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Let k be a field of characteristic zero and ¢ € k* not a root of unity. We may
obtain non-commutative counterparts of various commutative algebras by twisting the
multiplication using the scalar ¢: one example of this is the quantum plane k,[x,y],
which can be viewed informally as the set of polynomials in two variables subject to
the relation xy = qyz. We may also consider the full localization of k,|x,y|, which
we denote by k,(z,y) or D and view as the non-commutative analogue of k(x,y), and
also the quantization O,(M,) of the coordinate ring of n x n matrices over k.

Our aim in this thesis will be to use the language of deformation-quantization to
understand the quantized algebras by looking at certain properties of the commutative
ones, and conversely to obtain results about the commutative algebras (upon which a
Poisson structure is induced) using existing results for the non-commutative ones.

The g¢-division ring k,(z,y) is of particular interest to us, being one of the easiest
infinite-dimensional division rings to define over k. Very little is known about such
rings: in particular, it is not known whether its fixed ring under a finite group of
automorphisms should always be isomorphic to another g-division ring (possibly for a
different value of ¢) nor whether the left and right indexes of a subring £ C D should
always coincide.

We define an action of SLy(Z) by k-algebra automorphisms on D and show that
the fixed ring of D under any finite group of such automorphisms is isomorphic to D.
We also show that D is a deformation of the commutative field k(z,y) with respect
to the Poisson bracket {y,z} = yz and that for any finite subgroup G of SLy(Z) the
fixed ring DY is in turn a deformation of k(x,y)¢. Finally, we describe the Poisson
structure of the fixed rings k(z,y)“, thus answering the Poisson-Noether question in
this case.

A number of interesting results can be obtained as a consequence of this: in par-
ticular, we are able to answer several open questions posed by Artamonov and Cohn
concerning the structure of the automorphism group Aut(D). They ask whether it is
possible to define a conjugation automorphism by an element z € L\ D, where L is a
certain overring of D, and whether D admits any endomorphisms which are not bijec-
tive. We answer both questions in the affirmative, and show that up to a change of
variables these endomorphisms can be represented as non-bijective conjugation maps.

We also consider Poisson-prime and Poisson-primitive ideals of the coordinate rings
O(GLs) and O(SLs), where the Poisson bracket is induced from the non-commutative
multiplication on O,(GLs) and O,(SL3) via deformation theory. This relates to one
case of a conjecture made by Goodearl, who predicted that there should be a home-
omorphism between the primitive (resp. prime) ideals of certain quantum algebras
and the Poisson-primitive (resp. Poisson-prime) ideals of their semi-classical limits.
We prove that there is a natural bijection from the Poisson-primitive ideals of these
rings to the primitive ideals of O,(GL3) and O,(SLs), thus laying the groundwork for
verifying this conjecture in these cases.
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Chapter 1

Introduction

1.1 Overview

In this thesis we examine the similarities between certain commutative and non-
commutative algebras, with a focus on using the properties of one algebra to un-
derstand the structure of the other. We also focus in detail on one specific non-
commutative division ring, describing in detail some of its subrings and proving some

striking results concerning its automorphism and endomorphism groups.

Throughout, we will assume that k is a field of characteristic zero and ¢ € k™ is not a
root of unity. This thesis divides broadly into two parts, one considering the g-division
ring k,(z,y) and the other concerning coordinate rings of matrices and their quantum

analoges. We will now describe each in turn.

We define the quantum plane k,|x,y] as a quotient of the free algebra in two variables,
namely k,[x,y] = k(x,y)/(xy — qyz). This is a Noetherian domain for all non-zero g,
and hence by [32, Chapter 6] it has a division ring of fractions. We denote this ring
by k,(z,y) or D, and call it the g-division ring.

When ¢ is not a root of unity, the centre of D is trivial (see, for example, [32, Exercise
6J]) and hence D is a division ring which is infinite-dimensional over its centre. Very
little is known about division rings of this type: for example, if F is a non-commutative
sub-division ring of D, it is known that D must have finite index over E on both the

left and the right [49, Theorem 34|, but it is not known if the two indexes must always

12



CHAPTER 1. INTRODUCTION 13

be equal. Similarly, if G is a finite group of automorphisms of D, must its fixed ring
DY ={r € D :g(r) = r Vg € G} always be another ¢-division ring (possibly for a

different value of ¢)?

One of the key motivations in studying division rings such as D is a conjecture made by
Artin concerning the classification of surfaces in non-commutative algebraic geometry.
In [6], Artin conjectured that all the non-commutative surfaces had already been
described (up to birational equivalence, i.e. up to isomorphism of their function fields);
nearly twenty years later, this conjecture still remains open. Restated in terms of
division rings, this says (informally) that the only division rings appearing as function

fields of non-commutative surfaces must have one of the following forms:

e division rings of algebras finite-dimensional over function fields of transcendence

degree 2;
e division rings of Ore extensions of function fields of curves;

e the degree 0 part of the graded division ring of the 3-dimensional Sklyanin algebra
(defined in [52, Example 8.3]).

For a more precise statement of Artin’s conjecture, including the definition of a non-
commutative surface and its function field (which we do not define here as it will not

be used in this thesis) see [6, 52].

From a purely ring-theoretic point of view, one way of approaching Artin’s conjecture
is to examine the subrings of finite index within the division rings appearing on this

list, as such rings must also fit into the framework of the conjecture.

For an arbitrary division ring L and a finite subgroup G of Aut(L), a non-commutative
version of Artin’s lemma [15, §5.2.1] states that the index of the fixed ring L inside
L must satisfy the inequality [L : L] < |G|. In particular, since the ¢-division ring D
is a division ring of an Ore extension of the function field k(y) and hence one of the
rings appearing in Artin’s conjectured list above, its fixed rings under finite groups of

automorphisms are of interest to us.

Chapter 3 proves a number of results concerning the structure of various fixed rings

of the ¢-division ring, and throws doubt on the idea that the automorphism and
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endomorphism groups of D might be well-behaved by constructing several examples
of counter-intuitive conjugation maps. (Apart from minor modifications, this chapter
has also appeared in the Journal of Algebra as The g-Division Ring and its Fized
Rings [19].) In Chapter 4 we describe progress towards an alternative method for

understanding fixed rings of D, via Poisson deformation of the function field k(z,y).

We will also consider prime and primitive ideals in quantum matrices and their com-
mutative semi-classical limits, which at first glance seems completely unrelated to
questions concerning the fixed rings of infinite-dimensional division algebras. How-
ever, we will see that both topics can be studied by viewing the non-commutative
algebras as deformations of certain commutative Poisson algebras, and in both cases
we will be interested in moving from the non-commutative structure to the commuta-

tive one and back in order to better understand the properties of both.

In particular, one of the main tools in understanding prime and primitive ideals in
quantum algebras is the stratification theory due to Goodearl and Letzter, which is
described in detail in [11] and provides tools for describing the prime and primitive
ideals of our algebra in terms of certain localizations. In this thesis our aim will be to
develop a commutative Poisson version of the results in [29], which explicitly describes
the primitive ideals of quantum G L3 and S L3, and hence prove that there is a natural

bijection between the two sets.

This is one small part of a larger conjecture, which in the case of quantum algebras
and their semi-classical limits was stated by Goodearl in [25]. We describe this in
more detail in §2.3.3, but informally stated the conjecture predicts the existence of a
homeomorphism between the prime ideals of a quantum algebra and the Poisson-prime
ideals of its semi-classical limit. By [25, Lemma 9.4], this is equivalent to the existence
of a bijection ® between the two sets such that both ® and ®~! preserve inclusions.
Approaching the question by direct computation of small-dimensional examples has
been successful for e.g. SLy and G Loy, and so extending this analysis to SL3 and G L3

is a natural next step.

In Chapter 5 we consider the relationship between the ideal structure of the quantum
algebras O,(GL3) and O,(SL3) and Poisson ideal structure of their commutative coun-

terparts O(GL3) and O(SLs), which we view as Poisson algebras for an appropriate
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choice of Poisson bracket. By explicitly describing generators for the Poisson-primitive
ideals of O(GL3) and O(SL3) and combining this with results of [29], we prove that
there is a natural bijection these two sets. We hope that in future work this can be

extended to verify Goodearl’s conjecture in these cases.

Finally, in Appendix A we provide the code we have used for computations in the
computer algebra system Magma, which allows us to perform computations in the
g-division ring by embedding it into a larger ring of non-commutative power series
and to verify that certain ideals are prime in the commutative algebra O(Ms). In
Appendix B we collect together several figures relating to the H-prime computations

in Chapter 5.

1.2 Notation

In this section we outline the notation and definitions we will need.

Important Global Convention 1. Throughout, fix k& to be a field of characteristic

zero and ¢ € k* not a root of unity, that is ¢" # 1 for all n > 1.

In §5 we will further restrict our attention to the case where k is algebraically closed.

Let R be any ring, a an endomorphism of R and 0 a left a-derivation. The (left) Ore
extension R[z;«,d] is an overring of R, which is free as a left R-module with basis

{1,z,2?, ...} and commutation relation
xr = a(r)z +6(r).

We write R[z;a] or R[x;d] when § = 0 or o = 1 respectively.

The ring k,[z,y] can be viewed as the Ore extension k[y|[x; ], where a is the auto-
morphism defined on k[y| by a(y) = qy. For r € k,[x,y], let deg,(r) be the degree of

r as a polynomial in z.

We say that a multiplicative subset S of a ring R satisfies the right Ore condition if

Vre Rand x € S, ds € Rand y € S such that ry = xs. (1.2.1)
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If S consists only of regular elements then satisfying (1.2.1) is a sufficient (and indeed
necessary) condition for the existence of the localization RS™! [32, Theorem 6.2]. A
left Ore set is defined symmetrically, and S is simply called an Ore set if it satisfies
both the left and the right Ore condition.

More generally, we call a multiplicative set S in R a right denominator set if it satisfies

the right Ore condition and also the right reversibility condition:
If r € R and z € S such that zr = 0, then there exists 2’ € S such that rz’ = 0.

This allows us to form a right ring of fractions for R with respect to S even if S
contains zero-divisors [32, Theorem 10.3]. The left denominator set is again defined
symmetrically, and S is a denominator set if it satisfies the denominator set conditions
on both sides. We note that in a left /right Noetherian ring, the left /right Ore condition
implies the left /right reversibility condition, and hence all Ore sets are denominator

sets in this case [32, Proposition 10.7].

By localizing k, [z, y| at the set of all its monomials, which is clearly both left and right
Ore since monomials are normal in k,[z,y], we obtain the ring of quantum Laurent
polynomials k,[z*', y*']. This ring sits strictly between k,[x,y] and the division ring

ky(z,y), and the properties of it and its fixed rings are studied in [§].

The g-division ring D = k,(z,y) embeds naturally into a larger division ring, namely
the ring of Laurent power series
ky(y)(x) = {Z a;x':n €7Z,a; € k:(y)} (1.2.2)
>n
subject to the same relation xy = qyx. It is often easier to do computations in
ky(y)(z)) than in D, and we will identify elements of D with their image in k,(y)(x))

without comment.

We will also need a generalization of the quantum plane, namely the uniparameter
quantum affine space kqlz1,...,x,]. Here q is an additively anti-symmetric n x n

matrix, and the relations are given by
. — % ..
rx; = q"Tx;,

where a;; denotes the (7, j)th entry of q.
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The coordinate ring of the 2 x 2 matrices over a field k is simply the polynomial
ring in four variables, that is O(My) = k[z11, T12, 21, To2]. The quantized version of
this algebra is defined in [11, Example 1.1.6] to be the quotient of the free algebra
k(X11, Xi2, X21, Xo2) by the six relations

X1 X2 — ¢ X2 X011, X12X99 — X902 X2,
X11Xo1 — ¢ X1 Xy, X091 X0 — X922 Xo1, (1-2-3)

X12Xo1 — X91 X120, X11Xog — X9 X1 — (q - qfl)Xszl;

for some ¢ € k*. This algebra is denoted by O,(M;). From this construction we
may obtain the quantum m x n matrices Oy(M,xn) as the algebra in mn variables
{Xi; : 1 <i<m,1<j<n}, subject to the condition that any set of four variables
{Xij, Xim, Xij, X } with ¢ <1 and j < m should satisfy the relations (1.2.3).

When m = n, we write O,(M,,) for Oy(M, «,) and define the quantum determinant to
be

Det, = Z (=)' X121y Xon@) - - - Xonrn)s (1.2.4)

7T€Sn

where S, is the symmetric group on n elements and I(7) denotes the length of the
permutation 7 € S,,. The quantum determinant is central in O,(M,,) (see, for example,
[11,1.2.4]), and hence the set {1, Dety, Det?, ... } is an Ore set in Oy (M,,) and (Det,—1)
defines an ideal in O,(M,,). We therefore define quantum GL,, and quantum SL, as

follows:
Oy(GLy) := Oy(M,)[Det 1], 0,(SL,) = O,(M,)/{Det, —1).

We may also generalise the definition of quantum determinant to obtain a notion of
minors in O,(M,). Using the notation of [29], if I and J are subsets of {1,...,n}
of equal cardinality then we define the quantum minor [I|J], to be the quantum
determinant in the subalgebra of O,(M,,) generated by {X;; : 1 € I,j € J}. We will
use the same notation for quantum minors of O,(GL,,) and O,(SL,,), where we simply

mean the image of [I|.J], in the appropriate algebra.

Since we will work primarily with 3 x 3 quantum matrices, we will often drop the set
brackets in our notation and, for example, write [12|13], for the minor [{1,2}|{1, 3}],.

Similarly, let I denote the set {1,...,n}\/, and so that [12|13], may also be denoted
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by [3|2],. Since 1 x 1 minors are simply the generators X;;, we will use the notation

[i|7], and X;; interchangeably.

If R is any ring and z an invertible element, we denote the resulting conjugation map
on R by

e, r—z2rz’t VreR.

Since we will define conjugation maps on D with z € k,(y)(x))\D, the following
distinction will be important: we call a conjugation map c, an inner automorphism of

Rifz,z7' € R.

Meanwhile, if G is a subgroup of Aut(R) we define the fixed ring to be
RC={reR:g(r)=r Ygc G}

If G = (p) is cyclic, we will also denote the fixed ring by R?.

Let spec(R) be the set of prime ideals in a ring R, and prim(R) the set of primitive
ideals. The Zariski topology is defined on spec(R) by defining the closed sets to be
those of the form

V(I)={P € spec(R) : P D I}

for some ideal I of R. This induces a topology on prim(R), where the closed sets are

simply those of the form V(1) N prim(R) for some closed set V' (I) in spec(R).

1.3 Results on the structure of the g-division ring

As described in §1.1, we are interested in understanding the structure of fixed rings of
division rings. In particular, we will focus on the ¢-division ring D = k,(x,y) and its
fixed rings under finite groups of automorphisms, with a view to establishing whether

and how these fixed rings fit into the list predicted by Artin’s conjecture.

We first describe the existing results along these lines. In the simplest case, where the
group of automorphisms restricts to automorphisms of the quantum plane, we have a

full description of the fixed rings DY given by the following theorem.
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Theorem 1.3.1. [4, Proposition 3.4 Let k be a field of characteristic zero, and q € k*
not a root of unity. Denote by R, the quantum plane ky[z,y] and by D, its full ring
of fractions. Then:

(i) For ¢ € k, we have D, = Dy if and only if ¢ = ¢*', if and only if R, = R,.

(i1) For all finite subgroups G of Aut(R,), DqG >~ D, for ¢ = ql°.

However, D admits many other automorphisms of finite order which are not covered
by this theorem. The following theorem by Stafford and Van den Bergh considers one

such example:

Theorem 1.3.2. [52, §13.6] Let T be the automorphism defined on D by

T:xr—mfl, y'—>y’1

Then the fixed ring D7 is isomorphic to D as k-algebras.

The map 7 is an example of a monomial automorphism, i.e. one where the images of
z and y are both monomials (up to scalars). In contrast to Theorem 1.3.1, the value
of ¢ in D™ does not depend on the order of 7. In a private communication to Stafford,
Van den Bergh posed the question of whether the same result holds for the order 3

1

automorphism o : z — y, y — (xy)~'; we answer this in §3.2 as part of the following

general theorem:

Theorem 1.3.3 (Theorem 3.1.1, Theorem 3.2.9). Let k be a field of characteristic

zero and q € k*.

(i) Define an automorphism of D by

e (y =gyt oy —y!

and let G be the group generated by ¢. Then DY = D as k-algebras.

(ii) Suppose k contains a third root of unity w, and both a second and third root of

q. If G is a finite group of monomial automorphisms of D then D = D as

k-algebras.
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This suggests that for finite groups of automorphisms which do not restrict to k[, y],
we should expect the fixed ring to again be ¢-division for the same value of q. There
are several difficulties standing in the way of proving a general theorem of this form,
however: in particular, the full automorphism group of D is not yet fully understood,
and the methods used in the proof of Theorem 1.3.3 involve direct computation with

elements of D and do not easily generalise to automorphisms of large order.

In §2.1.2 we describe what is currently known about Aut(D), based on work by Alev
and Dumas in [3] and Artamonov and Cohn in [5]. In §3.3 we demonstrate why the
structure of this group remains mysterious, by proving the following counter-intuitive

result:

Theorem 1.3.4 (Theorem 3.3.10). Let k be a field of characteristic zero and q € k*

not a root of unity. Then:

(i) The q-division ring D admits examples of bijective conjugation maps by elements
2 € ky(y)(x)\D; these include examples satisfying z" € D for some positive n,
and also those such that 2™ & D for alln > 1.

(i) D also admits an endomorphism which is not an automorphism, which can be

represented in the form of a conjugation map.

Both parts of Theorem 1.3.4 illustrate different problems with understanding the au-
tomorphism group Aut(D). Part (i) means that we must distinguish between the
concepts of “bijective conjugation map” and “inner automorphism” when considering
automorphisms of D, and raises the possibility that these non-inner conjugation auto-
morphisms may be examples of wild automorphisms (see §2.1). Meanwhile, part (i) of
the theorem flies in the face of our most basic intuitions concerning conjugation maps,
and also allows us to construct interesting new division rings such as the following:
if ¢, is a conjugation map predicted by Theorem 1.3.4 (ii), then we can consider the
limits

ﬂziDz’i and Uz”'Dzi,

i>0 i>0

about which very little is currently known.
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1.3.1 Methods for computation in the ¢-division ring

As noted above, one of the reasons that so many apparently-simple questions concern-
ing D remain open is that direct computation in non-commutative division rings is
extremely difficult. By [32, Corollary 6.7], if R is a right Noetherian domain then the
set S := R\{0} forms a right Ore set, i.e. satisfies the right Ore condition defined in
(1.2.1).

This condition is what makes the addition and multiplication well-defined in the local-
ization RS~!: for example, when computing the product of two fractions ab~tcd ™!, the
Ore condition (1.2.1) guarantees the existence of u € R, v € S such that b~'c = uv™!
and hence

ab~tcd™' = au(dv)™' € RS~

The problem is that this is not a constructive result, and in practice finding the values
of u and v is often all but impossible. In order to get around this problem, we embed

D into a larger division ring, namely the ring of Laurent power series

ko(y)(2) = {Zaixi ca; € k(y), n € z} (1.3.1)

>n
where x and y are subject to the same relation ry = qyx. Addition and multiplication
in this ring can be computed term-by-term, where each step involves only monomials

in = (see Appendix A for further details on this).

Computing in k,(y)(z)) can therefore be reduced to computation of the coefficients
for each power of x, and in Appendix A we provide the code used to implement this
approach in the computer algebra system Magma. We also prove several results which
allow us to pull the answers of our computations back to elements in D, which we

state next.

Theorem 1.3.5. (Theorem A.1.1) Let K be a field, o an automorphism on K and
K{z;a] the Ore extension of K by a. Denote by K(z;«) the division ring of Klx; o

and K|x; ] the power series ring into which K|x; ] embeds.

The power series Y .., a;x' € K[x;a] represents a rational function Q' P in K(z; )

if and only if there exists some integer n, and some constants ci, . ..,c, € K (of which
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some could be zero) such that for all i > 0 the coefficients of the power series satisfy

the linear recurrence relation

Uit = 10(Qit(n-1)) + 207 (At (n-2)) + -+ + ™ (a;).
If this is the case, then P is a polynomial of degree <n—1 and Q@ =1—>""  c;a".
Theorem 1.3.6. (Theorem A.1.4) Keep the same notation as Theorem 1.58.5. A power
series Y s a;x’ satisfies a linear recurrence relation

Qitn = 1A (n-1)) + 0% (A (n—2)) + - + e (a;)

if and only if there exists some m > 1 such that the determinants of the matrices

a*lag) o Har) ... alarr)
A, — ak(.al) o ay) ... alag)  apg
| af(ar) o (a) afaz-1) as |

are zero for all k > m.

Since we cannot in practice compute infinitely many terms of a series or infinitely
many determinants of matrices, these results only provide the tools which allow us to
approximate computation in D and k,(y)((x)). However, we may then use the intuition

gained from these computations to prove results by more standard methods.

1.3.2 Approaching D via Poisson deformation

An alternative method of understanding D while avoiding the difficulties imposed
by the non-commutativity is to translate the problem to a related commutative ring
where localization is better behaved, and then use deformation theory to pull the
results back to D. In [7], Baudry constructed the algebra of g-commuting Laurent
polynomials k,[z*!, y*!] as a deformation of the commutative algebra k[z*!, y*!], and
proved that for certain finite groups of automorphisms G the fixed ring k,[z*!, y*1|¢

is in turn a deformation of k[z*!, y*1]¢.

In Chapter 4 we build on Baudry’s result to prove the corresponding result for D,
and describe partial results towards understanding fixed rings D¢ as deformations of

commutative rings. In particular, we prove the following result:
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Theorem 1.3.7. (Proposition 4.1.8, Theorem 4.1.12) Let k(x,y) be the field of ratio-
nal functions in two commuting variables with Poisson bracket defined by {y,x} = yx,
and G a finite subgroup of SLs(Z) acting on k(x,y) by Poisson monomial automor-
phisms and on D by monomial automorphisms. Then D is a deformation of k(zx,y),

and the fized ring DY is a deformation of k(x,y)¢.

The Poisson bracket on k(x,y) captures some of the non-commutative behaviour of
D, while on the other hand its commutative multiplication makes it a far easier ring
to work with. Theorem 1.3.7 tells us that if we can describe the Poisson structure of
k(z,y)¢ and the possible Poisson deformations of this structure, this will allow us to

also understand the fixed ring D¢.

In §4.2 we achieve the first of these for the case of finite groups of monomial auto-
morphisms on k(x,y) with respect to the Poisson bracket {y,z} = yx, by proving the

following result.

Theorem 1.3.8. (Theorem 4.2.1) Let k be a field of characteristic zero which contains
a primitive third root of unity w, and let G be a finite subgroup of SLs(Z) which acts
on k(z,y) by Poisson monomial automorphisms as defined in Definition 4.1.10. Then

there exists an isomorphism of Poisson algebras k(z,y) = k(x,y).

Unfortunately we have not yet managed to describe the possible deformations of
k(z,y), which means that we cannot yet replace the results of Chapter 3 with this
alternative Poisson approach. However, the proof of Theorem 1.3.8 is far simpler and
more intuitive than the proof of Theorem 1.3.3, which suggests that this may be a
better way to approach a general theorem concerning the structure of fixed rings D¢

for arbitrary finite G.

1.4 Primitive ideals in O(GLs3) and O(SLs3)

In Chapter 5 we apply the deformation theory techniques explored in the previous
chapter to a completely different setting: the quantum algebras O,(M,), O,(GL,)
and Oy(SL,) defined in §1.2 and their commutative counterparts O(M,,), O(GL,)
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and O(SL,). Informally, by letting ¢ = 1 we obtain the standard coordinate rings
of M,, GL, and SL,, but as in §1.3.2 this process induces a Poisson bracket on the
commutative algebra which retains a “first order impression” of the non-commutative

multiplication.

This relationship between the non-commutative and Poisson structures seems to force
the ideal structures of the two algebras to match up quite closely: in the case of
O,(SLs) and O(SLs), for example, it is fairly easy to show directly that there is
a homeomorphism from the prime ideals of O, (SLy) to the Poisson-prime ideals of
O(SLs), and further that this restricts to a homeomorphism from primitive ideals to
Poisson-primitive ideals [25, Example 9.7]. Goodearl has conjectured in [25, Conjec-
ture 9.1] that the existence of this homeomorphism should be a general phenomenon,
extending not just to all algebras of quantum matrices but other types of quantum
algebra as well (the precise definition of “quantum algebra” remains an open question;

some examples and common properties of these algebras are discussed in §2.3.1).

Let A denote a quantum algebra and B its semi-classical limit, and denote the set of
Poisson-primes in B by Pspec(B); note that for all of the algebras we are interested
in, a Poisson-prime ideal is simply a prime ideal in the usual commutative sense which
is closed under the Poisson bracket. By [25, Lemma 9.4], a bijection ® : spec(A) —
Pspec(B) is a homeomorphism if any only if ® and ®~! both preserve inclusions,
hence for low dimensional examples of algebras A and B it is a valid tactic to try to
obtain generating sets for all of the (Poisson-)primes and check the inclusions directly.
The aim of computing these examples explicitly is to provide evidence in favour of the
conjecture, and also to provide intuition for a more general proof (or disproof) in the

future.

In [29], Goodearl and Lenagan give explicit generating sets for the primitive ideals
of O,(GL3) and O,4(SL3) and lay the foundations for a full description of the prime
ideals. In Chapter 5 we make use of their results and also techniques from deformation
theory to obtain the corresponding description of Poisson-primitive ideals in O(GLs)

and O(SLsz). We obtain the following theorem:

Theorem 1.4.1. [Corollary 5.4.4] Let k be algebraically closed of characteristic 0 and
q € k* not a root of unity. Let A denote O,(GL3) or Oy (SLs), and let B denote
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the semi-classical limit of A. Then there is a bijection of sets between prim(A) and

Pprim(B), which is induced by the “preservation of notation map”

Here [i[5], denotes a quantum minor in A as defined in §1.2, and [¢];] is the corre-

sponding minor in B with ¢ = 1.

Although we are not able to verify that this bijection is actually a homeomorphism,
Theorem 1.4.1 does make it extremely likely that Goodearl’s conjecture is true in these

cases.

Note that the statement of [25, Lemma 9.4] relating homeomorphisms to bijections
preserving inclusions of primes does not restrict to the corresponding statement for
primitives; in order to verify the conjecture we would therefore need to prove that
the bijection in Theorem 1.4.1 was a homeomorphism using other techniques, or first
extend it to a bijection on prime ideals. With this in mind, we also prove the following

result for O(SLs):

Proposition 1.4.2. [Proposition 5.3.19] For any Poisson H-prime I, in O(SLs), the
quotient O(SLs)/1, is a commutative UFD.

The corresponding quantum version is proved in [10, Theorem 5.2]. We hope to use
these results in future work to pull back generating sets for prime ideals to O,(SL3)
(resp. generating sets for Poisson-primes in O(SL3)); currently these are only known
up to certain localizations. This would allow us to extend the bijection in Theo-

rem 1.4.1 to a bijection spec(O,(SL3)) — Pspec(O(SLs)).



Chapter 2

Background Material

The aim of this chapter is to provide the background material upon which the following
chapters are built. We begin in §2.1 with an introduction to the concept of tame
and wild automorphism groups, and focus in particular on what is known about the
automorphism groups of g-commuting structures related to the ¢-division ring. In
§2.1.2 we outline work done by Artamonov and Cohn in [5], upon which our results in

§3.3 concerning strange conjugation maps of k,(x,y) are based.

In §2.2 we introduce Poisson algebras and Poisson deformation, which is the tool
that will allow us to move between commutative and non-commutative algebras and
compare the properties of the two. Finally, in §2.3 we introduce stratification theory
and H-primes for both quantum and Poisson algebras; this is an extremely powerful
theory which allows us to partition the spectrum (respectively, Poisson spectrum) of
certain types of algebra into smaller, more manageable pieces and hence describe the

prime and primitive (resp. Poisson-prime and Poisson-primitive) ideals of the algebra.

Recall that as per Important Global Notation 1 we assume throughout that % is a field

of characteristic zero and ¢ € £* is not a root of unity.

26
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2.1 On automorphism groups: tame, wild and the

g-division ring

One way to get a feel for the structure of an algebra is to describe its automorphism
group: the set of all possible k-linear automorphisms that can be defined on it, which
is a group under composition of maps. One way to waste a lot of time, on the other
hand, is to try to describe an automorphism group that can’t be described: informally,

a wild automorphism group.

The definition of tame and wild automorphisms varies from algebra to algebra, but the
common theme is as follows: the tame automorphisms should be those in the group
generated by some “natural” or “elementary” set of generators, while any remaining
automorphisms not covered by this description are called “wild”. This concept is best

illustrated by examples.

Notation 2.1.1. If R is a k-algebra, the notation Aut(R) will always mean the group

of k-linear automorphisms of R.

Example 2.1.2. Let k[z,y] be the commutative polynomial ring in two variables.

Define two subgroups of Aut(k[z,y]) as follows:

A= {(xay) = (A + Aoy 4 A3, + poy + ) 2 Aiplo F Aopin, i, i € k}v

B={(r.y) ~ (A p qy+ f(x)) : An € K, € k. f(x) € klal}:

the affine and triangular automorphism respectively. The tame automorphisms of
k[x,y] are defined to be those in the group generated by AU B; it is a well-known result
(due to Jung [39] in characteristic 0 and van der Kulk [55] in arbitrary characteristic)

that the group of tame automorphisms equals the whole group Aut(k[z,y]).

Example 2.1.3. More generally, let k[zy,...,x,] be the polynomial ring in n vari-
ables, and take the tame automorphism group to be that generated by all elementary

automorphisms of the form
(T1y ooy @iy oy p) = (T, o AT+ f, o )

for 1 <i<n, A€ k*and f € k[zy,...,2i-1,%is1,...,%,); in two variables this

coincides with the group defined in Example 2.1.2 (see, e.g., [50]). In [46], Nagata
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conjectured that the automorphism
(z,y,2) — (24 (2° —yz)z, y+2(2® — yz)z + (2% — y2)°2, 2) (2.1.1)

in k[z,y, z] should be wild, a conjecture which remained open for over 30 years before
being settled. In [51], it was shown that Nagata’s automorphism is stably tame, i.e.
becomes tame when new variables (upon which (2.1.1) acts as the identity) are added.
However, it was not until 2003 that Shestakov and Umirbaev finally proved in [50]
that the Nagata automorphism (2.1.1) is indeed wild, and hence the polynomial ring

in three variables admits wild automorphisms.

Other examples of algebras with tame automorphism groups include the free algebra
in two variables [44], the commutative field k(z,y) in two variables [36] and the first
Weyl algebra A; (k) [14, §8]; examples of algebras with wild automorphisms include
U(sl,), the enveloping algebra of the Lie algebra sl, [38].

2.1.1 Automorphisms of ¢g-commuting structures

Since we will be interested in automorphisms of g-commuting algebras, let us examine
what is already known about them in more detail. The automorphism group of the
quantum plane k,[z,y] is particularly easy to understand: for ¢ # £1 it admits only

automorphisms of scalar multiplication, i.e. maps of the form

xaz, y— By, (a,B) € ()2

and hence Aut(k,[z,y]) = (k*)* [1, Proposition 1.4.4]. This is far smaller than the
automorphism group of the commutative polynomial ring k[x,y], which is a result of
the restrictions imposed by the lack of commutativity: the images of x and y must
g-commute in k,[z,y], for example. Since any homomorphism from k,[z,y] to itself
must preserve the set of normal elements, and it is shown in [15, Proposition 4.1.1]
that the only normal elements in k,[x,y] are the monomials, the possible images of
and y are immediately restricted to pairs of g-commuting monomials. Of such pairs,
the only ones ones defining an invertible map of k,[z,y] are x and y themselves; this

provides an elementary proof of the result in [1].
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With this analysis in mind, upon moving up to the quantum torus k,[z%!, y*1] we may
define a new set of automorphisms of the form
z— y’zd, y— y'zt  a,b,e,d €Z, ad —bec=1. (2.1.2)

We observe that since
(ybl'd) (yaxc) — qadyabxcd — qad—bc(yaxc)(ybxd)’

the condition ad — bc = 1 is both necessary and sufficient for the map defined in
(2.1.2) to be a well-defined homomorphism. Since we may define the inverse map on
kglz**, y™'] by

z = Myl y e gyt
for some m,n € Z depending on the values of {a,b, ¢, d}, the maps defined in (2.1.2)

define a set of automorphisms on k,[z*', y*'] which correspond to elements of the

group SLy(Z).

We will examine these automorphisms in more detail in Chapter 3, where we will
refine the definition (2.1.2) slightly in order to define an embedding of SLy(Z) into

Aut(k,[z*', y*']). For now, it suffices to observe that
Aut(kola™, y™']) = (k*)* % SLo(Z),

which is proved in [15, §4.1.1].

The full structure of the automorphism group of the g¢-division ring D is not yet
known; we outline existing results in this area in §2.1.2. Many of these results make
use of techniques originally developed for describing the automorphism group of a

much larger division ring, namely the division ring of Laurent power series
L,=k(y)(x) = {Z ax' i n € Z,a; € k(y), xy = qyx} :
>n

This is a generalization of the ring k,(y)((x)) defined in (1.2.2), where here we allow
coefficients in k((y)) instead of k(y).

A key point when doing computations in L, and its subring k,(y)((z)) is that one can

often specify just the first term in a power series and then construct the rest of the
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coefficients recursively to satisfy a desired property. For example, given an element
g=XMy+ ) gi' € Ly, (2.1.3)
i>1
one may construct a second element f = .. fiz' which g-commutes with it by
expanding out the expression fg—qgf = 0 and solving term-by-term for the coefficients

of f. Indeed, we see that

0=fg—qgf
=> fa' (Ay + Zgja:j> —q ()\y + Zgj:c]) > fat
i>n i>1 j>1 i>n
i1
= Z Mq' — @y fix" + Z (Z fkozk(gi_k)> !, (2.1.4)
i>n i>n+1 \k=n

where « denotes the map y — qy on k((y)).

The coefficient of z™ in (2.1.4) is A(¢" — q)yf,2™, which is zero if and only if n = 1
since ¢ is not a root of unity. Having set n = 1, we may choose f; € k((y)) arbitrarily,
provided it is non-zero. Now by considering the coefficient of ™ for any m > 2 in

(2.1.4) and recalling that n = 1, we can see that

m—1
fuo == f10" (gmt) A (¢ — )y,
k=1

which is uniquely determined by ¢ and the choice of the coefficient f;.

In [3], Alev and Dumas use techniques of this form to describe the automorphism group
of L,. They first show that if # is an automorphism on L, then 6(z) and 6(y) must take
the forms of the elements f and g described in the above discussion [3, Lemme 2.6].
By considering the expansion of the equation 26(y) = yz for some unknown z € L,
they are then able to describe necessary and sufficient conditions for 6 to be an inner

automorphism. This result is recorded in the following lemma.

