GLOBAL EXISTENCE FOR 3D INCOMPRESSIBLE
ISOTROPIC ELASTODYNAMICS VIA THE
INCOMPRESSIBLE LIMIT

THOMAS C. SIDERIS AND BECCA THOMASES

1. INTRODUCTION

The motion of isotropic elastic materials occupying all of R? fea-
tures the nonlinear interaction of fast pressure waves and slow shear
waves, concentrated along their respective characteristic cones. Under
appropriate constitutive assumptions, sending the speed of the pres-
sure waves to infinity penalizes volume changes and drives the motion
toward incompressibility. This article presents two results in support
of this picture.

First, for sufficiently small initial displacements, classical local so-
lutions of the equations of motion are shown to exist with uniform
stability estimates yielding a lifespan proportional to the speed of the
pressure waves, substantially improving upon [13]. This result depends
on the careful assessment of nonlinear wave interactions through the
inherent null structure of shear waves in isotropic materials, the small
amplitude of pressure waves caused by their rapid dispersion in the in-
compressible limit, and the separation of the individual wave families.

Second, the uniform stability of the local existence family allows for
convergence to a global solution of the limiting incompressible equa-
tions by means of compactness arguments. The strength of this con-
vergence improves with the degree of incompressibility satisfied by the
initial conditions.

Instead of the classical second order Lagrangian formulation, the
problem will be analyzed within the framework of first order symmetric
hyperbolic systems because, with Eulerian coordinates and the proper
choice of dependent variables, the singular terms are linear. The trans-
formed system can be viewed as a natural extension of the compress-
ible Euler equations of fluid dynamics in which the inverse deformation
gradient is now coupled with the density and velocity. It also shares
common features with various relativistic theories of elasticity [3], [12],
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[19]. With the addition of new variables, certain natural constraints
need to be taken into account. In particular, as noticed by John [6], a
so-called null Lagrangian must be introduced to restore the positivity
of the system, and moreover, nearly all of our estimates hold only for
the constrained system.

In his pioneering study of the incompressible limit for elasticity, Scho-
chet [13] already discovered the advantages of this basic approach (al-
though his choice of dependent variables differs slightly from ours).
With a first order formulation, he was able to apply the energy meth-
ods of Klainerman and Majda [9], [10] originating in the study of the
incompressible limit for the equations of fluid dynamics. However, en-
ergy estimates alone can only give uniform stability estimates on a
bounded time interval and convergence in the incompressible limit to
a local solution of the limiting equations.

Long-time stability of solutions to the elastodynamics equations de-
pends on strong dispersive estimates. For the wave equation, the gener-
alized energy method, based on Lorentz invariance and global Sobolev
inequalities, provides an elegant and efficient means of combining en-
ergy and decay estimates, see [7], [8], for example. The equations of
elasticity, being merely Galilean and scaling invariant, require an addi-
tional intermediate series of weighted L? estimates to compensate for
the smaller symmetry group, an approach that has been developed in
[11], [15], [17], and [18]. In particular, it was shown in [15] and [17]
that the initial value problem for the Lagrangian equations of motion
for compressible elastodynamics have global small solutions for cer-
tain isotropic materials satisfying an additional null condition for the
pressure waves, see also [1], [2]. In this respect, the pde’s of elastody-
namics are better behaved than the equations of fluids for which shear
waves do not disperse, on the linear level. Nevertheless, the use of
decay estimates also allows for some improvements in the study of the
incompressible limit for fluids, [20], [14], [16].

The present work relies on the methods of [17], translated into the
first order context, but in addition it requires new weighted estimates
that are uniform in the speed of the pressure waves. Another way to
summarize the difficulty is that time derivatives do not automatically
have uniform estimates and must be treated separately. Such bounds
are essential in order pass to the incompressible limit. They can be
achieved either by preparing the initial data appropriately or, in weaker
form, by using scaling invariance.

Global solutions to the approximating compressible equations are not
constructed here. This is the price of Eulerian coordinates. Convective
derivative terms are inconsistent with the null condition.
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The global existence of small solutions to the 3d incompressible and
isotropic elasticity equations was announced by Ebin in [5]. His direct
argument relies on the Lorentz invariance of the wave equation, the
linearized operator in the incompressible case, however in our view in-
sufficient attention is paid to the incompressibility constraint which is
incompatible with the Lorentz rotations. The special case of incom-
pressible neo-Hookean materials was studied in [4].

Complete statements of the main results can be found in Section 2.6
after a reformulation of the problem and the introduction of required
notation. The steps of the proof of the long time stability estimates are
broken up into a series of Propositions in the following sections. The
final two sections then complete the proofs of the main theorems.

2. PRELIMINARIES

2.1. Equations of motion. The motion of an elastic body is classi-
cally described by a time dependent family of orientation preserving
diffeomorphisms z(t,-), 0 < ¢ < T. Material points X in the reference
configuration are deformed to the spatial position z(¢, X) at time ¢.
The equations of motion for homogeneous, hyperelastic, isotropic
materials can be derived from the formal variational problem

6//[%|Dtx|2 — W(Dx)]dX dt =0,

in which the strain energy function W(F) € C*°(GL3,R) depends on
F through the principal invariants of the strain matrix F7F. We use
the notation GL3 for the group of invertible 3 x 3 matrices over R with
positive determinant, M® for the set of all 3 x 3 matrices over R, and
(Dy, D) for derivatives with respect to the material coordinates (¢, X).
The density in the undeformed reference configuration has been set
equal to one. The equations of motion take the form
(2.1) D2r' — D,[SY(Dx)] = 0,

' ow . . .
where S;(F) = O (F') is the (first) Piola-Kirchhoff stress tensor.

‘

Summation over repeated indices will always be understood.

2.2. Reformulation as first order system. Our analysis relies on
the reformulation of the second order equations of motion in material
coordinates to a first-order system in spatial coordinates. Spatial co-
ordinates allow for a compact and tractable expression for the singular
terms. It will be convenient to work with the family of inverse transfor-
mations X (t,z) whose gradient H (¢, x) satisfies a particularly simple
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constraint (see (2.6b) below). Derivatives with respect to the spatial
coordinates (¢, x) will be denoted by 0 = (0, V).
The following series of simples results establishes the equivalence.

Lemma 1. Given a family of deformations x(t, X) with inverse X (t,x),
define the velocity, inverse deformation gradient, and density as fol-
lows:

(2.2a) v(t,x) = Dyx(t, X (t,x))

(2.2b) H(t,z) =VX(t,x)

(2.2¢) p(t,x) = det H(t,x).

Then for (t,z) € [0,T) x R?,

(2.3a) OH+V(Hv)=0H+v-VH+ HVv =0
(2.3b) Op+v-Vp+pV-v=0.

Proof. Since X (t,z(t, X)) = X, we see that X (¢,z) is constant along
particle trajectories. This means that

GtX—i-vVX:O

Taking the gradient with respect to z yields (2.3a). The equation (2.3b)
follows from (2.3a) because it is simply the evolution equation for the
Jacobian det H (t, z(t, X)). O

We remark that as soon as H satisfies (2.2b), it follows that 9; Hj(t, z) =
akH; (t, ZE) .

Lemma 2. Suppose that (H(t,z),v(t,z), p(t,z)) is bounded and con-
tinwously differentiable from [0,T) x R* to GL3 x R* x R. Suppose
that there exists an orientation preserving diffeomorphism x(X) of R®
with inverse X (x) such that H(0,z) = VX (z) and p(0,z) = det X (z).
Finally, assume that (2.3a) and (2.3b) are satisfied on [0,T) x R?.
Then there exists a one-parameter family of diffeomorphisms z(t, X)
with £(0, X) = z(X) such that (2.2a), (2.2b), (2.2¢) hold.

Proof. Given the bounded vector field v(¢,x) on [0,T) x R3, construct
the flow

Dix(t,X) =v(t,z(t, X)), z(0,X)=az(X).

For 0 <t < T, z(t, X) defines a one-parameter family of diffeomor-
phisms on R? since (X)) is a diffeomorphism. It now follows by Lemma
1, that H(t,x) = Dx(t,z) and p(t,r) = det H(t,z) satisfy (2.3a) and
(2.3b) on [0,T) x R%. Finally, we conclude that H = H and p = p, by
uniqueness, since this holds at £ = 0. 0
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We have already noted that, in material coordinates, the equations
of motion for the deformation z(¢, X') are given by (2.1). We will now
show that in spatial coordinates, the corresponding equations of motion
are given by the first-order system

(2.4a) D:H+ HVv =0

(2.4b) Dw+D-S(H)=0, S(H)=-S(H™)
(2.4¢) Dip+pV -v=0.

Here we are using the abbreviations

(2.5) D=0, +v-V, and D,=(H )0,

consistent with chain rule.

