NONLINEAR HYPERBOLIC SYSTEMS AND
ELASTODYNAMICS

THOMAS C. SIDERIS

1. INTRODUCTION

These notes offer an informal exposition of some recent results on
the existence of global solutions to the equations of motion for isotropic
elastic solids. The discussion includes a brief account of the physical
background of the the equations with an emphasis on their field the-
oretic structure as well as an outline of developments in the theory of
nonlinear systems of hyperbolic partial differential equations leading
up to the case of elastodynamics.

We begin with a bare description of the dynamical problem for elastic
deformations as a field equation arising via the principal of stationary
action from a Lagrangian. This approach has several advantages. It al-
lows for a simple introduction to the notions of GGalilean invariance and
material symmetry and their consequences for the equations of motion.
It easily accommodates internal constraints, such as incompressibility,
through the inclusion of Lagrange multipliers. It also yields a transpar-
ent description of the formalism behind the generalized energy method
with the use of the energy-momentum tensor and the derivation of
commuting vector fields as infinitesimal generators of the symmetry
transformations.

The theory of elasticity is an old subject, about which much has been
written. The books of Gurtin [4], Marsden-Hughes [16], and Ogden [18]
all serve as fine introductions to the subject.

After the background material, there follow the statements of the
main results concerning the existence of solutions to the initial value
problem for the nonlinear system of isotropic elastodynamics in the case
of small displacements from equilibrium without boundaries. The main
feature in elasticity, distinguishing it from the case of scalar nonlinear
wave equations in 3D, is the presence of two propagation speeds for
the linearized system corresponding to fast pressure waves and slow
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shear waves. For the construction of global solutions to the nonlinear
problem, an important structural assumption, the null condition, must
be imposed on the nonlinearity. Well-known in the context of nonlinear
wave equations, the null condition turns out to be compatible with the
structure of the equations of isotropic elasticity. It can be explained as a
nonresonance condition which eliminates the leading order production
of waves of a given family through the nonlinear interaction of waves
of the same type. For shear waves, it holds automatically, while for
pressure waves it can be imposed with the loss of only one additional
degree of freedom.

The first main result (Theorem 1), which originally appeared in [21],
asserts the existence of global small solutions under the null condi-
tion. The other main result (Theorem 3) gives the corresponding global
existence result for incompressible materials. Such materials can be
thought of as a limiting case where the speed of the pressure waves
tends to infinity and at the same time their amplitude tends to zero,
and this is precisely how we construct the solutions. However, to im-
plement this strategy, we first need a stability result for an appropriate
class of slightly compressible materials which says that the lifespan of
solutions tends to infinity with the speed of the pressure waves (The-
orem 2). This is not routine because the degree of smallness of the
displacement required in Theorem 1 is not uniform in the propagation
speeds. In this case, the null condition for the pressure waves is not
imposed since, in any case, we can only construct long time local so-
lutions to the approximate equations and in the limit there are only
shear waves. Theorems 2 and 3 appeared in [22].

The rest of the article develops the main ideas used in the proofs of
Theorems 1 and 2. Energy estimates form the core of the arguments,
but in order to obtain global or even long time local existence, they
must be supplemented by dispersive estimates. For the scalar case,
this is most easily done using Lorentz invariance and the generalized
Sobolev lemma. For Galilean invariant systems with multiple speeds an
additional series of weighted estimates based on scaling is required to
obtain the dispersive estimate because of the weakened version of the
Sobolev inequality. The elasticity system presents further difficulties
through the form of the nonlinear coupling, since the wave families are
nonlocal functions of the displacement.

Although these methods, originally developed in the context of non-
linear wave equations, exhibit a certain degree of flexibility, it is not
clear how much further they can be pushed. For example, the introduc-
tion of boundaries or other sorts of anisotropy causes difficulties. The
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case of fluids likewise remains untouchable because of the degeneracy
of the shear wave speed.

2. A BRIEF FORMULATION OF ELASTODYNAMICS

2.1. Deformations. A body or reference configuration is a (possibly
unbounded) regular domain B C R®. Points X € B are called material
points.

A deformation of B is a smooth, one-to-one, orientation preserving
map z : B — z(B) C R3. The domain x(B) is called the deformed
configuration. The displacement from the reference configuration is
measured by u(X) = z(X) — X.

The deformation gradient is defined by F' = Dz, or in coordinates,
F} = Dyx'. Since z is one-to-one and orientation preserving, we must
have J(X) = det F(X) > 0, for every X € B. We denote by GL?. the
admissible class for the deformation gradient, namely the set of 3 x 3
matrices over R with positive determinant.

A deformation is said to be incompressible if it preserves volumes,
that is, vol(Q) = vol(x(€2)), for all subdomains  C B. This is equiv-
alent to having J(X) = 1, for every X € B. An example of an
incompressible deformation is simple shear, given by the linear map
7(X) = [T+ a e ®ey) X, with e, € R® being the standard unit vectors.

2.2. Motions. A motion of a body B is a C? map
r:[0,T)x B— R

such that z(t,-) is a deformation for each ¢t € [0,T).

For X € B, the curve t — x(¢, X) is called the path or the trajectory
of the material point X. The set of trajectories will be denoted by T .
Thus, 7 is the image of the cylinder C = [0,T) x B under the mapping
(t,X) — (t,z(t, X)), which, by the inverse function theorem, is a dif-
feomorphism. The inverse map will be written as (¢,x) — (¢, X (¢, z)).
It is called the reference map. Notice that the lateral boundary of 7 is
free; it depends on the particular motion.

The coordinates (¢, X) on C are called material or Lagrangian coor-
dinates, while (¢, ) on T are known as the spatial or Eulerian coordi-
nates. Material fields can be converted to spatial fields, and vice versa,
using the diffeomorphism between C and T.

We shall use the notation (Dy, D) for material derivatives on C, and
0 = (0, V) for derivatives in the spatial coordinates on 7.
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2.3. The velocity field. Let z(¢, X') be a motion. The material veloc-
ity is Dyx(t, X), the tangent vector along the particle trajectory. The
spatial velocity is defined as

v(t,x) = Dyx(t, X (t,)).
Recalling that F' = Dx, we have by the chain rule
(2.1) DF(t,X) =D Dx(t, X)
= D[uv(t, z(t, X))]
= Vu(t,z(t, X)) F(t, X).
Regarding this as a linear system for F', it follows that J = det F'
satisfies
(2.2) Dy J(t,X) = tr [Vo(t,z(t, X))]J (¢, X)
=V ou(t,z(t,X))J(t, X).

Therefore, a motion is incompressible if and only if J(0, X) =1 on B,
and V- v(t,z) =0 on 7.

2.4. Conservation of mass. A mass distribution or density on B is
a nonnegative C'! function pg(X) on B. Given a subdomain Q C B,
define

mass(Q) = /Q po(X)dX.