Lemma 2.1.4. [3, Lemme 2.6] For all 8 € Aut(L,), there ezists some € k* and
two sequences (a;)i>1, (b;)i>1 of elements in k((y)) with a; # 0, such that the image of
0 has the form

0(z) = Zaixi, 0(y) = Py + szl’l (2.1.5)

i>1 i>1

Further, 6 is an inner automorphism if and only if it satisfies the following two con-

ditions:
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1. B =q" for somen € Z;

X

2. there exists some u € k((y))* such that ayo(u) = u.

Alev and Dumas define the set of elementary automorphisms on L, to be those of the

form
{Gay:x = fy)o, y—ay:ac k™, feky) }, (2.1.6)

and observe that the automorphism group of L, is tame in the following theorem.

Theorem 2.1.5. [3, Théoréme 2.7] The automorphism group of L, is generated by

the elementary automorphisms and inner automorphisms, and hence Aut(L,) is tame.

The proof follows from Lemma 2.1.4 by observing that the image of z and y from (2.1.5)
can be transformed using an elementary automorphism to obtain elements satisfying
a1 = 1, § = 1. These elements clearly satisfy the conditions required to be the image
of an inner automorphism, and hence we have constructed the inverse of our original

automorphism as the product of an elementary and an inner automorphism.

We can also easily obtain the same result for the slightly smaller ring k,(y)((z)):

Theorem 2.1.6. Define the set of elementary automorphisms on k,(y)((x)) to be those
of the form

{as:zm= [z, y—ay:a k™, fek(y)}
Then the automorphism group of k,(y)(z)) is generated by elementary and inner au-

tomorphisms, and hence Aut(k,(y)(())) is tame.

We will not prove this here as it will not be used in this thesis. However, it follows
easily from the results in [3] by observing that the proofs for L, up to and including
Théoreme 2.7 make no use of the properties of k((y)) except that it is a field, and hence

work without modification for k,(y)((z)) as well.

2.1.2 The automorphisms of k,(z,y)

One would hope that given our understanding of the automorphism groups of various

subrings and overrings of the g¢-division ring D, the description of Aut(D) would



CHAPTER 2. BACKGROUND MATERIAL 32

follow easily; unfortunately, this is not the case. For example, in Proposition 3.3.5
we will construct an example of a conjugation automorphism on D which satisfies the
conditions of Lemma 2.1.4 but is not an inner automorphism on D: the conjugating
element z is in k,(y)(z))\ D, so the map is inner as an automorphism of k,(y)((x)) but

not as an automorphism of D.

Let X, Y be a pair of g-commuting generators for D. In this section we will outline

the existing results which partially describe the structure of Aut(D).

In [3] Alev and Dumas construct a set of generators for the tame automorphism group
by analogy to the automorphism group of k(z,y), while in [5] Artamonov and Cohn
define a different but possibly more natural set of elementary automorphisms. We will
use the definition from [5] here; in Lemma 3.3.1 we will show that the two definitions

in fact coincide, thus justifying this choice.

Definition 2.1.7. The following automorphisms of D are called elementary:

7: X—X1 Y-y
hy: X—bY)X, Y=Y, bY)ekly)”
hy : X— X, Y —aX)Y, aX)ekX)"

Call an automorphism of D tame if it is in the group generated by the elementary

automorphisms and the inner automorphisms.

In [5], progress is made towards describing the automorphism group Aut(D) in terms
of the elementary automorphisms and certain types of conjugation maps. Since we

will build on this work in §3.3, we give a brief outline of their results here.

Let 0 be a homomorphism from D to itself. As for L, in §2.1.1, Artamonov and Cohn
try to understand 6 by applying elementary transformations and conjugation maps to

the images 6(X) and 0(Y) until they arrive back at the original generators X and Y.

More generally, let f, g be a pair of elements in k,(X,Y’) such that fg = ggf and
identify them with their image in k,(Y")(X)) as follows:

f=anX"+> a;X' g=b X"+ bX".

i>m j>n
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We may assume that a,, and b, are both non-zero. For any r € Z, we have

9" [ = Cnprn X™T™ 4+ [higher terms]

79 =dnirm X" + |higher terms|

where ¢t rn, dnrm € E(Y)*. As described in [5, §3], we may therefore apply a carefully
chosen sequence of elementary transformations to f and g so that at each step the
lowest X-degree of one element in the pair is closer to zero than before, while preserving
the two properties that (i) the pair of elements g-commute, and (ii) they generate the
same ring as the original pair. It is clear that this process must terminate in a finite

number of steps, when the X-degree of one element reaches 0.
Using the fact that our pair of elements still g-commute, [5, Proposition 3.2] shows
that these elements must have the form

F=fX"+) [X', G=\Y"+> gX' (2.1.7)

i>s i>1

where s = +£1, A € k* and f;,¢9;, € k(Y) for all @ > s. In other words, for any
g-commuting pair (f, g) of elements in D, there exists a sequence of elementary trans-
formations that reduces (f,g) to a pair (F,G) of the form (2.1.7). Further, we may

apply two more elementary transformations to ensure that f, and A are both 1.

The next proposition completes the process by showing that we may always construct

an element of k,(y)((z)) that conjugates the pair (F, G) back to (X*,Y*).

Proposition 2.1.8. /5, Proposition 3.3] Let F', G € ky(Y)(X)) be g-commuting ele-
ments of the form (2.1.7), where we may assume without loss of generality that A =1,

fs = 1. Then there exists an element z € k(Y )(X)) defined by

=1 2, =Y 1-¢)"|g.+ Z zio (g;) | forn>1;
0750 (2.1.8)
z = Z 2z X"
i>0
such that
2Fzt = [ X5 2Gzt = \Y*.
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The element z is constructed recursively by solving the equation 2zG = Y?*z for co-

efficients of z, in a similar manner to the process described in 2.1.1. That we must

1 1

also have zFz7' = f,X* in this case is a consequence of the fact that zFz7" must
g-commute with 2Gz~' = A\Y*. The main theorem of [5] (which is stated next) is now

an easy consequence.

Theorem 2.1.9. [5, Theorem 3.5] Let 0 : D — D be a homomorphism. Then there
exists a sequence of elementary automorphisms 1, ..., ¢, an element z € ky(y)(x))

constructed as in Proposition 2.1.8, and € € {0,1} such that

0= p1pa...ppc1TE, (2.1.9)

1 1

where c,—1 denotes conjugation by z~' and T 1 v — x~ 1s the elementary

y Y=y
automorphism defined in Definition 2.1.7.

This is not sufficient on its own to prove that Aut(D) is tame, as it is not clear whether
we must have z € D whenever 6 is an automorphism. Indeed, as we will see in §3.3, it
is possible to construct automorphisms of D in this manner where z € k,(y)(2))\D;
it remains an open question whether automorphisms of this form can be decomposed
further into a product of elementary and inner automorphisms, or whether D admits

wild automorphisms.

2.2 Quantization-deformation

Intuitively, if we set ¢ = 1 in k,(x,y) we recover the commutative field of rational
functions in two variables, and so we would expect the structures of these two rings
to be similar to some extent. This type of example is the motivation for the theory
of deformation-quantization, which seeks to describe this relationship formally. Quan-
tization also has uses in many areas of physics, for example quantum mechanics: a
classical system is often represented as families of smooth functions on a manifold
while a quantum one involves certain non-commuting operators on a Hilbert space,
but the two should be related in the sense that as the deforming parameter ¢ (often
denoted by the Planck constant # in this context) tends to zero, we recover the original

classical system (see, e.g. [54, §4] for more details on this).
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The deformations of a commutative algebra R are closely linked to the possible Poisson
structures that can be defined on R, so we begin in §2.2.1 by defining the notion
of a Poisson algebra and elementary definitions relating to this. In §2.2.2 we define
deformation-quantization formally in terms of star products on power series, and finally

in §2.2.3 we give several examples which will form a recurring theme in future chapters.

2.2.1 Poisson algebras

A Poisson bracket on a k-algebra A is a skew-symmetric bilinear map {-,-} : AxA — A

which satisfies the conditions of a Lie bracket:

{a,a} =0 Vae€ A
{a,{b,c}} +{b,{c,a}} +{c,{a,b}} =0 Va,b,ce A

and also satisfies the Leibniz identity:
{a,bc} = {a,b}c+bla,c} Va,b,ce A. (2.2.1)

Intuitively, (2.2.1) says that {a,-} and {-,b} are derivations of A for any a or b in A.
If A is an associative k-algebra with a Poisson bracket, we call A a Poisson algebra.
Although this definition makes sense for non-commutative algebras, for the purposes

of this thesis we will always assume that our Poisson algebras are commutative.

Many of the standard algebraic concepts and definitions can be extended in a very

natural way to the case of Poisson algebras. We make the following definitions:

Definition 2.2.1. Let A be a Poisson algebra. We call an ideal I C A a Poisson ideal
if it is also closed under the Poisson bracket, that is {I, A} C I. A Poisson ideal [

is called Poisson-prime if whenever J, K are Poisson ideals satisfying JK C [ then

JCITor KClI.

In the case where A is commutative Noetherian and k has characteristic zero, the set
of Poisson-prime ideals coincides with the set of Poisson ideals which are prime in
the standard commutative sense [24, Lemma 1.1]. We may therefore use the terms

“Poisson-prime” and “prime Poisson” interchangeably.
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Given a Poisson algebra A and a Poisson ideal I we may form the quotient A/I, which
by [15, §3.1.1] is again a Poisson algebra. The bracket on A/I is induced from that of
A via the definition

{a+1,b+1}:={a,b}+1. (2.2.2)

Similarly, if A is a commutative domain and S a multiplicatively-closed subset of A,

then the Poisson bracket extends uniquely to the localization AS~! as follows:
{as™ bt} = {a,b}s7 't — {a,t}bs 't — {s,b}as %t + {s,t}abs 2t 2. (2.2.3)

This formula is an easy consequence of the quotient rule for derivatives (see, for ex-

ample, [15, §3.1.1]).

A homomorphism ¢ : A — B is a homomorphism of Poisson algebras if it respects
the Poisson brackets of each structure, i.e. ¢({ai,as}a) = {¢(a1),v(az)}p. Using this
definition it is easy to see that if G is a group of Poisson automorphisms on a Poisson

algebra A, then the fixed ring
A% ={ac A:g(a) =g Vg€ G}

is closed under the Poisson bracket: for a,b € A% we have g({a,b}) = {g(a), g(b)} =

{a,b}. Hence A% is again a Poisson algebra.
We may therefore formulate a Poisson version of Noether’s problem as in [15, §5.5.1]:

Question 2.2.2. If F is a field equipped with a Poisson bracket and G is a finite
group of Poisson automorphisms, under what conditions is there an isomorphism of

Poisson algebras FC = F?

A full answer to this question is not known even in the case of fields of transcendence
degree 2: while Castelnuovo’s theorem (see [15, §5.1.1]) guarantees the existence of
an isomorphism of algebras, the two fields need not have the same Poisson structure
in general. Existing results in this direction are summarised in [16, §3], including the

following example where F and F'¢ have non-isomorphic Poisson structures:

Theorem 2.2.3. [16, §3] Let F' = k(x,y) with the Poisson bracket {y,z} = yx, and
let G be a finite group of Poisson automorphisms defined on the polynomial ring k|x, y]

and extended to F'. Let u and v be a pair of generators for F€, i.e. FE = k(u,v), then
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the Poisson bracket on FC is given by {v,u} = |G|.vu, where |G| denotes the order of

the group G.

By [26, Corollary 5.4], the Poisson algebra F'“ in Theorem 2.2.3 cannot be Poisson-
isomorphic to F' unless |G| = 1. Since (for example) the group generated by the
automorphism = — —z, y — —y is non-trivial and satisfies the conditions of Theo-
rem 2.2.3, it is possible to answer the Poisson-Noether question in the negative even

for fields of transcendence degree 2.

On the other hand, in Chapter 4 we will show that for the field k(z,y) and Poisson

bracket {y,x} = yz there is a Poisson isomorphism k(x,y)¢ = k(z,y) for all finite

groups of Poisson monomial automorphisms on k(zx,y).

2.2.2 Formal deformation

The theory of quantization-deformation can range from the extremely general and
formal formulations (e.g. Kontsevich’s Formality Theorem in [40]) to the informal
notion given in Definition 2.2.6 below, and the notation and terminology can vary
wildly. A common theme, however, is to construct the deformation of a ring R by
defining a new product (the “star product”) on the power series ring R[t], and it is
this approach we describe below. For a more detailed description, see for example [20]
and [22, §7], or for the case where we instead consider a smaller ring R[t] or R[t*!] see

e.g. [15, §3].

Let R be an associative k-algebra, and form the ring of power series R[t] over R in
the central variable ¢. Let

mi:RXR—R, 1>1
be a sequence of bilinear maps, and use these to define a new multiplication on R[]

(the star product) by

a*b=ab+m(a,b)t+m(a,b)t* + m3(a,b)t> +... Va,b€ R
(2.2.4)
axt=(ax1)t
We are interested in defining star products which are associative, or more generally are

associative up to a certain degree. Since R[t] is N-graded we may solve the equality
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a* (bxc) = (ax*b)*c term by term, which at each step will allow us to impose

restrictions on the m; to ensure that the product is associative up to that degree.
Using (2.2.4) to expand out the products a * (b* ¢) and (a * b) * ¢, we see that
ax* (bxc)=ax(bc+ m(b,c)t +ma(b, )t +...)
= abc + m(a, be)t + mo(a, be)t? + . ..
+ami (b, )t + 71 (a, (b, )t + ...
+amy(b, )t + . ..
= abc + (am(b, ¢) + mi(a, bc))t (2.2.5)

+ (@(a, be) + m1(a, m (b, ¢)) + ams(b, c)>t2 T
and similarly,

(axb)*c = abc+ (m(ab, c)+m(a, b)c)t—i— <7r2(ab, ¢)+mi(mi(a,b),c)+m(a, b)c>t2+. .
(2.2.6)

The star product is always associative in degree 0 since our original algebra R was
assumed to be associative. Using (2.2.5) and (2.2.6), we see that the ¢ term in a * (b *

¢) — (a = b) % c is zero if 7 satisfies the following property:
army (b, c) — m(ab, c) + m (a,be) — m(a,b)c = 0. (2.2.7)

In other words, m; must be a 2-cocycle in the Hochschild cohomology of R, which we

define next.

Let A be an associative k-algebra. Define a chain complex by
0— A%, Homy (A, A) N Homy,(A%% A) e, Homy (A%, A) s,

where the maps are defined by

doa(b) = ba — ab,

dnf(ai, ... anp1) = arf(ag, ..., ang1) + Z(_l)if(@b ey Qg Opgr)  (2.2.8)

+ (—1)”+1f(a1, e Q) Qa1
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Definition 2.2.4. The nth Hochschild cohomology of A with coefficients in A is defined
to be
HH"(A) := ker(d,)/im(d,_1),

where the d;, ¢ > 0 are defined as in (2.2.8). (For more details on the Hochschild

cohomology, see for example [22, §5].)

Applying this definition to m; € Homy(R®?, R), we see that
domi(a,b, c) = amy(b, c) — mi(ab, ¢) + m(a, bc) — m(a, b)c,

and hence (2.2.7) is satisfied if and only if m; € ker(ds). In fact, a long but elementary
calculation shows that if two such cocycles differ by a coboundary (i.e. they represent
the same class in HH?(R)) then they define the same star product modulo #? up to
a change of variables (see, for example, [20, §3]). We may therefore view m; as an

element of HH?(R).

Moving on to terms in t2, we see that the star product is associative up to degree 2
if m € HH*(R) and there exists some my € Homy(R®?, R) satisfying the following

equation:
ama(b, ¢) — ma(ab, c) + ma(a, be) — ma(a, b)e = my(m(a,b), c) — m(a, m(b,c)). (2.2.9)

The map defined by the RHS of (2.2.9) (which we will denote by f) is in ker(ds)
whenever m € ker(dy) [20, §2], which is true here by assumption. Rewriting (2.2.9)
as dy(me) = f, we see that a my satisfying this equation exists if and only if f € im(dy)
as well. This says that a map m, making the star product associative up to degree 2

exists if and only if f is zero in HH?*(R).

The third Hochschild cohomology H H?(R) is therefore referred to as the obstruction
to extending the deformation: if it is trivial then there will always exist some 7y
satisfying (2.2.9), but if it is non-zero then it is possible that for certain choices of m
we will have f # 0 in HH3(R). In fact this observation holds more generally as well:
if the star product is associative up to degree n — 1, then whether it will extend to an

associative product in degree n is controlled by the obstruction in HH3(R) [20, §5].

We may also consider the question of when the star product is commutative, or (since

a commutative star product is in some sense the trivial one) how far from commutative
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it is. By applying (2.2.4) to the expression a * b — b x a, we see that
a¥b—bxa=ab—ba+ (m(a,b) —m(b, a)>t + (Wg(a,b) - a)>t2 .

If the original ring R is commutative then the commutator a % b — b * a is in the ideal

tR[t], which allows us to make the following definition.

Definition 2.2.5. [22, §7.1] Suppose that R[t] has a star product as defined in (2.2.4),
and suppose further that R is commutative and 7y is not identically zero on R. Then

we can define a Poisson bracket on R by
1
{a,b} = ;(a xb—Dbxa) mod tR[t]

for all a,b € R.

This Poisson bracket captures a first-order impression of the star product on R[t].
Conversely, we may also start with a commutative Poisson algebra R and define a star

product on R[t] by
a*b=ab+ {a,b}t + m(a,b)t* +... .

Since the equality
a{b,c} —{ab,c} + {a,bc} —{a,b}c=0

follows immediately from the Leibniz identity (2.2.1), a star product defined from a

Poisson bracket in this manner will always be associative to at least degree 1.

This formal definition of deformation is often quite difficult to work with. However,
for certain nice rings and star products it may be that we do not require the whole
power series ring, but can instead construct a k[t] or k[t¥!] algebra B to play the part
of R[t]. One advantage of this approach is that by constructing % as an associative
algebra directly we need not worry about the Hochschild cohomology at all; another
is that we can now form ideals generated by polynomials of the form ¢ — A for certain
A € kX, and hence quotients of the form B /(t—\)B. This allows us to define a slightly
more informal notion of quantization-deformation as follows, based on the convention

in [15, §3.2.1].
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Definition 2.2.6. Let R be a commutative Poisson algebra, and 8 an algebra con-
taining a central, non-invertible, non-zero divisor element h such that B/hB = R as
Poisson algebras (where the bracket on 8B /h% is induced by the commutator in B as
in Definition 2.2.5). If A\ € k* is such that h — A generates a proper, non-zero ideal
in B then we call the algebra Ay := B/(h — \)B a deformation of R. In the other
direction, if S is a subset of £* such that A, is defined for each A € S then we call R

the semi-classical limit of the family of algebras {A, : A € S}.

This definition of deformation turns out to be sufficient for our purposes in this thesis,
and it is this definition we will mean when we consider D as a deformation of a

commutative algebra in Chapter 4.

Remark 2.2.7. It is often the case that certain choices of A in the above definitions
will give rise to degenerate or undesirable deformations; to avoid this, we will always

ensure that the polynomial A — X is invertible in B for those choices of scalar.

2.2.3 Examples

We illustrate Definition 2.2.6 with a few examples, one closely related to the g-division

ring and one concerning quantum matrices.

Example 2.2.8. This example is due to Baudry in [7, §5.4.3].

Let B be the ring defined by
B = k(z™ ™ 2 (22 — 2o, yz — 2y, vy — 2Py7) (2.2.10)

This is clearly a domain, and the element h := 2(1 — z) is central and non-invertible.
For A € kX, A # 2, the quotient B/(h — A\)®B is isomorphic to the quantum torus
kqlz*t, y*!] for ¢ = (1 — $X)% We exclude A = 2 because h — 2 is invertible in B.

When A = 0, the image of z in the quotient B/AB is 1 and we recover the stan-

dard commutative Laurent polynomial ring k[z*!, y*!]. Further, we can compute the

Y

induced Poisson bracket as follows:

1
yr —ay = (1 — 22)yz = 5(1 + 2)hyx (2.2.11)
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and therefore {y,z} = yz mod h®B, since z = 1 when h = 0.
This shows that k,[z*!,y*!] is a deformation of the commutative torus k[z*!, y*!]

with respect to the Poisson bracket {y,z} = yx.

Example 2.2.9. Recall that the ring of quantum 2 x 2 matrices O,(Ms) is given by
the quotient of the free algebra k(Xi1, X12, X1, Xa2) by the six relations

X1 Xy2 — qX12X11, X12X22 — ¢ X22X19,
X11X91 — ¢ X1 X11, Xo1Xo2 — qX22Xo1, (2.2.12)
X12Xo1 — Xo1 X712, X1 Xoy — Xop X1 — (¢ — qfl)Xszl;

for some ¢ € k*. We can observe that when ¢ = 1 we recover the commutative

coordinate ring O(M;), and in [25, Example 2.2(d)] the quantum matrices O, (M) are

viewed as a deformation of O(Ms) as follows.

Let k[t*!] be the Laurent polynomial ring in one variable ¢, and let B be the algebra

in four variables Yiq, Yo, Y51, Yoy over k[til] subject to the same relations as (2.2.12)

but with ¢ replaced by t. Then h := t — 1 is clearly central, non-invertible and a

non-zero-divisor in B, and
B/WB = O(My), B/(h—\B = 0,(M)
for ¢ = 1+ A. This process induces a Poisson bracket on O(M;), which is defined by

{9511, 9512} = T11%12, {1'12, 5622} = T12%22,
{9311, 9321} = T11%21, {13217 11722} = T21%22, <2~2~13)
{I12, IE21} =0, {$11; $22} = 2T12%21.

We will consider algebras with this Poisson structure in more detail in Chapter 5.

2.3 Prime and primitive ideals of quantum algebras

and their semi-classical limits

Let A be an algebra and ¢ an automorphism defined on A. Then ¢ must preserve

the structure of A in certain ways: for example, it must map prime ideals to prime
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ideals and primitives to primitives. Stratification theory, which is due predominantly
to Goodearl and Letzter in the case of quantum algebras [23, 30], seeks to exploit this
observation by using the action of a group H on A to partition spec(A) into more

readily understood strata based on orbits under the action of H.

In this section we set up the definitions and notation required to state the Stratification
Theorem for both quantum algebras and Poisson algebras, and describe how we can
use this result and the Dixmier-Moeglin equivalence to identify and understand the
primitive (respectively Poisson-primitive) ideals in an algebra. In §2.3.1 we describe
the quantum version of these results, and in §2.3.2 we give the corresponding Poisson
formulation. Finally, in §2.3.3 we give several examples of algebras to which these
results can be applied, and discuss a conjecture made by Goodearl on the relationship

between the prime and Poisson-prime ideals of these algebras.

2.3.1 The Stratification Theorem and Dixmier-Moeglin Equiv-

alence for quantum algebras

While much of the following theory has been developed in quite a general setting — for
example, many of the following results make no assumption on the field k except that
it be infinite — we will quickly restrict our attention to a setting relevant to quantum

algebras.
We begin by making some definitions.

Definition 2.3.1. Let A be a k-algebra and H a group acting on A by k-algebra
automorphisms. If a € A is such that h.a = \ya for all h € H (where )\, € £* may
depend on h) then we call a an eigenvector for H. The map f, : H — k* : h+— A\ is
called the eigenvalue of a, and Ay, = {z € A: h.x = f,(h)x} the eigenspace associated

to a.

Definition 2.3.2. Let H be an affine algebraic group over k. A homomorphism
f:+H — k> is called a rational character if f is also a morphism of algebraic varieties.
If H = (k*)" is an algebraic torus acting by k-algebra automorphisms on A and k is
an infinite field, we say H is acting rationally if A is the direct sum of its eigenspaces

with respect to H and all its eigenvalues are rational characters.
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Remark 2.3.3. This definition of rational action is a specific case of a more general
definition; for further details and proof of the equivalence of the two definitions under

the conditions of Definition 2.3.2; see [11, Definition 11.2.6, Theorem I1.2.7].

Following the example of [10, §3], we will restrict our attention to algebras and actions
satisfying the following set of conditions. These conditions embody many of the desired
characteristics of quantum algebras, and hence it makes sense to restrict our attention

to algebras of this form.

Conditions 2.3.4. We will assume the following conditions throughout this section.

e Ais a Noetherian k-algebra, satisfying the non-commutative Nullstellensatz over

k (see Remark 2.3.5);
e [ is an algebraically closed field of characteristic 0;

e H = (k*)" is an algebraic torus acting rationally on A by k-algebra automor-

phisms.

Remark 2.3.5. The precise statement of the non-commutative Nullstellensatz can be
found in [11, Definition I1.7.14]; informally stated, it requires that every prime ideal of
A is an intersection of primitive ideals, and that the endomorphism rings of irreducible
A-modules are all algebraic over k. As the next theorem demonstrates, every quantum
algebra of interest to us satisfies the Nullstellensatz and hence it is not a restrictive

condition to assume in this context.

Theorem 2.3.6. [11, Corollary 11.7.18] The following are all examples of algebras
which satisfy the non-commutative Nullstellensatz over k.
1. kgl[x1, ..., 2] and its localization kq[zi", . .. xtY;

2. Oy(M,), O,(GL,) and Oy(SLy,);

3. Oxp(M,), Orp(GL,), Orp(SLy,), i.e. the multiparameter versions of (2) (see
[11, §1.2]).

Our first aim is to pick out certain ideals which are stable under the action of H, and

use these to break up spec(A) into more manageable pieces.
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Definition 2.3.7. We call an ideal I a H-stable ideal if h(I) = I for all h € H, and
say I is H-prime if whenever J, K are H-stable ideals such that JK C I then J C I

or K C I as well. An algebra is called H-simple if it admits no non-trivial H-primes.

Denote the set of H-primes in A by H-spec(A). It is clear that any H-stable prime
ideal of A will be H-prime; the converse is not true in general but holds under the
assumption of Conditions 2.3.4 [11, Proposition 11.2.9]. We will therefore treat the

concepts of “H-prime” and “H-stable prime” as interchangeable in what follows.

We define the rational character group X (H) to be the set of rational characters of H;
in the case where H = (k*)" this is the free abelian group Z" [11, Exercise I1.2.E]. By
[11, Lemma I1.2.11], rational actions of H on A correspond to gradings of A by X (H),
a fact which is used heavily in the proof of the Stratification Theorem [11, §I1.3]. This
also implies that an ideal I is H-stable with respect to a given H-action if and only
if it is homogeneous with respect to the induced X (H)-grading [11, Exercise 11.2.1], a

fact which we shall make use of in Chapter 5.

The set of H-primes of an algebra may be used to stratify spec(A) as follows. Let J
be a H-stable ideal of A, and define the stratum associated to J by

specy(A) = {] € spec(A) : ﬂ h(I) = J} (2.3.1)
heH

In other words, spec;(A) is the set of prime ideals of A such that J is the largest

H-stable ideal contained in them. It is clear from the definition in (2.3.1) that J must

be a H-prime and that the strata associated to different H-primes will be disjoint, and

so we obtain a stratification of spec(A) by the H-primes as follows:

spec(A) = |_| spec(A).

JeHspec(A)

Similarly, we obtain a stratification of the primitive ideals by defining
primj(A) = spec;(A) N prim(A)

for J € H-spec(A).

We may now state the Stratification Theorem, which gives us a way to understand the

prime ideals in each stratum spec;(A).
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Theorem 2.3.8 (Stratification Theorem). [11, Theorem I1.2.13]

Assume Conditions 2.5.4, and let J € H-spec(A). Then

(i) The set E; of all reqular H-eigenvectors in A/ J is a denominator set in A/J (see
§1.2 for the definition of denominator set), and the localization Ay = A/J [5}1}

is H-simple (with respect to the induced H-action).

(ii) spec;j(A) is homeomorphic to spec(Ay) wia localization and contraction, and

spec(Ay) is homeomorphic to spec(Z(Ay)) via contraction and extension.

(i1i) The centre Z(Ay) is a Laurent polynomial ring in at most r variables over the
fized field Z(A;)" = Z(Fract(A/J))™. The inteterminates can be chosen to be

H-eigenvectors with linearly independent H-eigenvalues.

In [29, §3.2], Goodear]l and Lenagan observe that the denominator set £; can be
replaced with a smaller subset E; without affecting the conclusions of the theorem,
provided Ej; is also a denominator set such that the localization A/J [E;l] is H-
simple. For sufficiently nice algebras (such as those considered in [29]), this allows us to
compute the localizations A/ J [E;l] explicitly by chosing denominator sets generated
by finitely many normal H-eigenvectors. In many cases (see §2.3.3 below) we will also

see that Z(A ;)" = k, in which case spec;(A) is homeomorphic to an affine scheme.

Using the Stratification Theorem we may describe the prime ideals of A up to lo-
calization, but on its own this tells us very little about which primes are primitive.
The Dixmier-Moeglin equivalence, which was formulated originally by Dixmier and
Moeglin in the context of enveloping algebras and extended to quantum algebras by
Goodearl and Letzter in [30], gives us a number of equivalent criteria for a prime ideal
to be primitive: one algebraic criterion, one topological, and one formulated in terms

of H-strata.

Before we can state the Dixmier-Moeglin equivalence for quantum algebras, we require

one more set of definitions.

Definition 2.3.9. Let A be a Noetherian k-algebra. A prime ideal P in A is called
rational if Z(Fract(A/P)) is algebraic over k, where Fract(A/P) denotes the simple
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Artinian Goldie quotient ring of A/P. Meanwhile, we say that P is locally closed if
the singleton { P} is is the intersection of an open set and a closed set in spec(A) with

respect to the Zariski toplogy.

Theorem 2.3.10 (Dixmier-Moeglin Equivalence). [11, Theorem II.8.4]

Apply the assumptions of Conditions 2.5.4, and further assume that H-spec(A) is
finite. Let J be a H-prime, and P € spec;(A). Then the following are equivalent:

(i) P is a primitive ideal of A;
(i1) P s locally closed in A;
(i1i) P is rational in A;

(iv) P is a mazimal element of specs(A).

The final condition of this theorem is of most interest to us: combined with Theo-
rem 2.3.8 above, this says that prim (A) is homeomorphic to the set of maximal ide-

als of a commutative Laurent polynomial ring Z(A;)"[z{, ... aF!

| for some n > 0.
When Z(A;)" = k, this will allow us to describe the elements of prim;(A) explicitly
as the pullbacks to A of ideals of the form (z1 — A\y,..., 2, — A,), where \; € k* for

1< <n.

2.3.2 Stratification of Poisson algebras

Since quantum algebras are often constructed as deformations of commutative coordi-
nate rings, we might expect that the Poisson bracket induced as in Definition 2.2.5 on
the semi-classical limit will give rise to a Poisson ideal structure mirroring the ideal
structure in the quantum algebra. And indeed, it turns out that once we define a
suitable analogue of primitive ideal we can obtain a Poisson version of all the results

described in the previous section, which we will summarise here.

We will assume in this section that k is (as always) a field of characteristic zero and

R is a commutative Poisson algebra.
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Recall from §2.2.1 that we observed “prime Poisson” and “Poisson-prime” ideals were
equivalent notions for a Noetherian algebra in characteristic zero. On the other hand, it
is noted in [37, Definition 1.6] that the maximal Poisson ideals (maximal ideals which
are closed under the Poisson bracket) need not coincide with the Poisson-maximal
ideals (ideals maximal in the set of Poisson ideals). Since primitive ideals in a commu-
tative algebra are precisely the maximal ones, this suggests we should take a different
approach to defining a Poisson analogue of primitive ideals. The following definition

is originally due to Oh [47, Definition 1.2]:

Definition 2.3.11. Let I be an ideal in a commutative Poisson algebra R. Define the
Poisson core of I to be the largest Poisson ideal contained in I; since the sum of two
Poisson ideals is again a Poisson ideal, the Poisson core is uniquely defined. We call

an ideal Poisson primitive if it is the Poisson core of a maximal ideal.

Clearly every maximal Poisson ideal is Poisson primitive, but the set of Poisson-
primitive ideals in R is strictly greater than the set of Poisson-maximal ideals when-
ever R admits a maximal ideal which isn’t a Poisson ideal. By [47, Lemma 1.3], every

Poisson-primitive ideal is Poisson-prime.

We may also define a Poisson equivalent of the centre, namely the Poisson centre
PZ(R):={r e R:{r,s} =0Vs € R}. (2.3.2)

Let H = (k*)" be an algebraic torus acting on a commutative Noetherian Poisson
algebra R by Poisson automorphisms. Then we may make many of the same definitions

and observations for H as we did in the quantum case above:

e We say H acts rationally if R is the direct sum of its eigenspaces and all the

eigenvalues of H are rational, i.e. morphisms of algebraic varieties.

e By replacing “prime” with “Poisson prime” in Definition 2.3.7 we obtain the
notion of Poisson H-prime; if H acts rationally on a commutative Noetherian
Poisson algebra R, then Poisson H-primes are equivalent to Poisson ideals which
are stable under the action of H and prime in the conventional commutative

sense (see [24, Lemma 3.1]).
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e Denote the set of Poisson prime ideals in R by Pspec(R) and the set of Poisson
primitive ideals by PPrim(R), and equip both with the Zariski topology as in
§1.2.

e We call R a Poisson H-simple algebra if it has no non-trivial Poisson H-primes.

As in §2.3.1, we may use the Poisson H-primes to stratify Pspec(R) and PPrim(R)
by making the following definitions: for J € H-Pspec(R), we define

Pspecy(R) = {P € Pspec(R) : ﬂ h(P) = J},
heH

Pprim;(R) = Pspec;(R) N Pprim(R),
so that we obtain partitions of Pspec(R) and Pprim(R) as follows:
Pspec(R) = |_| Pspecy(R), Pprim(R) = |_| Pprim;(R).
JeH Pspec(R) JeHPspec(R)

We may now state the Poisson versions of the Stratification Theorem and Dixmier-

Moeglin equivalence.

Theorem 2.3.12 (Stratification Theorem for Poisson algebras). [24, Theorem 4.2]

Let R be a Noetherian Poisson k-algebra, with H = (k*)" an algebraic torus acting
rationally on R by Poisson automorphisms. Let J be a Poisson H-prime of R, and let

Ey be the set of all reqular H-eigenvectors in R/ J. Then

(i) Pspec;(R) is homeomorphic to Pspec(R ;) via localization and contraction, where

Ry = 1J[e;;
(i) Pspec(Ry) is homeomorphic to spec(PZ(Ry)) via contraction and extension,

(i1i)) PZ(Ry) is a Laurent polynomial ring in at most r indeterminates over the fized
field PZ(R;)" = PZ(Fract(R/J))™. The indeterminates can be chosen to be

H-eigenvectors with Z-linearly independent H-eigenvalues.