Proposition 1. Suppose that x(X) is an orientation preserving dif-
feomorphism of R® with inverse X (x).

Let z(t, X) be a C* solution of (2.1) on [0,T) x R® with z(0,X) =
x(X). Then (H,v,p) as defined in Lemma 1 solves the first order
system (2.4a)-(2.4¢), together with the constraints

(2.6a) det H=1p
(2.6b) O H!, = 0, H}.

Conversely, suppose that (H,v, p) is a bounded C' solution of (2.4a)-
(2.4¢) on [0, T)xR? such that H(0,z) = VX (z) and p(0,z) = det VX (z).
Then x(t, X) as given by Lemma 2 is a one-parameter family of dif-
feomorphisms which solves (2.1). Consequently (H,v,p) satisfies the
constraints (2.6a), (2.6b).

Proof. If x(t, X') is a one-parameter family of orientation preserving
diffeomorphisms which solves (2.1), then define (H, v, p) by means of
(2.2a), (2.2b), and (2.2c). By Lemma 1, equations (2.4a), and (2.4c)
are satisfied, and equation (2.4b) follows from (2.1). The constraints
hold by the definitions of H and p.

On the other hand, suppose that (H,v,p) solve (2.4a)-(2.4c), and
the initial data H(0,z) and p(0, z) satisfy the assumptions. Then by
Lemma 2, there is a one-parameter family of diffecomorphisms x(t, X)
with (0, X)) = x(X) which satisfies and (2.2a), (2.2b), and (2.2c). But
then (2.4b) implies that z(t, X) satisfies (2.1), since H~'(¢t, z(¢, X)) =
Da(t, X). O

2.3. Constitutive assumptions. We will consider isotropic strain
energy functions of the form

WMNF)=W(F)+ Ah(p), p=detF~', XecR",
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where W is independent of A\ and depends on F' through the principal
invariants of the strain matrix F'7 F. The last term should be regarded
as a penalization term which drives the motion toward incompressibility
in the limit as the parameter A becomes large.

In this case, the Piola-Kirchhoff stress has the form

0
= oF|
We assume that S(I) = 0 and A'(1) = 0. This implies that the reference
configuration is a stress-free state: S*(I) = 0.

Since D - (det F)F~' =0, for F = Dz, the penalization term adds
the expression

D - Nph'(p)F~" = Np~'V[p* (p)] = N[ph(p)]"Vp

to the equations. Because we are ultimately interested in the incom-
pressible limit, we shall choose the function h so as make this term as
simple as possible while still being physically meaningful. Therefore,
we set

S (F) W(F) + Xh(p)] = S(F) = Nph'(p) F .

(p—1)%(p+2)
6p

so that [ph(p)]” = p. Notice that h(1) = h'(1) = 0, h is convex and

nonnegative, and h(p) — oo, as p — 0 and oo, so this choice is a

physically reasonable correction to the strain energy. With this choice,

we now have

(2.7) h(p) =

)

(2.8) D-S*Dz) =D -S(Dx) — XpVp
Next, define the elasticity tensor
0S¢ O*W
2.9a AlMF) = —(F) = ——(F).
(2:99) ) = S = Spap )

We impose the usual Legendre-Hadamard ellipticity condition upon
linearized elasticity tensor which, in the isotropic case, takes the form

m _ Lcm Im Lsm
with a > > 0.

The parameters o and § depend only on W, and they represent the
speeds of propagation of pressure and shear waves, respectively (in
the case where A = 0). With the additional penalization term, the
propagation speed of the pressure waves becomes A = (a? 4+ \2)'/2, as
will become clearer in the next section. Note that the hydrodynamical
case W = 0 is ruled out by the condition (2.9b).
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We now proceed to express our system in terms of H, the inverse
of the deformation gradient F', and to examine the structure of the
nonlinear terms. In reformulating the problem as a first-order system,
the associated energy density is no longer positive definite. This is
repaired by the addition of a so-called null Lagrangian. This entails
no real change to the equations as long as we only consider solutions
which correspond to the original second order problem and therefore
satisfy the constraint (2.6b).

Lemma 3. For H € GL%, define
S(H) = ~S(F)|p_n—
(2.10)  AFM(H) = Af (F)F F{ F{ il pen + 5°(5{5]" — 8767").
For all H € C*(R?, GL?) satisfying (2.6b), we have
(2.11a) D, S{(H) = Al"(H)H?9,H},

using the notation (2.5). The coefficients have the properties

Alm Aml
(2.11b) AN(H) = A%C(H),

Alm L sm Im
(2.11c) AT = (o — B%)6;07" + 52665,

and for all H € GL?. with |H — I| < 6 sufficiently small, and He M
we have

... . 2 .
(2.11d) AP (H)HH), > %|H|2.

Proof. The property (2.11b) is clear from the definitions (2.9a) and
(2.10), while (2.11c) follows from (2.10) and (2.9b). The lower bound
(2.11d) follows by Taylor expansion and (2.11c).

We differentiate F'H = I to obtain

DLFy, = —F]FjiD H], = —F/ F{ F}}0,H,.
According to our definitions, with F' = H~!, we have
D-S(H) = D,SE(H)
= —D.S}(F)
= _AiLJM(F)DLFJ\{[
= A (F)F] FLFi0.H,
= A (F)6!F) F{F}10,H],
= AQ(F)F,F] F{F{H?0,H},.
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To conclude the proof of (2.11a), notice that under the constraint

(2.6b), we have
(0505 — 8500 HE 9, H], = 0.

O

As a consequence of (2.8) and (2.11a), the momentum equation
(2.4b) can be updated as

(2.12) o' +v- Vo' + Aﬁ?(H)HfagHﬂﬁ + A2pd;p = 0.

2.4. Vector fields. Before defining the A dependent energy norm as-
sociated with the first order system, we must first introduce the vector
fields on which the norm will depend. Notice that the vector fields are
defined using Eulerian derivatives, instead of the Lagrangian deriva-
tives as in the second order case [17]. The scaling operator is
(2.13) S =td, +rd,, with r=l|z|, &, =~ -V,

r
and the angular momentum operator is defined by
(2.14) Q=zAV.

Since the angular momentum operators defined act on scalars we
need to modify them to act on maps U = (H, v, p) valued in MP xR3 xR.
First define

(2.15)
0 0 0 00 -1 0 10
vih=10 0 1|, Vv®=]00 0 |, Vv®=|-10 0
0 —1 0 10 0 0 0 0
Given U = (H,v,p) : R® — M? x R® x R, define
(2.16) QU = (QH + [V, H], Qu + Vv, Qp).

We will occasionally write QH = QH + [V, H] and Qu = Qu + Vv for
the indicated components of QU.

A fact we will use often is that we can decompose the gradient into
its radial and angular components,

1
(2.17) V =wd, — —(wAQ), where w = .
r r
Our vector fields will be written succinctly as I'. We let
L= (ly,...I'7) = (V,Q,9).

Hence by I'U we mean any one of I';U. By I'*, a = (ay,...,a,), we
denote an ordered product of x = |a| vector fields I'y,...I';.. We note
that the commutator of any two I's is again a I'. Notice that the
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vector fields I' are time homogeneous. The time derivatives 0,U will
be handled separately.

In order to characterize the initial data, we introduce the time inde-
pendent analog of I'. The only difference will be in the scaling operator.
Set .

A=A, .. A7) =(V,Q2-V).

Then the commutator of any two A’s is again a A.

2.5. Spaces and norms. In the following, || - || and || - || Will denote
the norms in L*(R?) and L°°(R?), respectively.
Define

HY ={U=(H,vp) :R =M xR xR: AU € L*(R?), |a] < &}.
Solutions will be constructed in the space

H{(T)={U = (H,v,p) : [0,T) x R* - GL%. xR* xR |

U= (H,b,p) = (H—1LvAp—1) € M_,C7([0,1), Hy ')}

We now define the energy norm associated with the first order sys-
tem. Given U = (H,v,p) € GL}> xR* x R and U = (H,0,p) €
M3 x R® x R define

. P - ) )
(2.18) ev(U) = S[AG" (H)HiH;, + 6] + 7).
Given U € H{(T), define
(2.19) EJU®)] =) / v (T°U(t))dx.
la|<r
By (2.11d), for [U(t)| < 6,
(2.20) EJU@®)] ~ Y U]
la|<r

We caution the reader that U denotes a perturbation from the back-
ground state and not a derivative. We also point out that the parame-
ter A is hidden in the definition of E,[U(t)] through its dependence on

p=Ap—1).

2.6. Main results. Taking into account the constitutive assumptions,
the revised equations of motion (2.4a), (2.4c), (2.12) are

(2.21a) O.H; +v-VHj+ H,0p” =0
(2.21b) ov; +v - Vo + Aﬁ?(H)HfagHﬂﬁ +X2p0ip=0

(2.21¢) Op+v-Vp+pV-v=0,
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together with the constraints

(2.21d) det H =p
(2.21e) Oy H!, = 0, Hj.