Let Q, = x(t,Q) be the image of 2 under some motion. Since €,
consists of the same collection of material points as €2, conservation of
mass demands that

mass(€);) = mass().
We define a function p(¢,x) on T by first giving its material descrip-
tion

Using a change of variables, it is easy to see that
mass({);) = / p(t,x)dx,
Q

and thus, p(t,-) serves as a density on each time slice of 7. It also
follows from (2.2) and the chain rule, that p satisfies the continuity
equation

Op+v-Vp+pV-v=0.
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2.5. Equations of motion for elastodynamics. The equations are
most conveniently derived via the principle of stationary action. We
will reconcile this approach with a more traditional balance of forces
argument based on Newton’s law in the next section.

An elastic material is characterized by a smooth strain energy func-
tion

W:BxGL: - R,.
For motions z(t, X'), define the Lagrangian

/ / Lo (X)| Dy(t, X)[2 — W (X, Da(t, X)) dXdt.
The corresponding Euler-Lagrange equations are

pO(X)Dthi(taX) - Dl[Sg(X’ Dx(t’X))] =0,

in which

ow
OF;

SHX,F) = (X, F)

is the Piola-Kirchhoff stress.
From now on we shall assume that the material is homogeneous, so

that
ow
po(X) =py, WX, F)=W(F), S(X,F)=S(F)= I
In addition, we impose the standard conditions that the reference con-
figuration F' = I has minimum energy and is stress free

W(I)=0, S(I)=0.

(F).

With the notation
(D S(Da)} = Di[SY(X, Da(t, X))]
the equations of motion take the form
poD}x — D - S(Dz) = 0.

2.6. Equations of motion via balance of forces. Here we shall give
a brief derivation of the equations of motion using a classical balance
of forces argument. This will provide us with a physical interpretation
for the Piola-Kirchhoff stress.

Suppose that 2 C B is any subregion within the body, and let €; =
x(t, ) be its image under the motion. According to Newton’s Law, the
rate of change of the momentum of the subregion €2; must balance with
the total force acting on it. The implicit assumption is that there is a
set of spatial coordinates (an inertial frame) in which these quantities
can be measured.
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The forces on {2, consist of internal contact forces acting on 9€); and
external body forces. We shall ignore the latter, as we have already
done in the previous section. The Cauchy Stress Principle states that
surface contact forces can be expressed as

/a  7(t, Vo, ()45 (00)

in which Ng,(x) is the unit outward normal at the point z € 0€2; and
dX(0€)) is surface measure. The stress vector 7 is measured in units
of force/area. Cauchy’s Theorem then states that there is a symmetric
matrix 7'(¢, ), called the Cauchy stress tensor, such that

7(t,x,N) =T(t,z)N.

Balance of linear momentum requires that

d

(2.3) L ot 2)dr = / T(t, 2) Noy, (2)dS(0%),
dt Jq, o0,

and since this must hold for every subdomain, this implies the balance

law

p(Oww+v-Vu) =V -T=0.

In material coordinates, (2.3) can be expressed as

d
— Dx(t, X)dX
i on t$(a )

:/ J(t, X)T(t,z(t, X)) F(t, X) " No(X)d2(Q),

with /' = Dz and J = det F'. This is equivalent to the equation
poDix — D - (JTF™T)=0.

Comparing this with the previous section, we find that

(2.4) T(t,z(t, X)) =T(F(t, X)) = J 'S(F)FL(t, X).

Thus, the Lagrangian formulation includes the constitutive assump-
tion that the Cauchy stress depends on the deformation only through
its gradient. The Piola-Kirchhoff stress S allows the internal surface
contact forces to be expressed in the reference configuration. To fully
reconcile these two formulations however, further assumptions must be
placed on the strain energy function W so that in (2.4) S is consistent
with the symmetry of 7T'.

The traditional balance of forces argument leads to a more general
system of equations, but only the variational (hyperelastic) case con-
serves energy and can be adapted to include thermodynamics.
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2.7. Natural boundary conditions. Having introduced the idea of
surface stress, we can now pause to write down a typical initial bound-
ary value problem. With homogeneity and no external forces, the equa-
tions of motion in material coordinates are

poD?x — D-S(Dx) =0, on [0,T)x B.
In the absence of external forces, there are no contact forces on 9B, so
we should have
Sy(Dx)N, =0, on [0,T) x 0B,

with IV the normal on 0B. And finally the initial deformation x(0, X)
and velocity D;z(0, X') should be given on B so as to be consistent with
the boundary conditions.

Of course, for this to be a well-posed initial boundary value problem,
further assumptions on W are needed to ensure the hyperbolicity of the
pde’s.

The basic local existence theory for problems of this type has been
thoroughly investigated, see [15], [6].

2.8. Galiliean invariance. Classical mechanics is characterized by
the Galiliean invariance of equations of motion. This means that the
transformation

z(t, X) = 2*(t, X) =20 + Uz(t — 15, X), U € 0%
leaves solutions invariant. Here, Of’r is the rotation group:
O} ={UeGL}:U"=U"", detU =1}.
This property holds provided that the strain energy function satisfies
(2.5) W(F)=W(UF), FeGL}, Uce€O?,

and so we now add (2.5) to our list of assumptions.
By the polar decomposition theorem, any F' € GLfr can be written
as
F=UVR, R=F'F, UcO3.
Thus by (2.5), we have

(2.6) W(F)=W(UVR) =W(VR) = W(R).
Differentiating this last equation with respect to F' gives
Si = GW _ ow 8Ra-b _op GW’
0F;, ORgy OF] OR

This shows that, under the assumption of (alilean invariance, the
Cauchy stress T in (2.4) is indeed symmetric, as required.
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We have already defined

ow

SHE) = 5 ()

For future reference, we introduce the following notation for the higher
derivatives

W (F)
Am) = S,
[ m
ik (py = _PWIE)
fmn OFIOFLOFk

Since the order of differentiation can be interchanged, the tensors A, (F)
and Béifn(F ) are symmetric with respect to the interchange of pairs of
indices.

Taking successive derivatives in F' of the relation (2.5) yields the
following important symmetry properties of these derivatives

Sy(F) = S{(UF)U"

Aga(F) = AGL(UF)UTU FeGL, UecO?
Byh (F) = B (UF)UT U URE,

2.9. Material symmetry. Let ¢ : B — B be a volume preserving
deformation with ¢(Xy) = Xy for some Xy € B. Set G = Dyp(X)).
Then we have

G e SL? = {G € GL? : detG = +1}.

Suppose that z(¢, X) is any motion, and define the new motion z* (¢, X') =
z(t, p(X)). We say that G is a symmetry of B (at Xj) if

W(Dx(t, Xy)) = W(Dz*(t, Xy)),
for every motion x. This is equivalent to
W(F)=W(FG), F¢€ GLi.