As in the quantum version of the Stratification Theorem, we may replace £; by a
subset E; provided the localization £/.J [Ejl] remains Poisson H-simple (a proof of

this is given in §5.3).
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Theorem 2.3.13 (Dixmier-Moeglin equivalence for Poisson algebras). [24, Theo-
rem 4.3/

Let R be an affine Poisson k-algebra, and H = (k*)" acting rationally on R by Poisson
automorphisms. Assume that R has only finitely many Poisson H-primes, and let J

be one of them. For P € Pspec;(R), the following conditions are equivalent:

(1) P is locally closed in Pspec(R);
(i) P is Poisson primitive;
(iii)) PZ(Fract(R/P)) is algebraic over k;

(iv) P is mazimal in Pspec;(R).

As we will see in the next section, for appropriately-chosen pairs of quantum and
Poisson algebras the similarities between the two theories can in fact extend even

further than this.

2.3.3 Examples and a conjecture

We begin this section by defining some specific examples of group actions on quantum

and Poisson algebras which are covered by the framework of §2.3.1 and §2.3.2.

Let O4(k™) = kqlz1,...,2,] be the quantum affine space defined in §1.2. Then we
may define an action of H = (k*)" on Oq(k"™) by

h=(o,...,0n) €EH, hax; = ;. (2.3.3)
On O,(M,) we may define an action of H = (k*)*" by
h = (041, vy Oy, 51, R 7671,) - H, hXZJ = Oéiﬁinj. (234)

It is clear from the definition of the quantum determinant in (1.2.4) that Det, is an
eigenvector for this action, and hence (2.3.4) extends uniquely to an action on O,(GL,,)

as well [11, I1.1.15]. The action (2.3.4) does not descend immediately to an action on
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O,(SL,), however, since Det, — 1 is not an eigenvector. Instead, we define an action

of the subgroup
H ={(ar,...,c0,B1,...,0.) € (k)" cqay...3, =1}
on O,(SL,) in the natural way, by defining
h=(ar,...,on01,...,00) €EH', hXij = aif3;X;

as before, where X;; now denotes generators in O,(SL,). By [11, IL.1.16], H’ is

isomorphic to the torus (k*)*1.

There are of course many more quantum algebras than the four types considered
here, including multiparameter versions of each of the above algebras, and these are
discussed further in [11]. We now focus in more detail on the properties of the above

algebras and their H-actions.

Let A denote any one of the algebras Oq(k"), O,4(M,,), O,(GL,) and O,(SL,,), and let
‘H be the corresponding algebraic torus acting on A as defined above. Then A satisfies

a number of useful properties:

e A is Noetherian and satisfies the non-commutative Nullstellensatz over k [11,

Corollary 11.7.18];

The action of H defined above is a rational action on A [11, I1.2.12];

A has finitely many H-primes [11, Theorem I11.5.14, I1.5.17];

All prime ideals of A are completely prime [11, Corollary 11.6.10];

Z(Aj)" =k for any J € H-spec(A) [11, Corollary 11.6.5, 11.6.6].

These algebras are therefore covered by the framework of the Stratification Theorem

and Dixmier-Moeglin equivalence outlined in §2.3.1.

We may also consider the semi-classical limits of these algebras. The semi-classical
limit of kq[z1, ..., x,] is the polynomial ring in n variables, which we denote by O(k").

It has a Poisson bracket given by

{mi, 25} = aijoim;,
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where a;; is the (i, j)th entry of the matrix q. Moreover the action of H = (k*)" on

Ogqlz1, ..., x,] defined in (2.3.3) induces an action of H by Poisson automorphisms on

Ok [26, §2.2].

The semi-classical limit of O,(M,,) is O(M,,), which is isomorphic to the polynomial
ring on the n? variables {z;; : 1 < 4,5 < n}. The Poisson bracket induced on O(M,,) by
this process satisfies the property that for any set of four variables {z;;, Tim, Tij, Tim },
the subalgebra of O(M,,) generated by them is Poisson-isomorphic to O(Ms) (as de-
fined in (2.2.13)). By [26, §2.3], the action of H = (k*)?" defined in (2.3.4) induces an

action of H by Poisson automorphisms on O(M,,).

Finally, since the Poisson bracket on O(M,,) induces a unique Poisson bracket on
a localization or quotient as described in §2.2.1, we obtain the semi-classical lim-
its O(GL,) and O(SL,) as the localization O(GL,) = O(M,)[Det™!] (where the
determinant Det may be obtained by setting ¢ = 1 in (1.2.4)) and the quotient
O(SL,) = O(M,)/({Det — 1). The actions of algebraic tori on O,(GL,,) and O,(SL,,)
defined above induce actions by Poisson automorphisms on O(GL,,) and O(SL,,).

Example 2.3.14. Let H = (k*)* act rationally on O,(GLy) by k-algebra automor-
phisms as defined in (2.3.4), and let J be a H-prime ideal in O,(GLs). If X;; € J or
Xoo € J, then since X173 Xos — X909 X171 = (¢ — ¢71) X12X5; we have X5 Xo; € J as well;
as noted above, all prime ideals of O,(GLz) are completely prime and hence X, € J or
Xo1 € J. Similarly, if for example (X1, X12) C J then Det, = X171 X9 — ¢ X12Xo01 € J
and so J = O,(GLs). Continuing in this manner (for details, see [11, Example 11.2.14])

we find that O,(GL2) admits only four H-primes, namely:
07 <X12>7 <X21>7 <X127X21>'

Meanwhile, let H = (k*)* act on O(GLy) by Poisson automorphisms as described
above. Since {11, T2} = 221229, a similar line of reasoning to the above yields

precisely four Poisson H-primes in O(GLy):

0, (w12), (x21), (T12,721).

Goodearl observes in [25, §9.8] that with a bit more work we in fact obtain a homeomor-
phism from spec(O,(GLs)) to Pspec(O(GLy)), which restricts to a homeomorphism

of primitive/Poisson-primitive ideals as well.
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In [25], Goodearl makes the following conjecture:

Conjecture 2.3.15. [25, Conjecture 9.1] Let k be an algebraically closed field of char-
acteristic zero, and A a generic quantized coordinate ring of an affine variety V- over
k. Then A should be a member of a flat family of k-algebras with semiclassical limit

O(V), and there should be compatible homeomorphisms prim(A) — P.prim(O(V))
and spec(A) — P.spec(O(V)).

This conjecture has so far only been verified for a few algebras, foremost among them
the quantum affine spaces kq[z1, . . ., 7, and similar spaces [31]. For quantum matrices,
the conjecture can be verified by direct computation for O,(GLs) (as in Example 2.3.14
above) and O,(SLsy) (e.g. [34]); meanwhile, in [47, Theorem 2.12] Oh constructs an
explicit bijection between spec(O,(Ms)) and Pspec(O(Ms)) but does not verify that
it is a homeomorphism. A general technique to handle n x n matrices has not yet been

discovered.

In [28], Goodearl and Lenagan describe generating sets for the 230 H-primes of O,(M3),
of which 36 continue to be H-primes in O,(GL3) and O,(SLs) [28, §3]. In [29], they
build on this to give explicit generators for all of the primitive ideals in O, (GL3) and
O,(SL3); further, these generating sets are described in the algebra itself rather than

generators in some localization.

In Chapter 5 we perform a similar analysis to [29] for the Poisson algebras O(GLs)
and O(SL3), thus laying the groundwork for verifying Conjecture 2.3.15 in these cases

in the future.



Chapter 3

The ¢-Division Ring: Fixed Rings

and Automorphism Group

As described in Chapter 1, the ¢-division ring D = k,(z,y) features in Artin’s conjec-
tured classification of finitely-generated division rings of transcendence degree 2, and
hence so do subrings of finite index within D. One way of constructing such subrings is
to consider fixed rings of D under finite groups of automorphisms, and in this chapter
we describe the structure of many rings of this type: in §3.1 we consider the fixed
ring of an automorphism of order 2 which does not restrict to an automorphism of
k (2%, y*!], and in §3.2 we describe the fixed rings under finite groups of monomial

automorphisms.

While the fixed ring D™ for 7 : z — a1, y — y~! was originally described in [52,
Example 13.6] using techniques from non-commutative algebraic geometry, we take
a more ring-theoretic approach and construct pairs of ¢g-commuting generators for
each of the fixed rings under consideration. This approach is possible since we can
reduce the question to three specific cases: the automorphism 7 above, a monomial
automorphism of order 3 and a non-monomial automorphism of order 2 defined in
(3.1.1) below. In each case we will describe an explicit isomorphism between D and

its fixed ring.

The study of these fixed rings leads naturally on to an examination of the automor-

phisms and endomorphisms of D, since both involve looking for g-commuting pairs of

54
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elements satisfying certain properties. In §3.3 we show that the structure of Aut(D)
is far from easy to understand: indeed, as we show in Proposition 3.3.7 we can no
longer rely on conjugation maps to necessarily even be bijective! We also construct
examples of conjugation automorphisms on D by elements z € k,(y)(x))\D (see Propo-
sition 3.3.5 and Proposition 3.3.9), thus raising the possibility that D may admit wild

automorphisms.

These examples of conjugation maps were constructed in order to answer several open
questions posed by Artamonov and Cohn in [5] concerning the structure of Aut(D);
in particular, we show that their conjectured set of generators for the automorphism
group in fact generate the whole endomorphism group End(D). These results indicate
that the structure of Aut(D) is an interesting question to study in its own right, and

we list a number of new open questions arising from the results of this chapter in §3.4.

Excluding Proposition 3.2.2 and Lemma 3.3.1, this chapter has also appeared in the
Journal of Algebra as The g-Division Ring and its Fized Rings; see [19]. As per Global
Convention 1, we continue to assume that k& has characteristic zero and ¢ € k> is not

a root of unity.

3.1 An automorphism of k,(x,y) and its fixed ring

In Theorem 1.3.1 we saw that for finite groups of automorphisms G defined on the
quantum plane k,[z,y] and extended to D, the fixed ring DY is isomorphic to k,(x, )
for p = ¢!¢!, while for the automorphism 7 above the fixed ring D7 is isomorphic to D
with the same value of ¢ (Theorem 1.3.2). This suggests that the structure of the fixed
ring may be related to which subrings of D the automorphisms can be restricted to,
and raises the natural question: can we define an automorphism of finite order on D
il]

which does not restrict to an automorphism of k,[z*!, y*!], and what is the structure

of its fixed ring?

This section provides the answer to this question for one such automorphism of D,

which is defined as follows:

QT (y_l — q_ly)x_l, Y= —y_l. (3.1.1)
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Since x only appears once in the image, it is easy to see that these images g-commute

and so this is a homomorphism. We can also easily check that it has order 2, since

0 (x) = w((y‘l — q‘ly)x‘1>

=(—y+q 'y Ny —q 'y

and it is therefore an automorphism on D. The aim of this section is to prove the

following result.

Theorem 3.1.1. Let G be the group generated by . Then D% = D as k-algebras.

Before tackling the proof of this theorem, we will need some subsidiary results.

Recall that the algebra generated by two elements u, v subject to the relation uv —
quu = X (for some A € k*) is called the quantum Weyl algebra. This ring also has a full
ring of fractions, which can be seen to be equal to D by sending u to the commutator

uv — vu [2, Proposition 3.2].

We will construct a pair of elements in D¢ which satisfy a quantum Weyl relation and
show that they generate the fixed ring. A simple change of variables then yields the

desired isomorphism.

In order to simplify the notation, set A =y~ — ¢~ 'y. Inspired by [53] and [52, §13.6],

we define our generators using a few simple building blocks. We set

a=x— Az, b:y—i-y*l, c:xy+Ax*1y*1
(3.1.2)

and verify that h and ¢ satisfy the required properties.
Lemma 3.1.2. The elements h and g are fized by ¢ and satisfy the relation
hg —qgh =1—gq.

Proof. The first statement is trivial, since ¢ acts on a, b and ¢ as multiplication by

—1.
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After multiplying through by b, we see that the equality hg — qgh = 1 — ¢ is equivalent
to
ab~'c —qeb'a = (1 —q)b
which allows us to verify it by direct computation. Indeed,
ab~'e=(z—Ax Ny +y ) ay+ AxTly

= ((qy +q 'y ) e =AY+ qy‘l)‘laf‘1> (zy + Az~ 'y ™)

(3.1.3)
=¢ylqy+q 'y ) +aN)(gy+q y )y
—Ag 'y +qu )y =Py AaT (M) (g Ty gy ) e
geb~ta = q(ay + Ao~y )y +y~) e — AT
q<qy qy+q 'y ) e+ Ay gy ayh) 1:5*1) (z—Az™")
(3.1.4)
2

=¢ylqy+q 'y )" — Pya(N)(qy+q 'y )]
+ Ay gy ey )T =Py AT (M) (g y gy ) e

Putting these together, we see that the terms in 22 and z~2 cancel out, leaving us with

able—qebla=a(N)(qgy+q 'y )y + ¢Py)

— Mgy +ay ) Ny + Py
=a(A)g —Aq
=@y =y - —q Y
=1 —qb O

Let R be the division ring generated by h and g; it is a subring of D, and the next
step is to show that these two rings are actually equal. We can do this by checking
that [D : R] = 2, since R C DY C D will then imply R = D¢.

Lemma 3.1.3. (i) The following elements are all in R:
e+ Azt y—y Tl ay— Ay
(ii) Letb=1y+y~ ' asin (3.1.2). Then v*> € R and R(b) = D.

Proof. (i) We begin by proving directly that y — y~' € R, as the others will follow

easily from this. Indeed, we will show that

y—y ' =(hg—1)"(q9* — h?).
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Using the definitions in (3.1.2) this is equivalent to checking that

(ab'c—b)(y—y ') =qcb'c—abta. (3.1.5)
Expanding out the components on the right in (3.1.5), we get

geb e =qlzy+ Az ly )y +y ") ey + AaTly T
= (q2y(qy +q 'y ) e+ Py A gy + q’ly)’lfl) (zy + Az 'y ™)
=gy +q 'y ) yrPy + CaN)(qy+ ¢ty

+ PN gy a7 y) T AT (A) gy g y) Ty ey

Ar Yy +y )z — Az

(v —
< qy+qly ) e — Ay + qy‘l)‘lfv_1> (z — Az™)
q

gy +q 'y ) yry T —aM)(qy+q 'y
Mg y+qu )T H PN (A (Tl ) Ty ey

so that the difference gcb~'c — ab™'a is

geb le—abla=ylqy + ¢y ) Py —y )
— @A Ny ey gy e Py -y (3.1.6)

+(+1) (a(/\)(qy +qly )T Mgy + q*ly)*l)

Meanwhile, using the expression for ab™'c obtained in (3.1.3), we find that

(able=0)(y—y™') =
Cylay +a 'y )y —y)
— A Ny gy ey ) e Py -y
+ (a(A)(qy +q Yy )Ty =AMy ey Ty -y - y‘l) (y—y"
(3.1.7)
Comparing the expressions in (3.1.6) and (3.1.7) it is immediately clear that the terms
involving 2% and 22 are equal. This leaves just the terms involving only powers of y
to check; each of these are elements of k(y) and therefore commutative, so it is now a

simple computation to check that both expressions reduce to the form

I+q)y—y Ny+y Na+q)
(v+aqty gyt +aly)
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Thus (ab~tc—b)(y —y~1) = qcb~'c—ab~ta as required. This proves that y —y~! € R.
Inside D we can notice that

y ' thtglg=(w+y ) (v - ArT) + g (y + ATy )

=y+y ) (vl —Ay e oy + Ay la!
( ) (3.1.8)

=W+y ) 'y e

= X.

and so Az = o(y'h + ¢ 'g) = ¢'g — yh. Putting these together we get
r+Ar =y —yh+2'geR

and similarly,

vy — Aty ' =2¢h+ (y—y g €R.

(i) It’s clear that b=y +y~! € R since R is a subring of D¥ and b is not fixed by ¢.
However, (y +y71)? = (y —y~1)? + 4, hence b* € R by (i).

To prove that R(b) = D it is enough to show that x,y € R(b). This is now clear,
however, since y = 3(y—y )+ 2(y+y ') € R(b), hence by (3.1.8), z =y *h+q 'g €
R(b) as well. O

Since we are working with fixed rings, the language of Galois theory is a natural choice
to use here, and in [13, §3.6] we find conditions for a quotient of a general Ore extension
R[u;~,0]/(u? + M+ ) to be a quadratic division ring extension of R. (Note that the
language of [13] is that of right Ore extensions, so we make the necessary adjustments

below to apply the results to left extensions.)

When char k& # 2, such an extension will be Galois if and only if ¢ is inner [13,
Theorem 3.6.4(i)] so here it is sufficient to only consider the case when 6 = 0. Further,
since b*> € R by Lemma 3.1.3 (ii), we see that b satisfies a quadratic equation over R

with A = 0, which allows us to simplify matters even further.

The next result is a special case of [13, Theorem 3.6.1], which by the above discussion

is sufficient for our purposes.
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Proposition 3.1.4. Let K be a division ring, v an endomorphism on K and y € K*.
The ring T := Ku;~]/(u? + p) is a quadratic division ring extension of K if and only

if T has no zero-divisors and p, v satisfy the following two conditions:
1. pur =~*r)u for allr € K;
2. () = p.

Proof. By [13, Theorem 3.6.1] and replacing right Ore extensions with left, the ring
Klu;v,6]/(u* + Au + ) is a quadratic division ring extension of K if and only if it

contains no zero divisors and 7, J, A and p satisfy the equalities

¥o(r) +8y(r) = ¥ (r)A = My(r),
0%(r) + Ad(r) = 7*(r)u — pr,
0(A) = p =) = A =7(A)A,
() = (A =v(N)n.
Once we impose the conditions § = 0, A = 0 the result follows immediately. O]
Viewing R as a subring of D, we can set u = b, u = —b*. The following choice of v is

suggested by [53].

Lemma 3.1.5. Let b, h and g be as defined in (3.1.2), and R the division ring gener-
ated by h and g inside D. Then the conjugation map defined by

y(r)=brb~" VreR
1 a well-defined automorphism on R.

Proof. Tt is sufficient to check that the images of the generators of R under v and v~!

are themselves in R, i.e. that

v(h) = (ab)b~? Y(g) = (cb)b?
v~ (h) = b7*(ab) v (g) = b *(ch)

are all in R.
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By Lemma 3.1.3 (ii) we already know that b? € R. As for ab and cb, they decompose

into elements of R as follows:

ab = (z — Az~ (y + )
=zy+ay b — Ay — Az ly !
=20y~ A7y ) — (e + A7)y -y ) ER
(3.1.9)
cb=(xy+ Ay )y +y )
=xy’ +a+Ar' + Ar Tty
=(@y—Ar'y Hy—y ) +20x+Az)eER
by Lemma 3.1.3 (i). Therefore ~ is a well-defined bijection on R, and since conjugation

respects the relation hg — ggh = 1 — ¢, it is an automorphism on R. O

We are now in a position to prove Theorem 3.1.1.

Recall that R C D is a division ring with generators h and ¢, which satisfy a quantum
Weyl relation hg—qgh = 1—¢q. We can make a change of variables h +— 1%q(hg—gh) SO
that R has the structure of a ¢-division ring [2, Proposition 3.2]. (The only exception
is when ¢ = 1, where this change of variables does not make sense; however, since h

and g already “g-commute” in this case we can simply set f := h.)

Define the automorphism v as in Lemma 3.1.5 and set y := —0*> € R. The extension
L := R[b;7]/(b* + p) is a subring of the division ring D, and therefore has no zero

divisors. Further,
V()= —Prb )b = —b*r=pur VreR

and similarly v(p) = p. Therefore by Proposition 3.1.4, L is a quadratic division ring
extension of R. Since it is a subring of D containing both R and b, by Lemma 3.1.3

(ii) we can conclude that L = D.

Now since R C D% C D = L, and the extension R C L has degree 2, we must have
R = D¢ and Theorem 3.1.1 is proved.
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3.2 Fixed rings of monomial automorphisms

Theorem 3.1.1 came about as a result of a related question, namely: if we take an
automorphism of finite order defined on k,[z*!, y*!| and extend it to D, what does its

fixed ring look like?

As discussed in [15, §4.1.1], the automorphism group of k,[z*!, y*!] is generated by
automorphisms of scalar multiplication and the monomial automorphisms (see Defi-
nition 3.2.3 below). Since the case of scalar multiplication has been covered in Theo-
rem 1.3.1, in this section we will focus on monomial automorphisms with the aim of

proving Theorem 1.3.3.

For the remainder of this section we will assume that k contains a square root of g,
denoted by ¢. The following result appeared originally in [7, §5.4.2] for the case of
k,[z*!, y*1]; since we have exchanged the roles of x and y and extended the result to

D we provide a full proof of the result here.

Notation 3.2.1. In order to make the computations more readable in the following

proposition, we define the notation

~m

exp; [m] == q™.
Proposition 3.2.2. The group SLs(Z) acts by algebra automorphisms on the q-
division ring D. The action is defined by

9.y = expg[ac) y*z¢, g.x = expq [bd] y't, g = € SLy(Z), (3.2.1)

or more generally for any m,n € Z:

g.(y™a™) = expg [(am + bn)(cm + dn) — mn] y*m e, (3.2.2)

Proof. Let g,¢" € SLy(Z), which we write as follows:
g= , 9=
The following equality will be useful for computations.
. ada+bec db+bd

gg= : (3.2.3)
ac +d'c db+dd
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In order to show that SLy(Z) acts by algebra automorphisms on D, we need to check
that

1. g.(xzy — qyx) =0 in D, so g is an algebra automorphism on D;
2. ¢.(g.x)=(g'g).x and ¢'.(9.x) = (¢'g).y in D.
The first equality can be verified by direct computation as follows:
g.(xy — quz) = expq [bd] y*x exp; [ac] y*a¢ — exp; [2] exp; [ac] y atexp; [bd) 3Pt
= exp; [ac + bd] <equ [2ad] y* TPt — expy [2 + 2cb] y“+b:17€+d)
=0
since ad = bc + 1.
It will be useful to verify (3.2.2) before tackling condition (2) above. Indeed,

g.(y"z") = (exp; [ac ya©)™ (exp; [bd)] y'z)"
= exp; [acm + bdn] expg [2acm(m — 1) /2] y ™z expg [2bdn(n — 1) /2] y* ™"

am+bnxcm+dn

= expg [acm2 + bdn?® + 20bmn} Y
(3.2.4)

Recalling that ad — bc = 1, we can observe that
acm? + bdn® + 2cbmn = (am + bn)(cm + dn) — mn
Substituting this into (3.2.4), we obtain the equality (3.2.2).

This simplifies the computations involved in (2) considerably: using (3.2.2) and (3.2.3)

we can now see that

g'-(g.2) = ¢'.(expq [bd] y'x?) = exp; [bd] expy [(a'b+ V'd) (b + d'd) — bd] y* TV x4,

(g'9).x = exp; [(a'b+ Vd)(Cb+ d'd)] y* o+t dgebrdd

and

g .(gy) = g’(equ lac] y“mc) = expg [ac] exp; [(d'a+ b'c)(da+ d'¢) — ac] y“/“+b/cx0/a+d/c

I

(g/g)y = eTPg [(a’a + b/C) (CLC/ —+ d’c)] ya’aer’cl,ac’er/c.

From this we can conclude that ¢'.(¢9.z) = (¢'g).z and ¢'.(9.x) = (¢'g).y, and hence
that the definition in (3.2.1) does indeed define an action of SLy(Z) on D. O
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Using this result, we may refine the definition of a monomial automorphism given in

§2.1.1 as follows:

Definition 3.2.3. We call an automorphism of k,[z*!,y*'] or D a monomial auto-

morphism if it is defined by an element of SLo(Z) as in (3.2.1).

It is well known that up to conjugation, SLy(Z) has only four non-trivial finite sub-
groups: the cyclic groups of orders 2, 3, 4 and 6 (see, for example, [43, §1.10.1]).
Table 3.1 lists conjugacy class representatives for each of these groups, and we will use

the same symbols to refer to both these automorphisms and their extensions to D.

Order Automorphism
2 T x—a oy oyt
3 o: xy, Yy qy et
4 p: =yl yr—a
6 |n: x—y Yy gy

Table 3.1: Conjugacy class representatives of finite order monomial automorphisms
on k,[x®! y*1].

As noted in [8, §1.3], it is sufficient to consider the fixed rings for one representative
of each conjugacy class. We will therefore approach Theorem 1.3.3 by examining the

fixed rings of D under each of the automorphisms in Table 3.1 in turn.

By Theorem 1.3.2, we already know that D™ = D. This is proved by methods from
noncommutative algebraic geometry in [52, §13.6], but the authors also provide a pair

of g-commuting generators for D7, namely

u=(@—a Ny ' -y, v=@-ay Oy -y " (3.2.5)

We can use this and Theorem 3.1.1 to check that the fixed ring of D under an order

4 monomial automorphism is again isomorphic to D.

Theorem 3.2.4. Let p be the order 4 automorphism on D defined by
prry T,y

Then D? = D as k-algebras.
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Proof. We can first notice that p? = 7, so the fixed ring D is a subring of D7. By [52,
§13.6], D™ = ky(u,v) with u,v as in (3.2.5), so it is sufficient to consider the action of
p on u and v. By direct computation, we find that

-1 _ -1

pu) =y —y)la™ —2)" =—-u"

-1 1

p) =(y 'z —yr )@ —2)" = (u! = qujo”
i.e. pacts as ¢ from (3.1.1) on k,-1(v,u), which by Theorem 1.3.1 is isomorphic to

ky(u,v). Now by Theorem 3.1.1, D? = D¥ = D, O

We now turn our attention to the fixed ring of D under the order 3 automorphism
o defined in Table 3.1, where matters become significantly more complicated. At-
tempting to construct generators by direct analogy to the previous cases fails, and
computations become far more difficult as both = and y appear in the denominator
of any potential generator. While the same theorem can be proved for this case, our

chosen generators are unfortunately quite unintuitive.

For the following results, we will assume that k contains a primitive third root of unity,
denoted w. As with Theorem 3.1.1, we define certain elements which are fixed by o or
are acted upon as multiplication by a power of w. We set

a=1z+wy+wqyte?

b=a2"'+wy !t + Py
c=y 'z +wiPyie + WPy 2
(3.2.6)

O =x+y+qy ta?

=2 +y ' + Gy
03 — y—lx +q3y2x + Cij—lx—Q
The elements 61, 6 and 03 are fixed by o, while o acts on a, b and ¢ as multiplication

by w?. We can further define

-1
g=a b
(3.2.7)
f=0—whg+ (W —w)q (W' +q% )
Proposition 3.2.5. Let k be a field of characteristic 0 that contains a primitive third

root of unity w and a square root of q, denoted by q. The elements f and g in (3.2.7)
are fixed by o and satisfy fg = qqf.
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2

Proof. As always the first statement is clear: ¢ acts on a and b by w* and therefore

fixes g, and since 6, and 0, are already fixed by o we can now see that o(f) = f.

To verify the second statement, we need to understand how ¢ interacts with #; and

fy. Simple multiplication of polynomials yields the identities

a91 = 91@ + (w - w2)((j - qA71>b
&92 = ngega + ((_?_2 - sz)c
01b = ¢*b01 + w(G* — ¢°)c

Oab = by + (W* —w)(G— G Na

and hence

A—

g6y = G019 — ¢ w(GP = ¢P)a e — (w—w?)3 (G- 7 )g

g0y = G209 — (W —w)(G— G ") — ¢G> —¢%)a"cg
since g = a~'b.

Now by direct computation, we find that

Q*gf = G2g02 — w9019 + (W — w)G(wg® + ¢*)
2 —(

=bhg — (W —w)(@—47)¢" — (= ¢*)a""eg

— g’ + (7= ¢)aeg+ WP w—w?)(G— ¢ )g’
+ (W — w)§(w’e® + ¢%)
=g — w 019" + (W —w)§ " (Wg’ + )

=fyg O
Theorem 3.2.6. Let k, f and g be as in Proposition 3.2.5. Then the division ring

ky(f,g) generated by f and g over k is equal to the fired ring D, and hence D7 = D

as k-algebras.

Proof. We claim that it suffices to prove k,[a*!,y*']7 C k,(f, g). Indeed, k,[z*!, y*!]
is a Noetherian domain, and therefore both left and right Ore, while (o) is a finite

group. We can therefore apply [18, Theorem 1] to see that

Q(k’q[ﬂfil,yil}g) — D
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where Q(R) denotes the full ring of fractions of a ring R. Hence if k,[z%,y*1]7 C
ky(f,g), we see that

Qkg[z™, y™)%) C ky(f,9) € D = ky(f.g) = D°.

We will show that k,[z%!, y*']7 is generated as an algebra by the elements 6;, 6, and

65 from (3.2.6), and then check that these three elements are in k,(f, g).

By [8, Théoreme 2.1], k,[z*!, y*'] is generated as a Lie algebra with respect to the

commutation bracket by seven elements:

Rop=1, Rig=xz+y+qgy 'z", Ri=z"+y "+ gy,
R172 _ y—ll,_{_ qASyZI, + qSy—laj—Z’ R173 _ y—le —i—qASyS.I + qASy_QZ'_S,
Ry = r? y2 + c]4y_2x_2, Rso = x4 y3 + (jgy_?’x_?’.
and so it is also generated as a k-algebra by these elements. R;o, R;; and R4 are

precisely the aforementioned elements 6y, 65 and 3, and it is a simple computation to

verify that R; 3, Ro and Rs are in the algebra generated by these three.

It is clear from the definition of f that once we have found either 6, or 0y in k,(f, g)

we get the other one for free, and we can also observe that
0105 — %0201 = (G° — ¢°)05 — 3¢ + 3 € ko( [, 9)

so 03 € k,(f, g) follows from 60y, 6 € k,(f, g). Unfortunately there seems to be no easy
way to make the first step, i.e. verify that either 6; or 6 is in k,(f, g).

In fact, the element 6; can be written in terms of f and g as in the following equality;
this is the result of a long and tedious calculation, and was verified using the computer
algebra system Magma (v2.18) and the methods described in Appendix A. We find
that

b= (w—w’) g+ (Wit wi g+ G+ g
=) (0% + (@) + )

Therefore 6, € k,(f, g), and the result now follows. O
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Remark 3.2.7. By analogy to the pairs of generators in (3.2.5) and Theorem 3.1.1,
we might hope to find similarly intuitive generators for D?. Having set g := a~'b as
in the proof above, computation in Magma shows that there does exist a left fraction
f" € D7 such that f'g = qgf’; unfortunately, f’ takes 9 pages to write down. In
the interest of brevity, we chose to use here the less intuitive f defined in (3.2.7); the

original f’ can be found in Appendix A.3.

In a similar manner to Theorem 3.2.4, we can now describe the one remaining fixed
ring D" using our knowledge of the fixed rings with respect to monomial maps of order

2 and 3.

Theorem 3.2.8. Letn be the order 6 map defined in Table 3.1, and suppose k contains
a primitive third root of unity and both a second and third root of q. Then D" = D as
k-algebras.

Proof. We first note that 7 = 7, so D7 = (D7)". Take u,v in (3.2.5) as our generators

of D7, and now we can observe that the action of n on u and v is as follows:

n(u) =y —y) (@ ey = gya) !
=—qy " —y)(zy—ay )"
= —qA’Uil

1

n(w) = (qy 'yz — ¢y Yy (G Ty = qya) !

= —qlz —z ) (ay -2ty
= —vlu

1

Let p = ¢/¢q~!. By making a change of variables u; = —p~'¢"'u, v; = pv in D™ =

ky(u,v), we see that n acts on D" as

n(w) = v, nv) = ¢ vyt

This is a monomial map of order 3 and so its fixed ring is isomorphic to D7, as noted
in [8, §1.3]. Now by Theorem 3.2.6 and Theorem 1.3.2, D" = (D7)" = (D7)? = D7 =
D. ]

Theorem 3.2.9. Let k be a field of characteristic zero, containing a primitive third
root of unity w and both a second and a third root of q. If G is a finite group of

monomial automorphisms of D then D¢ = D as k-algebras.
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Proof. Theorems 3.2.4, 3.2.6, 3.2.8 and [52, §13.6]. ]

Finally, by combining Theorem 3.1.1 and Theorem 3.2.9, we obtain Theorem 1.3.3 as
promised in Chapter 1.

3.3 Consequences for the automorphism group of

D

The construction of g-commuting pairs of elements is closely linked to questions about
the automorphisms and endomorphisms of the ¢-division ring: such maps are defined
precisely by where they send the two generators of D, and naturally these images must
g-commute. Despite similarities to the commutative field k(x,y) a full description of
the automorphism group Aut(D) remains unknown, with a major stumbling block

being understanding the role played by conjugation maps.

Intuition suggests that “inner automorphism” and “conjugation” should be synony-
mous; certainly all conjugation maps should be bijective, at the very least. Here we
challenge this intuition by showing that the conjugation maps described in Proposi-
tion 2.1.8 not only gives rise to conjugations which are not inner, but also conjugation
maps which are well-defined endomorphisms (not automorphisms) on D. This provides
answers to several of the questions posed at the end of [5] (outlined in Questions 3.3.2

below), while also raising several new ones.

Let X and Y be a pair of g-commuting generators for D, or a pair of commutative
generators for k(z,y), as appropriate. We continue to assume that ¢ is not a root of

unity.

The first question that must be answered when considering the automorphism group
of D is how to define the subgroup of tame automorphisms. As noted in §2.1.2, this is
approached in different ways by Alev and Dumas in [3] and Artamonov and Cohn in
[5]; our initial aim is to show that these two approaches in fact define the same group

of automorphisms.



CHAPTER 3. THE ¢-DIVISION RING 70

Alev and Dumas proceed by analogy to the commutative case k(X,Y’), where the

automorphism group is known to be generated by the fractional linear transformations:

a B v
aX +08Y +~ X +0Y ++
Xty T ax gy O |9 8| € PGk
a// /6// ,.}///
(3.3.1)
and triangular automorphisms which preserve the embedding k(Y') C k(X,Y):
X a(Y)X—I—b(Y)7 _ aY + 0
c(Y)X +d(Y) Y 40
aY) b(Y) o 3 (3.3.2)
€ PGLy(k(Y)), € PGLy(k).
c(Y) d(Y) )

If we try to view these as maps on D instead, the images of X and Y face the additional
restriction of being required to g-commute; as demonstrated in [3, Propositions 1.4,
1.5], this severely restricts what forms the automorphisms can take. It is shown in [3]
that a map given by (3.3.1) only defines an automorphism on D if it takes one of the
following three forms:
X — X, Y — uY,

X =AY LYY X, (3.3.3)

X = AYX L VXt
where A, u € k*. This corresponds to the subgroup (k*)%xCs of (k*)?>xSLy(Z), where
(3 is the group of order 3 generated by the monomial automorphism corresponding
to the matrix (' ' ). Meanwhile, the automorphisms of D corresponding to those of

the form (3.3.2) are precisely the ones generated by the following automorphisms:

Yy : X —aY)X, Ye—aY, aY)e k)", ack”,
(3.3.4)
7T X~ X' YeY!
Let H; denote the subgroup of Aut(D) generated by automorphisms of the form (3.3.3)

and (3.3.4).

