| < (||, |lz*]),
and it now follows from Theorem 6.2 that S + 7' is maximal monotone. |

Corollary 6.5. Let E be a nontrivial reflexive Banach space, S: E = E* andT: F = E*
be maximal monotone, D(S) C D(T), and suppose that there exist increasing functions
k: [0,00) — [0,1) and C: [0,00) — [0, 00) such that,

x € D(S) = [Tz| < k(||z]])|Sz| + C([|=])). (6.5.1)

Then S + T is maximal monotone.

Proof. Let z € D(S). From (6.5.1), (1 — k(||z])))|Tz| < k(||z|)(|Sz| — |Tz]) + C(||z]|) <
k(||z|)(|Sz| — |Tz|)* + C(||z||), and the result now follows from Corollary 6.4 with

: _ k(p)a +C(p)
i(p,o) = 1——k(p) I

In our final result, we allow k to take values bigger than 1, but we replace |Sx| by
|Sx|P in the statement of Corollary 6.5.
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Corollary 6.6. Let E be a nontrivial reflexive Banach space, S: £ = E* andT: F = E*
be maximal monotone, D(S) C D(T), and suppose that 0 < p < 1 and there exist
increasing functions k: [0,00) — [0,00) and C: [0,00) — [0, 00) such that,

z € D(S) = [Tz| < k(|[=[))|Sz[” + C([z])- (6.6.1)

Then S + T is maximal monotone.

Proof. Let z € D(S). From (6.6.1) and the fact that A\, u > 0= (A + p)? < AP + uP,

T < k(||zl))(|Tz] v |Sz])? + C(|2])) = k(=) (|1T2] + (|Sz| — |Tz))*)? + C(||z])
< k(lzI)ITz? + k(|2]) ((ISz| — [T=])T)" + C(||z]).

Now if k(||z||)|Tz? < §|Tx| then this gives |Tz| < 2k(||z||)((|Sz| — |T.I|)+)p +2C(||l=|),
while if $|Tz| < k(||z||)|Tz[P then, of course, |Tz| < (2/<:(H:1:H))1/(17p). Thus the result
follows from Corollary 6.4, with j(p, o) := [2k(p)o? + 2C(p)] V (Qk(p))l/(l_p). |

Remark 6.7. We emphasize that, unlike the analysis in [2], we do not use any renorming
or fixed-point theorems in any of the above results. Theorem 6.2 does not have the

limitation D(S) C D(T) of Corollary 6.5, though we do not know if it has any practical
applications other than those that can be obtained from Corollaries 6.5 and 6.6.

7. OTHER FORMULAS FOR min {|X|: X € E, (S+J)X 30}

Let E be a non—trivial reflexive Banach space and S: E == E* be a maximal monotone
multifunction. We showed in Theorem 3.1 that

min {|lz]: = € B, (S+J)z 50} = L= sup,c - [HnH V2os(m) + [l } . (7.0.1)

In this final section, we give a general result that leads to other formulas for the left—hand
side, which might be more convenient for computation. In particular, we will see that if
[(z,2*)[[1 = llz|| + [l«*[| and |[(z, 2%)l[o := [[z[| V l2*]| then

_|_
min (el @ € B 5+ e 30} = hswbycpe- [l = y/2ps() + Iall?] (02

= sl Vst +Hn!loor- (7.0.3)

nEEXE

We start off by investigating some elementary properties of norms on R?. Let A be a norm
on R?. We say that AV is octagonal if

()\1,/\2) ER2 — N(Al;)\2):N(A27A1):N(|A1|7|/\2|)7

and we write C := N(1,1). If N (A1, X2) = VA% 4 A2? then Cy = V2, if N (A, Xo) =
|A1]+[A2| then Cpr = 2, Whlle if N'(A1, A2) = |A1|V|A2| then Cpr = 1. If we substitute these
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three values of N in Theorem 7.3 below we obtain, respectively, (7.0.1), (7.0.2) and (7.0.3).
If NV is octagonal, 0 < Ay < p3 and 0 < Ag < o then (A1, \2) is a convex combination of
(g1, p2), (—p1, p2) and (p1, —p2), consequently N (Aq, A2) < N (1, p2). In order to prove
Theorem 7.3, we will need to discuss the dual norm A* on R?, defined by

NN, A5) = M+ Ao
(AT, A3) /\/(/\mlg);)gl 1A T A2A9
If \V is octagonal then
NE(AT NS = max MAT + Aoy = max AT+ [ A2l | A5],
(A1, A3) AT AAT A2 N(\A1|,|A2|)§1’ LAT] =+ [A2[A3

from which it follows easily that N'* is octagonal.
Lemma 7.1. Let N be a octagonal norm on R?. Then:
(a) For all )\1,/\2 2 0, N(/\l, )\2) Z %()\1 + )\Q)CN
(b) CnChrrx = 2. Let vy := Cpr/Chr+: then %C’N2 = YN
(c) For all Ay, Ay > 0,
3N (A1, A2)? > v A, (7.1.1)

with equality if, and only if, A\ = As.
Proof. (a) Let A;, Ay > 0. Then

N (A1, 22) = SN(AL ) HEN (A2, A1) > N (3(A1, A2)+3 (A2, M) = N (3 (A2, A+ Aq)),

which gives (a).
(b) From (a), for all (A1, \2) € R?,

((A1,22), 5(Ch, On)) = 5(A1 + X2)Cx < 5(IA] + [X2)Cn S N (M [A2]) = N (A1, Ag),
thus N*(3(Cy, Cx)) < 1, which gives CyyCpr« < 2. On the other hand,

which completes the proof of the first equality, and the second follows from the definition

of var.