Since we have assumed that W is homogeneous, the set of symmetries
does not depend on the point X,. The set of symmetries of B forms a
subgroup G C SL3. A material for which G C Oi is called an elastic
solid. A perfect fluid is characterized by the condition G = SL3.
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2.9.1. Isotropic solids. A solid is isotropic if G = O2, which means
that the material has no preferred directions. Rubber and steel are
examples of isotropic solids. In this case we have,

(2.7) W(F)=W(FU), F € GLi, Ue Oi’r.
Remembering (2.6), we can also write
W(R)=W(UTRU), R=F"F, FecGL3, UcO3.
Now R is a positive definite symmetric matrix. This last equation
implies that W depends on R only through its principal invariants i,,
that is, the elementary symmetric functions in the eigenvalues A, of R.
i1:)\1+)\2+)\3:t1"R
i2 = )\1)\2 + )\2>\3 + )\3)\1 = %[(tr R)2 —tr (R2)]
i3 = )\1)\2)\3 =det R = (det F)2 = J2.
Since we are going to eventually consider small displacements from the
reference configuration, it is convenient to introduce the invariants j,
of R — I which are linearly related to i, through
i1 E 3 + j1
i =3+ 2j1 + ]2
i3 =14]1+J2 +Js
This discussion shows that for isotropic (and Galilean invariant) solids,
the strain energy function depends on F' through the invariants j, of
R—-1I
W(F) = W(R) = W(.
Using the relation (2.4) we can now compute the form of the Cauchy
stress for isotropic materials

T(F) = ¢o()I + 01G)P + ¢s(j)P?, P=FF".

The presence of the last two terms on the right means that in general
the stress vector T'N will have a nonzero tangential component, called
the shear stress.

For future reference, we record the following new set of symmetry
relations which follow from (2.7) by differentiation in F:

Si(F) = SL(FU)U*™
Ag,(F) = Ay (FU)U*U™, FeGL], UecO}
BY (F) = By y (FU)U U™ U,

mn
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2.9.2. Perfect fluids. As stated above, a perfect fluid is a material with
the largest possible symmetry group G = SL3. Thus, we have

W(F)=W(FG), FeGL) G eSL

However, given F' € GL?. we can always write F' = J*I - J=*F. Since
J3F € SL3, we have that

W(F)=W(JI) = W(J).
Again calculating from (2.4), we obtain
T(F)=W'(J)I.

Thus, perfect fluids do not support shear stresses.

2.10. Linearized isotropic elasticity. We are going to study small
displacements, u(t, X) = z(t, X) — X, from the reference configuration,
and so an important first step is to understand the structure of the
linearized equations about the trivial solution z(t, X) = X.

Using the notation introduced above, the equations of motion can
be written as

poD?a’t — AY (F)DyD,a? = 0.

We have already noted the symmetry of AY (F) with respect to pairs
of indices, and because of the form of the pde, we may assume without
loss of generality that A} (F') is also symmetric in the lower indices.
But then symmetry in the upper indices holds as well.
Then the linearized equations are
poD?u’ — AY(D)w?! =0, AY(D)= AY (I)DyD,,.

We will show that the coefficients in the isotropic case have only two
degrees of freedom.

The coefficients A; (I) can be determined by considering rank one
displacements

Fe=T+ef@n 0#£&EneER.
Using the formulas, the invariants of R® — I are
i1 = 2¢(€ ) + %Pl
3 = —e*lEAnl* = —e[l€nl* — (€, m)]
Js =0,
and we have that

(2.8) W(F*) = W(F).
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Recall that the reference configuration is stress free: S(I) = 0.
Therefore, we see that

DW (F?)|e=o = Si(D)&me =0, & €R.
Using the other side of (2.8), we get
0= DEW(jE)|E:0 = 2<§7 7]>Wl(0)

Thus, W;(0) = 0, the subscript denoting the derivative in j;.
Next, in order to fix the type of the linearized equation, we impose
the Legendre-Hadamard ellipticity condition on the operator A(D):

D2W (F9)|czo = AD (D)nimi&ebm > 0, 0 # & € R3,

which has the physical interpretation that performing the deformation
F=X costs a positive amount of energy. By (2.8), this implies the
condition

D2W (i) |-=0 = 4(&, m)*W11(0) = 2[|<P[nl* — (&, m)*]W2(0) > 0,
0£&neR.

Thus, we assume that
Wi(0) >0 and — Wy(0) > 0.

This assumption makes sense only for solids, because in the case of
perfect fluids, W5(0) = 0. Setting

poci = 4W11(0) and  pocs = —2W5(0),
we see that
Aij (D) = AZn(I)DeDm = pO(C% — C%)DlD] + pocgéijA.

Finally, consider the family of deformations AX, A > 0. Again sup-
posing that this deformation costs energy when A # 1, we obtain the
condition

DIW (M) =1 = 2¢] — 65 > 0.

In conclusion, the linearized equation in the isotropic case is given
by

(Lu)’ = po[Dju’ — AU — (] — 3)D;Dju’] =0, ¢ > 3¢5 > 0,
and this equation is hyperbolic.

We remark that the linearized equation about any dilation z(X) =

AX has the same form as above, but other backgrounds lead to com-
plicated characteristic geometry, see [17], [26].
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2.11. Plane wave solutions. A plane wave with orientation @ prop-
agating in the direction & € S? with speed ¢ is a function of the form

u(t, X) = fct+ (&, X))u, &e5°

By direct substitution, such a plane wave will solve the linearized equa-
tion Lu = 0 if and only if u is an eigenvector of the matrix

AB(&) = A, (D&km = 3835 + (] — )&,
with eigenvalue c. For a given propagation direction £ € S?, there are

two such wave families W, (§), a = 1, 2.
The first of these occurs when ¢ = ¢; and @ = £. Thus, we have

Wi(§) = {f(art + (& X))¢}-

Since the wave orientation is aligned with the direction of propagation,
we shall refer to these as pressure waves.
In the second case, we have ¢ = ¢5 and (4, &) = 0, so that

W (€) = {/(eat + (£, X))u : (4,€) = 0}

Because the wave orientation is orthogonal to the propagation direc-
tion, these are called shear waves.

2.12. The null condition. The null condition is a compatibility or
nonresonance condition between the linearized operator and the non-
linearity. To explain this we need to consider the quadratic portion of
the nonlinearity in the equations. Since

AG(F) = A (1) + By (D) (F = I)5 + -+,

Imn

we can expand the equations to second order in the displacement u

D*u' — AY (I)DyD,u? = BJ* (ID,u* DyDyyu? 4 - - .

mn

The missing terms involve nonlinearities in u of at least third order.
For smooth maps define

N(u,v) = BZ* (I\D,u*DyDpyv”.

Imn

The null condition can be formulated as follows:
(N(u,v),w)rs =0, (u,v,w) € W,(£)*, a=1,2.

This says that the nonlinear interaction of two elementary waves u, v
produces no additional waves of the same type.