We emphasize that solutions will depend on the value of the parameter
A, however with the exception of the statements of the the main the-
orems, this dependence will not be displayed for reasons of notational
convenience.

Theorem 1. Assume that the isotropic strain enerqy function W has
the form
WXF)=W(F)+ Mh(p), \eERT,
where W is independent of \ and satisfies the condition (2.9b) and h
is given by (2.7).
Let X3 (z) be an orientation preserving diffeomorphism on R®, and
let v} () be a vector field on R®. Define

Uy = (Hy,vp, p5) = (VX5 vp, det V.XQ),
Us = (Hy, 1, 05) = (Hy = 1,vg, Mpy — 1))
Suppose that U[f‘ € HY, with k > 8, and that
(2.22) EYU) <C, EAUN <z and U <4,

for uniform constants C, €, and 9.

If € and § are sufficiently small, then the initial value problem for
(2.21a), (2.21b), (2.21c) with initial data UM(0) = U has a unique
solution UMt) € HE(T*) with T* > X which satisfies the constraints
(2.21d), (2.21e) and the estimates

(223)  ESUM0) < CBAG] < O,
(2.23b) EPIUN0)] < C'B 20166,
(2.23¢) B[00 (0] < B 00N 0) exp (¢ (1)),

for all t € [0, TY), where C" is a uniform constant.

We point out that the uniform bound for the initial energy in (2.22)
implies, in particular, the statement ||l%p)|| < C, |a| < k, and so
according to our definitions, |[T%(py — 1)|| < CA~!. Thus, in the limit
as A — 00, the initial deformation is driven toward incompressibility.

Since the bounds on the energy from Theorem 1 are uniform in A,
we will be able to take the limit as A goes to infinity to obtain a global
solution to the incompressible elasticity equations given below,
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(2.24a) OH; +v-VH,+ H0n" =0
(2.24D) O’ +v - Vo' + AU (H)HPO,HY, + 0,9 = 0,

with the constraints

(2.24c) V-v=0
(2.24d) det H=1
(2.24e) O H!, = 0, H}.

Theorem 2. Suppose that the initial data Uy satisfies the assumptions
of Theorem 1, and in particular (2.24e) holds.

(i) The solution family U has a subsequence UM, )\, / oo, such
that

UM — U™ = (H*v>®,1) in Cr3((0,00),R?),

loc

where (H*®,v>®) is a global solution of the incompressible equations
(2.24a) — (2.24e) with

EJUR®)] < 0o and En_s[U®()] < C,

for 0 <t < oo.
(11) If, in addition, the initial data is independent of A\ and (2.24d)
holds at time t = 0, then the full sequence U* satisfies
U U™  in CF3((0,00), R?)

loc

and

(H)‘,ﬂ"U/\)—)(HOO,’UOO) n C’ZOOC

([0, 00) x R),

where m is the L? projection onto divergence free vector fields.

Moreover, (H®,v>) is the unique solution of (2.24a) — (2.24e) in
C ([0, 00), Wr=12) with initial data (Hy, mvy).

(111) Finally, if the initial is independent of X\ and incompressible,
i.e. (2.24¢) and (2.24d) hold at time t = 0, then the full sequence U*
satisfies

U= U™ in C;2((0,00), R) N C°([0,00) x R?),
and the limit (H®,v>) is the unique solution of (2.24a) — (2.24e) in
C ([0, 00), Wr=12) with initial data (Hy,vy).
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2.7. Galilean and scaling invariance. The vector fields defined above
are closely related with the Galilean and scaling invariance of the sys-
tem.

Consider the one-parameter family of rotations generated by the V()
defined in (2.15)

Qj'(s) =VWQ;(s), Q;(0)=1.
IfU(t,z): [0,T) x R® — M3 x R® X R and @ is any rotation, we define
the simultaneous rotation of U by
(225)  ToU(to) = (QH(t,Q"2)Q", Qu(t,Q"x), p(t, Q" x)).

The operators Q; defined in (2.16) are generated by TQ,(s) in the sense
that

(2.26) O,U = %TQ].(S)U B
Next, define the one-parameter family of dilations
(2.27) R(s)U(t,x) =U((s+ 1)t, (s + 1)x).
The family (2.27) generates S defined in (2.13) through
(2.28) SU(t ) = d%R(s)U(t, "l
And finally define the one-parameter family of translations by
(2.29) 7;(s)U(t,x) = U(t, x + se;j),

where j = 1,2,3 and e;, j = 1,2, 3, is the standard basis on R®. The
operators 0; are generated by 7;(s) as

d
ds
We do not include time translations here because the ensuing energy
estimates require special treatment of time derivatives in the singular
limit.

Suppose that A(s) is any of these families. The pde’s (2.21a)-(2.21c)
and the constraints (2.21d),(2.21e) have the following invariance prop-
erty: if U(t,x) is a solution, then so is A(s)U(t,x). More generally,
lett A%(s) = Ag (s1) - Aq,(54) be the product of ¢ < & such trans-
formations. Again, if U(t,z) satisfies (2.21a)-(2.21e), then so does
A*(s)U(t,z). Notice that

de :
A"(s)U = (D°H, %, A\ 'Tp).

dSl e dsq (51 ..... sq):(U ..... 0)

5=0
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This notation allows us to define the differentiation of nonlinear
quantities in U with respect to the vector fields. Suppose that
f: M xR*xR— R¢
is a smooth mapping, for some d. Given
U:00,T) xR - M xR xR,

we define
(2.31) refU)=

Invariance immediately implies the following commutation result for
the first order system.

d?
—— f(A“(s)U .
dsy - - 'dsqf( (s)U) (51,0,5q)=(0,...,0)

Proposition 2. For any solution U = (H, v, p) € HE(T) of the pde’s
(2.21a)-(2.21¢) and the constraints (2.21d),(2.21e), we have

(2.32a)
OT“H +v-VI'H+ HVI%+ Y [0 VI°H + T"HVI9] = 0,

b+c=a
c#a

(2.32b)
0,(T0)" + v - V(I"0)" + AL (H)H?9,(T*H), + Apd,T“p
+ ) AT V() + DYAH) H)m 0 (D°H ), + T pailp} = 0,

b+c=a
c#a
(2.32¢)
OLp+v- VI + ApV -T% + Y [[%- VI + [°pV - 0] = 0,
b+c=a
c#a

wn which the sums extend over all ordered partitions of the sequence a,
with |a| < k. In addition the following constraints hold

(2.32d)

0,(I" H)}, = (I )
(2.32e)

[ — At T°H + T°0(F)), 0(H) = %[(u H)? — tr B2+ det .

[
7

Note that the notation (2.31) has been used in (2.32b) and (2.32e).

Proof. Suppose that T'* is generated by A%(s) in the sense described
above. Starting with a solution U of (2.21a)-(2.21e), we use invariance
to obtain that A%(s)U satisfies the same equations. The results (2.32a)-
(2.32d) follow by differentiation in s and then putting s = 0.
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Using a simple linear algebra fact we have that
.1 . . .
det H=1+tr H + 5[(tr H)? —tr H?] + det H.

Thus, we can rewrite the constraint (2.21d) as
p=Atr H + 6(H)).

This constraint is also invariant, and so (2.32e) follows in the same
manner. U

This Proposition also holds for the case when I'* includes time deriva-
tives, and later, in Section 6, we will need this with exactly one time
derivative.

2.8. Projection operators. Motivated by the second order case [17],
we consider the decomposition of solutions onto their longitudinal and
transverse components. This allows use to approximately separate
shear and pressure waves, away from the origin. Given

U(t,z) = (H(t,z),v(t,x), p(t, x)),
we define
PU(t,z) = (w® wH(t,z),w @ wu(t,x), p(t,x)), with w=z/|z|

Then set P, = I — P,. Note that P? = P, and P; is self-adjoint for
t = 1, 2 so that the operators P, and P, are projections onto orthogonal
subspaces of GL? x R* x R.

Occasionally, we will abuse notation slightly by writing P;, P, for
the matrices w ® w, I —w ® w, respectively.

2.9. The null condition. Here we formulate the condition for shear
waves. In this context, a general 6-tensor ijmk” will be said to satisfy
the null condition if

(2.33a) T (el (WmTyy ) (wnnfyy) = 0,

for all vectors w, 1) € R?, with (w, 7)) = 0. In terms of the projec-
tion matrices P, = w ® w and P, = I — P,, this implies that

(2.33b) B (P (PO (P)Y (Po)i(P) (Py)h = 0,
forallw € R®* and all I, J, K, L, M, N.