(c) Since (A1 + A2)? > 4X\1 Ao, (7.1.1) is immediate from (a) and (b). If A\; = Ay then
we obviously have equality in (7.1.1). If, conversely, we have equality in (7.1.1) then,
from (a) again, yadA2 = SN (A, A2)? > (A1 4+ A2)2Cn® = 2yn(A1 + A2)% Thus
4X1 2 > (A1 + X2)?, which implies that A} = Xo. |

If V is a octagonal norm on R?, we define a norm || - |[»r on E x E* by ||(z, 2*)||n :=
N (||z|), |z*||). Since || |o- and || - || are equivalent norms, (E x E*)* = E* x E as before.
The next result tells us that the dual norm, |- |3/, of || - ||&- on E* X E is exactly what we
would like.
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Lemma 7.2. Let N be a octagonal norm on R?. Then, for all (u*,u) € E* X E,
1w, )5 = N ([lwr]]s el

Proof. We have

|(w*,u)|[}y ;== max (x,u*)+ (u,z") (x,u") + (u,z*)

= max
[l (@,2*)[[xr <1 N(llz|l,]lz* ) <1

< [l ] - [l

< max
Nzl llz*])<1

< max Ag[lut]| 4 Aolfufl = A (Jluf, )
= N uom <1 L[u*]] + Az f[u] (N1 full)

On the other hand, it follows from the last equality above that there exists (A1, A2) € R2
such that N (A1, A2) < 1 and N*(||u*]], |ul]) = Aillu*| + A2llul. Now we can choose
(x,z*) € E x E* such that ||z| = |A1], ||z*|| = | A2, (z,u*) = A\||u*| and (u, z*) = As|u]|.
But then, since ||(z,2*)||x = N (|||, [|[z*]]) = N (A1, [A2]) < 1,

N (w1l ull) = (@, u") + {u,27) = (2, 27), (", ) < (" w)i

which completes the proof of Lemma 7.2. |
In what follows, of course ypr« := Cpr« /Cpr = 1/7nr-

Theorem 7.3. Let EE be a non-trivial reflexive Banach space and S: E = E* be a
maximal monotone multifunction. Let N be any octagonal norm on R* and

+

1 2
Pri= s (Il = y/Cx"es(n) + Il
N neExE*

Then
min {||z||: z € E, (S+4 J)z >0} = Py,

and so Py is independent of N
Proof. It follows from (3.0.1) and Lemma 7.1(c), with (A1, A2) = (||z]|, [|=*]|), that

(¢,2%) € E x B* = s (@, 27) + 5l (@,a")In” =yl @) + N (], [|2*])?
> sN(lzll, l2*1)? = vzl fl2*]| > 0.

Thus (3.0.3), and Theorem 2.1(a) with F := (E x E*, || - ||lx) and f = yyps = 1Cn2ps,
give n* € E* x I such that

+
"3 < sup [HU”N - \/Cstos(n) +nllv®| = CnPy (7.3.1)
nebEx E*

and (yarps)" (1) + Al 3% < 0. Waiting ¢* = qx-17", or equivalently, 5" = yuC*, this
* * *(|x 2 : * * x||%x 2
becomes v(C7) + SAIC7 157 < 0, that is to say, -95(C*) + HICI%E < 0. Let

FFMMS run on 3/29/2004 at 11:59 Page 21



Fenchel duality, Fitzpatrick functions and maximal monotonicity

(z,2*) € E x E* be such that (* = (2*,z). Then, using Lemma 7.2, we derive that
v+ ps (2%, 2) + s N*([|12*]), |2]])* < 0. But since the left hand side of this inequality is

- [5(2",2) = G2, 2] e [l + (2290 + (SN2 D207 = -z,

and, from (3.0.5) and Lemma 7.1(c), with A replaced by N* and (A1, X2) = (||2*], [|z]]),
each of the three summands is nonnegative, it follows that

* * * * * * * 2
ps(2",2) = (2,27), |zlllz" = —(2,2%), and  GN*(|l2*], [|2[))” = v

2 ll]l-

Taking into account (3.0.6) and Lemma 7.1(c), with N replaced by N* and (A1, A2) =
(=71l 1211 again, we have (z,2) € G(S), [|z[llz*[| = =(z,27) and [[2*[| = |[2]/, that is to
say, —z* € Jz. Since 0 = 2z* + (—2*), it is now immediate that (S + J)z > 0. Further,
1SR = N=(IZ" (] 120 = M= llzlls [[21]) = Car- Izl and so, from (7.3.1),

]_ ")/_/\/'* ]_
Il = G l€" e = 2 e = ="l < Py
In order to complete the proof, we must show that
zr€Fand (S+J)z>50 = |z| > Py. (7.3.2)

So suppose that x € E and (S + J)z 3 0. Then there exists * € Sx such that —z* € Jzx.
Write n* = yar(2*, ). Then, from Lemma 7.2 and the fact that ||z*|| = ||z]|,

1"l = vl @®, )| = Nl (| [[2]]) = NIzl |2]]) = O 2]l = Carll]|-

Consequently, from the fact that ||z]|? = —(x,z*) and (3.0.6),
1 **2_102 2 _ 2 *\ __ * (% _ * (0%
23" = sCn7ll2]l® = wllzl® = = (e, 27) = —ywes™ (@7, 2) = —(veps)™ (7).

So we have proved that (yaps)*(n*) + %Hn*H}"\/Q = 0. Theorem 2.1(b) now gives ||n*||}, >
Cn Py, from which (7.3.2) follows, completing the proof of Theorem 7.3. |
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