The connection between plane waves and the null condition for the
nonlinear wave equation was first noted by Shatah, see [10].
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Written out explicitly, the conditions become

B* (D&€i&&émén =0, €€ S?
Bt (D PP eitntn =0, €0 € 5% (6,4) =0,

for a = 1, 2 respectively.
For a = 1, this can be expressed as

D}W(F%)|.oo=0, F'=1+c£®¢E.

On the other hand, the invariants j° of (F¥)TF® — I are j5 = 2¢ + &2,
J5 =15 = 0. Thus, we have

0 — DSWGE”E:U — S(WH(O) + WHI(O)).
When a = 2, the condition is
D61D62D83W(F(61,E2’63))|(51,52,53):0 =0, F(El,az,aa) =]+ (5a7](a)) ®E.

In this case, the invariants j*1°2°%) are quadratic in (g1, €9, 3), and so
the third derivatives of W (j(12¢3)) vanish for (1,4, e3) = 0.

So for isotropic materials the null condition for pressure waves (a =
1) is fulfilled provided that Wy (0) 4+ W31 (0) = 0, and the null condi-
tion for shear waves (a = 2) is automatically satisfied without further
restrictions.

2.13. Reformulation as a first order system. Given a motion z(¢, X),
let X (t,z) be the reference map, and define

H(t,z) = VX(t,x).

As explained before, we can use the deformation z and the reference
map X to switch between material and spatial fields. Here is a brief
summary.

Material to Spatial Dictionary
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po/J p
D,z v
F H!
JIS(F)FT T=TH")=T(H)
Dy o+v-V
D, HFO),
FFDy O
po DeS(F) p'O/T}(H)

Recall that in Lagrangian coordinates, the equations of motion are
poDiz — D - S(Dz) = 0.
In spatial coordinates, we have the first order system
p(Bw +v-Vo) =V -T(H)=0
Oop+v-Vp+pV-v=0
OH+v-VH+ HVv=0.
These equations have already been discussed. The first expresses con-
servation of linear momentum, the second conservation of mass, and
the third is the evolution of F~! in spatial coordinates arising from

(2.1). This system is equivalent to the original one under the natural
constraints

(2.9) O H; = Oy H,, p=detH.

In the special case of a perfect fluid, we have T'(H) = h(p)I, so we
recover the compressible Euler equations. The last equation is then
unnecessary.

2.14. Incompressible motion. As we have seen, incompressible mo-
tion is characterized by the internal constraint J = det Dx = 1. This
can be imposed by adding a Lagrange multiplier term to the variational
problem. Thus we consider the modified Lagrangian

Ehh:Aié@MDﬂF—Wﬂh)+MJ—UMXﬁ
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with A(¢, X') a Lagrange multiplier. The corresponding Euler-Lagrange
equations are

poDfx’ — Dy[Sy(Da)] + (F~1);DeA = 0,

with the constraint J = 1.
Using the dictionary, this can also be converted to a first order system
in Eulerian coordinates:

(2.10) po(Opw +v-Vv) =V -T(H) + VA =0,
(2.11) Vv =0,
(2.12) OH+v-VH+ HVv=0.

In the case of fluids, V - T'(H) is a gradient, and so we recover the
incompressible Euler equations.

3. GLOBAL EXISTENCE RESULTS

3.1. Summary of assumptions on the strain energy. We pause
to collect our assumptions on W.

e Homogeneity

WX, F)=W(F) >0, py(X)=po>0
e Stress free reference configuration of minimum energy

W({I)=0, SI)=0

e Galilean invariance

W(F)=W(UF), FeGL), UceO?}
e [sotropy

W(F)=W(FU), Fe€ GLi, U e Oi
e Legendre-Hadamard condition

DXW(I+en®&)|cmo >0, 0#£n,E€R
e Null condition

DIW(I+e6®E)|:= =0, (ER’
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3.2. Global existence — compressible case. The following is a spe-
cial case of the result in [21].

Theorem 1. Suppose that W satisfies the assumptions of the previous
section, and let ug(X) and u (X)) be given functions on R® which are
sufficiently small in an appropriate energy norm. Then the initial value
problem

poDl!x — D - S(Dz) =0
2(0, X) = X + uo(X)
Dyx(0, X) = uy(X)

has a unique global classical solution defined on [0,00) x R® with small
displacement x(t, X) — X in an appropriate norm.

The norm referred to in the theorem will be specified later in Sec-
tion 7.3. In particular, the solution space ensures that the solution is
classical, and the smallness condition for the displacement ensures that
the deformation is one-to-one at all times.

The smallness of the initial data and the null condition are both
necessary assumptions. There are examples of singularity formation in
finite time for solutions with large initial data [27] and for solutions
with arbitrarily small (spherically symmetric) initial data when the
strain energy violates the null condition [8]. In the absence of the null
condition, solutions exist almost globally, see [9],[14].

3.3. Long time local existence and stability — nearly incom-
pressible case. The following result appears in [22].

Theorem 2. Consider a penalized strain energy function of the form
WXF) = W*™(F) + \h(p).

Assume that W satisfies all of the conditions in Sectiqn 3.1 except
the null condition, and define the Cauchy stress T(H) = T(H™") using
W in (2.4). Define

(p+2) 2
= "% (p—1)"

Suppose that initial data (H(0,z),v(0,z), p(0,z)) are given on R?
which satisfy the constraints (2.9) and such that

H(0,z) =1, v(0,z), A(p(0,x)— po)

are sufficiently small (independently of \) in an appropriate energy
norm.
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Then the initial value problem for the corresponding first order sys-
tem

p(Oyu +v-Vu) =V -T(H) + XN2V[p*h (p)] = 0
(3.1) op+v-Vp+pV.-v=0
OH+v-VH+ HVv =0

has a unique classical local solution (H*(0, z),v*(0,z), p*(0,z)) defined
on [0,\) x R®, and

H/\(t,llf) _Ia U/\(t,ll?), )\(p/\(t,llf) _pO)
remain uniformly small.

The hydrodynamical form of the penalization term is physically rea-
sonable, and it has been chosen so that the singular term has a simple
form

N p IV [p*h (p)] = NpVp.
We shall see in the next section that the limiting equations (A — co)
are general, although the approximating equations are not.
Local existence and stability on a fixed uniform time interval [0, 7] x

R? was shown in [19] using energy estimates alone. The present result
combines energy estimates with some new dispersive estimates.

3.4. Incompressible limit. The next theorem is a special case of the
main result in [22]. A weaker convergence result can also be given in
the case where the initial data is not incompressible.