Recall from Definition 2.1.7 that Artanomov and Cohn defined the elementary auto-

morphisms of D to be those of the form
7: X=X 1YY
ox: X—=bY)X, Y=Y, bY)eklY)", (3.3.5)

poy: X=X YViaX)Y, a(X)ek(X).
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Let H, denote the group generated by automorphisms of the form (3.3.5).

Lemma 3.3.1. The groups Hy and Hy defined above are equal.

Proof. We first show that Hy, C H;. By taking a = 1 in (3.3.4) we immediately obtain
7 and all automorphisms of the form ¢x, so we need only show that we can construct

all automorphisms of the form ¢y from elements of H;. We start by defining

c: X—Y ' Y—YX e€H

P X—YX, Y=Y €H,

and observe that p == ¢, 00X = Y1, Y +— X € H,. Now for an arbitrary

automorphism 1 x of the form (3.3.4) we may combine it with p to obtain
ploYxop: X=X, Y —a(X )Y € Hy;

since a(Y') € k(Y)* was arbitrary, we see that Hy C H;. Conversely, to show H; C Hy
we need only obtain the automorphisms from (3.3.3), which can be decomposed as

follows: define

o1 : X = p]A\YX, Y =Y e H,,

0o : X=X, Y pu ' XY e H,,

so that
wo0ToQ : X =AY LY = uY X

is also in H, as required. O

This justifies the choice to call an automorphism of D elementary if it is of the form
(3.3.5), and tame if it is in the group generated by the elementary automorphisms and

the inner automorphisms on D.

Recall from Theorem 2.1.9 that any homomorphism from D to itself can be decom-
posed as a product of elementary automorphisms and a conjugation map c,, where z is

constructed as in Proposition 2.1.8. The following questions are posed by Artamonov

and Cohn in [5].

Questions 3.3.2.
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1. Does there exist an element z satisfying the recursive definition (2.1.8), such that

2 &€ ko(X,Y)? What if 2" € k,(X,Y) for some positive integer n?
2. Does there exist an element z from (2.1.8) such that z7'k,(X,Y)z C k(X,Y)?

3. The group of automorphisms of k,(X,Y") is generated by elementary automor-
phisms, conjugation by some elements of the form z, and 7. Find a set of defining

relations for this generating set.

We first note that (3) needs rephrasing, since we can provide affirmative answers for
both (1) and (2). Indeed, we will construct examples of conjugation automorphisms
c. satisfying 22 € D (Proposition 3.3.5) and 2™ ¢ D for all n > 1 (Proposition 3.3.9),

and also a conjugation endomorphism such that 2Dz C D (Proposition 3.3.7).

In light of this, (3) should be modified to read:

4. Under what conditions is ¢, an automorphism of D rather than an endomor-

phism? Using this, give a set of generators and relations for Aut(D).

For each of our examples below, we start by defining a homomorphism % on D and
then verify that the image of the generators of D under v have the form (2.1.7). This
allows us to use Proposition 2.1.8 to construct z as in (2.1.8) such that ¢y = ¢,
(possibly after a change of variables in D to ensure the leading coefficients are both
1). The final step in each proof is checking whether z € D, for which we will use the

following lemmas.

Lemma 3.3.3. Let 21, 2, € k,(Y)(X)). If the conjugation maps c,, and c,, have the

same action on D = k,(X,Y), then z; and zy differ only by a scalar.

Proof. If c,, = c.,, then ;Y2 = Yz ie. 2z 2Y = Yz, 2. Similarly 2, 'z

commutes with X, so z, '2; is in the centralizer of D in k,(Y)((X)), which we write as

o(D).

We now verify that C(D) = k. Indeed, if u = 7, a; X' € C(D), then u must

commute with Y, i.e.

VY aX'=> aXV =) ¢dayX

>n >n >n
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Since ¢ is not a root of unity, we must have a; = 0 for all i # 0, i.e. u = ag € k(Y.
Since u is now in D and must commute with both X and Y, u € Z(D) = k. The

result now follows. L]

Recall that for r € k,[X,Y], degx(r) denotes the degree of r as a polynomial in X.
This extends naturally to a notion of degree on k,(X,Y) by defining

degx (t™'s) := degx(s) — degx(t),
where s,t € k,[X,Y]. We note that this definition is multiplicative.
Lemma 3.3.4. If ¢, is an inner automorphism on ko(X.,Y), then c,(Y) = v 'u

satisfies degx (u) = degx (v).

Proof. We can write the commutation relation in D as Y X = §(X)Y, where (3 is the
automorphism X — ¢ 'X, Y — Y. Let ¢, be an inner automorphism on D, so that

z=1t"1ts€e D for st € kyX,Y]. Thus the image of Y under c, is
c.(Y) =t"1sB(s) ' B(t)Y (3.3.6)

Since 3 does not affect the X-degree of a polynomial and degyx is multiplicative, it is

clear from (3.3.6) that degx(c.(y)) = 0 and hence degx(u) = degx(v) as required. [

We are now in a position to answer Questions 3.3.2 (1) and (2).

Proposition 3.3.5. Let D and ¢ be as in Theorem 3.1.1, and set E = D¥. With an

appropriate choice of generators for E, the map
viE—Erre (T yry )

defined in Lemma 3.1.5 is an automorphism of the form c.,-1, with z defined as in
(2.1.8). Further, we have z ¢ E while z* € E. This provides an affirmative answer to
Question 3.53.2 (1).

Proof. FE is a g-division ring by Theorem 3.1.1, and ~y is an automorphism by Lemma 3.1.5.

Write E = k,(f,g), where f := ﬂ(hg — gh) as in the proof of Theorem 3.1.1, which

1
allows us to use the methods of [5].
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In order to check that v has the form described by (2.1.8), by Proposition 2.1.8 it is
sufficient to check that v(f), v(g) are of the following form:
VO =4 af', g =g"+> bif, se{*l}, a,bi€k(g). (3.37)
i>s i>1
Recall that y(g) = (¢b)b™2, which can be written in terms of h and g using Lemma 3.1.3
and (3.1.9). From the definition f = ﬁ(hg — gh) we find that h = ¢g71(1 — f), and

after some rearranging we obtain

v = (¢ — g")(¢" — g")g g% f~* + |higher terms in f]

cb=(¢>—g")(¢" — g")g g~ f > + [higher terms in f]

Therefore the lowest term of v(g) = (cb)b=2 is qg, which can easily be transformed

into the form given in (3.3.7) by a simple change of variables.

By [5, Proposition 3.2], it now follows that v(f) must have the form
V) =bif + D bifs b b € k(g).
i>1
Again, we can make a change of variables in k,(f, g) using elementary automorphisms
to obtain b; = 1 while simultaneously ensuring that v(g) remains in the form (3.3.7).

Now by [5, Theorem 3.5], v = c,-1 with z constructed as in Proposition 2.1.8.

By Lemma 3.3.3, y +y ! and z differ by at most a scalar. Since y +y ' & B, v = c,1

defines an automorphism of E with z € E.

Finally, we have already noted in Lemma 3.1.3 (ii) that b = (y —y™1)> +4 € E, and

so 22 € E as well. O

Remark 3.3.6. It is worth noting that this phenomenon of non-inner conjugations
cannot happen when ¢ is a root of unity. Indeed, if ¢ = 1 for some n, then D is a
finite dimensional central simple algebra over its centre and by the Skolem-Noether
theorem every automorphism of D should be inner. The automorphism ~ is still a
well-defined automorphism on D in this case, but the difference is that now D has
a non-trivial centre: since y” — y~" is a central element we can replace y + y~! with
(y+y 1) (y" —y™) in the definition of v without affecting the map at all. We now

have

(y+y D" —y ™) =y =y D oyt gy e (2, y)©
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and so 7y is indeed an inner automorphism in this case.

Proposition 3.3.7. Let D = ky(z,y). Then there ezists z € k,(y)(x)) such that
27Dz C D. This provides an affirmative answer to Question 3.3.2(2).

Proof. We can view the isomorphism 6 : D — D¢ from Theorem 3.1.1 as an endo-
morphism on D, and so 6 decomposes into the form (2.1.9) with z constructed as in
(2.1.8). Since @ is not surjective, and c,-1 is the only map in the decomposition not

already known to be an automorphism, we must have 21Dz C D. O

Propositions 3.3.5 and 3.3.7 illustrate some of the difficulties involved in giving a set
of relations for Aut(D): not only is it possible for both endomorphisms and automor-
phisms to arise as conjugations c, for z € D, but as we show next, it turns out to
be quite easy to define an automorphism ¢ on D which is a product of elementary

automorphisms, but also satisfies ¢ = c,-1 with 2" € D for any n > 1.

Example 3.3.8. We define maps by

hl:x'_)(l—i_y)xa y—y,

hotx =, y— (1+2)y,

h32$'—> z, y—1y,

1+vy

which are all elementary automorphisms on k,(z,y). Let ¢ = hg o hy o hy, so that

_ qy 2
v =Tt T
B qy
Y(y) =y + Too +yx~

is an automorphism on k,(z,y). These have been chosen so that ¢(x), ¢ (y) are already
in the form (2.1.7), so there exists z € k,(y)((x)) defined by (2.1.8) such that ¢ = ¢,-1.
Since 9 (y) is a polynomial in z of non-zero degree, ¥ is not an inner automorphism

by Lemma 3.3.4.

In fact, ¢ (y) is a polynomial in x of degree n. The key observation in proving this is
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to notice that (1 + y) 'z is fixed by . Indeed,

]_1 iy

{Oﬁ_1+y1+@w )“+yﬂl{y+ﬂ+y%?+wfim

=(1+y)~

W14 ) = |

If we write ¥ (y) = y(1+ ¢(1 +y)~'z), it is now clear by induction that

W"(y) =" )1+ q(1+y) 'x) (3.3.8)

is polynomial in = of degree n.

Proposition 3.3.9. With ¢ as in Example 3.3.8 and D = ky(x,y), ¥ = c,—1 is an

example of a conjugation automorphism satisfying z™ & D for alln > 1.

Proof. By (3.3.8), ¥"(y) = 2z "yz" is a polynomial in z of degree n so by Lemma 3.3.4
we have z" € D for all n > 1. m

Combining these results, we obtain the theorem promised in the introduction.

Theorem 3.3.10. Let k be a field of characteristic zero and q € k* not a root of

unity. Then:

(i) The q-division ring D admits examples of bijective conjugation maps by elements
z & D; these include examples satisfying z" € D for some positive n, and also

those such that z" € D for all n > 1.

(1) D also admits an endomorphism which is not an automorphism, which can be

represented in the form of a conjugation map.
Proof. Propositions 3.3.5, 3.3.7, 3.3.9. O

We have seen that the set of generators for Aut(D) proposed by Artamonov and Cohn
in [5] in fact generate the whole endomorphism group End(D). On the other hand,

Theorem 3.3.10 also suggests that if we restrict our attention to the group generated by
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the elementary and inner automorphisms only, this may generate a proper subgroup

of Aut(D) rather than the whole group.

A good test case for this question would be the automorphism ~ in Proposition 3.3.5:
can it be decomposed into a product of elementary automorphisms and inner auto-

morphisms? The next proposition indicates one way of approaching this question.

Proposition 3.3.11. Let ¢, be a bijective conjugation map on k,(x,y). Suppose that
¢, fizes some element v € ky(z,y)\k, and that there is a product ¢ of elementary
automorphisms such that r is the image of x or y under . Then c, decomposes as a

product of elementary automorphisms.

Proof. Suppose first that ¢(x) = r. Define u := ¢(x), v := ¢(y); since ¢ is a product

of elementary automorphisms, this gives rise to a change of variables in k,(z,y), i.e.
kq(x7 y) = kQ(ua U)'

We would like to show that c, acts as an elementary automorphism on u and v. While
2z is an element of k,(y)((z)) and is not necessarily in k,(v)(w)), ¢, is still a well-defined

automorphism on k,(u,v) and so ¢, (v) = zvz™! € k,(u,v).

Meanwhile ¢, fixes u, which g-commutes with both v and ¢,(v); it is easy to see that
u must therefore commute with ¢,(v)v~!. The centralizer of u in k,(u,v) is precisely

k(u), so c.(v)v™! = a(u) € k(u). Now

is elementary as required.

Let a(x) € k(z) be the element obtained by replacing every occurrence of w in a(u) by
z. We can define an elementary automorphism on k,(z,y) by h: 2 — z, y — a(x)y,

which allows us to write the action of ¢, as follows:

c:(u) =u=ypoh(x), c(v)=alu)o=epla(z)y) =pohly).
Hence c,0p = @oh, and so ¢, = pohop~!is a product of elementary automorphisms

as required. The case ¢(y) = r follows by a symmetric argument. O]

We note that the automorphism + from Proposition 3.3.5 fixes y — y~! € E, but it is
not clear whether y — y~! satisfies the hypotheses of Proposition 3.3.11.
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3.4 Open Questions
While the results of §3.3 answer the questions raised by Artamonov and Cohn at the

end of [5], they trigger a number of interesting new open questions. We finish this

chapter by listing some of these questions.

Questions 3.4.1.

1. Is there an algorithm to identify elements fixed by a given conjugation map c,

and establish whether they satisfy the hypotheses of Proposition 3.3.117

2. Does every conjugation automorphism ¢, with z € D decompose into a product
of elementary automorphisms and an inner automorphism? In particular, does

v from Lemma 3.1.5 decompose in this fashion?

3. An automorphism of order 5 is defined on D in [16, §3.3.2] by
Traey Yy (g,

Based on preliminary computations we conjecture that D™ = D as well. Does
D admit any other automorphisms of finite order, and in particular any such

automorphisms with fixed rings which are not g-division?

4. The “non-bijective conjugation” map in Proposition 3.3.7 gives rise to a doubly-

infinite chain of ¢-division rings
. C2D2x?C D' CDC D2 C 2D C L.
What can be said about the limits

Uz’iDzi and ﬂziDz”' ?

1>0 1>0



Chapter 4

Poisson Deformations and Fixed

Rings

The results of Chapter 3 demonstrate that while it is possible to understand certain
classes of fixed rings of the ¢-division ring D by direct computation, this approach
rapidly grows more difficult as the complexity of the automorphisms increase and it
is highly unlikely to lead to a general theorem on the possible structures of D¢ for
arbitrary finite G. In this chapter we discuss a different approach to this question,
which uses deformation theory to reframe the problem in terms of Poisson structures
on certain commutative algebras and the possible deformations of these structures.
This approach is inspired by the work of [7], which considered a similar problem on

the g-commuting Laurent polynomial ring k,[z*!, y*'].

In §4.1 we prove that the g-division ring is a deformation (in the sense of Defini-
tion 2.2.6) of the commutative field of fractions in two variables k(z,y), with respect
to the Poisson bracket {y,x} = yx. Further, we show that for finite groups G of mono-
mial automorphisms the fixed ring D¢ is in turn a deformation of k(z, y)“. This allows
us to break down the problem of describing fixed rings D into two sub-problems: de-
)G’

scribing the Poisson structure of the commutative fixed rings k(z,y)“, and describing

the possible deformations of these fixed rings.

The first of these is precisely the Poisson equivalent of the Noether problem for k(x, y):

given a field of fractions k(z,y) with an associated Poisson structure, and a finite group

79
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of Poisson automorphisms G, does there exist an isomorphism of Poisson algebras
k(z,y)¢ = k(z,y)? In §4.2 we will show that when G is any finite group of Poisson
monomial automorphisms (see Definition 4.1.10 for the precise definition) and the

bracket on k(x,y) is given by {y, x} = yx then we can always find such an isomorphism.

While we cannot yet describe all the possible Poisson deformations in this situation,
and hence these results do not yet provide a full alternative proof to the results of
Chapter 3, we will see that the proofs in §4.2 are shorter and more intuitive than their
g-commuting counterparts. This suggests that Poisson deformation may be a more
fruitful avenue to explore in seeking a general classification of the structure of fixed

rings of D under finite groups of automorphisms.

4.1 A new perspective on D

Recall the setup of Example 2.2.8, where we saw that the ring k,[z*!, y*'] can be

viewed quite concretely as a deformation of the commutative Poisson algebra k[z*!, y*!]

via the ring

B = k{r™ = 2 (w2 — 2w, yz — 2y, vy — 22y7). (4.1.1)

By localizing 8 at an appropriate Ore set, we may construct a larger ring ® such that
both D = k,(x,y) and the commutative field k(z,y) can be realised as factor rings of
®. The next section is devoted to the proof of this result.

4.1.1 The ¢-division ring as a deformation of k(z,y)

We will begin by proving that 9B is a Noetherian UFD (see Definition 4.1.2 below),
and then use certain properties of this class of rings to construct an appropriate Ore
set C of B to localize at. This will give rise to the ring ® := BC~!, which we will use
to show that D is a deformation of k(x,y).

Definition 4.1.1. An element p of a ring R is called prime if pR = Rp is a height 1
completely prime ideal of R.
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Let C(P) denote the set of elements which are regular mod P, and set C = (| C(P)
where P runs over all height 1 primes of R. We will sometimes write C(R) for C when

we need to specify which ring it comes from.

Definition 4.1.2. A prime Noetherian ring R is called a Noetherian UFD if it has at

least one prime ideal of height 1 and satisfies the following equivalent conditions:

1. Every height 1 prime of R is of the form pR for some prime element p of R;

2. R is a domain and every non-zero element of R can be written in the form

Cp1 ... Pn, where pq,...,p, are prime elements of R and ¢ € C.

This definition was introduced by Chatters in [12]. In particular, commutative rings
which are UFDs in the conventional sense satisfy this definition [12, Corollary 2.4];
in this case, the elements of C are the units in R. This need not be true for non-
commutative UFDs: instead, the set C forms an Ore set in R [12, Proposition 2.5] and
the localization RC™! is both a Noetherian UFD [12, Theorem 2.7] and a principal

ideal domain [21, Corollary 1].

Returning to the ring B defined in (4.1.1), our first aim will be to show that it is a
Noetherian UFD. We will show that it satisfies condition (1) of Definition 4.1.2. It is
without a doubt a prime Noetherian ring, so we need only describe its height 1 prime

ideals.

By standard localization theory (see for example [32, Theorem 10.20]), the prime ideals

of B are in 1-1 correspondence with those prime ideals of the ring
S = kla,y, 2 /(22 — 2, yz — zy, vy — 2°ya)

which do not contain z or y. Hence we will restrict our attention to the prime ideals

of S.

If we define R = k[y, 2*'], then S can be viewed as an Ore extension
S=R[r;a], a:R— R:yw 2%y, 2+ 2. (4.1.2)

The primes of S which do not contain x can be understood using the following results.
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Definition 4.1.3. Let R be a commutative Notherian ring, I an ideal of R and «
an endomorphism. Call I an a-invariant ideal if o= '(I) = I, and a-prime if I is a-
invariant and whenever J and K are two other ideals satisfying a(J) C J and JK C I,
then J C I or K C [ as well. Finally, we call R an a-prime ring if 0 is an a-prime

ideal.

The following theorem is stated in slightly greater generality in [35]; we quote here

only the part required for our analysis of the primes of S.

Theorem 4.1.4. [35, Theorem 4.1,4.2] Let R be a commutative ring, o an endo-
morphism of R, and S = R|x;al. If I is a prime ideal of S not containing x, then
J =1NR is an a-prime ideal of R. Conversely, if J is an a-prime ideal of R, then
SJS is a prime ideal of S.

Theorem 4.1.5. [85, Theorem 4.3] Let R be an a-prime Noetherian ring, where o is
an endomorphism of infinite order. Then the only prime of S = R[x; ] not containing

x which lies over (0) in R is (0).

The following lemma uses these results to show that all non-zero primes of S must

contain (at least) one of x, y or an irreducible polynomial in z.

Lemma 4.1.6. With S = R[z;a] as in (4.1.2), let P be a non-zero prime ideal of
S which does not contain x. Then P must contain y or some element p(z) which is

irreducible in k[z*1].

Proof. By Theorems 4.1.4 and 4.1.5, I = P N R is a non-zero a-prime ideal of R; we

will show that I must contain one of the required elements, and hence so will P.

Let f € I be an element of minimal y-degree; we will first show that f = g(z)y™ for
some g(z) € k[z*'] and n > 0. If deg,(f) = 0 then this is clear, so suppose that f has
the form

f=92()y" + -+ 91(2)y + 90(2),  gi(2) € k[2]
for some n > 1 and g,(z) # 0. Since I is a-invariant and « is an automorphism we
must have a(f) — 22" f € I as well, which has degree < n and so must be zero by the

minimality of n. Comparing coefficients, we see that

gi(2) (% -2 =0, 0<i<n
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which implies that g;(z) = 0 for all i < n. Thus f = g,(2)y" as required.

Let g,(2) = up1(z)p2(2) . .. p-(2) be the factorization of g,(z) into irreducible polyno-
mials, with p;(z) € k[z*'] irreducible and u € k[2*!]*. All that remains is to observe
that the ideals p;(2) R and y R are all a-invariant (indeed, they are a-prime) and hence

the a-prime ideal I must by definition contain one of these ideals. O]

Proposition 4.1.7. The ring B defined in (4.1.1) is a Noetherian UFD, and its height

1 prime ideals are precisely those generated by irreducible polynomials in k[zF].

Proof. Combining Theorem 4.1.4, Theorem 4.1.5 and Lemma 4.1.6, we see that every
non-zero prime ideal of S = R[z;a] must contain (at least) one of x, y or some
irreducible p(z) € k[z*!]. Since prime ideals of % are in 1-1 correspondence with
prime ideals of S which do not contain x or y (where the correspondence is the natural
one given by localization and contraction as in [32, Theorem 10.20]) it must follow
that every prime ideal of B contains some irreducible polynomial in z. On the other
hand, we can easily check that every irreducible polynomial p(z) € k[2*!] generates a

height 1 prime ideal in ‘B.

Since every non-zero prime in 8 must contain an irreducible polynomial p(z) € k[z*!],
and p(z)%B is prime for any such p(z), it follows that the height 1 primes of B are
precisely the set {p(2)B : p(z) is irreducible in k[z*']}. Finally, since z is central in
B these are all completely prime ideals, and therefore the p(z) are prime elements in
the sense given in Definition 4.1.1. It is now clear that B satisfies condition (1) of

Definition 4.1.2, and hence it is a Noetherian UFD. O]

By [12, Proposition 2.5] we can now form the localization
D :=BC, (4.1.3)

where C = (| C(P) for P running through all height 1 primes of 9B. By [21, Corollary 1]
every left or right ideal in ® is two-sided and principal; more precisely, we can see that
every left or right ideal is generated by a polynomial in z. In particular, it is clear

that for any A € k* the factor ring ®/(z — A)® must be a division ring.

We will restrict our attention to the case where ¢ is not a root of unity and the base

field k¥ admits an element ¢ such that ¢> = ¢q. As in Example 2.2.8, we will make
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k(x,y) into a Poisson algebra by defining {y,z} = yx; as in [26, Equation 0-3], this

extends to a general formula for the bracket of two polynomials as follows:

Oa Ob Oa Ob
b} = yr o o — g 4.1.4
{a, b} Vo e Yaray (4.1.4)

and this can be extended to the whole field k(x,y) using the formula in (2.2.3).

We are now in a position to prove one of the main results of this section. The proof is

based on the corresponding result in [7, §5.4.3] for k[z*!, y*!].

Proposition 4.1.8. Let k(x,y) be the field of rational functions in two commuting
variables with Poisson bracket defined by {y,z} = yx. Then D is a deformation of
k(x,y) via the ring ® from (4.1.3).

Proof. We need to show that ® contains some central, non-invertible, non-zero-divisor
element h such that ®/h® = k(x,y) as Poisson algebras (where the Poisson bracket
on ©/h® is induced as in Definition 2.2.5), and ©/(h — \)® = D as algebras for

appropriate values of ¢ and \.

As in [7, §5.4.3], we set h = 2(1 — z). It is clear that ® is a domain and h is central.
By Proposition 4.1.7, the polynomial z — A generates a height 1 completely prime
ideal of © for any A\ € k*; in particular, (h) = (z — 1) is a proper ideal and so h is

non-invertible.

The set of ideals {(z — A) : A € k*} is equal to the set {(h — u) : u € k\{2}}. We
have already noted that the quotient ©/(h — u)® for u # 2 must be a division ring;
we can further observe that since x and y satisfy zy = (1 — %u)zy;ﬂ in this ring, we

have a sequence of embeddings
koo™ g™ = D/(h — ) — D

for ¢ = (1 — 3p)®. By the universality of localization this second embedding must
be an isomorphism, that is ®/(h — p)® = D. In particular, when p = 0 there is an
isomorphism of algebras ©/h® = k(z,y).

All that remains is to check that this process induces the correct Poisson bracket on

D /hD, and to do this it suffices to check that we obtain the correct Poisson bracket
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on the generators x and y. As elements of ©, we have
9 1
yr —axy = (1 — 2%)yx = 5(1 + z)hyx
and therefore according to the formula in Definition 2.2.5,

1
{y,z} = 5(1 + 2)yx mod h®
= yaj’

since h = 0 in ®/h® implies z = 1. We therefore have an isomorphism of Poisson
algebras between k(z,y) with the multiplicative Poisson bracket {y,z} = yz and
©/h® with induced Poisson bracket, and the result is proved. ]

4.1.2 The fixed ring D as a deformation of k(z,y)®

The results of §4.1.1 allow us to understand the ¢-division ring D as a deformation
of the Poisson algebra k(z,y) with bracket defined by {y,z} = yz. However, for
certain finite groups of automorphisms G' we can extend this result to obtain further
information, namely by using a subring of the ring ® from (4.1.3) to describe the fixed

ring D as a deformation of k(x,y)¢.

We will be interested in monomial actions on k(z,y) and D, which have already been
considered in §3.2 in the case of the g-division ring. For the Poisson algebra k(z,y)
these are defined using the following proposition, which is the Poisson equivalent of

Proposition 3.2.2.

Proposition 4.1.9. The group SLy(Z) acts by Poisson automorphisms on the com-
mutative Poisson field k(x,y) with bracket {y,x} = yx, where the action is defined

by
a,.c b..d a b
gy=yzr, gr=yxr, g= € SLy(Z), (4.1.5)
c d
or more generally for any m,n € Z:
g(ymxn) — yam+bnmcm+dn
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Proof. We define

a b . a v
9= . 9= € SLy(7)
c d d d

and we are required to prove that

1. g{y,z} ={g9.y,9.x}, i.e. gis a Poisson automorphism on k(z,y);

2. ¢.(g.x) = (¢'g).x and ¢'.(g.2) = (¢'g).y in k(x,y), i.e. this defines an action of
SLy(Z) on k(x,y).

Using (4.1.4), we can observe that the action of our Poisson bracket on monomials is

{yaxc’ybxd} — (ad bc) atbrctd Now

g{y, 2} = g.yx = y"2xy’z?,

{9y, 9.2} = {y2, 4’2"} = (ad — be)y*Pat,

and hence g.{y,z} = {g.y, g.x} since ad — bc = 1. Thus g € SLy(Z) defines a Poisson

automorphism on k(z,y).
For the reader’s convenience, we record again the product of the matrices g and ¢':

. ada+bc db+bd
99 =
acd +dc Jb+dd
The computation to verify condition (2) is now a simple one. Indeed,

g/(gx) _ g/.(ybx ) - y I,bc ydb’xdd’ _ yba’erb’xbc +dd" __ (g g)

9 -(g.y) = ¢ (y'a°) =y oy att =y TV gt = (gg)y

]

Definition 4.1.10. Let 6 be a Poisson automorphism on k(z,y). We call 6§ a Poisson
monomial automorphism if it can be represented by an element of SLy(Z) with the

action defined in Proposition 4.1.9.

The corresponding action of SLy(Z) on ® can be defined in a very similar way to that

of the action on D. Here z takes on the role of ¢ and we define the action to be

a b
gy = 2%ya’, g =z2"%r? gz=2  where g = € SLy(Z). (4.1.6)
d

C
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Since z is central and invertible in ®, the proof that this defines an action of SLy(7Z)

on ® follows identically to that of Proposition 3.2.2.

Given that z is fixed by the action of SLy(Z), the ideals (h — A\)® are stable under this
action and so the definition in (4.1.6) induces an action by Poisson automorphisms
on ©/h® and an action by algebra automorphisms on ©/(h — \)D. It is easy to see
that these actions agree with those defined in Proposition 3.2.2 and Proposition 4.1.9.
Therefore if G is a finite subgroup of SLy(Z) we will assume that it acts on each of
the rings k(z,y), D and © according to definitions (4.1.5), (3.2.1), (4.1.6) respectively,

without distinguishing between them unnecessarily.

Before proving our main result of this section (Theorem 4.1.12) we state one additional
technical lemma which will be used in the proof of the theorem. The proof for this

result can be found in [15].
Lemma 4.1.11. [15, §5.2.3] Let G be a finite group. If

0—AB 00

15 an exact sequence of G-modules, then the induced sequence

a/

0—>AG—>BGLI>CG—>O
15 exact.

Theorem 4.1.12. Let G be a finite subgroup of SLy(Z). Then the fized ring DY is

)¢ )¢ is induced by the

a deformation of k(x,y)“, where the Poisson bracket on k(z,y

bracket {y,x} = yx on k(x,y).

Proof. Let G be a finite subgroup of SLy(Z) acting on k(z,y), D and ® by monomial
automorphisms. Then 0 — hD — © — D/h® — 0is an exact sequence of G-modules,

and hence by Lemma 4.1.11 we have another exact sequence
0— Y — D¢ — (D/hD)Y — 0. (4.1.7)

This gives rise to an isomorphism of rings D¢/hD¢ = (D/hD)¢, which will be an
isomorphism of Poisson algebras if the brackets on DY/hDC and (D/hD)Y agree.
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This is easy to see, however, since both brackets are induced by commutators which

can each be computed in the same ring 2.

Since © /h® = k(x,y) by Proposition 4.1.8 and this isomorphism is clearly G-equivariant,
we obtain isomorphisms of Poisson algebras D¢ /hD% = (D /hD) = k(x,y)¢.

By a similar argument, we obtain an isomorphism of algebras D¢/(h — \)D¢ = D¢
for A = 2(1 — ¢). Thus the fixed ring of the deformation is a deformation of the fixed

ring, as required. O

4.2 Fixed rings of Poisson fields

The results of §4.1 translate the problem of understanding the fixed ring D¢ into two

sub-problems:

1. Understanding the Poisson structure of the fixed ring k(z,y)%;

2. Describing all the possible deformations of this ring.

In this section we will focus on the first of these problems.

It is standard that k(z,y)¢ = k(z,y) as algebras for any finite group G, but this does
not guarantee that their Poisson structures will also agree. Even for the case of finite
groups of monomial automorphisms, until now only the Poisson structure of k(z,y)”
was known. In this section we will extend this to a description of the fixed rings of all
finite groups of monomial Poisson automorphisms on k(z,y); in addition to being an
interesting result in its own right, this will demonstrate that with the right techniques
it is a genuine simplification to consider the structure of commutative Poisson fixed

rings rather than their g-commuting equivalents.

The aim of this section will be to prove the following theorem, which we will approach

on a case by case basis as in Chapter 3.

Theorem 4.2.1. Let k be a field of characteristic zero which contains a primitive
third root of unity w, and let G be a finite subgroup of SLo(Z) which acts on k(x,y) by
Poisson monomial automorphisms as defined in Definition 4.1.10. Then there exists

an isomorphism of Poisson algebras k(x,y) = k(z,y).
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At first glance it is not clear that describing the Poisson structure of k(z, y) should be
any easier than describing the algebra structure of D: all we have done is replace the
requirement to find two elements f, g € D¢ such that fg = qgf with the requirement
that we find two elements in k(x,y)“ such that {g, f} = gf. However, by exploiting
both the g-commuting structure of D and the ease of computation in k(z,y) we can

develop a method which often produces suitable Poisson generators for the fixed rings.

The key idea is that by using a technique inspired by the work of Alev and Dumas in [3]
and Artamonov and Cohn in [5], we can construct potential g-commuting generators
for DY by constructing them term by term in k,(y)((z)), and then replace ¢ by 1
throughout to obtain elements of k(z,y) with the desired properties. We describe this

approach in more detail next.

In Appendix A.2 we define the Magma procedure gelement, which accepts as input
an element of the form

9=+ air' € ky(y)(x), AeEK, a; € k(y) (4.2.1)

i>1

and constructs another power series f € k,(y)((z)) such that fg = qgf. We note that
f need not represent an element of D even if g does. Appendix A.1 also describes
results which allow us to test if f € D and if so, writes it as a left fraction f = v~1u;
however, as demonstrated by the example in Appendix A.3 even quite simple products
of non-commutative fractions become unmanageably complicated when forced into the

form of a single left fraction. Verifying that f € D or proving that k,(f,g) = DY is

essentially impossible in this situation.

On the other hand, commutative fractions are far easier to multiply and factorize, and
elements which were unmanageably large in D often reduce to quite simple elements
of k(z,y) upon replacing ¢ by 1 (recall that § denotes a square root of ¢). Further,
if f, g € D satisty fg = qgf and it makes sense to replace ¢ by 1 in these elements
(denoted here by f and g) then the construction of the Poisson bracket as the image
of a commutator in ® guarantees that {g, f} = gf (this claim is illustrated more

rigorously in Lemma 4.2.2).

Therefore if G is a finite subgroup of SLs(Z) acting on k(z,y) by Poisson monomial

automorphisms and we expect that the fixed ring k(z,y)“ will be Poisson-isomorphic
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to k(x,y), we may apply the following procedure to attempt to construct generators

for k(x,y)¢.

1. Choose a fraction g € D¢ of the form (4.2.1).

2. Apply procedure gelement in Magma to construct f € Fk,(y)(z)) such that
fg=agf

3. Use procedure checkrationallL to check whether f € D (within the limits of the
computer’s computational power); if true, use findrationalL to write f = vlu

for v, u € k,[z, yl.

4. If possible, replace ¢ by 1 in f and g and check whether f € k(x,y).

We note that having already proved the g-commuting version of Theorem 4.2.1, we
could simply take the g-commuting generators obtained for the corresponding results
in Chapter 3 and set ¢ = 1 in order to obtain Poisson generators. However, since
the motivation for studying these Poisson fixed rings is to demonstrate that we can
understand subrings of D via the Poisson structure of subrings of k(z,y), for the
purposes of this section we will (mostly) ignore the results of §3.2 and proceed using

gelement and the approach outlined above.

Recall that up to conjugation, the group SLs(Z) admits only four non-trivial finite
subgroups: the cyclic groups of order 2, 3, 4 and 6. As in Chapter 3, it therefore suffices
to describe the fixed rings of k(z,y) with respect to one Poisson automorphism of each

conjugacy class, which are listed in Table 4.1 below.

Order Automorphism
2 T w2y oyt
3 o: Ty, yr (zy) !
4 p: wx—yt y—ua
6 n: x—y oy ay

Table 4.1: Conjugacy class representatives of finite order Poisson monomial automor-
phisms on k(z,y).