It was shown in [17] that, for isotropic materials, the shear waves
satisfy the null condition at the reference configuration. That is, the
coefficients ,

PW OA;"
it = e (1) = 2 (1)
! OF}0F;,0F} OFF
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satisfy (2.33a). This is equivalent to the fact that the shear waves are
linearly degenerate at the identity.

Since we have changed coordinates, we will actually encounter two
sets of modified coefficients. Define

R DAlm
Imn _ 1]
(2.34a) B (H) = I (H)
and
(2.34D) B = Afmor.

A straightforward calculation based on the definition (2.10) shows that
B(I) = B, and so B(I) satisfies (2.33a). From (2.11c), it can be easily
seen that B also satisfies (2.33a).

3. WEIGHTED L? ESTIMATES

In this section we will derive the main estimates for our result. Define
the weights

Wi =(t—r/X)y, N¥=XN+ao’, and Wr=(t—1/8),

with the notation (f) = (1+|f|?)'/2. We remark that A ~ X for \ large.
Estimation of the following weighted L? quantity

(31) UM = Y IWshaI U@+ Y MWV -I%]|.

la|<w—1 la|<k—1

is the key to our results. By bounding the quantity X, we see that
the energy of P,U is concentrated along the fast cone, whereas P,U
concentrates along the slow cone. In the incompressible limit, the fast
component is swept to infinity.

The heart of the matter is contained in the following proposition
which, combined with generalized Sobolev inequalities, will lead to de-
cay of solutions. Here and in what follows Q,(U) will represent any
generic nonlinear term of degree two or higher at the origin with total
derivatives summing at most to x. Because of the form of the equations
these terms will always contains at least one spatial derivative, and they
will always be bounded independent of the parameter A. Hence we will
write somewhat schematically

(3.2) Q.(U)= Y  TI"fU)VI'U,
la|+[b|<k—1

where f(0) = 0.
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Proposition 3. Let U € HE(T) solve the equations (2.21a)-(2.21c),
and the constraints (2.21e), (2.21d). Then we have

(3:3) X U] < CIBELIU@]+ 1t +7) Qu(O)]l|-

The proof of this proposition depends only on the linearized equa-
tions, which follow from (2.32a)—(2.32c). For |a| < k — 1, we have

(3.4a) T H + VI = Q1 (U)
(3.4D) 0y(T"0); + A1) 0T H)J, + A0,Tp = Qu(U)
(3.4c) T + AV - T% = Q°(U).

Here it should be noted that, as a consequence of our choice of variable
U, the singular parameter A appears only in the linear part of equations
(3.4a)-(3.4c).

Before proceeding, the following algebraic Lemma extracts the essen-
tial information from (3.4a), (3.4c¢), and identifies the useful properties
of the resulting special combinations of derivatives.

Lemma 4. Let U € H{(T) be a solution to equations (3.4a) and (3.4c).
Then for each (t,z) = (t,rw), r = |x|, and |a| < k — 1, we have

(3.ba)
rVI% — MwV - T%% = O(T*U) — tQ°(U)
(3.5b)
rV - (T*H — T°HT) — t(8,T% — wTVI%) = O(T*U) — tQ™ (U).
Also, we have that,
<m, V. (TH — F“HT)> — Qred,
(rw, 0,10 — wV - T%0) = QI',
3.6¢) (rw, 0,0 — w" VL") = 0,
3.6d) r(wI' VI — wV - %) = QI%.

Proof. To show (3.5a) we will multiply equation (3.4c) by ¢ and use the
scaling operator (2.13) to rewrite the equation as

rop — MV - T0 = STp — tQF.

After multiplying by w we then use the angular derivatives (2.14) to
get the result. We derive (3.5b) similarly from (3.4a).

For (3.6a) through (3.6d) simply write the expression and use the
definition of €2. For example, upon switching the indices of summation
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we have
<Tw,V - (H - HT)> = miaj(Hj — HY)
= r(w;0; — wjai)H; =QH
The proofs of the other statements are similar. O

Proof of Proposition 3. Equation (3.4b) can be reorganized to make
the estimates simpler. Using the constraints from Proposition 2 and
the linear expansion of A(I) given in (2.11c) we see that (3.4b) has the
following form

(3.7) 0,(T%0)+ B>V (I°H -THT)+(A\?/N) VI = Q' +a’VI(H),

in which |a] <k —1, A2 = a? + A2, and 6 was defined in (2.32¢). We
note that the last term on the right is of the form Q(U/).

Let U(t,x) € Hf(T) solve the elasticity equations (2.21a)-(2.21c). In
view of the fact that (3.4a)-(3.4c) are linear in U, we shall perform
the estimates for U. This gives the result for X;[U]. The final result
will follow from the corresponding estimates for T'*U, after summation

over |a| < k — 1. With this strategy in mind, we specialize (3.5a),
(3.5b) to the case k = 1:

(3.8a) PV — MwV -0 = A,
(3.8b) rV - (H — H") — t(9,0 — wT'V1) = Ay,
in which 4; = O(TU) 4+ tQ,(U).

Before getting to the terms in X;[U] however, we must first derive
some preliminary estimates for the singular terms containing the pa-
rameter \. B
Step 1. Estimates for ||(r — At)V - 0(¢)|| and W1V - 0(t)||:

Multiply equation (3.7) by ¢ and use the scaling operator (2.13) to
obtain

(3.9) o0 — t{(A2 /N Vp+ B2V - (H — HT)] = Ay,
where 4y = O(LU) + tQ; (U). Using (3.8a), (3.8b) to eliminate p and
H from (3.9), we derive
(3.10) rAg + (N2/N)tA;, + BPtA,
= (r? = NHwV -0 + (r? — 823 (0,0 — w Vo)
+ 3wV —wV - 7).
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If we take the inner product of (3.10) with w and use (3.6¢), (3.6d), we
find

(r =MV 0= (r+ M) rQo +rAg + (A2/N)tA; + B A,).
Take the L? norm to conclude with

(3.11) I(r = M)V - ol < C B U@)] + () |20 (O)]]]

Before we move on, note that in the final step we can bound [|Qu/|| by
the energy E11/2 [U(t)], since by definition of Qu, we have that ||Qul||? <
||20]|+]|v]|?. The same holds QH. These facts will be used throughout
the rest of the proof without further mention.

Finally, since

WLV ol < [V - of| + AH[(A =)V -],
the estimate
(3.12) WV ol < C |EVPU@] + (1) 10 (O)]]]
follows immediately. B
Step 2. Estimates for ||(r — A\)Vp(t)|| and |[Wi1VA(1)]|:

Performing the indicated algebra with (3.9) and (3.8a), we obtain

(313) — )\tA() — TAl

= (02— )V 4+ ABHEY - (H — )
— Art(0,0 —wV - D).

The estimate in this case is more subtle than in Step 1 because by
(3.6a) and (3.6b) the local projection of the terms V - (H — HT) and
0,0 — wV - © are not zero. We will need to use the L? orthogonality
of these terms with Vp in order to obtain the estimate. The details of
this technicality are now displayed.

Starting with (3.13), divide by (M + r) and take the norm in L? to
obtain

(3.14)
(M — )V + (Mt +7)"INBAHEV - (H — HY) — rt(9,0 — wV - 0)]||?
<C[EUMI+ O 1)1
To get the desired bound we will first estimate the cross terms:

/)\ <Xt — T) <vp, [ﬁ%Qv C(H — HTY = rt(8,0 — WV - @)] > dz

M+ 71

= [ 20uilor)0,2; + vr) w050 — 0,7
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where we denote ¢(r) = > <;§ _T_ :), P(r) = —t (;;:), and Z; =

BQ(Hj — H7). We proceed using integration by parts.
The first term exploits the anti-symmetry of Z} and the properties
of the angular derivatives (2.17) to get

/ AG(r)0;p0; Z; da
= —/)\qﬁ(r)aiaij;dx—/)\d)'(r)wjaipZ;dx

2N :
_ AN ig. a7
_ / G e

2)\-[;2 _ A i 2)\t2T . i
:/ﬁ()\t—r)wjaiijdx—l—/_iQaipw]Zjdx

M+ 1) (At+7)
_ . 2)\t2 - 2)\t2 ; 170

The second piece of the cross term is treated as follows
/ NG (r)Osp(a? 0 — 07 )
=— / 20, ((r)0;pa? )0 da + /Aaj(i/)(r)aipxi)i)jdx
=— / A [0(r)2? 0;0;p0" + 34 (r)0;p0" + ' (r)wja? 9;p0"] du
+ / A [Yp(r)2'0;0p07 4 (1) 05007 + ' (r)w;a’0;p07 | da
~ 9 / () s pivilr — / N ()P (D — By (w0, ) )da

_ Mo A2 .
=2 | (M—=1)0;jp—0' —2 | ———[(w A Q);pl0'dx.
/( ) PXt+r’ /()\t+r)2[(w Jipli'dx

Recalling that A ~ A, we see that the cross terms are bounded below
by

1, < i . . .
—5 e =) VAP = CLUHIP + (181 + 126]°]
From (3.14) this gives us the result
I =r)Vpll < C | EPU®]+ @) 1)l -
As in step 1, since

WVl < [Vl + A7HI(AE = 1) V.
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the estimate
(3.15) IWiVp| < C|EPIUM®] + (#) |20 (0)]]]

is an immediate consequence of the preceding. . .