Theorem 3. In addition to the assumptions of Theorem 2, suppose
that the initial data is incompressible:

p0(0,2) = po, V-v(0,2)=0.
Then the full solution family (H*(t,z),v*(t,z), p*(t,x)) converges in
Cloe([0,00) X B?) N Cpe((0, 00) x RY)

to a unique classical finite energy solution (H(t,x),v(t,x), py) of the
limiting incompressible system
po(8v +v - Vo) =V -T(H)+ VA =0,
V.v=0,
OH+v-VH+ HVv=0.
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4. THE ENERGY IDENTITY

As a preparation for our development of the generalized energy method
from the scalar case, to nonrelativistic systems, and finally to elastody-
namics, we momentarily digress, in this section, to discuss the energy
method from a general standpoint.

We first introduce the following notation:

y=" ., y") ER", 0o =0/a,
u:R" — R™,
p=0u € M™" ={m x n matrices},
Oe

e: M™" 5 R e(0) =0, 8_p(0) =0.
The formal variational problem for

clul = [ e(outy)dy,

yields the system of pde’s

Oe
(@) 0 | - (@utu)| =o.
For each 3 =0,...,n — 1, we have the conservation law
; Oe
(12) OuTua(Oun)] = )0 | 5 0ut)| = .
in which
; Oe
(4.3) Tos(p) = pﬁ@(p) — e(p)dags

is called the energy momentum tensor.
More generally, suppose now that that the Lagrangian density is
inhomogeneous

eR X MM SR e(y,0) =0, 5(3,0) =0,
and that v(y) solves
oe ;
(4.4 00 | (00| = )

This serves as a model for the type of equations satisfied by the deriva-
tives of the solution of (4.1). Although the equation (4.4) is no longer
conservative, we still have that

(45)  BalTas(y, 00(0))] + aa—yﬂcy du(y)) = B (4) F(y),
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with

- Oe
(4.6) Tos(y,p) = plgw(y,p) — &(y,p)0as-

For a systematic introduction to the field theoretic point of view, see
[24].

5. SCALAR NONLINEAR WAVE EQUATIONS

5.1. Local existence. In order to make the analogy with elasticity,
we consider the variational problem associated with the Lagrangian

Cfu] = / / (1[(0u)? — A|Vul] — 1By 0hud,ud,u} drdt.
R?)

Here (t,7) ERx R u:RxR® - R, 9 = (0y,...,03) = (0, V), and
the coefficients B),, are symmetric in the indices. The corresponding
initial value problem is

(5.1) Ou = (8] — A)u = 1By, 0\(0,ud, u)
u(0,z) = up(x), Ou(0,x) = ui(x).

For small solutions, this problem is hyperbolic, and we have the fol-
lowing classical local existence result.

Theorem 4. Given uy € H*(R?) and u; € H*'(R?), with k > 5
ol sy + [Juall i1 ey < &
sufficiently small, there exists
Tg = T() (6)
such that the initial value problem has a unique local solution u with
du € M C7([0, To); H*/(R?)).
Moreover, if Ty < oo, then lim supyq, |[0u ()| gr-1 > 2.

The last point of the theorem allows the estimation of the lifespan T’
from below by means of a prior: estimates. In particular, if the norm
of the solution remains small, then the solution is global in time.

The regularity assumptions in this theorem are made for convenience
only. As we shall see, the main requirement is the control of second
derivatives in L*°, which leads to the choice H* with s > 7/2 in R®. In
certain cases, this can be further relaxed to s > 3, again in R*. See [2],

[13], [25] for the treatment of local existence for quasilinear problems
with rough data.
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5.2. Energy estimates in the scalar case. Given a solution of
(5.1), the goal is to obtain an a priori estimate for ||Qu(t)|[5,._., where
[ullFon = 32 a1 <m 10°u(t)|72 is not the standard Sobolev space because
0 includes time derivatives .

First, note that the Lagrangian is L[u] = [ e(du(y))dy, with density

e(p) = L[p2 — (p} + P2+ p2)] — L Bruprpups-

From (4.2) with § = 0, we obtain

Do /R3 Too(Qu(y))dz = 0,

in which
Too(p) = 5lp5 + (0t + p3 + p3)] + O(|pl*)-
To obtain an estimate for the derivatives of u, we apply 0* to the
pde and use the Leibnitz rule on the right hand side. Setting v = 0%,
we get

Ov — ByuwOoa(0,v0,u) = % Z <Z> Bxuyax(auabuayacu).

b+c=a

b,c#a
This has the form
oe B B A
% g, 1 00| = F), w=(t7) € RS,
with
_ 1 0%
e(y,p) = SETNTS (Ou(y))pApu

= 1[ps — (0] + p5 + 13)] — 2 Bruwpapu0uu(y).

Thus, we may use (4.5) to write

o [ Tl 0edo+ [ 5. 00m)ds = [ ()1,
and )
Too(y,p) = 3pg + (0} + p3 + p3)] + O(|0u(y)||p[*).

Define the energy (for k£ > 1)

Blu(®) = [ Tw(@u()ds+ 3 [ Tu.00u()d.
R 1<|a|<k—1 "R
Since Too(u) ~ |0u|?* and Tyo(y, dv) ~ |0v|?, for |Ou] < 1, we have
that
Eilu(®)] ~ [|0u() 31, |0u] < 1.
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We have derived

(5.2) ABu®)]= Y {%Bw / 050" 10, 0" udod, udx
R3

1<[a|<k—1

+% Z <Cbl> B /R3 ax(auabuauacuw()aaudx}.

b+c=a
b,c#a

The terms on the right of (5.2) have the form
00%u O"u 9*0°u dz,
R3
with |a| < k=1, |b+¢| < k-1, |b,|c|] < k— 1. Thus, there is one
factor with at most % derivatives. This term is estimated in L*>° and

the others in L?. The result is that, for |0u| < 1, the right hand side
is bounded by

C Y 100%u(®) || |0u(t)|[55-1 ~ CllOu@)I] 151,00 Bilu()],
la|<[3]
where [Ju(t)[lwme = 2, [[0%U(t)||lz. So as long as |0u| < 1, we
have the energy inequality
01 Ei[u(t)] < Cllou@)[],, 15,0 Belu(t)],

and then
t
Eulu(t) < Eulu(0)]expC [ [0u(s)], 5,5
0
The estimate is closed by means of the classical Sobolev lemma which
in R® gives
[Ou(t)]] < Cllou(®)ll, 514
< Cl|ou(®) [l (k= 5)
1/2
~ OB u(b))
provided |0u| < 1. At this point however, we see that smallness of the

energy implies the pointwise smallness of the gradient.
The conclusion is that

Eifu(t)] < Eg[u(0)]exp Ct sup E,*[u(s)],

0<s<t

which shows that Ej[u(t)] < 2E[u(0)] < 2e2, for 0 <t < C/e.
To improve this result, we need dispersive estimates to better control

t
/0 10u(s) ], 1 .

wikleo
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5.3. The generalized energy method. The linear wave equation is
invariant under Lorentz transformations, the infinitesimal generators
of which are spanned by 0 together with the following set of vector
fields (in R?)