We have already noted that the fixed ring under the automorphism 7 of order 2 has

been described in [7]; the proof involves certain clever factorizations and manipulations
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of equalities in k(x, y)™ and does not generalize easily to automorphisms of higher order.
A simpler description of k(x,y)” may be obtained by using the pair of elements defined
in (3.2.5); since we will use this description of k(z,y)” in later results, the next lemma

provides a proof of this statement.

Lemma 4.2.2. Let u, v € k(x,y) be defined by

| o -1
WL N Bl G (12.2)
y -y y - -y

and let T be as in Table 4.1. Then k(u,v) = k(x,y)" and {v,u} = vu.

Proof. 1t is clear that u,v € k(z,y)”. The claim that {v,u} = vu may be verified
computationally using the formula (4.1.4), but since no polynomials in g appear in the

denominator of u or v we may also prove this claim as follows. Let

ug=@—z )y =y g =y -2y )y -y

be elements of D; by [52, §13.6] we know that u,v, = qu,u,. These lift without
modification to elements u, and v, of the ring ® from Theorem 4.1.8, where u,v, =
2?v,u,. Recall that we defined h = 2(1 — 2) and that ®/h®D = k(z,y) as Poisson

algebras; hence

1
{v,u} = E(Uzuz — U,v,) mod h®

= 1 — »2
30— z)( 25 v, u, mod h®

1
= 5(1 + 2)v,u, mod h®
= vu,
since h = 0 implies z =1 in ©/hD.

Finally, we need to prove that k(u,v) = k(z,y)". Since k(u,v) C k(z,y)” € k(z,y)
and [k(x,y) : k(x,y)7] = 2, if we can show that [k(z,y) : k(u,v)] < 2 as well then it

<
must follow that k(u,v) = k(z,y)". We define a polynomial in k(u,v)[t] by
my(t) = vt? + (v — u? + 1)t + v, (4.2.3)

which has x as a root (this can be seen by direct computation in k(x,y)). Since k(u,v)
is a subring of k(z,y)” and x is not fixed by 7, we cannot have = € k(u,v) and so

(4.2.3) must be irreducible, i.e. it is the minimal polynomial for = over k(u,v).
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Therefore the Galois extension k(u,v)(x) has order 2 over k(u,v). Observe further
that k(u,v)(z) = k(z,y) since

l+ve y'—y+a2y—y!

ux 2 —1
(P =1y
a2 —1
=,

and hence y € k(u,v)(x). This implies that [k(z,y) : k(u,v)] = 2 and so k(u,v) =
k(x,y)” as required. Finally, since u and v satisfy {v,u} = vu the isomorphism

k(x,y) = k(x,y)" is in fact an isomorphism of Poisson algebras. O

We now turn our attention to the order 3 case, which caused such problems in the
g-division ring. As observed in Remark 3.2.7, the unintuitive generator f used in
Theorem 3.2.6 had its roots in a single left fraction constructed using qelement; the
full definition of this element is given in Appendix A.3 and takes 9 pages to write down
fully. However, since the Poisson bracket captures only a first-order impression of the
non-commutative structure in D and multiplication of fractions is far less complicated
in k(x,y), it is perhaps unsurprising that upon replacing ¢ with 1 in this 9 page element

we obtain a far simpler element which satisfies our requirements in the Poisson case.

Having set ¢ = 1 in the elements appearing in Appendix A.3, we obtain two elements
in k(x,y) of the form
f=ad%b/?, g=b/a, (4.2.4)

where

a=1x+wy+wy)

b=a2""+wy !t +way, (4.2.5)

c=xy ' +ay*+a %yt =3,
in a similar manner to the g-commuting case. Observe that ¢ acts on a and b as

multiplication by w? and fixes c.

We note that since our Magma functions can only approximate computations in
kq(y)(z)), the above on its own is not a proof: we still need to verify that f and
g from (4.2.4) do indeed generate the fixed ring k(x,y)?. This is the purpose of the

next result.
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Proposition 4.2.3. Let k be a field of characteristic 0 containing a primitive third
root of unity w, and let f and g be defined as in (4.2.4). Then the Poisson subalgebra
of k(x,y) generated by f and g is equal to k(x,y)?, and there is an isomorphism of
Poisson algebras k(x,y)” = k(z,y).

Proof. Since o acts on a and b as multiplication by w? and fixes ¢, it is clear that
o(f) = f and o(g) = g. Using the formula for the bracket of two elements given in

(4.1.4) it follows by a long yet elementary computation (which we do not reproduce

here) that {g, f} = gf.

The proof that k(f,g9) = k(z,y)? follows in a similar manner to the corresponding

g-commuting case. Indeed, we find that the fixed ring k[z*!, y*1]7 is generated as an

algebra by the three standard generators

pri=x+y+ (zy)
pri=at+y oy

psi=y 'r+yr+y a®+6

(see, for example, [15, §4.2.2]) and hence it suffices to show that p;, p; and ps are in the

Poisson algebra k(f,g). This can now be observed by direct computation, however,

since
_w(@+ 1?2+ 92— g°)f +wig?
b = 3
fg
wi (g’ + 1212+ 9(2¢° — 1) + wg?
b2 = 2
fg
1
D3 = 5(]912?2 —{p2,;} +9)
are all in the Poisson algebra k(f, g), as required. O

Corollary 4.2.4. Let the field k be as in Proposition 4.2.3, and n the Poisson mono-
mial automorphism of order 6 in Table 4.1. Then the fized ring k(x,y)" is isomorphic

to k(z,y) as Poisson algebras.

Proof. As in Theorem 3.2.8, we observe that 7° = 7 and so k(z,y)" = (k(z,y)")".
Thus it suffices to consider k(u,v)?, where k(u,v) = k(z,y)” as in Lemma 4.2.2. We

may make a change of variables v’ := —u~! without affecting the structure of k(u, v):
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using the formula in (4.1.4) we can easily see that {v,u'} = —vu' and hence k(u,v)

and k(v,u') are Poisson-isomorphic. Now the action of n on u' and v is as follows:

n(u) = (zy — (xy) ™) /(" —y)

n(w) = (y 'y — y(yz) ™)/ (zy — (zy) ™)

Hence 7 acts on k(u/,v) as the order 3 map o, and therefore by Lemma 4.2.2 and
Proposition 4.2.3 we have isomorphisms of Poisson algebras k(x,y)" = (k(z,y)7)" =

k(u',v)? = k(x,y).

O

We have only one case left to consider: the Poisson monomial automorphisms of order
4. As in Proposition 4.2.3, we proceed by first considering the corresponding map on
the g-division ring, and then formally constructing a pair of g-commuting elements in
Magma and replacing ¢ by 1 throughout to obtain appropriate generators for the fixed

ring.
Let p be the automorphism of order 4 defined in Table 4.1, that is
prx—y "y .

As in Corollary 4.2.4, we may begin by observing that p?> = 7 and hence restrict our

attention to the action of p on the elements v and v from Lemma 4.2.2. We find that

-1
_y-y 1
p(“) - -1 _ u
yr -yl 1
plv)=F—F—"=(u —uwv .

x—ax!
Let ¢ be the map defined on k(u,v) by

1

wiu— —ut v (u —u)uh (4.2.6)

This must be a Poisson homomorphism since it is induced by the action of the Poisson
automorphism p on k(u,v), and an easy computation shows that ¢? = id; hence ¢ is
an automorphism of order 2 on k(u,v), and k(z,y)” = k(u,v)?. We may also define

an automorphism corresponding to ¢ on the g-division ring k,(u, v), namely

Yo ur —ut v (u = qu)vT
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note that up to a change of variables this is precisely the automorphism considered in

§3.1.

Define an element in k,(u,v) by

90 = (1= @q(w)(v = @g(v)) " = (u+u )= (u —qup),

which as always is fixed by ¢, since the map acts on each component as multiplication
by -1. The element g, has been chosen precisely because it has the form (4.2.1) when
embedded into k,(v)((u)), so we may use gelement to construct some f, € k,(v)((w))
such that f,g9, = qg,f,- Finally, upon setting ¢ = 1, we obtain the elements

Fo (u? + uv? — 1)%u (W + 1w (4.2.7)
(w02 —u? —2u — 1) (uv? +u? —2u+ 1)’ It wr =1 -

which satisfy the required properties as demonstrated by the following lemma.

Lemma 4.2.5. The elements f and g in (4.2.7) are fized by ¢ and satisfy {g, f} = gf.

Proof. We begin by computing the action of ¢ on the various polynomials appearing

in f and g.

P+ 1)0) = (w2 + D(u! — ™!
= (1) (14 w?)

B Vel (VR ) R T |

ou? +uw? —1)=u
= u v A (w? — 1 —ut 4 2u? — uPo?)
= u v (1 — u?) (v + w® — 1)
o —uw? —2u—1)=u(u 't —wv i -ut+2ut —1
= u 2 (1 + ut — 2u® — 2%0% + 2uPv? — uto?)
= (—(u — 1)} (u*0? —u? — 2u — 1))

Similarly, ¢(u?v? + u? — 2u + 1) = u 072 ((u + 1)*(v*0v? + u? — 2u + 1)).

Putting these together, it is now easy to see that
—u O™ (1 — u?)?(u? + uv? — 1)?
—u 8074 (1 4+ u)?(1 — w)?(u?v? — u? — 2u — 1)(v?v? + u? — 2u + 1)
(u? + uv? — 1)%u
(u?v? —u? — 2u — 1)(u?v? + u? — 2u + 1)

=

o(f) =
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and similarly,

u o1 — u?) (1 + u?)

#l9) = w3721 — u?)(u? 4+ uwv? — 1)
(1+u?)v
(w2 Fuw? —1)

Direct computation (e.g. in Magma) using the formula in (4.1.4) demonstrates that

{g,f} = gf as required. 0

All that remains is to show that k(f,g) = k(x,y)?. Since k(z,y)” = k(u,v)? and ¢
has order 2, it suffices to verify that [k(u,v) : k(f,g)] = 2, which can be done using

(commutative) Galois theory.

Proposition 4.2.6. Let k be a field of characteristic zero, and p the Poisson monomial

automorphism of order 4 in Table 4.1. Then k(x,y)? = k(x,y) as Poisson algebras.

Proof. By the preceding discussion and Lemma 4.2.5, all that remains to show is that
[k(u,v) : k(f,g)] = 2, where f and g are the elements defined in (4.2.7), v and v are

from Lemma 4.2.2 and ¢ is the Poisson automorphism of order 2 defined in (4.2.6).

We define a polynomial in k(f, g)[t] by

my(t) = ft2 = (f> = f+ 1) (fg* + [+ Dt — [,

which has u as a root. Since we cannot have u € k(f,g), we conclude in the same

manner as Lemma 4.2.2 that m,,(¢) must be the minimal polynomial for v over k(f, g).

Now we may see that the Galois extension k(f,g)(u) is equal to k(u,v), since direct

computation shows that

v=_(f¢"+ fou+g)/(fu—1).

Thus k(f,g) € k(u,v)? S k(u,v) with [k(u,v) : k(f, g)] = 2, and since there can be

no intermediate extension we must have k(f, g) = k(u,v)?, as required. ]

Finally, by combining Lemma 4.2.2, Proposition 4.2.3, Proposition 4.2.6 and Corol-
lary 4.2.4 the proof of Theorem 4.2.1 is complete.
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As a result of the computations done to understand the fixed ring k(x,y)?, we also
obtain the following corollary of Proposition 4.2.6, which is the Poisson analogue of

Theorem 3.1.1:

Corollary 4.2.7. There is an isomorphism of Poisson algebras k(u,v)? = k(u,v).

This suggests that, as in the ¢g-commuting case, we should look for a Poisson isomor-
phism from a general fixed ring k(z,y)¢ to k(x,y) whenever G is a finite group of
Poisson automorphisms which do not restrict to k[x,y]. Since the Poisson automor-
phism group of k(x,y) with respect to the bracket {y,z} = yx is known (see [9]),
proving a theorem of this form for the Poisson case may be a more attractive problem

to tackle than the corresponding g-commuting one.



Chapter 5

Poisson Primitive Ideals in O(GLj3)
and O(SLs)

In Chapter 4 we viewed the ¢-division ring D as a deformation of the commutative
Poisson field k(x,y) with the aim of learning more about the structure of D. In this
chapter we will take the opposite view: starting with a non-commutative algebra, we
will use the language of deformation to better understand the structure of its semi-

classical limit.

Much of the work in this chapter is based on the corresponding results for the quantum
algebras O,(Ms), O,(GLs) and O,(SL3) in [28, 29]. In the first of these papers,
Goodear] and Lenagan define a rational action of an algebraic torus H on O,(M;3) and
construct generating sets of quantum minors for each of the 230 H-prime ideals. In [29]
they focus on O,(GL3), which admits a much more manageable 36 H-primes, and use
this and the Stratification Theorem to find generating sets for all of the primitive ideals
of O(GL3). Finally, these results are extended to O,(SLs) by use of the isomorphism
0O,(GL3) = O,(SL3)[z*'] from [42].

Our aim will be to perform a similar analysis for the Poisson algebras O(GL3) and
O(SLs3), with a view to eventually verifying Conjecture 2.3.15 for the case of GL3 and
SLs. We will find that the Poisson structure of O(GL3) and O(SL3) matches up very
closely with the non-commutative structure of O,(GL3) and O,(SLs) in almost all

respects, although we will see in §5.3.3 that occasionally we will need to apply quite

98
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different techniques to the quantum case to prove the corresponding Poisson result.

Important Global Convention 2. Throughout this chapter, we will assume that k
is an algebraically closed field of characteristic zero. The assumption that ¢ € k* is

not a root of unity remains in force.

This chapter references several large figures, which have been collected together in
Appendix B for convenience. Figures of this type are referenced as Figure B.n. Note

that there is also a List of Figures on page 5.

5.1 Background and initial results

We begin by making formal the view of O(M,) as the semi-classical limit of the
quantum matrices O,(M,,) (for the definition of O,(M,,), see §1.2).

Definition 5.1.1. Define R, to be the k[t*!]-algebra in n? variables {Y;; : 1 <i,j <
n}, subject to the same relations as O,(M,,) but with every occurence of ¢ replaced

by the variable .

This is a generalization of the setup from §2.2.3, and it is easy to see that in this case

we obtain an isomorphism of k-algebras
Of(My) = R /(t — ¢)Ron.

Meanwhile, when we quotient out the ideal (t—1)%R,, we obtain the commutative coor-
dinate ring O(M,,). Using the semi-classical limit process defined in Definition 2.2.5,
this induces a Poisson bracket on O(M,,), which we will take as our definition of the
Poisson structure on O(M,,). By direct computation, we find that for any set of four
generators {x;;, Tim, Tij, Tim } With @ < [ and j < m the Poisson bracket is defined by

{xija xim} = TijTim, {ximv xlm} = TimLim,

(5.1.1)
{@im, 215} =0, {@ij, xim } = 2@ ;.

Recall from §1.2 that []J], denotes a quantum minor in O,(M,): here I and J

are ordered subsets of {1,...,n} of equal cardinality, and [I|J] is defined to be the
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quantum determinant on the subalgebra of O,(M,,) generated by {X;; :i € 1,5 € J}.
Recall also that I denotes the complement of the set I in {1,...,n} and that we will
often drop the set notation for ease of notation: for example, the minor [{1,2}{2, 3}]

could be denoted by [12]23] or [3]1].

Notation 5.1.2. In order to easily distinguish between elements of the different types
of algebra, the generators of R, will be denoted by Y;;, the generators of O,(M,,) by
X;; and those of O(M,,) by z;;. Minors in each algebra will be denoted by [I|.J]s,
[1|J], and [I|J] respectively. Finally, elements of O,(GL,) or O,(SL,) will use the
same notation as that of O,(M,), where they will always be understood to mean
“the image of this element in the appropriate algebra”, and similarly for O(GL,,) and
O(SL,).

Notation 5.1.3. Since most of this chapter is concerned specifically with 3 x 3 ma-
trices, we will often drop the subscript and simply write R for SR in order to simplify

the notation.

The algebras O(M,,) and O,(M,,) admit a number of automorphisms and anti-automorphisms,
which will allow us to reduce the number of cases we check. We first define on O (M,,)

the maps

T le = X]'i,

p:Xig— Xot1jnrii

The map 7 defines an automorphism of O,(M,,) corresponding to the transpose opera-
tion on matrices, while p defines an anti-automorphism corresponding to transposition
along the reverse diagonal. Both of these maps have order 2. By [29], the action of

these maps on minors and on Det, is as follows:

T([1|J]g) = [J{]g;  T(Dety) = Dety;
p([[|J]q) = [wo(S)|wo(l)lg;  p(Dety) = Dety;

1

L2 1) eS,, ie the “longest element” of S,,.

where wy denotes the permutation (

O,(M,,) admits the structure of a bialgebra but does not have an antipode map; on

0,(GL,) and O,(SL,) we obtain a genuine Hopf algebra structure by defining the
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antipode:

S Xy (—q) 7 [jlilyDet, .
By [29], the action of S on minors is as follows:
S([117)y) = (—q)=""27[J|I|Det;?,  S(Det,) = Det;".

These maps induce (anti-)automorphisms of Poisson algebras on O(M,,), O(GL,) and
O(SL,) as appropriate (just replace X;; in the definitions by w;;, and ¢ by 1), and
we denote these maps by the same symbols as the quantum case. We note that when
we ignore the Poisson structure on the semi-classical limits and simply view them as
commutative algebras, the distinction between automorphism and anti-automorphism
disappears and each of the maps 7, p and S are simply automorphisms of commutative

algebras.

Finally, we observe that while S has infinite order as a map on O,(GL,) or O,(SL,),
the antipode of any commutative Hopf algebra has order 2 [45, Corollary 1.5.12].

5.1.1 Commutation relations and interactions for minors

To save us from excessive computation in future sections, it will be useful to obtain
some identities concerning how certain (n — 1) x (n — 1) minors interact with the
generators z;; under the Poisson bracket. In [29, §1.3] a number of identities for

O,(M,,) are listed, and we will use these to derive Poisson versions of these equalities.

We are interested in computing the bracket {z;;, [[|m]} for 1 <4, j,1,m < n. Suppose
first that j = m and i # [; by [29, E1.3¢|, we have the following equality in O,(M,,):

Xis(l7)g = allljle X + (g — a7 ) Z(—q)s_j[flﬂqus (i #1). (5.1.2)

The key point here is that we may replace ¢ by ¢t and X;; by Y;; in (5.1.2) and obtain
an equality which is valid in 9R,. We may then use Definition 2.2.5 and (5.1.2) to
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compute {z;;, [[|7]} for i # [ as follows:
fog 00} = (6 = D7 (X7 — 171X ) mod ¢ - 1

=(t-1)" ((t — D)Xy + 7 (2 = 1) Z<—t)5‘j[7|§1tX¢s> mod ¢ — 1

s<J

= [I|7] :E,]+QZ ) I3 2ss.

s<jJ
Applying a similar process to the other equalities in [29, §1.3], we obtain the following

list of relations:

{wiy, [[[]} =0 (i#1,j#m) (5.1.3)

{wy, M} = —QSZ; Blmlasy — [z (J#m) (5.14)
= 2; ) [U[3]is + (1[5

{wiy, 117} = 22 ) [U[3]wis + (U] (i#1) (5.15)
= —2; )9 811, — (U171

{iy, [il1]} =2 <Sz<i(—1)”:csj[’§|3] — ;(—1)”%47\?]) (5.1.6)
2 (il = S )

Definition 5.1.4. Let R be a commutative Poisson algebra. We call an element » € R
Poisson central if {r,s} = 0 for all s € R, and Poisson normal if {r,s} € rR for all

s € R.

When i # [ and j # k, the variable z;; appears as part of the expansion of the minor
[[|] and so we may view (5.1.3) as a relation in a subalgebra of O(M,,) isomorphic to
O(M,,_1). The minor [[|] plays the role of the (n — 1) x (n — 1) determinant Det in
this copy of O(M,,_1), and by (5.1.3) its bracket with any generator z;; in O(M,,_) is
zero. Hence we may conclude that the determinant Det is Poisson central in O(M,,),

and therefore in O(GL,,) as well.

We now specialise to the case n = 3. Since we will mostly be interested in ideals of

O(GL3) and O(SL3) (and their quantum counterparts) it will be useful to have some
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results on when Poisson-prime (resp. prime) ideals contain the 3 x 3 determinant Det

(resp. the 3 x 3 quantum determinant Det,).

Lemma 5.1.5. If P is a Poisson-prime ideal in O(Ms) and P contains at least one

of:

551175522,5533;[” ]7[2| ]7[3’ ]

then Det € P as well.

Proof. Using the identities in (5.1.6), we see that

{211, [11]} = 2291 [2[1] — 2251 [31]

and hence

Det = x11[1[1] — %{56117 [11]}

is in the Poisson-prime ideal P whenever x1; or [Tﬁ] is. Since 7 fixes Det, by applying

7 to the above equalities we immediately obtain the same conclusion for z33 and [3]3].

Next, we can observe that

1
XL22X33 — §{I22,I33} = [1|1],

and so x99 € P implies Det € P as well.

Finally, suppose [2|2] € P. Applying the identities in (5.1.5), we see that

{z12, [22]} = —2[2[121 + [2(2]212, {232, [2|2]} = 2[2[3] w33 — [2[2] a2,

and hence both [2|1]z1; and [2|3]z33 are in P as well. Since P is also prime, we must

have [§|T] € P or x;; € P, and similarly for [§|§] and ws33. If 217 or 233 € P then

Det € P as well, so suppose that [2|1] and [2|3] are in P instead. Since our initial

hypothesis was that [2|2] € P, we once again obtain

Det = 1'21[2‘1] — $22[2’2] + $23[2’3] e P.

Lemma 5.1.6. If Q) is a prime ideal in Oy(Ms) and Q) contains at least one of:

X117 X22)X337 [1|]‘]Q7 [2|2]¢I7 [3|3]q7

then Dety € Q as well.
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Proof. The quantum proof follows in a very similar manner to the Poisson proof. From

the equalities in [29, E1.3a], we obtain

Dety = [Iqull + q_l(q - q_l)_l(Xn[qu - [quXll)

= [3[3]¢X33 + a(q — ¢ ") 7 (X33[313], — [313]4X33),

while from the definition of quantum minor and the defining relations of O,(Ms) we

have

[1|1]q = X9 X33 — ¢ X293 X30

= X9 X33 — q(q — ¢ 1) 1 (Xoa X33 — X33X09).

Hence Det, is in the prime ideal () whenever any one of Xi;, Xoo, X33, [1|1], or [3]3],
is.

Now suppose that [2|2], € @ and recall from §2.3.3 that all prime ideals in O,(M;)

are completely prime. Using the identities from [29, §1.3], we find that

X12[§|§]q — Q[§|§]qX12 =—q Y(q— q_l)[i‘T]lel
X5[212)y — a7 212)¢X32 = qlq — ¢7)[2/3]¢ X3,

and so [2]1],X71,[2]3],Xs3 € Q. If X3y or X33 are in @ then Det, € @ by the above;

if not, then both [2|1], and [3|2], are in () and hence by [29, E1.3a],
Detq = —qingl[fiﬁ/]q + ng[fé‘fé}q - QX32[§‘§](I € Q ]

It is noted in [29, §2.4] that [3|1], and [1|3], are normal in O,(M3). Since we will want

to use [3|1] and [1|3] as generators of Poisson ideals, we prove the corresponding result

for O(Ms).

Lemma 5.1.7. The minors [1|3] and [3|1] are Poisson-normal in O(Ms), and hence

in O(GL3) and O(SLs) as well.

Proof. We will prove this for [3|1], since the corresponding result for [1]3] will then
follow by applying 7.
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We first need to check that {x;;, [3|1]} € [3]1]O(M3) for 1 < ,j < 3, which is simple
to verify using (5.1.3) - (5.1.6); indeed:

{@y, B} =0 i#3,j#1
{ws;, BI1]} = a3, [3[1] j#1
{1, B1]} = za3/1] i #3
{ws1, [B[1]} = 0.

Thus [3|1] is Poisson normal in O(M3), and hence in O(SL3) as well. Further, for any
a € O(Ms) we have

{aDet™ [3]1]} = {a, [3|1]} Det™* — {Det, [3[1]}aDet™% = {a, [3[1]} Det ™

by (2.2.3) and the fact that Det is Poisson central. It therefore follows that [3|1] is

Poisson normal in O(GLs) as well. O

In many cases, we will want to take the existing analysis done in [29] and transfer it
directly to the semi-classical limits. The following results will show that the process
of taking semi-classical limits commutes with both localization and taking quotients.
This will be useful when we apply the stratification theory described in §2.3.1-2.3.2 to
O,(GL3) and O(GLs3).

Proposition 5.1.8. Let R be a ring (possibly non-commutative), I an ideal of R and

X a right denominator set in R. Then there is an isomorphism of rings
(R/DIXT] = RX7/IX T,

1.e. the processes of localizing and taking quotients commute.

Proof. By [32, Corollary 10.13], RX ! is a flat left R-module, i.e. if
0—A—B—C—70

is an exact sequence of right R-modules, then the localizations also form an exact

sequence

00— AX'—BX ' S0O0X ' —0
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In particular, if we choose A = I, B = R and C = (R/I) and equip each with the
natural (R, R)-bimodule structure and natural maps between them, then we obtain

an isomorphism of R-modules
(R/NX ' RX'/IX™

Since the natural module homomorphisms defined above are simultaneously ring ho-

momorphisms, this is in fact an isomorphism of rings, thus proving the result. n

Note that if 7N X # (), this reduces to the statement that the zero ring is isomorphic
to itself. This is reassuring but unhelpful, so we will always ensure that N X = ()

when applying this result (in particular, the following theorem).

Proposition 5.1.9. Let B be a k[t*']-algebra and S C k\{0,1} a set of scalars such
that none of the elements {t—q : ¢ € SU{1}} are invertible in B. Suppose further that
B/(t —1)B is commutative, and write A := B/(t —1)B, A, := B/(t —q)B forq € S.
Finally, let X be an Ore set of reqular elements in B such that X N (t — q)B =0 for
all g € SU{1}, and let X, denote the image of X in B/(t —q)B for SU{1}. Under
these conditions, localizing A at X is equivalent to localizing A, at X, and then taking

the semai-classical limat.

Proof. Applying Proposition 5.1.8, we obtain isomorphisms of rings

A X' = BIXT/(t—q)BIXTT]  and  A[X{'] = B[XT/(t—1)B[X .

q

In order to establish the result, we just need to check that the Poisson bracket {-, -}; in-
duced on B[X'|/(t—1)B[X '] from the commutator in B[X '] (as in Definition 2.2.5)
agrees with the Poisson bracket {-,-}» induced on A and extended to A[X;]™! by
(2.2.3).

We will use the fact that {uv™!,-} and {-,uv™'} are always derivations for any uv~!

to show that both Poisson brackets are defined by their restriction to A. In particular,
for any derivation  on a commutative ring in which some elements are invertible, it

follows easily from the definition that § must satisfy the equality
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Hence, to compute {ab™*, cd~'}; for any ab™!,cd™ € B[X']/(t — 1) B[X '], we may

view it as a derivation in first one then the other variable to obtain

{ab™!,ed '}y = {ab!, chid ™t = {ab™t d}yed ™
=1a,C510 " —qa,dpicd d " — b, cpiab Td T b, dpach Ta T
b td1 dYyieb td? b b2d 1 b, d b2d 2

This agrees precisely with the definition of {ab™!, cd~'}, obtained using the formula
(2.2.3) to extend a Poisson bracket to a localization, and hence it suffices to check that
{a,c}1 = {a,c}s for all a,c € A. This follows trivially from the definition of the two

brackets in terms of commutators on B and B[X '], however. O

Proposition 5.1.10. Let A, A, and B be as in Proposition 5.1.9, and let I be an ideal
of B such thatt —q & I for any ¢ € SU{1}. Denote by I, the image of I + (t —q) in
B/(t—q)B for q € SU{1}. Then the semi-classical limit of the quotient A,/I, is the
same as the quotient of the semi-classical limit A by the ideal Iy, i.e. taking quotients

and semi-classical limits commudte.

Proof. Using the Third Isomorphism Theorem we easily obtain the isomorphisms of
rings
BIT /(¢ vypyr =/l and Bl gpir= a1,

As above, we just need to check that the two Poisson brackets induced on A/I; agree.

By taking the quotient first, a Poisson bracket is induced directly on A/I; from the

semi-classical limit process as follows: for a + I,b+ I € B/I, we have

(@ 1,b+1} = t_%((w Nb+1)— (b+[)(a+[)> mod ¢ — 1

1
= 1(ab—ba+]) mod ¢ — 1
1
t-1

(ab—ba)+ (I +(t—1)) mod ¢t — 1

Meanwhile, A already has a Poisson bracket {-,-}5 induced from A,, and this induces

a unique Poisson bracket on the quotient A/I; using the formula from (2.2.2):

{a+1,b+ LYy ={a,bla+ I,

= (til(ab—ba) modt—l) + 1.

Since the image of the ideal I + (¢t — 1) modulo ¢t — 1 is [, we see that {-,-}; and {-, - }2

are equal on A/I;. O



CHAPTER 5. POISSON PRIMITIVE IDEALS IN O(GL3) AND O(SLs) 108

5.2 'H-primes

As described in the introduction to this chapter, our aim is to apply the Poisson
Stratification Theorem to O(GLs) and O(SLs) in a similar manner to the quantum
algebras in [29]. As in the quantum case, we will make use of the fact that these two
algebras can be related via an isomorphism O(GL,) = O(SL,)[z*!]; it will turn out
that some results are easier to prove in O(GLs) and others in O(SL3), so it will be
useful to be able to move between the two as required. We prove the existence of a

Poisson version of this isomorphism in Lemma 5.2.5 below.

Our first aim will be to define a rational action of a torus H on O(GL3) and O(SLs)
and to identify the Poisson H-primes: Poisson prime ideals which are stable under
the action of H. This is complicated slightly by the fact that the standard action of
H = (k*)* on O(GL,) does not restrict directly to an action on O(SL,); however,
we will show in §5.2.2 that for an appropriate action of a torus H’ = (k*)?*"~! there is

a natural bijection from the H-primes of O(GL,,) to the H'-primes of O(SL,,).

5.2.1 H-primes of O(GLj3)

As described in [11, I1.1.15, I1.2.6], the torus H = (k*)?" acts rationally on O,(GL,)
by
hX’LJ = Ckiﬂinj, where h = (Oél, ey Oy, ﬁl, c. ,ﬁn) ceH. (521)

This also defines an action of H on O(GL,), by replacing X;; with z;; in (5.2.1) above.
By [27, §2.2], this defines a rational action of H on O(GL,,).

We will now restrict our attention to the case where n = 3.

Since we are using the same action of H on O,(GL3) and O(GLs), we would expect that
H-primes of O,(GLs) should match up bijectively with Poisson H-primes in O(GLs).
In this section we will show that every H-prime of O,(GL3) defines a distinct Poisson
H-prime when its generators are viewed as elements of O(G L), and in Theorem 5.3.13

we will show that O(GL3) admits no other Poisson H-primes.

The 36 H-primes in O,(GL3) are described in [29, Figure 1], which we reproduce in
Figure B.1 in Appendix B. Each ideal is represented pictorially by a 3 x 3 grid of
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dots: a black dot in position (4, j) denotes the element X;;, and a square represents a
2 X 2 quantum minor in the natural way. For example, the ideal in position (231, 231)

denotes the ideal generated by X3, and [3]1],.

We will adopt the indexing convention used in [29] for these ideals. H-primes are
indexed by elements w = (wy,w_) € S3 X S3, where we write permutations in S3 using
an abbreviated form of 2-line cycle notation, e.g. 321 represents the permutation
1+— 3, 2+— 2, 3+ 1. The ideal I, will denote the ideal generated by the elements
in position w = (wy,w_) of Figure B.1, where it will always be clear from context

whether we mean an ideal in O,(GL3) or O(GLs).

We may first observe that each of these ideals are generated only by (quantum) minors,
which are eigenvectors for the action of H, and hence the corresponding generator sets
in O(GL3) also generate H-stable ideals. Further, as the next lemma verifies, the

resulting ideals are all closed under the Poisson bracket of O(GL3) as well.

Lemma 5.2.1. Let w € S3 x S3, and let I, be the ideal of O(M3) generated by the
elements in position w from Figure B.1. Then I, is a Poisson ideal in O(Mj3), and

hence induces a Poisson ideal in O(GL3) as well.

Proof. We write 1, = (f1,..., fa), where the f; are the minors depicted in position w
of Figure B.1; it suffices to check that {f,, O(M3)} € I, for 1 < r < n. We first note

that this is immediate for f, = [1|3] or [3|1], since by Lemma 5.1.7 these elements are

Poisson-normal in O(M;) and O(GLj).

Now consider the case where f, = x;; for some 1 < 7,5 < 3 and 1 < r < n. We
need to check that {x;;,xy} € I for 1 < k,I < 3, which is easy to see when i = k, or
j=1ori<kandj>I (orvice versa): in these cases the Poisson bracket is either
multiplicative or zero on the given elements. The only remaining cases are when 7 < k
and j <[, orv >k and j > [, i.e. xy is diagonally below and to the right or above
and to the left of z;;. Since the Poisson bracket is anti-symmetric, we may assume

that ¢« < k and j < [. In this case,
{@ij, i} = 222y

and from Figure B.1 we can observe directly that whenever this situation occurs for
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a generator of I,,, we have x; or zy; € I as well and the ideal is closed under Poisson

bracket as required.

This shows that each of the 36 ideals listed in Figure B.1 are Poisson ideals in O(M3),
and by using the formula (2.2.3) for the unique extension of the bracket to a localization

we see that the induced ideals in O(GL3) are also Poisson ideals. O

It is observed in [29, §1.5] that the maps 7, p and S preserve H-stable subsets of
O,(GL3) with respect to the action defined in (5.2.1); since this follows purely from
considering the action of H on generators, the same observation holds true for O(GLs)
since the action of H is the same. In particular, if ¢ is some combination of 7, p and
S, and I, J are H-primes (respectively Poisson H-primes) such that ¢(I) = J then

this induces an (anti-)isomorphism of algebras (resp. Poisson algebras)
©:O0,(GL3)/I — O,(GL3)/J, resp. O(GL3)/I — O(GL3)/J.

By direct computation, we find that the 36 ideals in Figure B.1 form 12 orbits under
combinations of 7, p and S, and hence it often suffices only to consider the structure
or properties of O(GL3)/1, or O,(GLs3)/1, for one example from each orbit. Since
we will regularly use this fact to simplify case-by-case analyses in various proofs, in
Figure B.2 we present a diagram of these orbits. Note that we will always use the first

ideal listed in Figure B.2 when we require a representative for a given orbit.

Most of the arrows in Figure B.2 are immediately clear from the definitions of 7, p

and S; the five which are not clear are justified in the following lemma.