Step 3. Estimates for [|Wy (0,9 — w?'V9)|| and |W,LV - (H — HT)|:
First, we will add another useful identity to our list. Notice that

returning to (3.8a), we can write

(3.16) (A\?/AN)tVp —rwV -0
= (A/N)(At = 1r)Vp+ (Mt — 1wV -0+ (A/N)A; = By.

By Steps 1 and 2, By is bounded in L? by the appropriate quantities.
If we go back to (3.9) and add our new identity (3.16) we get

(3.17) r(0p0 —wV -0) — 2V - (H — HY) = A + By.

By using (3.6d) we can transform (3.17) slightly and pair it with
(3.8b) to get the following linear system of equations:

(3.18a) r(0,0 — w'Vi) — g4V - (H — H') = Ay + By — Qu
(3.18b) (0,0 — wI'V0) —rV - (H — HY) = — A,.
If we multiply by the matrix
_ 2
(Bt + )" [ A ]

r
we find that the quantities (3t —r)(8,9 — w”V0) and (8t — )V - (H —

HT) have the desired bound in L?, and this leads immediately to the
estimates with the full weight:

(3192)  [Wa(90 - Vo) < CBPUE] + (1) | (D)

(3.19b) WV - (H - AT < C[B U] + (1) | (D))

Step 4. Estimate for [|[W,P,VH]: .
To extend (3.19b) to an estimate for the full gradient of H we will

have to consider two cases. These cases will consist of splitting R?® into
regions D = {r < (ft) /2}, and D° = {r > (5t) /2}.
Define a smooth cut-off function

(3.20) <@={éii§5§

and set

(3.21) W(t,r) = C(r/ (BL)).
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Then
||VH||L2(D) < ||‘I’VH||L2-

With the aid of the constraint (2.32d), integration by parts yields

UV | = Z/m?(akﬂ;ydx

i,5,k

=Y / 020, H, 0, Hidx

4,7,k
< /\D2|V-H|2dx+0/|\IIV\IfHVH|d:r
<OV - HIP+ (5t) | H| | ¢VH|

<0V HP + SOV AP + O (1) |
This implies that
(3.22a) IOVH|> < C||WV - H|> + &) || H|)?|.
But we can bound
(3.22b) 1oV - H|| < |9V - (H - 2|+ eV - 2T,
and then using (2.32d) and (2.32e) we have

|10V - HT|| = | Vir H||
= [|UV(p/X — 0(H))|
(3.22¢) < [ eV /A +[IVo(H)].

Hence all together, (3.22a) — (3.22¢) imply

(3.23) [[WVH|| < C|[|WVp/A| + |9V - (H — HT)]|

+ (7 A+ Vo).
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On D we have that W, ~ Wy ~ (t) since r < (5t)/2. Thus using
(3.23), (3.19b) and the bound (3.15) from Step 2, we have

ST IWa PV i) < C (1) [0V H]
< O[O INT3/A + (@) 19V - (1 — BT

+ 1) + & Ve |

< ClIWVp/Al + WaV - (i — B
+ BU M) + @ V()|
(3.24) < C|BPU]+ 0 1u0)).

Now we consider the region D¢ = {r > (pt)/2}. Using (2.17),
(2.32d), and (2.32e) we can write
(PlakH)j- = wiwlakH]l-
= wiwkalHé +r7IQH
= wkwiajtr H+r'QH
= wrw'd;(p/\ — 0(H)) + r~'QH.

Hence, we have

(3.25) [WAPLVH| r2(pe)
< WV Al + WV O |+ [War ' QH |20

On D¢, Wir~! is bounded and so using (3.15) we have that
(3:26)  [WiPIVH||ppe) < C| BV UM+ (¢t +7) QD)) |-

Recall that

We use (2.17) and (2.32d) to write
akH; = wlwlakH; = wlwkalH; +r7'QH
= Wl d; HY +r~'QH
= ijkalH;' +7r 'QH.
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Similarly we have
wiwlakHJl- = wkwlaiHJl- +r '1QH
= wkwlajﬂf +r 'QH
= ijkﬁlﬂf +7r 1QH.
It follows that
(P0xH): = wjwyV - (H— HT) +r'QH.

Thus using (3.19b) and the fact that Wor=! is bounded on D¢, we
have that

(3.27) |WaPVH| 12(pey < [[WV - (H — HT)|| + [|War 'QH || 2(pey
<c|BPoml+ @l
Combining (3.24), (3.26) and (3.27) we obtain

(3.28) D IWaPVH|| < CEU@] + |t +7) Q)]

Step 5. Estimate for | W, P,V
On D we have W,, < C (t) for & = 1, 2 hence we can use the equation
(3.4a) and the vector field S from (2.13) to say that

> WaPoVil|12(py < C (t) IVl 2(p)
< C1H|VollLzpy + [Vl
< C[llrd 2y + IVo] + Q| + IS H| ]

< C| Y rdeH |y + Vo] + [[Q1 | + ||SH||]
ok

< C| S rPadi oy + 98] + |1 QF || + IS
k.o

< C ST IWaPaV Hll 2oy + 193] + Q01| + ISH]

Hence using (3.24) we can bound

(320) Y WaPaVilluo) < C[E2U®) + () | u(0)]]]-
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On D¢ we will again make use of the fact that W,r~! is bounded,
for « = 1,2. First we can use (2.17) to write
(P10y1)" = w'w;0k
= wiwkajﬁj +r 10,
which implies that
(3.30) WPV O || 12(pey < WAV - 0] + [IWhir ™ Q|| 12 (pey.

Next we can use (2.17) to write

(Pgak’lj)z = 6kvl — wiwjakz')j
= wkaﬂki - ijkﬁii)j + T_IQ@

= wi(0,0 — W' VO) + 110,
which implies that
(3.31)  [IWePaVi||r2pey < [[We(0,0 — WiV + ||W2r_lQ®||L2(Dc).

Combining (3.30) and (3.31) with the previous results (3.11) and (3.19a)
we see that

(332) D IWaPaVilliwe < C[EPU]+ ) [ O)]]-
Together (3.29) and (3.32) imply the result
(333) D IRV < C[EPU@]+ ) (t+ 1) @),

This completes the proof. O

4. SOBOLEV ESTIMATES

The following weighted Sobolev-type inequalities appeared in [17].
The only important thing to note in our case is that even though W,
depends on A we still have uniform estimates because [0, W;| < 1.
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Lemma 5. For U € C°(R?), r = |x|, we have

(41a) FPU@)| <O IVQU

la|<1

(4.1b) r|U(z)| < C Z 10; QaU||2/22|y\>r Z ”QQUHIL/;\Z/IW
la|<1 la|<2
(41c)  TWPU()] < C D [WadrQU | L2gypsn)
jal<t
+C 12U L2y
al<2

(41d)  TWo|U(2)] < C D [WadeQUl|12y)50)

al<1

+C Y WUl 2y -

|a|<2

The next result will apply the above inequalities to higher derivatives
and remove the singularity at the origin in order to be of use in the
proof of Theorem 1. Again, this result appeared in [17] and although
the proof is very similar, we will give it here because there are slight
differences in the first order case.

Proposition 4. Let U € HE(T), with X, [U(t)] < oo, and |U| < §
small. Then
(4.2a)

(r)
(4.2b)
(r) Wo?|PaT?U (¢, 2)| < CIEPIUM] + XU, Jal +2 <,
(4.2¢)

(r) Wa|PadiT4U (¢, )| < CXL[U(1)], lal + 3 < k.

DU (t,z)| < CEY?[U(1)], la| +2 < &,

Proof. We choose § small enough so that the energy E, can be used to
dominate generalized derivatives to order s in L2

To prove (4.2a) for 7 > 1 we apply (4.1b) to [*U(t,z). To prove
(4.2b) and (4.2¢) for r > 1 we will apply (4.1¢) and (4.1d) to P,I*U(t, )
and P,o;l*U (t, ) respectively. We use the fact that P, commutes with
d,, and €. The latter fact is most easily seen from the commutation of
P, with the generators, T, (s), of Q.