Q= (91,92,93) =N V,
(5.3) L= (L, Ly, Ly) = &V + 10,

S = tat + Tar = tat —+ .Z'Zaz
The following commutation relations hold

Q.0 =0, [L,O =0, [S0=-20.

Define I' = (0,2, L, S). The commutation properties for I allows us to
repeat the calculation in the previous section using now the derivatives

[“u instead of only 0%u.
Define the generalized energy

(54) Ek[u(t)] / Tgo(au( )dlL’+ Z / T()() y,@F“ ( ))
1<]a|<k—1

Then for |Qu| < 1, we have the energy inequality

Exfu(t)] < CEyu(0)] exp C / zuara )1 ds.

lal<[%

The inclusion of these vector fields leads to a dispersive estimate
through the following generalized Sobolev inequality.

Lemma 1 ([11]). For any function u(t,z) on [0,T) x R?,
(t + lel) (et — |2)'2|0u(t, 2)] < C Y (|00 u(t)||r2gms),
la|<2
provided the norm on the right is finite.

Here, (z) = (1 + |2[)Y/2.
For small solutions, we apply this result to get

S ot us) e < C(s)™ D o0 u(s)lle

la|<[%] lal<[5]+2
<C(s)™h Y llortu(s) e, (k> 5)
la|<k—1
< C(s) ' Bylu(s)].
Inserting this into the energy inequality, we obtain
Eu(t)] < Ex[u(0)] exp Clog(1 +t) sup Ei[u(s)].

0<s<t
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Because the factor (s)~! just fails to be integrable at infinity, this leads
to an existence interval of the order exp Ce~!. In general, this is sharp
because examples show that arbitrarily small solutions develop singu-
larities in a finite time of the same order, [1], [7], [20].

Cubic and higher nonlinearities (in 3d) lead to a decay factor of (s) 2
which is enough to ensure global existence of small solutions. In the
next sections, we will see how the null condition can be exploited to
improve the dispersion rate sufficiently for global existence. In higher
dimensions, the inherent decay rate of <s>_n771 is sufficient for global ex-
istence of small solutions for quadratically nonlinear equations without
further structural assumptions.

5.4. The null condition and global existence. Adopting the point
of view already taken in Section 2.12, we note that the linear wave
equation
Ou = (87 — *A)u =0,
has plane wave solutions of the form
u(t,z) = flet+(§2)), €85
or with y = (¢,z) and n = (¢, §),
u(y) = f((n, ).
The vector n belongs to the class of null vectors
n€N ={n€R" tng — (1 + 15 +13) = 0}.
We denote the form coming from nonlinearity by
N(u,v) = Byu,01(0,ud,v).

The null condition or nonresonance condition is N(u,v) = 0 for all
pairs of plane wave solutions u and v. Since we are dealing with the
scalar case (with only one wave family), there is no need to project N
as we did for the case of a system. An example is given by

N(u,v) = O\[(Ooudyv) — *(Vu, Vv)].
Written out explicitly, the null condition takes the form

B)\HVn/\T}HnV = 0, n e N

We now explain briefly how the null condition is used to improve the
dispersive behavior of the nonlinear terms. Using the vector fields I,
we can decompose derivatives in the form

(5.5) 0= (9,V)= (—c,%)ar+7z,
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in which (—¢, ;) € A and R is tangent to the light cone ¢*¢*—|z[* = 0.
In particular,

(t+ |z|)|Ru(t,z)| < CTu(t,z)|.

As with the previous energy identity (5.2), we have that 0,E)[u(t)]
is a sum of terms of the form

B'Ml,/a)\f‘“uaﬂf‘“uaoayudx,
and
B, / O\ (0,T"ud, T u) BT “udz.

The coefficients B} ,, are related to By, the modification coming from
the commutation of the derivatives 0 with I'. The important point how-
ever is that the new coefficients B}, still satisfy the null condition.
Therefore, when the derivatives 0 are replaced using the decomposi-
tion above, the leading term has the form Bg\uun,\n“n,, which vanishes
by the null condition. The remaining terms have an extra measure of
decay sufficient to give global existence in 3D, in the quadratic case.
We point out that certain technical obstacles arise in the execution of
this argument because of the appearance of derivatives of the form "«
(instead of OI'u). The interested reader can consult [12] for details.
A completely different approach to this problem using conformal com-
pactification was given in [3]. The book [5] gives a systematic treatment
of these topics.

6. NONRELATIVISTIC MODEL PROBLEM

6.1. The initial value problem. In contrast to the scalar case, the
equations of elastodynamics have multiple propagation speeds. This
spoils the Lorentz invariance, and so the method outlined in the pre-
vious sections can not be directly applied. As further preparation for
this case, we first consider a model problem that illustrates many of the
difficulties while still retaining some similarities with the scalar case.

Let 0 < ¢; < ... < ¢, be distinct propagation speeds and suppose
that the coefficients Bf\ﬂfj are symmetric with respect to permutations
of the upper indices and also with respect to permutations of the lower
indices. We start with a formal variational problem for

£lul = [ elouty)dn



GLOBAL EXISTENCE 25

in which u : R* — R™ and the density is
e(p) =Y 3(ph)” — () + (05)” + (95)°)] — +B3 phpipk.
This leads to the following initial value problem

(6.1) D' = (0} — A" = %B?fy&(aﬂujayuk), i=1,...,m

(6.2) w(0) = up, Opu(0) = u;.

Note that summation in the index ¢ is not performed on the left of
(6.1).

6.2. The energy norm. Since the equations are only invariant under
spatial rotations and scaling, but not Lorentz rotations, the list of
commuting vector fields is smaller. We shall only use

r'=(0,9,9),
in the definition of the energy norm.
For a solution u, we define
1 0%
2 9pi,ap}
and using e and e to define T and T in (4.3) and (4.6), the energy

Ey[u(t)] is then defined as in (5.4) with the smaller set of vector fields.
As before, we have that

Ei[u(t)]? ~ Z 0T % u(t)||z2, |Ou] < 1.

la]<k—1

é(y,p) = (Ou(y))Pipl,

6.3. Plane waves and the null condition. Plane wave solutions for
the diagonal operator

O = diag (Oy,...,0,)
are of the form
u(t,z) = flet + (& x))e;, i=1,...,m.

Here f : R — R, £ € 5%, and e¢; € R™ is the standard unit vector. As
before, define the form

i _ pijk ja .k
N'(u,v) = By,,0x(0,u’9,v7).
The nonresonance condition is

<N(u’ U)v w>Rm - Oa
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for all triples of plane waves (u,v,w) belonging to the same family.
This is equivalent to the null condition

(6.3) Biiﬁyn,\nun,, =0, i=1,...,m
neN;={neR" :n; — (i +n +n3) =0}

6.4. Global existence. Now that we have posed the null condition in
this setting, we can state the global existence result:

Theorem 5 ([23], [28]). If the null condition (6.3) holds and the initial
data is such that Ex[u(0)] < e, with € sufficiently small, then the initial
value problem (6.1) has a unique global classical solution defined on

R™ x R® with Ey[u(t)] < 2e, for all t > 0.