Lemma 5.2.2. We have the following equalities in Oy (GL3) and O(GLs):

(S0 p)(1132,312) = I213231
(S © P)(1231,132) I319.913
(S0 p)(La31,213) = I312,132
(S0 p)(a13312) = 132,231

S(Is31,123) = I312,123

Proof. We will prove the first equality, as the others follow by almost identical argu-
ments. Consider first the case of O,(GLs); note that p(l132.312) = (X3, X31, X32), so
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what we need to prove is that
S((Xis, X1, X32)) = I13931-

In other words, we need to check that

([31tg; [113]g, [2[3]g) = (Xa1, X2, [3[1]q)- (5.2.2)

Since [1|3]q = X21X32 - qX22X31 and [2|3]q = X11X32 - qX12X317 the g direction is

clear. Conversely, using the formulas from [29, §1.3] we can observe that

Ny — —
q [1|3] Xig — Q[2|3] Xog = —[3|3] X3,

! o o (5.2.3)
q2[1|3]qX11 - Q[2|3]qX21 = _[3|3]qX31-

3]3]4X 52 and [3|3],X3; are therefore in ([3|1],, [1|3],, [2]3],). This is a prime ideal since
it is the image of a prime ideal under the automorphism So p, and hence is completely
prime since all primes of O,(GL3) are completely prime by [11, Corollary 11.6.10]. By
Lemma 5.1.6 no non-trivial prime in O,(GLs) can contain [3|3],, and so Xs,, X3 are

both in ([3|1], [1]3]4, [2]3],). The equality (5.2.2) is now proved, and the other four

equalities follow by similar arguments.

Finally, the Poisson proof is almost unchanged from the quantum version, except that
we use Lemma 5.1.5 instead of Lemma 5.1.6 and instead of the equalities in (5.2.3),

we observe that
51 = Det ™ ([112][2[3] - [212)[1[3)),
w32 = Det ™ ([1[T][2[3] — 2[1)[13]),
which can be easily seen by applying S to the equalities mg] = T91T32 — T2T31,

[2|3] = X11%32 — T12731- O

We will now proceed to check that the ideals appearing in Figure B.1/Figure B.2 are
indeed distinct Poisson prime ideals which are invariant under the action of H. We
have already checked that they are Poisson H-ideals, so all that remains is to verify

that they are prime (in the standard commutative sense) and distinct.

Lemma 5.2.3. The ideals generated in O(Ms) by the sets of generators listed in
Figure B.1 are pairwise distinct and do not contain the 3 X 3 determinant Det. They

therefore generate 36 pairwise distinct H-ideals in O(GLs).
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Proof. The proof that the ideals are distinct closely follows the corresponding quantum

proof from [28; §3.6]. Indeed, we can define two projections
6, : O(M3) — By = k[x12, Z13, Taz, T3], b : O(M3) — By = k[xa1, T2, T31, T3]

where each map fixes z;; if it exists in the target ring and maps it to zero otherwise. It

suffices to view these as maps of commutative algebras rather than Poisson algebras.

If we consider the images of the ideals from Figure B.1 under 6; and 65, it is clear that
0, sends all ideals in a given column to the same ideal in B;, and the images of ideals
from different columns are distinct in By. Similarly 65 sends every ideal from a given
row of Figure B.1 to one ideal in Bs, and ideals from different rows are mapped to
distinct ideals in By. Hence two ideals in different columns or different rows must be

distinct in O(M3), and therefore all 36 of the ideals in the table are distinct.

By observation, we can see that all of the ideals in Figure B.1 are contained inside the

ideal

[123,123

and hence it suffices to check that Det ¢ Ij93123. This is equivalent to checking
that Det ?é 0 in O(Mg)/[1237123, but since O(M3>/1123’123 = ]{5[1’11,1322,1’33] we have

Det = x11299733 # 0 in this ring. The result now follows. O

Lemma 5.2.4. Fach of the 36 ideals whose generators are listed in Figure B.1 are

prime ideals in both O(M3) and O(GLs).

Proof. By Lemma 5.2.3 none of the ideals in Figure B.1 contain the determinant Det,
so by [32, Theorem 10.20] they will be prime in O(M3) if and only if they are prime in
O(GL3). We can therefore immediately observe that the 25 ideals generated only by
1 x 1 minors are prime in O(Ms) since the quotient O(Ms)/1,, is simply a polynomial
ring in fewer variables, and hence the extensions of these ideals to O(GLs3) are prime

as well.

Next consider the ideal
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o
OD
000

I531 231

in O(Ms3). In the subalgebra of O(M3) generated by {x12, 213, 22, 23} the minor [3]1]
plays the role of the 2 x 2 determinant, which we will denote temporarily by Dets.
This generates a prime ideal in O(Ms), and hence as commutative algebras we have

an isomorphism
O(Ms) /1931231 = (O(My)/ Dety) [x11, T21, T32, T33),

where the latter ring is a polynomial extension of a domain. The ideal I3 931 is

therefore prime in O(M3) and hence in O(GL3) as well.

Let I now be one of the 10 remaining ideals from Figure B.1; using the symmetries
listed in Figure B.2 there is always another ideal J among the 26 already considered
such that O(GL3)/I is isomorphic as commutative algebras to O(GL3)/J. The ideal
I is therefore prime in O(GL3) and hence in O(M;) as well. O

We have constructed here 36 examples of Poisson H-primes in O(GLs), but we post-

pone the proof that O(G L3) admits no more such primes until §5.3.2.

5.2.2 H-primes in O(SLs3)

As noted above, when working with O(SL,,) for any n we cannot use the action of H =
(k*)?™ defined in (5.2.1) for O(M,,) and O(GL,) as it does not give rise to an action on
O(SL,): in the notation of (5.2.1), we would have h.Det = oy ... a0 ... B,Det # h.1

in general. Instead, we restrict our attention to a subset
H={heH : a1...a,0...0, =1} CH
and take the induced action of H" on O(SL,), that is:
h.vy; = aifjxig, h=(ar,...,qn,01,...,0,) € H. (5.2.4)

The problem with this definition is it is not immediately clear how to connect the

H-primes of O(M,,) or O(GL,,) with the H'-primes of O(SL,,). In [11, Lemma II.5.16]
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and [41, §2], it is shown that by applying the natural projection map to the H-primes of
O,(GL,) we obtain precisely the H'-primes of O,(SL,,), and we adapt their argument

to the Poisson case here.

We begin by establishing a Poisson version of the isomorphism O,(SL,)[z*'] & O,(GL,)
from [42].

Lemma 5.2.5. Let O(SL,) and O(GL,) be Poisson algebras, where the Poisson
bracket in each case is the one induced by (5.1.1). Define O(SL,)[z*'] = O(SL,) ®
k[z*Y], and extend to it the Poisson bracket from O(SL,) by defining z to be Poisson

central: {z,a} = 0 for all a € O(SL,). Then there is an isomorphism of Poisson
algebras O(SL,)[z*'] — O(GL,,), defined by
0:0(SL,)[z*'] — O(GL,)
T xljDet_l
Tij Ty (i #1)

z +— Det.

Proof. By taking ¢ = A = 1 in [42], we immediately get that 6 is an isomorphism of
commutative algebras, and we need only check that it respects the Poisson bracket.
Let 0;; denote the Kronecker delta, i.e. 6;; = 1 when ¢ = j and ¢;; = 0 otherwise, and

recall that the determinant Det is Poisson central in O(GL,,).
For x;;, i, € O(SL,,) we have
O(xijxim) (t=1lorj=m)
0{xj, xim } = 0 (t>1,j<mori<l j>m)

20(ximay;) (i <l,j<mori>lj>m)

xijxlmDet*‘sliDet*‘S“ (t=1lorj=m)
= 0 (i>lj<mori<l,j>m) , (5.25)
2xmajDet i Det ™% (i < l,j <mori>1lj>m)
while
{0(2i;), 0(x1m)} = {ijDet ™ xy,, Det 1}

= {zy, xlm}Det"s“Det"s”, (5.2.6)
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since Det is Poisson central. Using the definition of the Poisson bracket in O(GL,),
it is clear that (5.2.5) and (5.2.6) are equal. Finally, we see that

0{z;j,z} =6(0) =0= {xijDet_‘S“, Det} = {0(x;),0(2)},

for all z;; € O(SL,,), and @ is therefore an isomorphism of Poisson algebras as required.

]

We can now define an action of H on O(SL,)[2*!] by conjugating the standard action

of H on O(GL,,) with 0, i.e. for h € H we define
hf=0"ohod(f) VfeO(SL,) [z (5.2.7)

This also restricts to an action of H on O(SL,). Indeed, by working through the
definition in (5.2.7), we find that

h.xlj = Oélﬂj(Oél Ce anﬁl R ﬂn>71$1j,

h.l’i]’ = Oéiﬁjxij (7, 7£ 1)

(5.2.8)

The next two lemmas show that the set of H'-primes in O(SL,,) coincides with the
set of H-primes, which in turn coincides with the set of H-primes of O(SL,)[z*!].
This approach is based on the corresponding quantum result outlined in [11, Lemma

11.5.16, Exercise 11.5.H].

Lemma 5.2.6. Let p; : H — Aut(O(SL,,)) be the homomorphism of groups induced by
the action defined in (5.2.8) above, and ps : H' — Aut(O(SL,)) be the homomorphism
induced by the standard action defined in (5.2.4). Then im(py) = im(ps) and hence

H-Pspec(O(SLy,)) = H'-Pspec(O(SLy,)).

Proof. Since H' € 'H and for h € ‘H' we have oy ...,01...08, = 1, it is easy to see
that p1(h) = p2(h) for all h € H" and hence im(ps) C im(p;). Conversely, if h € H\H’
then the action of h on O(SL,,) is the same as the action of

h,:((Oég...Oénﬁl...ﬁn)_l,OCQ,...,ﬁn) EH,

and so im(p1) C im(pz) as well. Thus an ideal of O(SL,,) is fixed by H' if and only if
it is fixed by the action of H given in (5.2.7). O
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Lemma 5.2.7. The mapping ¢ : P — P[z*!] defines a bijection between H-Pspec(O(SL,))
and H-Pspec(O(SL,)[z%]).

Proof. This proof is based on the non-commutative argument in [41, Lemma 2.2]. Since
z is Poisson central and a H-eigenvector it is clear that ¢ sends Poisson H-primes to

Poisson H-primes and so ¢ is well-defined.

We claim that the inverse map is @ — Q N O(SL,,). To prove this, we need to show

that

PN O(SL,) = P VP € H-Pspec(O(SL,)) (52,0
(QNOSL ] =Q VQ € H-Pspec(O(SLy)[=*)]) B

and for this it will suffice to check the following statement:

For all Q € H-Pspec(O(SL,)[z*!]) and for all f = fi2M +-- -+ f,2% € Q,
then f; € QN O(SL,) for all i.

The statement is clear when n = 1, since z is invertible in O(SL,)[z*']. Now assume

it is true for all sums of length n — 1, and let
f — flzkl + “ e +fnzkn

where we may assume without loss of generality that the k; are distinct and the
fi€ O(SL,) for all i. Let h = (2,1,...,1) € H; observe from (5.2.7) and (5.2.8) that
h fixes all of O(SL,) but acts on z as multiplication by 2. Since () is a H-stable ideal,

we have
f=2Fmhf =" fi(l =28 hnhe Q.
=1

The final term in this sum is zero, leaving us with a sum of length n — 1; by the
inductive assumption, we therefore have (1 — 2k=*)f, € Q for 1 <i < n — 1. Since
the k; are distinct and the f; are in O(SL,), we can conclude that f; € Q N O(SL,)

for1 <i<n-1.

Now we have f,2* = f — fizht — ... — f, 121 € Q and so f, € Q N O(SL,) as

required.

It is now easy to verify that the two equalities in (5.2.9) above are true, and the result

follows. L
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Now we are in a position to compare the H-primes of O(GL,) and the H'-primes of

O(SL,) directly, which we address in Proposition 5.2.8 next.

Let m : O(M,) — O(SL,) be the natural quotient map, which extends uniquely by
localization theory to a Poisson homomorphism O(GL,) — O(SL,); we will denote

this map by 7 as well. The map € continues to denote the isomorphism of Poisson

algebras O(SL,)[2*!] — O(GL,,) from Lemma 5.2.5.

Proposition 5.2.8. The mapping P — 0(P[z%1]) is a bijection of sets from the Pois-
son ‘H'-primes of O(SL,,) to the Poisson H-primes of O(GL,), and the inverse map

is given by Q — 7(Q).

Proof. By Lemmas 5.2.6 and 5.2.7, the H'-primes of O(SL,,) are in bijection with the
H-primes of O(SL,)[z*!]. Further, it is clear from the definition of the H-action on
O(SL,) in (5.2.7) that # commutes with the action of H, and so we easily obtain the
promised bijection H'-Pspec(O(SL,) — H-Pspec(O(GL,)).

In [29, Proposition 2.5], it is proved that ¢ — 7(Q) is the inverse mapping to P —
O(P[2*1]) in the case of quantum GL,, and SL,; however, since their proof relies only
on looking at the action of # and h € H on monomials and makes no use of the ¢-
commuting structure, we can observe that the same proof works without modification

for the Poisson case. O

5.3 Poisson primitive ideals

Once we have identified all of the H-primes in an algebra, the Stratification Theorem
(Theorem 2.3.8) gives us a way of understanding its prime and primitive ideals — up to
localization, at least. By the Stratification Theorem we know that if I, is a H-prime

in O,(GL3), then the prime ideals in the stratum
spec,(O4(GLs)) = {P € spec(O,(GLs)) : ﬂ h(P) = Iw}
heH

correspond homeomorphically to the prime ideals in 2 (Oq(GLS)/Iw [8; ID, where &,
denotes the set of all regular H-eigenvectors in O,(GLs)/1,.
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Notation 5.3.1. While the notation (R/I ) [E_l] eliminates any possible ambiguity,
the brackets are cumbersome and we will often simply write R/I [Efl} instead; this

will always denote the localization of R/I at the set E C R/I.

Goodearl and Lenagan prove in [29, §3.2] that we may replace &, with a subset E,,,
provided that E, is still an Ore set (in a Noetherian ring, this is equivalent to being
a denominator set by [32, Proposition 10.7]) such that the localization is H-simple.
For each H-prime [, they construct an Ore set E,, satisfying these properties which
is generated by finitely many normal elements. This allows them to compute the
localizations and their centres explicitly, and hence pull back the generators of the

primitive ideals in the localizations to generators in O,(GLs) itself.

Our aim in this section is to build on the work of [29] to obtain a situation where we
can develop the quantum and Poisson results simultaneously. We start by modifying
the Ore sets of [29] so that our localizations Oq(GLs)/I, [E;'] are always quantum

tori of the form k:q[zfl, 2, ...,z i.e. localizations of quantum affine spaces at the

’rn
set of all their monomials. The correspondence between prime and primitive ideals
of a quantum torus and Poisson prime/primitive ideals of its semi-classical limit is
already well understood (see for example [47, 31]), and combined with the following

slight generalizations of the Poisson Stratification Theorem this allows us to easily pull

back the results to O(GLs).

Proposition 5.3.2. Let R be a commutative Noetherian Poisson algebra upon which
an algebraic torus H = (k)" acts rationally by Poisson automorphisms, and let J
be a Poisson H-prime in R. Suppose that E; is a multiplicative set generated by H-
eigenvectors in R/.J such that the localization Ry = 1Y/.J [E}l] is Poisson H-simple.
Then the stratum Pspec;(R) = {P € Pspec(R) : (e, R(P) = J} is homeomorphic

to Pspec(Ry) via localization and contraction.

Proof. By standard ring theory (e.g. [32, Theorem 10.20]) there is an inclusion-
preserving bijection given by extension and contraction between {P/J € spec(R/J) :
P/JNE; =0} and spec(Ry), and using the definition in (2.2.3) for the extension of
a Poisson bracket to a localization it is easy to see that this restricts to a bijection on

Poisson primes.
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We therefore need to prove that whenever E; satisfies the conditions of the proposition,
we have an equality of sets
{P/J € Pspec(R/J) : (| h(P/.J) =0} = {P/J € Pspec(R/J): P/J N E; =0}

heH
(5.3.1)

this will be sufficient, since Pspec;(R) corresponds precisely to the first set in (5.3.1).

If P/J € Pspec(R/J) satisfies P/J N E; # (), then P/J contains a H-eigenvector and
it is clear that (1),c, h(P/J) # 0. Conversely, if (), R(P/J) # 0, then P/J contains
a non-trivial H-prime in R/J. The ideal P/J must therefore become trivial upon

extension to R; = £/J [E;'] since Ry is Poisson H-simple, and so P/JNE; #0. O

The Poisson Stratification Theorem also describes a homeomorphism between the
Poisson primes of 11/, [€7"] (where &, is the multiplicative set generated by all H-
eigenvectors in R/J) and the primes of the Poisson centre PZ (R/J [£7']). While it
is routine to modify existing quantum proofs to replace £; by E; in this result as
well, we will not need this level of generality in this chapter. As noted above, our
localizations /.7 [E;'] will always be semi-classical limits of quantum tori and so it

suffices to use the following result by Oh.

Proposition 5.3.3. Let R = k27", ...,z be a commutative Laurent polynomial

ring with a multiplicative Poisson bracket, i.e.
{.’L',LLC]} = Aijxixj )\ij €k fOT all ’l,j

Then there is a homeomorphism between Pspec(R) and spec(PZ(R)) given by contrac-

tion and extension, and this restricts to a homeomorphism Pprim(R) ~ maxz(PZ(R)).
Proof. [47, Lemma 2.2, Corollary 2.3]. O

Now suppose that R is a commutative affine Noetherian Poisson k-algebra which has a
rational H-action and only finitely many Poisson H-primes, and suppose further that
for a H-prime J there is a multiplicative set of H-eigenvectors in R/J such that the
localization R/ J [Ejl] has the form given in Proposition 5.3.3. The Dixmier-Moeglin
equivalence (Theorem 2.3.13) applies to algebras of this type, and so we also obtain
a homeomorphic correspondence between the Poisson primitive ideals in the stratum

corresponding to J and the maximal ideals of PZ (R/ JIET').
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w E’er Ew7
20| X (B, Billy X
231 Xo1, Xso 2[1]4, Xi3
312 X3, [2|3]q Xosz, X9

132 | X, Xag, [1T), (11T, Xos, Xu1

213 | Xoi, [3]3]q, X33 X33, Xi2, [3]3],
123 | Xi1, Xoo, X3z Xy, Xog, X33

Table 5.1: Original generators for Ore sets in O,(GLs) (see [29, Figure 3]).

5.3.1 The quantum case

We begin by summarising the work of Goodearl and Lenagan in [29], which allows us
to set up the appropriate notation and present the results in a convenient form for

transferring to the Poisson case.

The original Ore sets from [29, Figure 3] are reproduced in Table 5.1 for the reader’s
convenience. Let w = (wy,w_) € S3 x S3; the Ore set E,, corresponding to the ideal
I, is generated by E,,, UE,,_ from Table 5.1. The elements in each E,,, are viewed as
coset representatives in the factor ring Oy(GL3)/ 1., 301, since for any w_ € Ss we have

I, 321 C I, ._; similarly, the elements of £, are viewed as coset representatives in

Oq(GLg)/[gng_ .

These Ore sets satisfy all of the required properties: the induced action of H on
the localization is rational, the localization map O,(GLs3)/1, — O,(GLs)/1, [E.Y] is

always injective, and the localization is H-simple (see [29, §3.2]).

The generators in Table 5.1 have also been chosen to exploit the symmetries induced
7, pand S: as discussed in [29, §3.3], in most cases it is immediately clear that a map
1, — 1, in Figure B.2 will also map the corresponding Ore set E,, to E,,, and hence

induce (anti-)isomorphisms of the localizations
Oy(GLs)/L, [E5!] — OulGLs)/1,,[E5].

These symmetries become less obvious when wy = 231 or 312, so our first aim will be
to modify the generators of these sets slightly (without changing the overall Ore set)
in order to make it clear that these symmetries do actually induce (anti-)isomorphisms

in these cases.
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w E,. E,_
321 Xs1, [113] Bl1g: Xis
231 | Xy, Xip [2[1]q, (3121,
312 | [112]4, [213]4 X3, X12

132 | X, Xao, [T, (1T, Xos, Xu1

213 | Xo1, [3]3]g, X33 X33, Xi2, [3]3],
123 | Xi1, Xoo, X3z Xy, Xog, X33

Table 5.2: Modified generators for Ore sets in O,(GLs3).

First we observe by direct calculation that

[2|3]q[]~|2]q = D@thgl — Xll[llg]qX?ﬁ (532)

32]4[2/1], = Det, X135 — X11[3[1], X33 (5.3.3)

We would like to replace X3; by [1]2], in the set of generators for 3o, from Table 5.1.
Since we are viewing elements of Ej35, as coset representatives modulo 319391 =
([1]3],) as explained above, by reducing (5.3.2) mod [1|3], it is clear that we may
substitute [1|2], for X3, in the generating set for Es;, . without changing the Ore set

at all. Similarly, we may replace X33 by [3|2], in Eas; .

We may therefore take the elements in Table 5.2 as the generators for our Ore sets
instead of those in Table 5.1, where E, is the multiplicative set generated by £, UE,,_

as before.

We now obtain the following equalities (based on [29, §3.3]) with no restriction on w

or w_:
T(Eyjz> = Ez—l’yfl

S(E,.) = E,1.1 (5.3.4)
p(E%Z) = Ewoy_lwo,woz_lwo

As before, wg denotes the transposition (13) € Ss.

The arrangement of maps between H-primes in Figure B.2 have been chosen to be
compatible with (5.3.4), so whenever there is a map from w; to wy in Figure B.2 this

induces an isomorphism or anti-isomorphism

Oy(GLa)/1,, [EY] — CulGLs)/1,, [ESY.

When considering the structure of the localization Oq(GL3)/Iw [E;'] and its centre,

it now suffices to consider one example from each orbit in Figure B.2 since the other
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cases in the same orbit can easily be obtained by applying the appropriate (anti-

)Jisomorphisms.

We will now make two final changes to these Ore sets, to ensure that the generating
sets are as simple as possible and that the localization we obtain is a quantum torus.
First, whenever the determinant Det, decomposes as a product Xi; [Imq or X117 X929 X33
modulo a H-prime [, it is redundant to include these factors in the Ore set since they
are already invertible, so we remove them from our generating sets for simplicity.
Second, when computing the centres of each localization in [29, §4], Goodearl and
Lenagan first invert up to 4 additional elements in order to obtain a quantum torus

and hence simplify the computation of the centres; we will add these elements to our

Ore sets as well.

These changes are summarised in Figure B.3.

Notation 5.3.4. For the remainder of the chapter, E,, will denote the multiplicative
set generated by the elements in Figure B.3 in the row corresponding to I, which
are viewed as elements in the factor ring O,(GL3)/1,. Ore sets for the remaining 24
‘H-primes can be obtained by applying the appropriate combination of 7, p and S from

Figure B.2. In order to simplify the notation, we define

A, = O04(GL3)/1,[ESY]. (5.3.5)

Based on the computations in [29, §4], Figure B.4 lists the generators of the quantum
torus A, for one example of w from each orbit defined in Figure B.2. As always,
generators for the algebras A, not listed in this figure can be obtained using 7, p and
S as appropriate, and the g-commuting relations between pairs of generators in a given
ring A, can easily be computed using the relations in O,(Ms) and deleting any terms

which appear in the ideal I,.

We also reproduce in Figure B.5 the generators for the centres Z(A,), which appear
in [29, Figure 5]. Observe that for w = (123,123), the image of Det, in O,(GL3)/1, is
Det, = X11 X9 X33 and the centre is generated by Xi;, X9 and X33; we can therefore
replace (for example) X33 by Det, in the list of generators, and this we shall do. We
make a similar change when w = (132,132) or (123, 132), so that Det, appears as a
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generator of the centre in all 36 cases; this will make it simpler to transfer our results

to O(SL3) in future sections.

It is the description of the centres Z(A,) which are of the most use to us: they
are commutative Laurent polynomial rings, and so when k is algebraically closed the
maximal ideals of a given algebra Z(A,) = k[Z*', ..., ZF'] are precisely those of the

form
my=(Z1— A1, Zn—An)y, A=(A1,..., ) €F, 1 <i<n. (5.3.6)

From Figure B.5, we can observe that each Z; has the form El-Fi_l, where E; and
F; are both normal elements of O,(GL3)/I,. The key result of [29] is that for each

w € 53 x S3 and each maximal ideal (5.3.6) in Z(A, ), we have
my N OdGL3)/I, = (By — \Fy, ..., E, — M\Fy),

(see [29, §5]). By the Stratification Theorem these describe all of the primitive ideals
in OQ(GLg)

5.3.2 From quantum to Poisson

Our eventual aim is to show that there is a natural bijection between prim(QO,(GLs))
and Pprim(O(GLs)), and similarly for SLs;. The next step is therefore to obtain a
description of the Poisson primitive ideals in algebra O(GLs3); however, rather than
simply repeat the analysis of [29] and replace “quantum” by “Poisson” throughout,
we will take a shortcut using Proposition 5.1.9 and the close relationship between

quantum and Poisson tori originally described in [47].

We will start by checking that the Ore sets E,, lift to Ore sets in the formal k[t*!]-
algebra that governs the deformation process. Using this, we will show that by taking
the semi-classical limit of the quantum tori appearing in Figure B.4, we obtain the
same algebras as if we had localized the Poisson algebras O(GLs)/1, at the sets in
Figure B.3 (now viewed as elements of the corresponding Poisson algebra). This
will give us Poisson H-simple localizations O(GLB»)/IW [E; 1] with a structure which
is already well understood from the quantum case, and we may use these algebras to

describe the Poisson-prime and Poisson-primitive ideals of O(GLs).
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Recall from Definition 5.1.1 that 2R is the k[t*!]-algebra on 9 generators Y;;, 1 < i,j < 3
such that R/(t — )R = O,(M;) and R/(t — 1)R = O(Ms). By a slight abuse of
notation we will also denote by I, the ideals in R corresponding to the 36 ideals in

Figure B.1, obtained by replacing X;; by Y;; and [i|j], by [¢|j]; in the generating sets.

Since we have expanded our Ore sets E, to include elements which are not nor-
mal in O(GL3)/1,, we have to work slightly harder to verify that the corresponding
multiplicative sets in /[, are also Ore sets. We will approach this in a round-
about manner, by constructing iterated Ore extensions with exactly the properties
that R/I,[E;'] would have if it exists; hence by the universality of localization this
algebra is R/I,[E '] and E, must be an Ore set.

The following two results encapsulate the process we will use.

Lemma 5.3.5. Let a be an endomorphism and 6 an a-derivation on a ring R, and
suppose that X is an Ore set in R. If o extends to an endomorphism of R[X '] then

§ extends to an a-derivation of R[X ).

Proof. 1If  extends to R[X '], then a(x)~! is defined for all x € X. If § also extended
to R[X '] then it would have to satisfy the following equality for any z € X:

0= 6(1) = 6(ex ) = af@)d(e ) +d()a ",

and hence
S(z7) = —afx) 1o(x)r?

1

is uniquely determined. Since a(z)~ ' exists by assumption, this is well-defined and §

extends as required. O

Corollary 5.3.6. If R[z;«, ] is an Ore extension of a ring R and X is an Ore set in
R, then the extension R[X'[z;a, 8] exists (with the natural extension of o and § to

R[X7Y) if and only if a(x)~! is defined for each x € X.

Proof. The extension R[X![z;a,d] exists if and only if a is an endomorphism of
R[X 1] and ¢ is an a-derivation of R[X!]. By Lemma 5.3.5, this happens if and only
if v is defined on X1, O
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Let F, denote the multiplicative set generated in 38/, by taking the corresponding set

of generators from column 3 of Figure B.3 and applying the rewriting rule X;; — Y};,

[i|7]4 ¥ [i]7]:- We are now in a position to verify that the F,, are indeed Ore sets in
M/1,. We begin by considering our usual 12 cases, that is the ones listed explicitly in
Figure B.3.

Proposition 5.3.7. For the 12 examples of F,, induced by the elements listed in Fig-
ure B.3, F,, is an Ore set in R/1L,.

Proof. As described above, our approach will be to construct k[t*!]-algebras with
precisely the properties that 2 /I,[F '] will have if it exists; by universality the local-

ization therefore must exist, which is possible if and only if F, is an Ore set.

We begin with the case w = (321, 321), and we will compute this case in detail as all of
the others follow by a very similar method. Note that I, = (0), so we identify 28/(0)
with 9. We need to show that the localization R[Y;7", Yi5', Yo', [3[3]71] exists.

We start by defining the following algebra:
Ry = k[tilv }/1:‘1:1] D/ljz:l; aO] D/ijl; al]?
where the k[t*!]-linear automorphisms g and «; are defined by

, 1
ap Y — 1t Y,

ap Yy Y, Yig e Yo
We next define

Ry := Ry[Yag; ava, 0o,
Qg Y1 =Yg, Yig =t g, Yoy = t7 1Yoy,

§o 1 Y11 — (17 = 1)Y19Yay, Yia = 0, Yo 0.

It is easy to see that Ry = My[V 1", Yo', Yo '] (recall Ry is the k[t*!]-algebra giving

rise to the deformation O,(Ms)). Since [3|3]; plays the role of the 2 x 2 determinant

in fRo, it is central and therefore invertible, and we define

Ry = Ry[[3]3],"].
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We have now inverted all the required elements; the next step is to verify that we
can adjoin the remaining generators {Yi3, Y31, Yas, Y39, Y33} to R3 via Ore extensions
in the appropriate way, checking at each step that the Ore extension makes sense on
the inverted elements. To do this we will rely heavily on Corollary 5.3.6, which tells us
that if o is an endomorphism and § an a-derivation on a ring R and X is an Ore set,

then it suffices to check that « is defined on X! in order to construct R[X'][z; o, d].

We define
Ry = R3[Y13; 043][3/31; 044];

ag: Yyt Y, Yig — 7 Y, (5.3.7)
oy Yy 7Y, Yoy o 67 Yo
where each «a; acts as the identity on any generators not listed in (5.3.7). These

automorphisms are clearly defined on Y;7%, Y35 and Yy ', and as([3[3],) = au([3[3];) =

t~1[3]3]; also poses no problems. The algebra Ry therefore makes sense, and we proceed
to adjoin Yog:
Rs := Ry[Ya3; s, 05);
a5 Yiz = U Yig, Yoy o 6 Yoy, Yoo o 17 Yo, (5.3.8)
05 : Y11 — (671 = )Y13Ya1, Yio — (671 — 1) Yi5Yas;
where a5 acts as the identity on any generators not listed in (5.3.8), and J5 acts as 0

on any generators not listed. We observe that as([3[3])~! = ¢[3|3];* is defined, so R;

is a genuine Ore extension. Similarly, we set

R == Rs[Y32; v, 06];
Qg Yoy =t Yay, Yog ot Yoy, Yig o t7 1Yy,
06 1 Yor — (171 — )YV, Yip = (71 —#)Yp V3.

The only remaining variable to adjoin is Y33, which proceeds in a very similar manner:

define

R; := Rg[Ys3; a7, 67);
a7 Yozt Yog, Yig = t71Vi3, Yag o t7 1Yoy, Yoy = t7 1Yy
o7 : Yii = (71— 0)Yi3Ya1, Yie = (171 — £)Yi3Ys0, Yor — (71 — ¢)YasYa,

Yoo — (171 — 1) Ya3Y50.
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Here a7 acts as the identity on each of our elements of interest Yi;, Y12, Y5, and [§|§]t,

and so again by Corollary 5.3.6 the definition of R; makes sense.

Observe that the variables {Y;; : 1 <14, j < 3} in Ry satisfy exactly the same relations
as those in R, and so we have R; = i)%[Fg’?ngl] as required. Since the localization
%[F?,_zi,gm] exists if and only if F9; 301 is an Ore set in R, the result is proved for this

case.

The six cases w = (321, 312), (231, 312), (321, 132), (321, 123), (132, 312) and (132, 132)
follow by almost identical methods: in each case R8/1,, can be identified with an iterated
Ore extension in < 8 variables, and by choosing the order of the variables carefully the

generators of F, can easily be inverted early on in the process to construct 3/, [F1].

In four more cases, namely w = (123,312), (213, 132), (123,132) and (123, 123), the
set F, is empty and there is nothing to prove. This leaves us with only the case

= (231, 231) to consider.

The ideal 231231 is generated by Y3, and [§|T]t, and Fhsp 931 is the multiplicative set
generated by Yas and [1|1],. By a similar method to the above we may easily construct

R[Fya 231), and by Proposition 5.1.8 we have

(R[Fsst231]) /231,281 = R/ Loz 031 [Fog) 031

All that remains is to check that we have not constructed the zero ring, i.e. that
Ip31.931 N Fog1031 = (), but this is easy to check using the grading on fR. The ring

9%/[2317231 [F{iﬁ,%l] therefore exists, and Fig; 231 is an Ore set. O

Let Det; denote the 3x 3 determinant in PR. This is central in fR, since the computations
involved in verifying its centrality in O,(M3) continue to be valid if we replace ¢ by
t. Similarly, Det; remains central and non-zero modulo each I, and we may form the

algebras

R/LFS, Dety '] = (R[Det; ) /LIFS .

Having now inverted Det;, we may now use the (anti-)isomorphisms of Figure B.2 once
again: this tells us that F,, is in fact an Ore set in R[Det; ']/I,, for all w € S5 x Ss.

We can now obtain the result we have been working towards:
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Corollary 5.3.8. Let R and F,, be as above, and let F! denote the multiplicative set
in R := R[Det; *]/1, generated by the corresponding elements in the second column of

Figure B.3. Then R[F;', F/7'] exists, and F, U F! is an Ore set in R.

Proof. Since F, is an Ore set in R = R[Det; ']/I,, by Proposition 5.3.7 and comments
following the proof, we need only check that F! is an Ore set in R[F']. This is
easy to check, however, since the generators of F are normal in R (this can be seen
by using the relations in R and deleting any terms which are in I,) and therefore it
automatically forms an Ore set. That the union of two Ore sets is an Ore set follows

by the universality of localization. O

Proposition 5.3.9. For eachw € S3x.Ss, let E!, be the multiplicative set in O(GLs3) /1,
generated by the set of elements indicated in Figure B.3, viewed as elements in the Pois-
son algebra O(GLs)/1, rather than Oy(GLs)/1,. Then the localization of O(GL3)/I,
at the set E! is precisely the semi-classical limit of the corresponding quantum torus

A, in Figure B.J.

Proof. By lifting the generators of the H-prime I, to R, which is possible since the
generators are always quantum minors, we can observe that ¢ — ¢ and ¢ — 1 are not in
the resulting ideal (here ¢ can be any non-zero non-root of unity in k). By Proposi-

tion 5.1.10 we must have that O(GLs)/1, is the semi-classical limit of O,(GLs)/1,.