For r <1, (4.2a) is a consequence of the Sobolev embedding

(4.3) W (R*) C L™(R®).
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To obtain the other inequalities for r < 1, we will define a smooth
cut-off function

(04) g(r):{ 1 if r<i1

0 if r>2.
To show (4.2b) first note that
(4.5) Wea ~ (t), when r <2,
Using (4.3) and (4.5) we can get (4.2b) as follows for r < 1
WY P, LUt z)|
<O e v (o)
<O IVEr o)

<
<Y VT U 2y <2)
<
< CY D IWEPVIT U |2y <2)
B |b]<2
(4.6) < CXUM] +C Y W ParUl | 121y <2)-
B

To complete the proof of (4.2b), we still have to deal with the last term
above. We will now use (4.1c) to get

IIWE/QPﬁF“UIILQ(\y@
< lyIWy 2 PsLU || o< 1)~ [l 22q1<2)
< C[EV2U®)] + XU ()]

The proof of (4.2¢) is very similar to that for (4.2b) but since we are

applying it to P,VI*U(t,x) which already has one spatial derivative
(as is needed for the X norm) the last step is no longer needed. U

The following result will be used in the final stages of the energy
estimates.

Lemma 6. Suppose that f : R* — R®, 37, [|Q°flly2-112 < 00, and
VAf=0. Then

(4.7) [[*2|Pof (2)] < C Y120 ]

|a|<2
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Proof. Writing w = z/|x|, notice that
|z|(Pof)j(x) =|x|(f = Pf);(x)
=la|(f(2) — wjwrfe(x))
= (e fi(2) — 25 fu()),
and therefore it is enough to estimate |z|'/?(z A f(a:f

)-
Fix x € R3, and choose R > |z|. Let pr(z) = &(|z|/R), where £ is
given in (4.4). We may now apply (4.1a) with U(x) = pg(z)(z A f(2)):

22| Pof ()| < |||z A f]
= |z|"?|pr(z)(z A f)|
<O IV lery)(y A D]

lal<1
< CY 19"V erm) (y A DI
lal<1

where in the last step we use the fact that the commutator of V and €2
is in the span of V. Note that (|2|V)*pg(z) is bounded independently
of R, and also that, thanks to the constraint, V A f = 0, we have that
Oi(xjfr — i fj) = (x;0r — x40;) fi. The result is thus a consequence of
this inequality. O

This result is easily understood by expressing f as the gradient of a
scalar potential 0. Then Ppf ~ Qo, and formally we can apply (4.1a).
Our argument, as given, is meant to avoid unnecessary discussion of
the properties of this potential.

5. BOOTSTRAPPING THE NONLINEARITY

In this section we will estimate the nonlinear terms on the right-hand
side of (3.3) in Proposition 3. The factor (¢ 4 r) will be absorbed with
the aid the inequalities of Proposition 4 together with a few simple
properties of the weights Wy = (t — r/A) and W, = (¢ — r/) which
we collect below. As usual, all constants are independent of ).

Define the following neighborhoods of the characteristic cones:

Ci={t—r/A <t/2}, Co={|t—r/B|<t/2}.
Then C; and C, are disjoint for A large, and
(ry ~ (M), on C;, and (r)~ (Bt), on Cs.
Moreover, in addition to being bounded below by 1, the weights satisfy
W, >C({t), on C,, a=12
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and so, in particular
(51&) Wa > C<t>, on (Cl U CQ)C, o = ]_, 2.

Now by considering the regions C;, Co, and (C; U Cy)¢ in turn, we find
that

(5.1b) COPYWPWs > 1, a# 8.
Also, by taking first C; and then its complement, we have
(5.1¢) CltY 3+ ) Ty WP >

For the cubic and higher order nonhnear terms, we will use the fact
that

(5.1d) 1<) 2 ) WPW,.
Finally, since
(t+r)y<C(ryW, for a=1,2,
we have that
(t+r)|Ul = (t+r)|PU+ RU|
{t+r) (AU + |RUJ)
(r) Wil PU| + W, | RUY),

(5.1e) <
<C

for all U € M? x R® x R.
The following technical result will be needed several times below.

Lemma 7. Suppose that U € HE(T), with k > 3. Set k' = [k/2] + 2,
(so that k' < k). Suppose that E [U(t)] <1 and |U(t)| <6,0<t<T,
with 6 sufficiently small. Consider a smooth mapping f : MBxR3 xR —
R¢, for any d. If f vanishes to order p at the origin, then we have the
pointwise estimate

CrUta<C Yy MU TPU )], b <
[b1 [+ +[bp | <0]
Proof. Using the chain rule, we write
(5.2) I'f(U)(t, )
=Y > [OUa)r"Ut ) THU(t, ).
5<[b] br--+b;=b

At most one derivative above can exceed order [k/2], since [b| < k.
Since E[U(t)] < 1 and U is small, we have by the Sobolev lemma and
(2.20) that

TU(t,x)| < CES UM < C,  |e] < [w/2].
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The result now follows from (5.2) since by the mean value theorem
fPO)<oopr, i<,
for |U| < 1. O
We are now ready to move to the main results of this section.

Lemma 8. Let U € HE(T), pn > 3, be a solution of the pde’s (2.21a)
- (2.21c¢), and the constraints (2.21e), (2.21d). Set u' = [u/2] + 2,
and assume that E,[U(t)] < 1 and |U(t)| < & throughout [0,T), with &
sufficiently small. Then we have

X,U(0)] < C|EYU W)

A [UMIELU 0] + XU OLEL U],
Proof. Using Proposition 3 we have
XU < C[ELU@) + ¢+ ) QU]
where the form of Q, was displayed in (3.2):
> IU)VIU.
bl +c|<p—1

Here f vanishes to order p = 1. Applying Lemma 7, we have the
pointwise estimate

Q. (Ut a)<C > LUt 2)||VIU(t, ).
b+l <p—1

With this and (5.1e), we obtain
Ir+QuOli<c Y I+ vl |vreu] |

bl +le[<u—1

<C Y ()T Wal Ped U] |-

a=1,2
i=1,2,3
[b]+[c|<p—1

In the sum, either |b] < [u/2] or |¢| + 1 < [i/2], according to which
we estimate as follows:

1(r) T°T| Wa|PadiT°U |

<cd I WaPaOiTUlloo DU, if e[ +1 < [1/2]
- W Podi DU [{r) TV |, if - [b] < [1/2).
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In the first case, using (4.2c) we get the upper bound
X, [U]EPU ()
and in the second case, using (4.2a) we get the upper bound

CX,[UMEL U ).

7

These estimates for the nonlinear terms yield the result. ([l

The next step is to bootstrap the preceding result to bound X by
the energy.

Proposition 5. Let U € H{(T), k > 8, be a solution of (2.21a)-
(2.21c). If E,JU(t)] < €', p=k—2, and |U(t)| < 6 remain sufficiently
small on [0,T), then

(5.3a) X,U(1)] < CEU )]
(5.3b) XJU(1)] < CEPU).

Proof. Since we have p > 6, it follows that p/ = [§] +2 < p. Thus,
since E,[U(t)] < ¢’ <1, by Lemma 8, we have

XU < C\B UM+ XUMIE[UW)]|,

and so we see that, since E,I/Q[U(t)] < £', we have for &’ small enough,
that the bound (5.3a) holds.

Since x > 8, we have that x' = [§] +2 < k —2 = p. So again by
Lemma 8, we may write

XU < C|EPUM] + XUMIE U] + XU B/ U @)

If E}/z [U(t)] < &' is small, then this implies that
XJU(1)] < CESUMNL + X [U®)]).

Thus we obtain (5.3b) from this, (5.3a), and the fact that E,[U(t)] is
small for ¢ € [0, 7). O

6. ENERGY ESTIMATES

This section ties everything together.

Proposition 6. Let U € H{(T) be a solution of (2.21a)-(2.21c) and
the constraints (2.21e),(2.21d). Suppose that E,[U(t)] < &', p=r —2,
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and |U(t)| < 0, for 0 <t < T, where € and § are sufficiently small.
Then we have the inequalities,

(6.12)  LEUM]<C O BVUGIEUW)
6.1b)  LE[DUD) < CEUME DU,
(61c)  SEUM] <)+ (0 VB U ).

Proof. The size of ¢’ < 1 and ¢ are determined by Proposition 5.
Assume that U(t) € Hf(T) is a local solution of (2.21a)-(2.21c). We
will use the so-called generalized energy method. Start by applying
the derivative I'?, |a| < k, to the system (2.21a)-(2.21c), according to
Proposition 2. We then symmetrize the system by multiplying (2.32a)

by the tensor A. This results in

(6.2a) Al™(H)[0,(T"H)} + v - VI HY + HP9,T"6'] = QY

(6.2b) 9,(I"“0); + v - V(I'*d); + HP AU (H)0,(T“H), + Apd,Tp = Q)
(6.2c) A%+ v - VI% + A\pV - % = Q7.