6.5. Sobolev lemma. The smaller set of available vector fields weak-
ens the Sobolev lemma.

Lemma 2 ([14]). For any function u(t,z) on RT x R?,
() (et — |2])/?|Ou(t, )]
<cf S 10mut) i + > et - 2y Voo u(®)llz» |,
la|<2 la[<1
provided the norm on the right is finite.

Another series of weighted L? estimates will be necessary to control
the quantity on the right hand side of this inequality.

6.6. Weighted L? estimates. We are now faced with estimating the
weighted L? quantity of the right in Lemma 2. We outline an easy
method for getting the bound

6.4) D) et =[x T (1) |2 < CER[u(t)]?, k> 2,

la|<k—2 1=1

based on elementary properties of the vector fields I' and the linear
operators [J;.

Recalling the definitions of S and Q in (5.3), we have the following
identity (see [14])

(2t — r?)Au = t0,Su — 10, Su — tOyu — rou — Q*u — t*Tu.

Divide this ¢;t + 7 and use the facts that t(c;t +r)~" and r(c;t +7)~"
are uniformly bounded and that fact that |Q%u| < |z||VQu| to get the
pointwise bound

leit — r||Au| < C[|OTu| + [0u| + t|D;ul].
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Thus, we obtain
[{cit = |z AullL> < CllIOT |2 ||0ul| L2 + t][Diul| 2]

The ellipticity of A gives the estimate for all second order spatial
derivatives. Similar computations lead to bounds for §;Vu and ?u.
This can equally be applied to derivatives ['*u, resulting in the estimate

it = 12[)0*(T*u) |2 < CIOT (T u)||z2 + [1{t + |2 DT w)|z2]-

Using the commutation properties of [J; and I' and the pde’s, the last
norm on the right involves only nonlinear terms. Moreover, we have
that

{t +[a]) < C{lz]) (et = [x]),
so by Lemma 2, these terms can be controlled by Ej[u(t)]/? times the

weighted L? quantity. Thus, for small solutions, these terms can be
absorbed on the left by a bootstrap argument, resulting in the estimate

(6.4).

6.7. Nonlinear interactions. From the energy identity, we must es-
timate integrals of the form

(6.5) Bk

Apv

/aAFauiauF“ujﬁyagukdx

Apv

BU* /6)\(8HFbui8VFcuj)8gF“ukdx,

for [b] + || <la| < k=1, |b|,|c| # k — 1.
The combination of the Sobolev inequality of Lemma 2 and the
weighted L? estimate (6.4) gives the bounds

1{z)(eit — |2)OT U || e < CEy[u(t)]'?, la| <k =3,
and

[{c:t — |x|>82F“ui||L2, < CENk[u(t)]I/Q, la| <k —2.

The interaction of waves in different families is of lower order because
these waves concentrate along their respective light cones. Therefore,
ifin (6.5) (i,7,k) # (i,i,1), (say ¢ # j), then we can absorb one of the
weights

(@)eit — |2}/ (ejt = |zl or (@) {eit — [al)ejt — lal)'?,

either of which is larger than C(t)*2. This provides sufficient decay
for these nonresonant terms.
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In the resonant case, (i, j, k) = (i,4,1), we must treat the region near
the light cone differently from the region far from it. If we are away
from the cone, (¢;t — |z|) > (), then we can use the weight

(@)(eit — |y’

to gain (t)*? decay, which is sufficient.

The null condition is used to obtain decay for the resonant terms near
the light cone, through cancellation of the nontangential derivatives
along the cone. Since our collection of vector fields is smaller, the
analog of the decomposition (5.5) is weaker. We have

ou = X (0; — ¢;0r)u + Ru,
with X € N, and
()| Rul < C[[Tu| + (et — |z])|0u]], (eit — |z]) < (B).

Upon insertion of this decomposition into the remaining integrals, the
null condition eliminates the leading terms. The remainder has im-
proved decay which again is combined with our other estimates to
complete the argument as described previously.

7. GLOBAL EXISTENCE IN ELASTODYNAMICS

7.1. The truncated initial value problem. We shall be looking for
solutions of the equations of motion

Djx —D-S(Dx) =0,

which represent small displacements from the reference configuration.
We set

u(t, X) = 2(t, X) - X, G(t,X) = Du(t,X) = F(t,X) - I.

For simplicity we will truncate the nonlinearities at the quadratic
level because cubic and higher order nonlinearities present no difficulty
in the construction of global small solutions in 3D. So we write

W(F)=W(I+G)
=W(I) + Si(I)Gy + 147 (GIGL, + LBJY (1) GiGo,GE,

ignoring higher order terms. Recall that W (I) =0 and S(I) = 0.
The pde’s then are

(7.1)  Lu' = DX’ — A} (I)DyD,u’ =
with

BY* (INDy(Dyt? Dyuk),

1
27 Imn

AP (I)DyDy, = c36;A + (¢ — &3)DiD;, ¢} > 4¢3 > 0.
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7.2. Invariance properties. From the Galilean invariance and isotropy
we have that

AR (1) = AP (DQT QT QMQM™,
By (I) = B (DQ" Q7 QFF QM QMmN
for all @ € O?%. This means that if u solves (7.1), then so does
ut(t, X) = Qu(t,QX), Q€ 0.
More generally, define the antisymmetric matrices
Ap = —ea®ezte3®ez, As = —e3®e;+e1®e3, Az = —e1Qexter®e;.
The solutions Uj(s) of
Uj(s) = A;U(s), U(0) =1,
are one-parameter families in O%. Thus, the transformation
R;i(s)u(t, X) = U (s)u(t, U;(s)X)

preserves solutions.
Note that

D,R;(5)u|s—o = Dud; X — Aju = Qu — A; = Qju,

where 2 = X A D, as before.
Similarly, the scaling

S(s)u(t, X) = (1+ ) u((1+ s)t, (1 +5)X)
preserves solutions for all s > —1, and
DyX(5)uls—o = Su — u = Su,

where S = tD; 4+ rD,, as before.

Finally, the translations

o(s)u(t,X) =u(t+s,X), 7i(s)u(t,X)=u(t,X + se;),
preserve solutions, and
Dy1o(s)uls—o = Dyu, and Dy7i(s)uls—o = Dju.
Relabel these families as

A(s) = (A1(s),...,A8(8)) = (10(8), ..., Ri(5),...,2(s)),
and let o
['=(Ty,...,Tg) = (D, D,,S),
be the corresponding vector fields.
For a = (ay,...,a,) € Z§, write

A%(s) = Ay (51) - A, (5p), =Ty Ty

p*
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Then
Dy, -+ Dy, A%(s)u|s=0 = ["u.