Now consider the elements of E, lifted to SR/1,; these are still Ore sets by Proposi-
tion 5.3.8 and we can easily check that the conditions of Proposition 5.1.9 are satis-
fied. By Proposition 5.1.9, the localization of the semi-classical limit O(GL3)/I, at

the set E! is therefore the same as the semi-classical limit of the localized algebra
Oy(GLs)/1,[E;Y]. O

Corollary 5.3.10. The localization O(GLS)/L,J [E;l] is Poisson H-simple.

Proof. By Proposition 5.3.9, the algebra O(GL:%)/[UJ [E; 1} is a commutative Laurent

polynomial ring k[z',...,zE!] with the multiplicative Poisson bracket {z;,z;} =

ey RAm

m;j2:2; for some appropriate set of scalars {m;;}. (The precise values of the m;; do

not matter here, but can be computed easily from the g-commuting structure of the
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corresponding A,.) By [24, Example 4.5], a Poisson algebra of this form is Poisson

‘H-simple. n

Notation 5.3.11. From now on, we will use the notation F,, interchangeably for the
Ore set in O,(GLs)/1, and for the multiplicative set E/ defined in Proposition 5.3.9;
it should always be clear from context whether we mean E, as a set in O,(GLsj)
or O(GLs). We will retain the notation A, = Oq(GLs)/1, [E;'], and define B,, :=
O<GL3)/Iw [E; 1} for the corresponding Poisson algebra.

We may now tackle the proof that O(GLs) admits only the 36 Poisson H-primes
displayed in Figure B.1, which has been postponed until now because it uses the
Poisson H-simplicity of the localizations B,. We will first require one more lemma,

which we prove next.

Lemma 5.3.12. Let P be a non-trivial Poisson H-prime in O(GL3). Then:

(i) If X192 or Xoz € P then Xy3 € P as well;

(ii) If Xo1 or X3o € P then X31 € P as well.

Proof. Since P is closed under Poisson brackets, if Xj5 or Xy3 € P then { X9, Xo3} =
2X13X9 € P as well. The ideal P is also assumed to be prime in the commutative
sense and so Xj3 or Xoo € P as well, but by Lemma 5.1.5, any Poisson prime in
O(GL3) containing Xsy also contains Det. Since P is non-trivial by assumption, we

can conclude X;3 € P. The statement (ii) follows by a similar argument. [

Theorem 5.3.13. The Poisson algebra O(GL3) admits only 36 Poisson H-primes,

and these are the 36 ideals appearing in Figure B.1.

Proof. Suppose P is a non-trivial Poisson H-prime in O(GL3) which is not one of the
36 appearing in Figure B.1; we will use the Ore sets from Figure B.3 to show that this
is a contradiction. The key observation is that if J is a Poisson H-prime appearing in
Figure B.1 such that J C P, then P is a non-trivial Poisson H-prime in O(GLs)/J
and therefore must contain one of the elements in the Ore set associated to J since

the localization is Poisson H-simple.
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We start the process by noting that 0 C P, and so by the observation above P must
contain one of the elements in the first row of Figure B.3. By Lemma 5.1.5 P cannot
contain either X1, or [3|3] since it is non-trivial, while by Lemma 5.3.12 if P contains
Xy9 or X then it must also contain X3 or X3, respectively. Therefore P must contain

one of Xi3, X31, [1]3] or [3|1], each of which generate a Poisson H-prime appearing in

Figure B.1.

We may now iterate this argument: suppose P contains a known H-prime J of height
n (i.e. one from Figure B.1). If J appears in Figure B.3 then P must contain one of
the elements listed in the row corresponding to J, and by applying Lemmas 5.1.5 and

5.3.12 as above we find that P must contain a known H-prime of height n + 1 as well.

On the other hand, if J does not appear in Figure B.3 then there exists some com-
bination ¢ of the maps 7, p and S from Figure B.2 such that ¢(J) does appear in
Figure B.3 and ¢(J) C ¢(P). The ideal ¢(P) must be a Poisson H-prime, since 7, p
and S are Poisson morphisms that preserve H-stable subsets, and ¢(P) cannot appear

in Figure B.1 otherwise P would as well.

Now, by a similar argument ¢(P) must contain a known H-prime K of height n + 1

as above, and so ¢ '(K) C P where K is a known H-prime of height n + 1.

This process must terminate since O(GLs) has finite Krull dimension; this is a con-

tradiction and so the unknown Poisson H-prime P does not exist. O

Combining Proposition 5.3.9 and Theorem 5.3.13, we are now well on our way towards
understanding the Poisson primitive ideals of O(GL3). The next step is to understand

the similarity between Z(A,) and PZ(B,).

Proposition 5.3.14. For each w € S3 x S3, the Poisson centre of B, is equal to the
algebra obtained by taking the centre of the corresponding quantum algebra A, and

renaming the generators by applying the rule X;; «— x5, [i|7]q, — [¢]7]-
Proof. Fix an w € S3 x S3. From Figure B.4, A, = kq[Wi™, ..., W*!] is a quantum
torus, where q = (a;;) is an additively antisymmetric matrix and W;W; = ¢* W, W;.

(The values of the a;; can easily be calculated as in [29], but since their precise values

have no impact on the proof and will not be used subsequently we do not define them
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here.) By Proposition 5.3.9, B, is the semi-classical limit of A, and we can therefore

+1

=1, where w;

easily compute its Poisson bracket as follows. Write B, = k’[wfl, ce, W

is the image of W; under the rewriting map Xj;; — x;;, and now we can observe that

1
{wi,wi} = o— (WilW; = W;Wi) - mod (t 1)

1
=t = )W;W; - mod (t—1)

=1 +t+--+t HW,W,  mod (t—1)
= Q;; W;Wj.
Let Z™ be the free abelian group of rank n with basis {e;}? ;. Then we may define
two maps as follows:
oL XL — kX (e, e5) — ¢,
w:Z"x 2" — k: (61',6]') = Q.
These define an alternating bicharacter and an antisymmetric biadditive map respec-
tively (for definitions, see [47, §2|; that o and u satisfy the required properties follows
directly from the g-commuting structure of A, and the Poisson structure of B,). We
define two subsets of Z" as follows:
Zy={Ne€Z":o(\,pn) =1YueZ"},
Ziv={Ne€Z" :u(\,pu) =0VueZ"}.
By [47, §2.5], the centre of A, is generated by the monomials {W?* : \ € Z"} (where

we use the standard multi-index notation for monomials), while by [47, Lemma 2.1]

the Poisson centre of B, is generated by the monomials {w? : A € Z"}.

It is clear from our definitions of o and u that Z} = Z] in this case, and the result

now follows. [l

With this description for the Poisson centres PZ(B,,) in hand, we are now in a position
to apply the Poisson Stratification theorem and obtain a description of the Poisson-

primitive ideals of O(GLs).

Theorem 5.3.15. Let w € S3 X S3, and let 1, be the corresponding Poisson H-prime
of O(GLj) listed in Figure B.1. Then the Poisson-primitive ideals in the stratum

Pprim,(O(GL3)) = {P € Pprim(O(GL3)) : m h(P) = Iw}

heH
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correspond precisely to ideals of the form
(Z(a — /\Z-)Bw> NO(GLs)/L,, (A1,..., ) € ()", (5.3.9)
i=1
where PZ(B,) = k[z',..., 2" is the Poisson centre of B,, and the generators z;

(1 <i<mn)are given in Figure B.5.

Conversely, every Poisson primitive ideal of O(GL3) has this form (for an appropriate

choice of w).

Proof. By Propositions 5.3.2 and 5.3.3 there are homeomorphisms
Pspec,(O(GL3)) ~ Pspec(B,) ~ spec(PZ(B,)), (5.3.10)

given by localization/contraction and contraction/extension respectively. By the Pois-

son Dixmier-Moeglin equivalence (Theorem 2.3.13), this restricts to a homeomorphism
Pprim,(O(GL3)) ~ max(PZ(B,)).

In Proposition 5.3.14 we have described the Poisson centre PZ(B,,): it is the Laurent

17 ] Z:I:l

.., 2z'] in the generators z; listed in Figure B.5 (viewed as

polynomial ring k[z;
elements of O(GL3) rather than O,(GL3)). Since k is algebraically closed, the maximal

ideals of PZ(B,) are precisely those of the form

n

D (2= M)PZ(B,),  (A1,-.., M) € (K"

i=1

By applying the homeomorphisms in (5.3.10) we therefore obtain the description of

the Poisson-primitive ideals given in (5.3.9). O

In §5.4 we will build on this result to obtain generating sets in O(GLs) (rather than
in a localization) for the Poisson-primitive ideals. First, however, we will turn our
attention briefly to O(SLs) and use our existing results to say something about the

properties of the quotients O(SLs)/1,.

5.3.3 O(SLs)/1, is a UFD for each w

One consequence of the previous section is that we can use the localizations O(S L3>/ 1, [Euj 1}
to learn more about the structure of various factor rings of O(SL3). In particular, we

will show that O(SL3)/1, is a UFD for each of the 36 Poisson H-primes I,,.
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Recall from Definition 4.1.2 that a Noetherian UFD is a prime Noetherian ring A such
that every height 1 prime ideal is generated by a single prime element, i.e. some p € A
such that pA = Ap and A/pA is a domain. When A is commutative this coincides
with the standard definition of UFD [12, Corollary 2.4].

We will make extensive use of the following two results, which are generalizations of

Nagata’s lemma [17, Lemma 19.20].

Lemma 5.3.16. [/1, Lemma 1.4] Let A be a prime Noetherian ring and x a nonzero,
non-unit, normal element of A such that (x) is a completely prime ideal of A. Denote

by Az~ the localization of A at powers of x. Then:

(1) If P is a prime ideal of A not containing x and such that the prime ideal PAx™"

of Az~ is principal, then P is principal.
(ii) If Az~ is a Noetherian UFD, then so is A.

Proposition 5.3.17. [/1, Proposition 1.6] Let A be a prime Noetherian ring and sup-
pose that dy, ..., d; are nonzero normal elements of A such that the ideals di A, ..., d;A
are completely prime and pairwise distinct. Denote by T the right quotient ring of
A with respect to the right denominator set generated by dy,...,dy. Then if T is a
Noetherian UFD, so is A.

Note that when A is a commutative ring the conditions of Proposition 5.3.17 reduce
to requiring A to be a Noetherian domain, and from Lemma 5.3.16 we recover the

standard statement of Nagata’s lemma.

In [10, Theorem 5.2], Brown and Goodearl prove that O,(SL3) is a Noetherian UFD.
However, their proof does not generalize directly to the commutative case as it makes
use of stratification theory, which cannot be used to understand the commutative ring

structure of O(SL3) as it does not “see” the non-Poisson prime ideals.

To illustrate this, we begin by proving the following general proposition for quantum
algebras; this underpins the proof that O,(SLs) is a Noetherian UFD but is not

expanded upon in [10].

Proposition 5.3.18. Let A be a prime Noetherian ring with a H-action, which sat-
isfies the conditions of the Stratification Theorem (Theorem 2.3.8), has only finitely
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many H-primes and such that all prime ideals are completely prime. Let I be a H-
prime in A. Then the quotient A/I is a Noetherian UFD if and only if each height 1

H-prime in A/I is generated by a single normal element.

Proof. Since prime ideals are completely prime, it suffices to check that every height
1 prime is principal; the condition that each height 1 H-primes in A/I is generated by

a single normal element is therefore clearly necessary.

However, we will now show that this condition is also sufficient. Indeed, assume that
all height 1 H-primes in A/I (of which there are only finitely many) are principally
generated, and let {uy,...,u,} be a set of normal generators for them. We therefore
only need to focus on the height 1 primes which do not contain a non-zero H-prime
in A/I, i.e. we need to show that all of the height 1 primes in the set
X ={P/I: P is prime and (] h(P/I) =0} (5.3.11)
heH

are principally generated.

By the Stratification Theorem, there are homeomorphisms
X = spec (A/] [E7']) ~ spec (Z(A/] [E7'])) (5.3.12)

where the first homeomorphism is given by localization and contraction, and the second
is given by contraction and extension. Here E is any denominator set of regular H-
eigenvectors in A/I such that the localization A/I [E_l] is H-simple. Further, by the
Stratification Theorem Z (A/] [Efl]) is always a Laurent polynomial ring in finitely

many variables.

Let E; be the multiplicative set in A/I generated by {ui,...,u,}; since the u; are
normal and A/I is Noetherian this is automatically a denominator set, and by defini-
tion the localization A/I [El_l] must be H-simple. However, it now follows immediately
that every height 1 prime in 4/1 [E;'] must be principally generated, since by (5.3.12)

all primes of A/I [E;l] are centrally generated and the centre is a commutative UFD.

Finally, since E; was generated by the set {us, ..., u,} which satisfies the conditions
of Proposition 5.3.17, we can apply this result to conclude that all height 1 primes in
the set X must be principal as well. O]
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In [10], Brown and Goodear]l prove that each height 1 H-prime in O,(SL3)/I, is
generated by a single normal normal element, thus proving that O,(SLj)/l, is a
Noetherian UFD for each H-prime 1, [10, Theorem 5.2]. It is now clear from the proof
that a Poisson version of Proposition 5.3.18 is not sufficient to verify that O(GL3)/I
or O(SL3)/I are commutative UFDs for Poisson H-primes I, since this approach can

only tell us about the height 1 Poisson primes.

Instead, for each Poisson H-prime I, of O(SLs), we will show that the generators of the
corresponding Ore set E, from Figure B.3 satisfies the conditions of Nagata’s lemma
(Proposition 5.3.17). Since the localizations O(SLs)/I,, [E;'] are isomorphic to Lau-
rent polynomial rings over k by Proposition 5.3.9, it will then follow that O(SLs)/1,

must be a UFD for each w as well.

Proposition 5.3.19. For any Poisson H-prime I, in O(SLs), the quotient O(SLs) /1,

18 a commutative UFD.

Proof. Let w € S3 x S5, and let E,, denote the multiplicative set of H-eigenvectors for
O(GLs) defined in Figure B.3. Let 7 be the natural map O(GL3) — O(SLs3), and
observe that 7(E,) defines a set of H'-eigenvectors in O(SL3). Using the fact from

Proposition 5.1.8 that quotient and localization commute, we see that

O(SLy)/1,[n(E,) ] = (O(GLg) /(L,, Det — 1)) [r(E,) ]
= (O(GL:S)/Iw [E;1]>/(Det ~1)

~ B,/(Det — 1)

Now consider the generators for B, given in Figure B.4. In each case, Det appears
as a generator or can be obtained by a change of variables: for example, when w =

(321, 132) the image of Det is x1;[1|1] and both z1; and [1|1] appear as generators, so

we may replace either z1; or [1|1] by Det without affecting the structure of B,,.

It is now clear that B, /(Det — 1) is a Laurent polynomial ring in n — 1 variables
whenever B, is a Laurent polynomial ring in n variables. These are commutative
UFDs, and we apply the generalization of Nagata’s lemma in Proposition 5.3.17: if we

can show that the generators of the Ore set 7(E,) each generate distinct prime ideals

in O(SL3)/1,, then O(SL3)/I, will itself be a UFD.
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Since we are only concerned with the commutative algebra structure of O(SLs)/L,
we may ignore the Poisson structure and view the Poisson (anti-)isomorphisms in
Figure B.2 just as isomorphisms of commutative rings; hence up to isomorphism there

are only 12 cases to consider.

Let I, be one of the 12 ideals in Figure B.3 (which correspond precisely to the 12
isomorphism classes). First, when w = (321, 321) or (123, 123), we have O(SL3)/I,, =
O(SLs) or k[zi!, 25, respectively, and these are clearly both UFDs. For the remaining
10 cases, let X, be the set of generators for the corresponding Ore set from Figure B.3;

we will show that the elements of X, generate pairwise distinct prime ideals.

We first consider the elements appearing in the second column of Figure B.3; we will
show that they generate distinct H'-primes. Whenever w # (231, 231), if g, appears
in column 2 and row [, then I, + (g,) is easily seen to be a H’'-prime in O(SLj); hence
(g.) is prime in O(SL3)/I,. Similarly, any two such ideals are distinct in O(SL3) and
hence distinct in O(SLs)/1, as well.

For w = (231, 231), we need to check that Q, := I, + ([2|1]) and Q9 := I, + ([3|2]) are
genuine H'-primes in O(SL3). We note that

Q1 = ([B[1], [2[1], 213) = S(P),

where P := (x5, x13,[1]3]) is a H'-prime, and S is as always the antipode map. As
observed in §5.1, we have p? = S? = id since O(SLs) is commutative; using Figure B.2,
it is now clear that S(P) = p~20S™(P) = I31.132 and hence Q1 = I31 139. By a similar

argument, Qo = Io31 213

Thus in each of the 10 cases of interest to us, the elements in the second column of
Figure B.3 generate distinct height 1 H’-primes in O(SL3)/1,. We now consider the
elements in the third column of Figure B.3 for each case; these split into four broad

groups, which we treat separately.
Case I w = (123,132), (213,132) or (123,312).

In each of these cases third column of Figure B.3 is empty and there is nothing to

check.

Case IL: w = (132,132), (132,312), (321,123), (321,132) or (231,312).
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The relevant information from Figure B.3 can be summarised as follows:

cee ooe cee cee ocoe
[ JeoXe) [ JoXe} coe [eXeXe} [eXoXe}
[ JoXe} [ Joxe} OO0 OO0 [ _Joxe}
w
(132,132) (132,312) (321,123) (321,132) (231,312)
Elements to check 33 33 To1 T39, T33  T33, [T|~]

Consider first w = (132,132). We need to show that z33 is prime in O(SL3)/I132132;
this is equivalent to checking that B := O(SLj)/(l132,132, Z33) is a domain. Observe

that Det = x11x93230 = 1 in B, and so

B= k?[xﬁla T22, $2isl]

is easily seen to be a domain.

The other cases proceed similarly: in each case, we observe that Det becomes a mono-
mial modulo the element we would like to check is prime, so the quotient is simply a

localization of a polynomial ring. The only case requiring some care is checking that

[1]1] is prime in (231,312): here Det = —x19291233 = 1 and so
B = O(SL3)/(—7231,312, ﬁm) = k[xn, $§E117 T2, T23, L32, x;:j,tgl]/(ilf22$33 - 16‘23%32).
However, since x33 is invertible we can observe that xqy = xgglngxgg and hence
B 2 kw11, 413, 451, T23, T3z, Ty |

is a domain.

Case III: w = (231,231).

°O

@00

(231,231)

We need to verify that x33 and [1]1] are prime in O(SL3)/1,, i.e. that

B, = O(SLs)/([231,2317$33), By = O(SL3)/(—7231,231, [1| ])

are both domains. For B, we observe that the image of the determinant Det in this

quotient ring is —x32[3|2]; this will allow us to identify a subalgebra of By with O(GLy)
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as follows. Write O(GLy) = kla, b, c,d][(ad — bc)™!], then identify {11,213, To1, To3}
in By with {a,b,c,d} in O(GLy), and —x3y with (ad — bc)™.
Under this identification we obtain an isomorphism of commutative algebras

B, = O(GL2)[$12, 1U22]/(1U11d - biU22).

As a polynomial extension of a UFD, O(G Ly)[x12, 2] is a UFD itself, so we can apply
Eisenstein’s criterion to see that (z1;d—bxgy) generates a prime ideal in O(G Ly)[x12, T29].

Hence B; is a domain as required.

Similarly, we obtain the isomorphism
By 2 O(GLy)[11, T2z, Ta3] /(93 — bTgz, Taad — T30).

In order to simplify this quotient, we can observe that

d(axeg — bxag) + b(w22d — xe3c) = (ad — be)xas, (53.13)
c(azag — brag) + a(wead — x93¢) = (ad — be)xas.

Since ad — bc is invertible, we see from (5.3.13) that (axe3 — bxag, T92d — T23¢) is nothing

but the ideal (22, z23). It is now clear that By = O(G Ls)[z11] is a domain, as required.

Case IV: w = (321,312).

[eXeje}
[eXeXe}
coe

(321, 312)

There are three elements that we need to check are prime: x7, z9; and [3|3]. By a

similar analysis to Case III, we obtain

12

O(SLs)/(Is21,312, x11) = O(GLs) a2, T32),

O(SL3)/(I321,312, [3| ]) = O(G[a)[xm, T22, $33]/(GI22 - bxm),

which we have already observed are domains. Finally, we consider

B := O(SLs3)/(I321,312, €21)
= O(Ms)/(Det — 1,13, x271)

= k[iﬁn, 5U12>3722737237$31,3732,$33]/($11[1’1] + X12T93731 — 1)-
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We are factoring by an element which is linear as a polynomial in x1;, with coefficients
in k[r12, T2, Ta3, T31, T32, T33]. It will therefore be irreducible (and hence prime since
we are working in a commutative polynomial ring) if [Tm = T99T33 — T93Tsze and
Z12x23731 — 1 have no non-invertible factors in common, but this is immediately clear.

B is therefore a domain, as required.

This covers all of the 10 isomorphism classes of algebras O(SL3)/1, under considera-
tion: in each case, the set X, satisfies the conditions of Proposition 5.3.17 as required.

We therefore conclude that O(SL3)/1, is a UFD for any w € S3 X Ss. O

It is quite easy to prove a similar result for O(G L)/, although we will not do so here.
While it has so far been easier to work with O(GL3) rather than O(SLs), the advan-
tages of O(SL3z) would become clear if we moved on to consider the Poisson-prime ide-
als rather than the Poisson-primitives: since the Poisson centres PZ (O(S Ls) /1, |E;Y] )
are Laurent polynomial rings on at most two variables (rather than three variables for
G'L3) the non-maximal prime ideals will have height < 1 and can therefore be under-

stood (to some extent at least).

Our first aim, however, is to understand the Poisson-primitive ideals in terms of gen-
erators within O(GL3) or O(SL3) themselves rather than a localization of these rings.

This is the focus of the next section.

5.4 Pulling back to generators in the ring

While Theorem 5.3.15 gives a full description of the Poisson-primitive ideals of O(GLs),
it only tells us the generators of each ideal up to localization. The aim of this section
is to obtain a description for the Poisson-primitive ideals in terms of generating sets

in O(GL3) itself, in a similar manner to the quantum case covered in [29].

For w € S5 x S3 write PZ(B,) = k[zi", ..., 2F'], where the z; have the form listed in
Figure B.5. Each z; is written in the form e;f; ', where ¢; and f; are both elements
of the Ore set E,. Since k is algebraically closed, the maximal ideals of PZ(B,,) are

precisely those of the form

M)\:<Zl_>\17---7zn_)\n>y )\:()\1,...,>\n)€<k><)n.
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and so by Proposition 5.3.3 the Poisson primitive ideals of B, are simply the extensions

of these ideals to B, i.e.
P, =M,B,, A:(/\l,...,An)E(kX)n.

By Proposition 5.3.2 and Theorem 2.3.13, these in turn correspond homeomorphically
to the Poisson primitive ideals
Pprim,(O(GLs)) = {P/L,: P € Pprim(O(GLs)),P 2 L, [ | h(P/L,) = 0}
heH
Our aim is therefore to find generators for the Poisson primitive ideals P\NO(GLs)/1,
for A € (k*)" and for each w € S3 x S3. Similarly to [29], we will show that

PaNO(GL3)/T, = (e1 — A fi, .- en — Anfn)- (5.4.1)

The first step, quite naturally, is to check that the ideals on the RHS of (5.4.1) are
closed under the Poisson bracket in O(GL3)/1,.

Lemma 5.4.1. Let PZ(B,) = k[(er f;yH)*, ..., (enfi )Y, for w € S5 x S3 and the
choices of e;f; " given in Figure B.5. Then for any A = (A1, ..., \,) € (KX)", the ideal

Qx = <€1 —Aifi, e — )\nfn> (5~4-2)

is a Poisson ideal in O(GL3)/1,.

Proof. We first observe that each f; is Poisson normal in O(GLj3)/I, (see Defini-
tion 5.1.4 for the definition of Poisson normal). This is clear when f; = 13 or x3,
since these both generate Poisson primes in O(GLs). By direct computation we see
that x9; and x3, are Poisson normal modulo x3;, while z15 and x93 are Poisson nor-
mal modulo x13. This covers all the denominators appearing in Figure B.5, and since
Poisson isomorphisms and anti-isomorphisms must map Poisson normal elements to

Poisson normal elements, the same conclusion follows for the other 24 cases.

Let e — \f be one of the generators appearing in (5.4.2); we will not need to work with
more than one generator at once so we may dispense with the subscripts. Since ef~!

is Poisson central in B, = O(GL3)/1,, [E;Y], for all a € O(GLs)/ 1, we have

0={ef ' a} ={e,alf™ —{f alef?
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and hence
{e;atf ={f.ate.

Combining this with the fact that f is Poisson normal in O(GL3)/1,, we see that

{e—Af.atf={eatf—Mfa}f
={f,ate = A{f,a}f
= (e—=AN{f.a}
=(e=Af)raf
for some element r, € O(GLs)/I, which depends on a. Since O(GL3)/L, is a domain,

we thus obtain {e — A\f,a} = (e — A\f)r, for any a € O(GL3)/1,. It is now clear that
the ideal in (5.4.2) is always a Poisson ideal in O(GLs)/L,. O

Proposition 5.4.2. Let w € S3xS3 and write PZ(B,) = k[(ey fi )*, ..., (enf7H)*,
where the values of e;f; ' are from Figure B.5 as before. Then PyN O<GL3)/]W = @,
where Q) is defined as in (5.4.2).

Proof. Note that when we extend the ideal @), to B, by localization, we get Q\B, =

P,. Our aim is therefore to prove that
B, NO(GL3)/T, = Q,,

which is equivalent by [32, Theorem 10.18] to verifying that the elements of E, C
O(GL3)/1, are regular modulo @,. Since O(GL3) is commutative, it suffices to show
that @, is a prime ideal in O(GLs)/1,.

We will consider the 12 cases listed in Figure B.5; the other 24 follow will then follow

by the isomorphisms and anti-isomorphisms 7, p and S.
We deal first with the cases where @, = (Det — A1), that is the four cases
w = (231,312), (321,132), (123,312), (213,132),

Note that @) is a prime ideal if and only if h(Q,) is, where h = (A,1,1,1,1,1) € H.
We have h(Q,) = (Det — 1), and O(GL3)/(1,, h(Q»)) = O(SL3)/1,; since (the image
of) the H-prime [, is prime in O(SL3) by Proposition 5.2.8, this is a domain and we

are done.

We next consider the four cases
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[ ] O cee cee
ocoe @00 [_Joje} [ JoX J
O [ J ® O [ X Je}

(321,123) (132,132) (123,132) (123,123)

where in each case we can describe the structure of O(GLs)/(1,,Q») explicitly and

verify that it is a domain.

(321,123): We have Q) = (Det — A\, x95[1|3] — Aaz31), and we may assume that
A1, Aa = 1 by applying the automorphism h = (1, /s, MV L1, 1) to Qy. The

image of Det modulo 391123 iS 11T22%33, SO we have

O(GL3)/(I321,123, h(Qx)) = O(M3) /(Is21,123, T11722733 — 1, 222[1]3] — w31)

. (5.4.3)
= k), wa1, 05y, w31, 2] / (222[1]3] — 2a1).
We can write the generator of the quotient ideal as
ng[T‘g] — X31 — —.1'31(.1’%2 —+ 1) -+ T929X21T32, (544)

which is linear as a polynomial in x3; over the commutative UFD k[z}!, 21, 23, T32).
Since it is clear that the coefficients (23, + 1) = (72 + i)(792 — 7) and @oewa w39 have
no non-invertible factors in common, (5.4.4) is irreducible and hence prime. The ring

(5.4.3) is therefore a domain, as required.

(132,132): In this case @) = (Det — A1, x11 — A2, Tog — A\3Z32), which we replace by
h(Qy) = (Det — 1,211 — 1,293 — A3x35) under the action of h = (A, 1, A\ A5, 1,1,1).
We also observe that O(SL3)/I132132 = O(GL2) as commutative algebras, where we

identify (wo2, To3, T32, T33) With (a, b, c,d) and xy; with (ad — be)™1. Now

I

O(GL3)/([132,132> h(QA)) O(SL?,)/([132,132>$11 — 1,293 — >\3$32)

(GLy)/((ad —bc)™ —1,b— Asc)

Il

I

(@)
O(SLQ)/(b - )\30),
and this is a domain since b — pc is a prime ideal in O(SLs) for all u € k*.

(123,132): We have Q) = (Det — A1, 211 — A2), and as always we may assume without
loss of generality that Ay = 1. Since the image of Det in O(GLs3) /123132 1S 1122233,

it is now clear that

O(GLs)/([123,132, QA) = O(SLS)/([123,132,$11 - )\2) = k[CUﬁl, 952i21, 5523]/(5611 - )\2)
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is a domain.

(123,123): With Qy = (Det — A1, 211 — A2, Tag — A3), we obtain

O(GL3)/(1123,123, Q) = k’[%ifa 935]/(%1 — A2, T2 — A3)
in the same manner as the previous case.

Four cases remain:

[oXee} ocoe OD coe
[eXe)e} [oXele} O [_Xoje}
[oXexe] [oXeXe] [ _e}e] [ _eXe]

(321,321) (321,312) (231,231) (132,312)

In [29] these cases are dealt with by showing that the generators of the Ore set E,, are
regular modulo @, where they make clever use of the maps 7, p and S to verify that
certain elements are not in various ideals, and repeatedly apply the observation that if
an element z is regular modulo (y) then y is regular modulo (x). This proof is almost

entirely independent of the specific quantum algebra setting and can be applied to

O(GL3) and O(SL3) with minimal modification.

Verifying this is long and tedious and not especially illuminating, however, so we
will simply observe that in our commutative setting we can check that the ideals @
are indeed prime using the Magma computer algebra system. The relevant code is

reproduced in Appendix A.4.

Hence @) is prime in each of the 12 cases from Figure B.5, and the remaining 24 cases

are handled by the (anti-)isomorphisms displayed in Figure B.2. ]

Proposition 5.4.2 gives us explicit sets of generators for the ideals Py, N O(GL3)/1,,
which by the Poisson Stratification Theorem correspond precisely to the Poisson-
primitive ideals in the stratum Pprim,(O(GL3)). Since we have chosen our elements
carefully to ensure that the first generator is always Det — A\;, we also obtain the
corresponding description of Poisson-primitive ideals in O(SLg). This is summarised

in the following theorem.

Theorem 5.4.3. Let w € S5 x Sz, and let PZ(B,) = kl[(erfy)*, ..., (enfHF!] as
in Figure B.5. Then
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(i) The Poisson-primitive ideals in the stratum Pprim,(O(GL3)) corresponding to
the H-prime 1, have the form

I, + <€1 — M fryo,6n — )\nfn>; (/\1,...,)\»“) S (k?x)n, (545)
and these are all the Poisson-primitive ideals in this stratum.

(i1) The Poisson-primitive ideals in the stratum Pprim,(O(SLs)) corresponding to
the H'-prime 1, (now viewed as an ideal in O(SLs)) are precisely those of the
form

I, + <62 — /\Qfg7 N Anfn); ()\2, ceey /\n> € (kx)n_l.
Proof. Combine Proposition 5.4.2 and Theorem 5.3.15. m

Comparing this result to the quantum case in [29], the following corollary is now

immediate:

Corollary 5.4.4. Let k be algebraically closed and q € k* not a root of unity. Let
A denote O,(GL3) or O,(SLs), and let B denote the semi-classical limit of A. Then
there is a bijection of sets between prim(A) and Pprim(B), which is induced by the

“preservation of notation map”

A — B: X;; — xij, [ilf] — [ilJ]-
Proof. [29, Theorem 5.5], Theorem 5.4.3. O

Corollary 5.4.4 strongly suggests that Conjecture 2.3.15 should be true for O,(GLs)
and O,(SLs). The remaining step would be to prove that the bijection in Corol-
lary 5.4.4 in fact defines a homeomorphism (with respect to the Zariski topology)
between prim(A) and Pprim(B).

This could be accomplished in two ways: one is to simply prove directly that the
bijection on primitives is a homeomorphism. It is not at all clear how to go about
doing this, however, so an alternative approach would be to first extend the bijection
in Corollary 5.4.4 to a bijection spec(A) — Pspec(B); by [25, Lemma 9.4] it would

then suffice to check that this bijection and its inverse preserved inclusions of primes.
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Unfortunately the intermediate step of extending the bijection from primitives to
primes would be a necessary part of this approach, since the statement of [25, Lemma 9.4]
is no longer true if we replace “primes” by “primitives”. An elementary illustration
of this has been observed by Goodearl: if we take R to be a commutative noetherian
k-algebra with trivial Poisson bracket, then we have prim(R) = Pprim(R) = maz(R)
and any bijection prim(R) — Pprim(R) will (trivially) preserve inclusions. It is clear

that not all such bijections will be homeomorphisms, however.

Instead, the first step towards proving Conjecture 2.3.15 for S L3 would be to obtain
generators for the prime ideals of O,(SL3) (respectively Poisson-prime generators of
O(SL3)). Assuming (as seems quite likely) that the bijection of Corollary 5.4.4 extends
to a bijection on primes, we would then need to check that this map and its inverse
both preserve inclusions among primes — not a simple task to approach directly, with
no easy way to tell if a prime from one stratum is contained within a prime from
another stratum and 36 distinct strata to consider! We focus first on SL3 here since
the (Poisson-)primes within a given strata will always have height at most 2; hence
most of the (Poisson-)prime ideals are already described in Theorem 5.4.3 and those
that remain are known to be principally generated by Proposition 5.3.19 (resp. [10,
Theorem 5.2]).

In future work we hope to develop a Poisson version of the results of [10], which
would allow us to “patch together” the topologies of each stratum Pspec,(O(SL3))
(which are well-understood) into a picture of the Zariski topology on the whole space
Pspec(O(SLs)). We then hope to use these results to tackle the question of whether
this (as yet only conjectured) bijection spec(O,(SLs)) — Pspec(O(SLs)) preserves
inclusions, although this approach will still involve significant amounts of computation.
This approach will not generalise easily even to other fairly low-dimensional examples
such as O,(Ms) (230 H-primes) or O, (M) (6902 H-primes), and new techniques will

clearly be required to tackle the general case.



Appendix A

Computations in Magma

As illustrated quite neatly by Chapter 3, computation with non-commutative fractions
is often difficult and messy. This appendix details the techniques used to make some of
these computations feasible on a computer: we describe both the theory that makes it
possible and the code written for the computer algebra system Magma by the author
to implement these techniques. We also provide an example to illustrate some of the

limitations of this approach.

As in Chapter 3, our main tool is the embedding of the g-division ring D into the
larger division ring of Laurent power series: recall that this is the ring of Laurent
power series of the form

kq(y) () = {Z a;i(y)z' :n € Z,a;(y) € k(y)} :

>n

subject to the relation zy = qyx. We will continue to assume that ¢ is not a root of

unity.