From (2.32a)-(2.32c) we have

~

Qa(U) = ( Afa AZaQZ)

defined as follows:

(6.3a)
Qi = —Ayr(H) Y [0 V(TH)] + (T"H)70,(T6)’]
b—l—:éja
(6.3b)
Qu=— > {T’0-V(I%); + D°[A(H)H|70,(T°H)J, + T*p0,Tp}
b—l—:éja
(6.3¢)
Qb =— > [0 VI%+ TV -T9].
b+c=a
c#a

It is important to notice that Qa(U) will never have more than x deriva-
tives falling on a single term.

Next we proceed with the energy method by taking the L? inner
product of (6.2a) — (6.2c) with I'*U. Because the system has been
symmetrized, after integrating by parts we obtain (using the notation
(2.18))
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(6.4) 0, / o (00 dz — 1 / 0, Alm () (T F Y2 (T ET), di
— / Vv ey (DU)dx — / O AL (H)o* (T H )} (T H) da

/ Op(HP AU (H))(D*H)?, (D*0) dz — / 03 pTp(T%0" ) dr

— [ {@u). 0} .

Now, in the statement of Theorem 1 we do not assume any uniform
bounds for time derivatives initially. Therefore we must consider the
term in (6.4) which involves 0;. By (2.34a) and (2.21a), we have that

O A (H) = By (H)OH,,

pik
= —Bm(H)[v - VHE + HF 0,07

pjk

We substitute this into (6.4) and sum over |a| < v, resulting in the
energy identity

(6.5) LE,[U(t)]
= Z ~-1 / Bimr(H)[i - VHE + HF0,0")(TH)} (T H)J da
la|<v
/V ey (DU (t dI—i—/akAem (TH))(T*H)?, dx

+ o ag xwmmwww+/@wwwwm

+/<QG(U), r0) da.

Since k > 8, notice that we have [k/2] + 2 < p. Thanks to our
smallness conditions, we may apply (6.5), with ¥ = k, and Lemma 7
to write,

(6.6a) FE[U®I<C Y |IPULVEUL | |TeU].

dt
[bl+]c|<la]
c#a
la|<w

Set m = [“T“] Using the property (5.1e) for the weights and the
Sobolev inequalities (4.2a), (4.2c), we have the following bound for the
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norms on the right:

| [T°U| |vreU| ||
<O ) DU Wal PodDU |

< 0 { Zed O TVl IWePoAT D, o] <
8 i IO | () Wa P U o, ] < m — 1

<o {Elﬁ?[U(t)}){'C“[U(”]’ bl <m

By U)X ssU)], el <m -1

(6.6b) < C (1) (BLIUMIEY U]+ B UM LU®)]).

Now k > 8, s0 m + 2 < k — 2 = p1. Therefore, inequality (6.1a) follows
from (6.6a) and (6.6b).

The identity (6.5) holds equally for derivatives of the form 9,I'*, with
la| < k—1, and precisely one time derivative will appear in each of the
terms Q, on the right. Retracing the steps leading to (6.6a), we find

GEDU@ <C Y (Mo U] rUl | 2 U],

bl +lcl<lal
la|<k—1

The inequality (6.1b) now follows just by interpolation. For this rough
estimate, we do not use the decay.

In order to obtain the sharp estimate (6.1c), it is necessary at this
stage to separate the quadratic portion of the nonlinear terms in (6.5).
Recall that H = I + H and p = x — 2. Referring to (6.3a) — (6.3c), we
use v = kK — 2 =y in (6.5) to obtain

(6.72) &E[U()]
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in which Q,(U) and C,(U) represent quadratic and higher order terms,
respectively. The precise form of the quadratic terms in (6.7a) is

(Qu), 1)
——%/Bﬁg’}f( )0, 0" (T H)D (T H) da
+ [ V0 MA@ ETe i, + |0 + (0°))ds
+ / Alm(1)o,HP (T H), (T0) dz + / 03 pTp(T%0)
-y {Afm [T - V(DCH)? + (T H)P0y(T0) (T H ).

b+c=a
c#a

(6.7b) + [T - V(D) + AU (1)(T°H)? 0 (T°H)),

+ B (1) (L"H)g0e(T°H);, + T poiLpl (D)’

ijk
4% VI + DY)V - r%]rap}.

But before confronting these crucial terms, let us first examine the
highest order terms in (6.7a). Using Lemma 7, we have

/ (Cal0), T°U ) da < |Cu()lITD]
<c N et et | e,

[b1+[b2]+|b3[<|al
[bg|#|al

Without loss of generality assume that |by| > [bs|. Introducing the
weights via (5.1d), we have that

I |F’“U| |F”2U| oy |
(O 1) T U] Wy PPl U| (W P50 U |
o,

) ST T oo || (r) W2 PaT U || W PsOL U
,f,i
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With the aid of (4.2a), (4.2b), this in turn is bounded by

C (1) B U ONELL U (0] + Xpap2[U (1)) Xy [U ()]
Now 2[by| < [bi] + [bo| < |a] < p. Thus, [bo] +2 < [p/2] +2 < p,
since u > 6. We also have |b;| + 2 < k. Therefore, by the smallness
assumption and Proposition 5, all of the higher order terms on the right
hand side of (6.7a) are bounded by

C ()7 B U@EU )],

as required for (6.1c).

It remains to bound the terms in (6.7a) arising from the quadratic
part of the nonlinearity. They appear explicitly in (6.7b). These must
be grouped carefully in order to exploit the special cancellation prop-
erties of the nonlinear terms. In particular, the null condition for the
shear waves and the rapid dispersion of the pressure waves enters the
argument at this stage.

The most straightforward estimates occur for the terms in (6.7b) con-
taining VI'p or V - T'“0. Recall that by definition (3.1), the quantities
IWLVTp|| and WLV -T0|| are bounded by X,[U(t)], for |¢| < p— 1.
In the first case, for example, we have using (5.1b), (5.1¢)

/IF"U| [VIep| [PeUlda < || [T°U] VI | [IT°U]
< D IHRLULVTep| | IrU]|
< CA) "+ () I () WP PI U W VT || ([0
<O+ I ) WPl Ul WAV (DU .

Keeping in mind that b+ ¢ = a, ¢ # a, and |a| < p, we can use (4.2b)
to bound the last expression by

Ol + (&) P BV U )] + XU (1)]] X U@ EY2U()).
By Proposition 5, this in turn is bounded by
Cl() "+ () PV U ELU )],

as sought. Terms with V - "0 are handled in the same way.
Next, we consider terms in (6.7b) containing a convective derivative,
[’y - V. We start out by writing

(6.8a) /|F”v - VIU| [M*Ulda <Y ||PTw - VIU || [T°U]).
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If a = 1, then similar to the previous case, we have
| P - VU ||
(6:8b) < CLAH™ + O | () WP | D] Wy | P T<U | |
Byi

<CI() "+ (P EPU®)] + XU D] XU (1)),

On the other hand, when o = 2 in (6.8a), we partition the domain
of integration into two components: R = {r < (ft/2)} and its com-
plement. Since R C (C; UC3)¢, up to a compact set, we have by (5.1a)

| Pl 0- VU | 2
(6.8¢) < C(t)y 3" Z | (r) Wa'? | PyT%s| Wy| PsOTU| 22y
B

<C MBSV + XU®)] X [U0):
For the exterior region R¢, we use the formula (2.17) to obtain
P -V = —r 'PyT - (w A Q),
and so by (4.2b) we have
| Pl VTU |2 (rey < [Jr7HPLP0| [T U || n2e

<O ) 1P 00 e
(6.8d) < ()7 {r) BoL'vlso P U]

<O [BLU@] + XU B UR).

Together with Proposition 5, (6.8a)-(6.8d) gives the estimates for the
terms with convective derivatives.
The remaining terms in (6.7b) all have the form

(6.9a) / B (TP H)? 0,(T°H)E (T6) da
or
(6.9b) / ny,g"(raH)zn(rbH)’;ag(F%)idx,

in which B} is either B(I)fﬂ”, Bf]?’,z”, or Bf,gjm, as defined in (2.34a),
(2.34a). Thus, the coefficients B satisfy the null condition for shear
waves (2.33b). As usual, the derivatives are constrained by the relations
b+c¢=a,c# a, |a| < p. Both types of terms can be handled in the
same manner, and so we will outline the procedure only for the first

group (6.9a).
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Begin by writing (6.9a) as

> | B (PT H)),00(PsTH)E (P, T6) dac.
a,Byy

For those interactions involving at least one fast wave, we can pro-
ceed as above. For example, if § = 1, then we can absorb the weight

(r) »/*W,. Otherwise, if @ = 1 or v = 1, then the weight (r )WI/ZW
is used. This results in the same decay as before.