Note that this differs from the usual multi-index notation. For a € ZZ&,
we denote |a| = p, and we write b + ¢ = a whenever b and ¢ are
partitions of a.

Now if u is a solution of (7.1), then so is A%(s)u, for any a € Zj, so
that .

LA(s)u' = 3B* (I)Dy(DyA%(s)u? D, A(s)ub).

Take the derivative in s at s = 0 to obtain

(7.2) LT% — BZ* (I)Dy(D,nI %0’ Dyu)
= Y 1By (I)Dy(D, " D, T u").
b+c=a

b,c#a

7.3. Energy identity. The truncated equations (7.1) correspond to
(4.1) with the Lagrangian density

e(p) = 35 — Ap,(Dpipl] — £ Bi, (DPipip}
From (7.2), we see that v = ['*u solves (4.5) with Lagrangian density

L7 Guy)
2apAapu u y pApl,H

and f'(y) given by the right hand side of (7.2).
For k£ > 1, we define the energy norm

Byu()] = / Too(0u(t, X)dX + S Tooly, 00%ult, X))dX,

1<a|<k—1

e(y,p) =

with Tho(p) and Ty defined in (4.3) and (4.6). Once again we have
Egu@®)]'? ~ Y loT u(t)lz2,  |0uly)] < 1.
la|<k—1

Then, (4.2) and (4.3) combine to give

(7.3) OEgfu()] = ) / LBI* (INDT%! D, T Do Dyufd X

1<|a|<k—1

+ Z/ LBt (D DDl D, Tu")dX |
b+c=a
b,c#a

The smallness condition of Theorem 1 is expressed in terms of this
energy:

Eu(t))/? < e, for k sufficiently large.
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7.4. Weighted L? estimates. The weighted L? estimates from sec-
tion 6.6 must be redone for the operator of linearized elasticity L.
Although it can be diagonalized, this would involve using the L? pro-
jections onto divergence free and curl free vectors, and these nonlocal
operators are not compatible with the L* estimates. Thus, we use a
local approximation.

We start with the simple identity

2

~ 1
(7.4) (tDy—rD,)Su = tZLu—i-C—z(c?tQ—TZ)A(D)u+Z—2(A(D) —ciD?)u.

Then we introduce the decomposition

X X
(7.5) D=—D,——5NQ
r r
to write
X X _X X X
AD) = A(_D’") tR= 05(1— P —)D? += @ =D +R,
r r r r T

with Ru(t, X)| < Cr~'|DTu(t, X)|. Set

X X
P (X)= - ®7 and P(X)=1- P (X).

Then P2(X) = Po(X), P(X)Py(X) = 0 and
P (X)(A(D) — 2D?) = P,(X)R, a=1,2.
From (7.4), we get
|(cat—T)Po(X)A(D)u(t, X)| < C[|DTu(t, X)|+t|Lu(t, X)|]], a=1,2.
Using the ellipticity of A(D), it follows that
{eat = 1) Pa(X) D*u(t) 12 < ClE[u(t)]'/? + t|| Lu(t)]| 2],

The notation P, (X)D?u denotes the projection matrix P,(X) applied
to any second spatial derivative of u. The estimate also holds for deriva-
tives ['*u.

Using now the pde’s and a bootstrap argument, we get for small
solutions

[{cat — 7Y Po(X)D2T%u(t) || 2 < CER[u()]2,  |a| <k —2.
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7.5. Sobolev inequality. Lemma 2 can be modified to include the
projections P,:

(r){cat = r)/?|Po(X) DT u(t, X))

< ClEfu®]?+ > Y et — r)Ps(X)DTPu(t) | 2],
6=12 p|<]al+1

la| < k — 3,
see [21].
7.6. Nonlinear interactions. Continuing from the energy (7.3), we

must estimate integrals of the form

(7.6) / BY* (I)DyI'*u' D,,*u? Dy DyuFd X

/Bzﬁfn(f)Dg(DmF”uanFCuk)dX, b+c=a, bc#a.

We control
[(r)(cat = ) ? PaDTu(t) ||, o] <k —3
[(r}(cat — r) Pa DT u(t)|| 2, |a| <k —2,
by the energy Ej[u(t)]}/2.

We separate the two wave families by inserting the projections. For
example, we can write (7.6) as

> / B* (IP,D*u' Py D,,I*u’ P, Dy D, ufdX.
B,y
In the nonresonant case, (o, 8,7) # (1,1,1) or (2,2,2), then we can
absorb either
(rY(eit — Y2 eat — 1) or (XMt — r){egt — r)Y2,
which gives (£)73/2 decay.
If (o, 3,7) = (1,1,1), then away from the cone {(¢;t — r) > (t), we
absorb the weight
(r){est = 1)*2,

which again gives sufficient decay in this region. Near the cone, (¢t —
r)y < (t), we use the decomposition (7.5) to rewrite our integral as

/ B (IE'eieretemer (€, DT u)* (€, D, Dou)dX + / RdX,

in which £ = X/r and
IR| < Cr~HT* u|?| DT w.
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The first term vanishes, thanks to the null condition, and the additional
decay in the remainder is sufficient to complete the estimates near the
cone. The other resonant case, («, 3,7) = (2,2, 2) is similar.

8. REMARKS ON THEOREMS 2 AND 3

The penalization term in the strain energy function of Theorem 2
is designed to drive the motion toward incompressibility, p = poy, as
the fast speed A — oco. To measure this, it is natural to use the con-
servation of mass equation, but then this leads to the consideration
of the first order version of the system in Eulerian coordinates (3.1)
with constraints. The advantage is that, using the variable A\(p — py),
the equations can be written in such a way that the singular parame-
ter only appears in linear terms. The disadvantage is that, in Eulerian
coordinates, the null condition for the pressure waves is lost. We there-
fore settle for long time local existence on a time scale proportional to
the parameter .

A simple model for this situation is given by the two speed system

Olu' — N Au' = B}* Dy(D,u? D,u®)

Imn

Otu? — Au? = Bk Dy(D,,u D,u®),

Imn

(A > 1), where the null condition for the slow family holds:
B%%&ﬁmﬁn =0, € 2.

Here, u' plays the role of A(p — py) and u? measures the shear waves.
The obstruction to global existence for small solutions is the lack of
the null condition for the fast waves. However, the dispersive estimate
says that their amplitude is roughly

[y (At =]z < O

This is enough to obtain an extended lifespan as A — oo.

The proof of Theorem 2 uses the same basic techniques as outlined
above for Theorem 1, except that the first order system is more difficult
technically. In particular, the dispersive estimate can only be obtained
when the solutions satisfy the natural constraints (2.9) which link back
to the original second order problem.

Theorem 3 is a corollary of the stability result which gives uniform
estimates for the solution family and their time derivatives. These
bounds provide enough compactness to be able to pass the the limit in
the pde’s locally uniformly. The interested reader can consult [22] for
details.
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