Thus, we may restrict our attention to the case of shear wave inter-
actions (o, 8,7) = (2,2,2). We can also eliminate the region R using
(5.1b), as was done for the terms with convective derivatives. Thus,
we are faced with estimating

(6.10) / B (Py)y(Po) (Py)% (TP H)? 9,(TC H) K (Te0)! d.

ik
We can further introduce projections in the remaining indices
B (Po)r(Po)s (Po)

= S B (P ()M (PN (By)i(Pa) (o).
a,Byy

Thanks to the null condition (2.33b), we can rule out (o, f,7) =
(1,1,1) in the sum, and so we need only consider the three possibilities
that «, 3, or 7 is equal to 2.

Now if a = 2, then we use (2.17) to write (P)f0;, = —r~'(w A Q),.
Thus, this piece of our integral (6.10) is controlled by

/ r Y TP H| D H | T de.
Recall that on R¢ we have have r > C' (t). Hence, using (4.2a), we find

the upper bound
(t) B IUMIELU ().
If 8 = 2, then thanks to the constraint (2.21e), we can use Lemma 6
to see that
1272 (Po) it (TP H) oo < CEYP[U ()],
Also, when v = 2 we get
[7/2(Po) 8e(T°H) y lloo < CEIU(L)].
In either case, this again leads to the bound
() BYPU®)EU (1)
for the remainder of (6.10).
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7. Long TIME EXISTENCE — PROOF OF THEOREM 1

Under our assumptions, the construction of a local solution of the
symmetric system in Hf¥(T') is routine. We therefore concentrate on
the extension of this solution for large times via the priori estimates for
the norm in H{(T'). We remark that it is enough to control the quan-
Bty 3210 <p |DeT (t)|], for then using the equations, the time derivatives

D jtlal<n |6T*U(t)|| can be bounded inductively in j.
Recall that as long as |U(t)| < d, we have that > lal<v |TeU (8| ~

E,}/Q[U(t)], for all ¥ < k. On the other hand, the size of U(t)| is
controlled by >, ., [[T*U(?)]], since p > 2. Thus, we ensure that

Z ||F“U(t)|| < oo and |U(t)| )
la|<r
by establishing that
EYPlUM)] <oo and E/’[U(t)] <€,
for &' sufficiently small. We also assume that ' is small enough to
apply Proposition 6.

Fix a large constant K, to be defined precisely below, and assume
that (2.22) holds with Ke < £’. Now, let us suppose we have a solution
in HE(T) with

1/2
E)PU{t)] < Ke <&, for te[0,T).
Using (6.1a), we see that
EJU(1)] < BJ[U(0)] (1)
Plugging this into (6.1c) we have
4E,[U(0)] < CELUO)[(h) ™ + (07 ()7 B [U (1)

Integrating from 0 to 7 we have

(7.1) E,(U(7)) < BJU(0)]exp[CE[UO)](] + )],

where

I1:/ <5\t>cK€71dt, and [2:/ <t>CK573/2dt.
0

0
It is clear that I, is is bounded by a fixed constant as long as we further
restrict ¢’ so that C Ke < Ce¢’ < 1/2. Now with this restriction on &',
we have that

I < /T <5\t>_l/2 dt < 1,
0

provided that A > 1 and 7 < .
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So using (7.1) and (2.22) we have that for t < ),
B2 U] < E,[U(0)]exp CE[U(0)]
< & Cexp CEM?[U(0)].

We define
K = Cexp CEY?[U(0)).

Thus if T* = A, then the solution exists for ¢ € [0,T") as claimed in
Theorem 1. Moreover, the preceding establishes the stated estimates
(2.23a) and (2.23b) for E, and E,_5. The bound (2.23c) for the first
time derivative now follows from (2.23b), (6.1b), and Gronwall’s in-
equality. Higher order time derivatives can be estimated successively.
They remain finite, but are not small.

8. INCOMPRESSIBLE LIMIT — PROOF OF THEOREM 2

Let U* € HE(T*) be the solution family constructed in Theorem 1.
Recall that 7* > X and by (2.23a), (2.23b)

(8.1)  EJUMt)] <C )P and E, U] <C, 0<t<T

where C' and p are independent of A\. Fix T > 0. Then for all A > T,
we have T > T and

EJUAH] <O(T), 0<t<T,
with C'(T) independent of A. Hence, by (2.20), we have
YT <C(T), 0<t<T,

la[<r

provided that A\ > T'. In particular, U’\, A > T, is uniformly bounded
in L°°([0, T], W*?), the standard Sobolev class, and we can extract a
subsequence )\, 7 oo, with A\, > k, so that UM — U™ weak* in
L>([0, T, Wr2).

Taking the sequence of times T}, = k and using a diagonalization
argument, we obtain a subsequence, also written as U’\k, Ar > k, con-
verging to a limit function U = (H*, 9, p>) defined on (0, c0) x R?
which lies in L>°([0, T, W*?), for every T > 0.

Recall the definition U* = (H*,v*, p*) = (I + H*, 9%, 1+ A~'pY).
Since p* — p>®, we have p* — 1 = A7!p* — 0. Thus, if we define
U® = (I 4+ H>®,0>,1), then U* — U>® — 0.

In addition, we have T¢U* — TaU>, for all la| < K, in the sense of
distributions. However, thanks to the estimates (8.1), it follows that
U> € HE(T), for every T > 0. Moreover, the norm of U™ in H:™*(T)
is uniformly bounded with respect to T'.
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Fix a positive integer ¢ > 0. Since
DU (1)|| < Cp, for 0<t<( and |a| <&,
we have by the Sobolev lemma that
DU (t)]|oo < Cp, for 0<t<¢ and l|a| <k —2.
In particular, we have
|VeSTU ()]|oo < Cp, for 0<t <l and |a|+j<rk—2.

Now let Ry be the compact spacetime domain [/, ¢] X By(0). Then
since S =t0, + x - V, we get that

(VeI UM (t,z)] < Cy, for (t,z) € Ry and |a|+j < & — 2.

Thus, the derivatives V*®/ U™, |a| 4+ j <  — 3, are bounded and Lip-
schitz on R,. By the Arzela-Ascoli theorem, there is a further subse-
quence UM converging to U™ in C*3(R,). By another diagonalization
argument, we obtain a subsequence UM — U in C*-3((0,00) x R?),

loc

and then finally, we also have UM — U in C}%_*((0,00) x R?). Notice
that since p* — 1 — 0, we have that det H*® = 1.

Armed with locally uniform convergence, we can now pass to the
limit in the pde’s (2.21a))-(2.21c¢),. From (2.21a), we immediately
see that H>®, v™ solve (2.24a). Substituting p* = 1 + A" 1p* into
(2.21c) and then taking the limit as Ay — oo, we find that v*>° satisfies
the incompressibility condition (2.24c). Since the nonsingular terms in

(2.21b) converge in C}5_*, we must have a limit, £, for

N2 MV pMe = N Ve 4 pMe v e,

Clearly, £ must be the gradient of some function ¢*°. This shows that
V> = 0, but since p®(t,-) € L? we must have p* = 0. Thus, in the
incompressible limit, we obtain a classical solution of (2.24a)—(2.24e)
on (0,00) x R®, with generalized derivatives to order x satisfying the
previously stated bounds. This completes the proof of part (i) of the
theorem.

To prove (ii), assume that the initial data is independent of A. Ap-
ply 7, the L?-projection onto divergence free vectors, to (2.21b). This
eliminates the singular term \p*Vp» from this equation. We can es-
timate the time derivatives 0,H* and w0,v* in W*~12 directly from
(2.21a), (2.21b) by isolating them on one side of their equations to get

(8.2) |0HMB)|[yr-rz + |00 (#) o1z < C(T), for 0<t<T.

Here we use the boundedness of 7 in W* 1?2 as well as the energy
estimates.
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Using the Sobolev lemma again, we see that the derivatives (VO‘H)‘, Ve,
|| < k — 3, are locally Lipschitz on [0,T] x R®. So after a further re-
finement of our subsequence we obtain

(HM, mo*) — (H*®,mv™), in C([0,T] x R?).

Since v*> is divergence free, we have that mv>° = v™>.
Using the uniform bound (8.2) and weak lower semicontinuity, we
have,

() = H®(s)llwero + [[0=(8) = v (s) w1
< lign inf || H () — HY ()|l wn-12 4 [0 () — v ()] ra-1,2
—00
< Ct —s|,

for all t,s € [0,T], showing that (H>,v*>) lies in C([0,T], W*~12).
This is a uniqueness class. Thus, (H*,v*) is the unique solution of
(2.24a)-(2.24e) with initial data (Hy, 7vp). Given the uniqueness of the
limit, it follows that the full sequence U* converges to U, proving
part (ii).

Under the assumptions in part (7ii), we have that E,_,[0,U(0)] is
uniformly bounded. From (2.23c), we obtain

10,U* ) ||we-12 < C(T), for 0<t<T.

This implies that the derivatives VeU?, || < k—3, are locally Lipschitz
on [0,7] x R*. The remainder of the argument is the same as in part

(ii).
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