In this larger ring, operations such as the multiplication of two elements or finding the
inverse of an element can be performed term by term on the coefficients. In particular,
we can compute that the product of two elements is

k
Z a;z’ Z bjr! = Z ™R where ¢ = Z e Q" (Do) (A.0.1)
r=0

i>n j>m k>0

Similarly, we find that for an element of the form 1 4 2121 b;x!, the inverse is

-1 i
(1 + Z bixi) =1+ Zcixi, where ¢; = — (Z bjaj(cij)> ) (A.0.2)
j=1

i>1 i>0

146
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Using this, we can find the inverse of a general element Y .. a;z" by writing it in the

form a,z" >~ @ "(@itn/an)z"; the resulting sum is now in the correct form to apply

(A.0.2).

These computations can all be done by hand, of course, but since evaluating the coef-
ficients at each step involves only commutative terms it is now a much simpler matter
to delegate this process to a computer. We can view elements of k,(y)((z)) as infinite
sequences of commutative terms, with addition defined pointwise and multiplication
defined term-by-term by (A.0.1); phrased in this manner, it is now possible to write
the Magma functions which simulate the ring structure of k,(y)((z)) without explicit

reference to its non-commutativity.

In deference to the computer’s dislike of infinite things we are unfortunately required
to work with truncated sequences, but for many applications this turns out to be
sufficient: to eliminate a pair of potential g-commuting elements f and g, for example,
we need only compute the first few terms of the expression fg — qgf and see whether
the result is non-zero. However, while it is easy to convert fractions to power series
using (A.0.2), we would like to be able to pull our computations back to fractions at
the end as well (where possible). The results of the next section prove that this is

indeed possible under certain circumstances.

A.1 The theory behind ¢g-commuting computations

One of the more useful things we can do with the Magma environment described above
is to input an element of the form
9= )\y+Zgi5L‘i, A €K™, a; € k(y)
i>1
and construct an element f € k,(y)((z)) such that fg = qgf. The catch is that even if

g € ky(x,y) there is no guarantee that the constructed element f will also represent a

fraction.

The following two theorems aim to tackle this problem by describing under what

conditions a power series f will be the image of a fraction from k,(z,y). They have
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the added benefit of being constructive, i.e. if f € ky(x,y) they return elements
u,v € kylx,y] such that f = v~'u. These results are classical in the commutative case
and generalize easily to the case of an Ore extension by an automorphism, but since
they don’t seem to appear in the literature in this non-commutative form we provide

the full proof here.

Let K be a field, K|z;a] the Ore extension by an automorphism «, and K(z;«),
K|[z;a]] the ring of fractions and ring of power series respectively. For the specific

case of the g-division ring, we can take K = k(y) and a : y — qy.

Theorem A.1.1. The power series Y. ,ax’ € K[x;a] represents a rational func-
tion Q7'P in K(z;«) if and only if there exists some integer n, and some constants
Cly- - Cq € K (of which some could be zero) such that for all i > 0 the coefficients of

the power series satisfy the linear recurrence relation

Qitn = C10(Aip(n-1)) + 02a2<ai+(n_2)) + - 4 cpa(ay). (A.1.1)
If this is the case, then P is a polynomial of degree < n — 1 which is constructed
explicitly in the proof, and @ =1 — Y"1 | ¢’
The exposition of this proof follows closely the one from [33]. We first require a

technical lemma;

Lemma A.1.2. Let ¢q,...,c¢, be a set of elements of K; define a polynomial cix +

cox® + -+ cpa”, and let Y, a;x’ be a power series in K[x]. Then

(crz+ -+ cpa™) Z axt =R+ Z(cla(aiJrn,l) + (@)™, (A1.2)

i>0 i>0

where R is a polynomial of degree at most n — 1.
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Proof. We start by multiplying out the left hand side of (A.1.2) as follows:

n—2
(crr+ -+ cpz™) Z a;rt = e (Z a;zt + Z aixi>
=0

i>0 i>n—1
n—3
+ coz? E a;r" + g a;x"
i=0 i>n—2
0
+ ¢yt E aixz—i—g a;x"
i=0 i>1
+ c,z" <0+ g aixl>
i>0

After moving all powers of = to the right and re-indexing the second sum on each line
so that it starts from ¢ = 0, we obtain

n—2

(c1x+ -+ cpz™) Z art = ¢ Z afa) "™ + Z crofa 1)t
>0 =0 >0
n—3
+ ¢y Z o?(a;)x™? + Z 02 (Ajgm_o)T ™"
i=0 i>0

+ cn_la”_l(ao)xn_l + Z Cn_lan—l(ai+1)l,i+n
i>0

+ Z cna(ag) ™t

>0
By defining
n—2 n—3
R:=¢ Z ala)z™ + Z o?(a)x™ + -+ 1™ Hag)a" !
=0 =0

it is now clear that

(crx + -+ + cpz™) Z a;x' = R+ Z(Cla(aim,l) + ™ (ay)) T
>0 >0

as required. 0

Proof of Theorem A.1.1. Let }_,., a;z' € K[x;a] and suppose that this power series

satisfies a linear recurrence relation of the form

Gisn = 10 (n-1)) + €207 (A (n-2)) + - + cu0d" ()
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for all i > 0. We will construct a left fraction Q' P € K (x; ) such that the image of
Q'Pin K[x;a] is 3,0’

Define @ :=1—>_" | ¢;2*, and observe that
(1-Q) Z a;x" = (@ + cex® + - - + cpa™) Z a;x’.
i>0 i>0
This is in the correct form to apply Lemma A.1.2, and so we have
(1-Q) Z a;x' = R+ Z(Cla(ai—f—n—l) + ot e (ag))
i>0 i>0

=R+ Z anpiz™ (by assumption)

i>0
—R+Zal

>n
=R- Zalx +Zaa:

>0

where R is a polynomial in K[z;a] of degree < n — 1. After simplifying this becomes

QZazx = —R—i—Za,

>0

and hence

Z ar'=Q P

>0

where P := —R + 31" a;a’.

Conversely, let FF = Q~'P € K(z;a); we need to show that for F' = Y7 fiz' €
K((z; @), the sequence (f;)i>m satisfies a recurrence relation of the form (A.1.1). We
will do this by performing a series of reductions on the fraction F', none of them
affecting whether it admits a recurrence relation or not, until F is in a form that is

easier to work with.

We first claim that it suffices to consider only the case where P,Q € KJz;a] are not
divisible by x, i.e. they have non-zero constant terms. This is immediately clear for P
since the powers of x are written on the right, so suppose that x t P and @ = Q'z™™
with 21 Q". We can now observe that F' = z™@Q'~' P and hence

QP =g"F = Z a”"™(f) Z a " (firm)x

i>m >0
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Since « is an automorphism it is clear that the sequence (o™ (fi+m))i>0 will satisfy a
recurrence relation if and only if the original sequence (f;);>m did. We can therefore

assume that

F=Q'P=>) fa'

i>0
where Q =19+ rax + -+ - + 12" € K[x; o] satisfies 19 # 0.

Next we replace Q7' P by a fraction Q~'V satisfying deg,(V) < deg,(Q), in such a
way that at most finitely many terms of the sequence (f;) are changed. (Note that
while this will change the recurrence relation itself, it will not affect the existence of
the recurrence relation: if we change the first n terms in a sequence that admits a
recurrence relation, we can always obtain a recurrence relation for the new sequence

simply by appending n zeroes to the old set of recurrence constants.)

If deg(P) > deg(Q) then we can use the division algorithm to write P = QS + V/,
where deg(V') < deg(Q) and S is a polynomial: now

Q'V=Q'P-S (A.1.3)

and since S is a polynomial we can see that the power series representations of Q~1V

and Q™' P differ by at most the first deg,(S) terms.

Since the constant term 7y of @) is non-zero, we can scale (A.1.3) by 7, to obtain
ro(Q'P = S) =1 Q 'V =TV = Zaixi
i>0
where T := Q(z)ry' = 1—cjx—- - - — ¢,z for some ¢; € K. Since the power series for
Q1P and Q~'V differ by finitely many terms, and scaling the fraction by an element
of K does not affect the existence of a recurrence relation, we see that the sequence

(a;) satisfies a recurrence relation if and only if the original sequence (f;) does.

We are now in a position to show that T7'V = >"._ ;2 satisfies a linear recurrence
relation of the form (A.1.1). Indeed, we can rearrange the equality 7'V = >~ a;2"

to obtain
(1 —T)Zaixi = —V—l—Zaixi
i>0 i>0

and then apply Lemma A.1.2 to rewrite this as

R+ Z(Cla(ai+n_1) + ot epa™(@)) T = -V + Z a;x’,

i>0 i>0
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where R is a polynomial of degree < deg,(T). Rearranging this, we obtain
R+V = Z a;xt — Z(cla(aim_l) 4o epa™(ay)) (A.1.4)
i>0 i>0
Since deg, (V) < deg,(Q) = deg,(T) = n, the left hand side of (A.1.4) is zero in degree

n and above. Hence by comparing coefficients of 2*" for i > 0, we obtain the required

recurrence relation (A.1.1). O

Remark A.1.3. A very similar version of this proof yields a recurrence relation for
right fractions PQ~!; in this case, it helps to work with right coefficients, i.e. power
series of the form > .. 2'a;.

While Theorem A.1.1 is extremely useful for turning a power series with a recurrence
relation into a left fraction, it gives no indication as to how the recurrence relation

should be found in the first place. The following theorem, due to Kronecker in the

commutative case, attempts to address this problem.
Theorem A.1.4. A power series Y .., a;x" satisfies a linear recurrence relation
Uin = 10( Qi (n—1)) + czaz(ai+(n,2)) + o+ ()

if and only if there exists some m > 1 such that the determinants of the matrices

aflag) o Hay) ... alap-1)  a
A, — a"’(.al) o Yay) ... alag)  apg
| af(ar) oMM apgr) ... alam-1)  as |

are zero for all k > m.

Proof. Again, this follows the commutative proof closely; we base our exposition on

[48, Lemma III]. Observe that Ay is a (k+ 1) x (k4 1) matrix.

It is easy to see that if the power series satisfies a recurrence relation of length n then
for all £ > n, the final column of Ay is linearly dependent on the previous n columns

and the determinant is zero.
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Conversely, suppose |Ag| = 0 for all & > m for some integer m, and assume that m
is minimal with this property. Since the columns of the matrix A,, must be linearly

dependant, there exist fixed elements ¢y, ..., ¢, € K such that
Cm+1 - ch’m — cmCl = 0, (A15)

where C; denotes the ith column of A,,. We will prove that > .., a;x" satisfies a

recurrence relation with constants cq, ..., c,.

Define
Pj+m = Qj+m — Clo‘(ajﬂnfl) - 02052<aj+m72) - Cmam<aj) (A-1-6)
for j > 0; we will prove by induction that P;.,, = 0 for all j > 0.

The base case P,, = 0 follows immediately from (A.1.5), so suppose it is true for all
j < r for some r. If r < m then P.,,, = 0 also follows immediately from (A.1.5), so

we can assume that » > m.

By performing column operations on A, and recalling that its determinant is zero (our
initial premise was that |Ag| = 0 for all £ > m), we will be able to show that P.,,, =0

as well. Observe that we can write A, as follows:

A LA (am) alar_1) a,

S

7777777777 e e D D — - — -

AT = ar(am) : arim(GQm) a(ar+m—1) Arm

B
|
|

| o(ar) oM (arem) e alage1)  az |

where the block denoted by A is o™ ™%1(A,,_1). As before, let C; denote the ith
column of A,, and recall that A, is an (r+ 1) X (r 4+ 1) matrix. Working from right to
left, we will perform column operations on the columns in the right-hand blocks, that

is columns C,. ;1 down to C,,;1. The column operations are:

Cr+1 = Cr—i—l - Clcr - 0207“—1 -t Cmcr—m

Cr = Cr - a(cl)cr—l - a<02)07’—2 - O-/(Cm)cr—m—l

Cm+1 — Cerl — Oérim(Cl)Cm — Oérim<62)cm,1 — = Oérim(cm)CO
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Having done this, we obtain the matrix

A Lo (Py,) a(Pr_y) P,
|
,,,,,,,,,, L o o .
A= ar<am) : O/_m(P2m) a(Pr+m—1) Pr+m
: l
[
[
i Oér(ar) 1 aT_m(Pr—‘rm) o a(PZT—l) P27“ ]

which still satisfies |A| = 0. Further, by the inductive assumption Pji,, =0 for j <r
and so the top-right block of A is identically zero, as are all entries above the reverse-

diagonal in the bottom-right block. The determinant |A| can now easily be seen to

be

Al =" (A) H @' (Prim) = 0.
i=0
Since m was assumed to be the minimal integer such that |Ag| = 0 for all & > m, while

K is a field and « is an automorphism, we conclude that P,..,, = 0 as required. O

It is worth taking a moment to note the limitations of these results, before we attempt
to use them. First, since we cannot evaluate infinitely many terms of a power series or
check the determinants of infinitely many matrices, any results obtained in this fashion
will always be an approximation. These techniques should be viewed as a means of
checking computations and finding inspiration for the correct elements to write down;
any properties that they should satisfy, e.g g-commuting, will then need to be proved

using other methods.

Second, applying this theory to a given power series will always yield one single left
(or right) fraction. This will be a problem if, for example, the element in question is a
product of several smaller fractions: combining the result into one fraction will often
make it hopelessly large and complicated, and factorizing the result into understand-
able factors is almost always impossible. We give an example of this problem in §A.3

below.

Third, results are limited by the computational power available. The coefficients of
a power series can get large very quickly and hence evaluating the determinants in

Theorem A.1.4 quickly becomes impossible.
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A.2 Magma code for computations in k,(y)(x)

In this section we provide the Magma code used to simulate computations in k,(y)((x)).
The code should be pasted directly into the Magma terminal, after which the functions

described below can be used as required.

Elements of k,(y)((x)) are represented by two-element lists [*n,F*]. The integer n de-
notes the lowest power of x appearing in the series, while F is a sequence of coefficients

in k(y). Hence for example the element > .. a;z" would be stored as

>n
[*n, [a_n,a_{n+1},a_{n+2}, ... , a_r]*]

where r can be arbitrarily large. Note that while a,, can be zero, this will cause some

functions to break.

The following functions and procedures are provided below:

e inverseL: Takes a truncated power series and returns its inverse.
e productL: Takes two truncated power series F', G and returns their product FG.
e findz: Computes the element z from [5, Proposition 3.3| for a given element G.

e checkrationalL: Takes a truncated power series I’ and uses Theorem A.1.4 to

check whether F' represents a fraction, up to a given bound.

e findrationalL: If checkrationall returns true, this constructs polynomials

P,Q € k,(y)[z; o] such that F = Q™' P.

e checkpowerrationall: Given F, P and @) from findrationall, double-checks

that FF' = Q~'P up to a given bound.

e gelement: Given an element G of the form (2.1.3), constructs an element F such
that F'G = qGF as described in §2.1.1. (Note that F' need not be a fraction

even if G is.)

// Note that Magma indexes sequences, lists, etc from 1 not O;

// this leads to weird indexing in some of the loops.
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// Change these for a different field, different generator names
// if needed.

// t represents \hat{q}, the square root of q.
field<w>:=CyclotomicField(3);

K<t,y>:=FunctionField(field,2);

q:=t"2;

gen:=Name (K,2) ;

alpha:= hom< K -> K | t, g*gen>;

beta:= hom< K -> K | t, q~(-1)*gen>;

// Magma interprets 1 and O as integers rather than the identity
// elements in K; use these when the distinction matters.
zero:=K!0;

one:=K!1;

// Inverts a sequence Z of x-degree O (first term non-zero).
// Output is named Y.

// m indicates how many terms of the inverse to compute.

// In general, use inverselL below instead.

procedure inverse(Z,~Y,m)

ml:=#(Z);

if m gt ml then for i:=1 to (m-ml) do Z[m1+i]:=0; end for; ml:=m;
end if;

if m 1t ml1 then ml:=m; end if;

Y:= [1;

Y[11l:= 1/(Z[11);

for i:= 1 to ml-1 do

varl:=zero;

for j:=1 to 1 do

varl:= varl - Y[1]xZ[i-j+2]*(alpha~(i-j+1))(Y[j1);

end for;
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Y[i+1] :=varl;
i;
end for;

end procedure;

// Takes a sequence Z of lowest x-power r and returns its inverse L.
// Computes the first m terms.

procedure inverseL(Z,r,”L,m)

n:=#(2);

Z1:=[];

if r 1t O then a:=alpha”(-r); else a:=beta”(r); end if;
for j:=1 to n do

z1[3]:=a(z[j1);

end for;

inverse(Z1,7Y,m);

L:=[*-1,Y*];

end procedure;

// Takes 2 elements as input: [*r,Y*] and [*s,Zx*].

// Returns their product L, computes the first m terms.

// If Y and Z are precise (i.e. polynomial rather than truncated
// power series) use m=0 to get a precise, untruncated answer.
procedure productL(Y,r,Z,s,”L,m)

nl:=#Y); n2:=#(Z);

if m eq O then

n:=nl+n2;

else n:=m;

end if;

for i:=1 to (n-nl1l) do Y[ni1+i]:=0; end for;

for i:=1 to (n—n2) do Z[n2+i]:=0; end for;

P:=[];

for i:=1 to n do
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varl:=zero;

for j:=1 to 1 do

if j+r-1 1t O then
a:=beta”(1-j-r); else a:=alpha”(j+r-1);
end if;

varl:=varl + Y[jl*a(Z[i-j+1]);
end for;

P[i] :=varl;

i;

end for;

L:=[*r+s,Px];

end procedure;

// This computes the element z from Artamonov and Cohn’s paper.
// Input: sequence b, which must be in the form given in the paper;
// s should be 1 or -1 corresponding to power of y in first term
// of b.

// Computes the first n terms.

procedure findz(b,s,~Z,n)

nl:=#(b);

if n gt nl then

for i:=1 to (n-ni+1) do

b[ni+i] :=zero;

end for;

end if;

z:=[];

z[1] :=gen~ (-s)*(1-q"s) " (-1)*b[2];

for i:=2 to n do

varl:=zero;

for j:=1 to i-1 do

varl:= varl + z[jlx(alpha”j) (b[i-j+1]1);

end for;

158
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z[i] :=gen” (-s)*(1-q~ (i*s)) ~(-1)*(b[i+1] + varl);
i;

end for;

Insert(~z,1,o0ne);

Z:=[*0,z%*];

end procedure;

// Takes a truncated series and checks whether it satisfies the
// conditions to represent a fraction.

// Input: the sequence P to be checked; checks matrix size a to n
// (a must be at least 2), and from b to m iterations of each size
// (minimum 1, just set b=m=1 if you’re not sure about this).

// Prints "Yes" every time a determinant is zero.

// This procedure checks for rationality as a left fraction.
procedure checkrationalL(P,a,n,b,m)

for i:=a to n do

for r:=b to m do

M:=ZeroMatrix(K,i,1i);

for j:=1 to 1 do

for k:=1 to 1 do

M[j,k]:=(alpha~(i-k)) (P[j+k+r-2]);

end for;

end for;

d:=Determinant (M) ;

if d eq O then i, r, "Yes"; else i, r, "No"; end if;

end for;

end for;

end procedure

// Having run checkrationall. and found some zero determinants,
// this tries to pull the power series back to a fractionm.

// Input sequence S to be pulled back; the two numbers from
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// checkrationall next to the first "Yes" it printed become
// a,b here (same order).

// Output: denominator Q, numerator P (it’s a left fraction Q"{-1}P)
// and c the set of recurrence relation coefficients.

// Note that this procedure assumes S has x-degree 0, if not
// simply multiply numerator on the right by the appropriate power
// of x afterwards.

procedure findrationalL(S,a,b,”Q, P, c)
M:=ZeroMatrix(K,a,a);

for j:=1 to a do

for k:=1 to a do

M[j,k]:=(alpha”(a-k)) (S[j+k+b-2]);

end for;

end for;

M1:=ZeroMatrix(K,a-1,1);

for i:=1 to (a-1) do

M1[i,1]:=M[i,a];

end for;

M2:=Submatrix(M,1,1,(a-1),(a-1));

d:=Determinant(M2); // checking that this is invertible

if d eq O then

"Matrix is not invertible, check your values of a and b.";
else M3:=M2"(-1);

M4 :=M3x*M1;

// M4 is the c_i in reverse order.

c:=[1;

for i:=1 to (a-1) do

clil:= M4[a-i,1];

end for;

Insert(“c,1,-1); // insert c_0 = 1 for later, so c_i = c[i+1]
"c found, computing P and Q...";

if b gt 1 then for i:=#c+1 to #c+b do c[i] :=zero; end for; end if;
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n:=a-1+b-1; // for ease of notation
ql:=[1;
ql[1] :=one;

for i:=2 to n+1 do

qili]:=-cl[il;
end for;
Q:=[*0,q1%];
pl:=[];

for i:=1 to n do
pl[i] :=zero;

end for;

for j:=1 to n do //recall that S is the original sequence.
for i:=0 to (n-j) do

plli+jl:= p1[i+j] - c[jl*(alpha”(j-1)) (S[i+1]);

end for;

end for;

P:=[x0,plx*];

Remove(“c,1);

end if;

"done.";

end procedure;

// Check that the fraction from findrationall is correct.

// Input sequence S, elements Q and P from findrationalL.

// 1f procedure returns true, then the two expressions agree
// (up to the point they were truncated).

function checkpowerrationalL(S,Q,P)

if #S le 25 then n:=#S-5; else n:=25; end if;
inverseL(Q[2],Q[1],7Q1,n+5);
productL(Q1[2],Q1[1],P[2],P[1],"T,n+5);

t:=T[2];

u:=[];
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for i:=1 to n do
ulil :=t[i]-S[i];
end for;

vi:=[];

for i:=1 to n do
v1[i] :=zero;

end for;

c:=1u eq vl;
return c;

end function;

// Given a sequence g of x-degree 0 and first coefficient ay

// (where a is a scalar), constructs a power series F which

// q-commutes with g.

// Input: sequence g, fl a choice for the first coefficient of F

// (can be anything in k(y)), returns an element F.

// Computes the first n terms.

// Note that there is no guarantee that F will represent a fraction;

// however, changing the choice of f1 will not affect whether F

// represents a fraction or not.
procedure gelement (g, f1, “F, n)
if #g 1t n then n:=#g; end if;
f:=[1;

f[1]:=f1;

for i:=2 to n do

a:=zero;

for j:=1 to i-1 do

a:=a + gxgl[j+1]*(alpha~j) (f[i-j]) - f[jl*(alpha~j) (gli-j+11);

end for;
flil:=a/(gl11*(q"i-q9));
i;

end for;
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F:=[*x1,fx];

end procedure;

A.3 An example of a computation in k. (z,y)

It is noted in Remark 3.2.7 that the generators of the fixed ring k,(x,y)? can be
expressed as a pair of single left fractions. The purpose of this example is to illustrate
how a comparatively simple element can balloon into something hopelessly complicated

when expressed as a single fraction.
Recall the setup of §3.2. We define

a=zc4+wy+qy iz, b=at+wy ! + wigyr,

Oh=x+y+dylat, h=z'+y "+ gy,

By Proposition 3.2.5, we know that fg = qgf. However, the element f was originally
constructed using the gelement function from §A.2 and only appeared in its current
form after much fruitless searching. The original form of this element (which we denote

by f') is defined next.

Denominator:

e (qsayw F 7Ty 4 (w + 1)g™™0 4 20g™y10 + (2w + g™y + (w — 1)g™y™ —
4q72y16 + (_w - 2)q71y16 + (_2&] - 1)q70y16 + (_2&) - 2>q69y16 - wq68y16 + q67y16 + (w .
1)g%8y13 — ¢8y13 1 (—c — 1)g%%13 + (—3w — 5)¢%y"® + (—dw — 3)¢52"3 — Buwg®ly'® —
5wy + (—3w+3) ¢y + 104"y 3 + (3w +6)* Ty + (5w +5) >0y + (6w +6) >y +
<4w + 1)q54y13 . q54y10 + (Sw . 2>q53y13 + (_w - 2)q53y10 +wq52yl3 - 3wq52y10 . q51y13 +
(=3w-+1)¢" Ly 0+ (—w — 2)g™y "3+ 4g™y1® 4 (4w + 11)¢ 90+ (10w +11)g"y® + (15w +
5)q47y10 + (15w + 2>q46y10 + (9w _ 8)q45y10 _ 20q44y10 + (_9w _ 17)q43y10 + <_15CL) _
13)¢*?y'% + (= 15w — 10)¢" y'% + (= 10w + 1)g*y% + (—dw + 7)¢¥y% + 4¢38y 10 + (w —
Dg*y"+Bw+4)¢* Ty — g™y + (Bw+3)¢*y "+ (—w = 1)y + (w—1)¢¥y'" + (3w -
5)g%y7 — g3yl 1 (—dw — 3)gMyT — 6wy — Bwgy” + (—3w + 3)gyT + 10607 +
(3w +6)g2y" + (50 + 5)g%y™ + (6w -+ 6)¢2Ty7 + (4w + 1)g20y7 + (3w — 2)¢2y7 + wgly” —
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q23y7 + (_w _ 2)q22y7 + q21y4 + (w _'_ 1)q20y4 + 2wq19y4 + (2(4) + 1)q18y4 + (W _ 1)q17y4 _
4"y + (—w — 2)¢Py* + (—2w — D"y + (—2w — 2)¢"y* — we'y* + Myt + q2y)

+(_wq84y18_wq83y18+q82y18+(w+2)q81y18+<w+1)q80y18+wq79y18+(w_ 1)g™y's —
Gy 4 (—w — 1)g0™ + (—w — 1)g™y™S + g™y’ + 1 + (2w + 2)g™y" + (4o +
3)q™y" + (4w + )" y" + (5w = 2)¢"y" + (3w — 5)¢™y"® + (= 2w — 8)¢®y " + (~Tw —
10)¢° Y™ + (—9w — 7)¢%y'® + (—9w — 2)¢%y* + (=Tw + 3)¢%y'® + (—2w + 6)¢%3y'® +
<w+1)q63y12+(3w+8>q62y15+wq62y12_,’_(5w+7>q61y15_'_(w_3)q61y12_|_(4w+3>q60y15_
5050912 4 (4w + 1)gy"® + (—6w — 8)gy'2 + 20g™y1% + (—13w — 11)¢%y12 — ¢y +
(=160 — 6)¢77y'2 — g%y’ + (—16w + 5)gy'2 + (—9w + 16)¢7 ™2 + (6w + 26)>y'2 +
(21w+30)¢*%y"* + (30w +23)¢°*y"* 4 (30w +T7) ¢ y " + (21w —9) ™y + (6w —20) ¢y '* +-
(—w — 1)g¥y® + (=9 — 25)¢®y'? — wg®®y® + (—16w — 21)¢*y'% + (—w + 3)¢*y® +
(—16w—10)q*%y'2 +5¢*09° + (13w —2)¢* Y2 + (6w +8)¢*y° + (—6w+2) ¢*y2 + (13w +
11)g*y° +5¢3y*2 + (16w +6)¢3y° + (w+4) ¢y 2 + (16w — 5) ¢**y° + (w+ 1) gy 2 + (9w —
16)q* y° +wq®y'? + (—6w — 26) ¢ + (—21w — 30)¢*%9° + (—30w — 23) ¢33y + (—30w —
NGy + (—21w+9)¢*%y” + (—6w +20)¢*y? + (9w +25) >y + (16w +21)¢*y® — ¢*3y° +
(16w +10)¢**y? — ¢**y° + (13w + 2)¢*!y” + (—2w — 2)¢*'y° + (6w — 2)¢™y” + (—dw —
3)q*y° = 5¢°y° + (—dw — 1)¢*y° + (—w — 4)¢®y’ + (5w +2)¢**y° + (—w — 1)¢*"y" +
(=3w + 5)¢*"y" — wg*®y? + (2w + 8)¢*%y’ + (Tw + 10)¢*y°® + (Iw + 7)g**y° + (9w +

2)¢%y% + (Tw — 3)¢**y° + (2w — 6)¢*'y® + (—3w — 8)¢*y°® + (—bw — )¢5 + (—4w —
3)¢"8y0 + (—dw — 1)q"Ty® — 2w %0 + ¢y + g™y + wqty? + wg'Py® — 2P + (—w —

_I_(_q88y20+(w_1)q87y20+(w_1)q86y20_q85y20_|_(_w_l)q84y20_|_(_w_1)q83y20+<_w_
DY+ (—w—1)¢8% T+ (= 20— 2)g71 + (= 3w — 1)y + (—dw—1)g7Ty '+ (— 5w —
1)g70517 — 4oq™y17 + (— 4w + 3)g™ 1 + (—dw + 5) g™y + (= 2w + 6)¢72y"7 — g™y +
(Bw+9)q Y "+ (—w+1)g Yy + (6w +10) gy "+ (w+3) Oy + (Tw+8) ¢y "+ (Bw+
6)q%yM + (6w +3) g%y + (5w + 7)¢%®y" + (5w + 1) g5y + (8w +6) ¢y + 3wy +
(10w + 3)¢%5™ — ¢5%17 1 (10w + 1)g5%y™ — ¢¥y7 + (8w — 1)¢%4y™ + (6w — 3)g%y™ +
(Tw — 2)¢%y™ + (8w — 2)¢® Y + (10w — 5)¢%y** + (11w — 10)¢* 'y — Wy + (6w —
16) g%y + (w+1)g%y" + (= 3w—23) g7y + (3w-+2)¢" 5 + (=120 — 26) g% y 1 + (4w +
)¢5+ (— 190 — 23)g%y™ + (3w — 5)¢%y ™ + (—220 — 16)¢>y™ — 117y + (— 19w —
8)¢*3y M+ (—9w—18)¢*3y! — 12wy + (—20w —21) >y + (—5w+6) >y + (—29w —
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21) ¢y 4+ (—2w+6) ¢y + (—33w — 12) ¢yt 4+ 3¢* 9y — 31wg® ¥yt + (2w +2) ¢*8y +
(—26w + 12)¢®y't + (w + 1)¢*y'* + (=15w + 22)¢* Yy + (—5w + 31)¢*%y't + (5w +
36)g%yt + (15w + 37) Myt — wqty® + (26w + 38) g3y — 2wq*3y® + (31w + 31) g2yt +
3¢™y® + (33w + 21) gyt + (2w + 8) ¢ y® + (29w + 8) ¢y + (5w + 11)¢*%y® + (20w —
Dg?y" 4+ (120412)¢*y* 4+ (9w —9)¢*y " + (19w +11) %y — 11¢* Yy + (220w +6) ¢*Ty* +
(=30 —8)q "+ (19 — )+ (—Aw— 3y + (12— 14+ (3o~ )y +
(30— 20)g75P —g™y 1+ (60— 22)g™y + (wo+ L)y (1L 20)g " 4 (10—
15)¢* y® + (—8w—10)¢*y® 4+ (—Tw—9)¢*y®+ (—6w —9) ¢ y® + (—8w —9)¢*"y* — ¢*"y° +
(—10w—9)¢*°y® = ¢*°y° + (10w — 7)¢*°y® + (=3w — 3)¢®y° + (—8w — 2)¢**y® + (—5w —
D'y + (—Hw +2)¢*y® + (—6w — 3)¢*y° + (—3w + 3)¢*y° + (= Tw + 1)¢**y° + (—w +
)PP + (—6 4+ 4) g2 y5 + (0 +2)¢2%8 + (= 3w+ 6)g2% + (w+ 1)g" + (2w + 8)¢ " +
(4w+9)q" 3y + (4w+T7) ¢ Ty + (dw+4) ¢ 0y° + (w+4) ¢ y°+ (4w+3) ¢y + (Bw+2) ¢ 3y +

2wq12y5+wq11y5+wq10y5+wq8y2+wq7y2—q6y2+(—w—2)q5y2+(—w—2)q4y2—q3y2)x2

+(q92y22 42 4wy 4 (2w + 1)@y + (20 + 1)y + (W — 2)¢%y + (w —
3)¢%31 + (w — 2)g%2y10 — 2451y 4 (=20 — 2) ¢y + (—2w — 1)g7%19 — ¢T8y'® — ¢T8y16 —
3¢77y1% 4 (—w+1)g0 Y19+ (— 2w — 4)g™0y ™ + (—2w — 1)g7y" + (—6w — T)g™y'® 4 (—w —
1D)g™y'® + (— 11w — 8)g™y™ + ¢y + (= 15w — 4)g™'6 + ¢y + (— 15w + 2)¢™y'® +
(—9w + 11)g™ y1® + 21¢™y1® + (10w + 24) ¢y + (18w + 19)¢%y'6 + (—w — 1)¢%y'3 +
(22w+14) 57y 0+ (—2w —1) ¢ Y3 + (20w +5) ¢y 10 + (—2w+1) ¢y 3 + (12w —6) g%y 6 +
555113 1 (4w — 11)g%"® 1 (3w+10) g5 4 (— 2w — 12) 536 1 (8w+14) 533 1 (— 6w —
11)¢52"6 + (17w + 15)¢52™ + (—8w — 7)¢%"y"® + (260 + 14)¢5'y™ + (—6w — 3)¢y'® +
(30w+T7)¢%y" 3+ (=3w—1)¢* 2y 0 + (27w —9) >y 3 + (—w+1) ¢y ® + (17w — 26) %3y '3 +
(et DTy 04 (—w— A1) Ty + (—w— 1)y 4 (—23w—51)¢% ™ — ¢ y6 4 (— 42w —
49) Py — gy 4 (—52w — 34) gy — 2¢54 10+ (— 50w — 13) g7y — 2P Y10 4 (—

10)¢%%y"3 + (—2w — 3) %%y ' + (—16w + 29)¢® y'® + (—4w — 5)¢° y'° + (3w + 36

37w+

q50y13 +

)
(—6w — 7)¢y'% + (16w + 33)¢"y*® + (—9w — 8)¢" 9y + (22w + 25)¢™By*3 + (15w —
8)q™®y' + (21w + 16)¢ Ty + (= 21w — 5)¢*"y'0 + (15w + 7)¢*0y™® + (—22w + 3)¢*%y'° +
(9w +1)g®y3 + (=16w+17) gy + (6w — 1)g**y*? + (—3w+33) ¢ Y0 + (4w — 1) g3y 3 +
(16w + 45)q43y10 + (2w — 1)q42y13 + (37w + 47)q42y10 — 2qMy13 4+ (50w + 37)q41y10 _
2q40y13—|—(52w+18)q40y10—q39y13—|—(42w—7)q39y10—q39y7+(23w—28)q38y10 +wgtyT +
(w—40)¢*Ty" + (w+2)¢*Ty" + (— 17w — 43)¢*y"" + (w +2)¢*°y" + (27w — 36)¢>y " +
(Bw+2)¢*y" + (—30w —23)**y ' + (6w + 3) ¢**y " + (—26w — 12)¢*3y 'O + (8w +1)¢**y" +
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(—17w—2)¢*y'0 + (6w —5)¢*?y" + (—8w +6) 1y + (2w — 10) 3y " + (= 3w+ T7) >y +
(—4w — 15)¢*%y" + 5¢%y*° + (—12w — 18)¢*y" + (2w + 3)¢**y'® + (—20w — 15)¢®y" +
(2w + 1)g*Ty" + (—22w — 8)¢*Ty" + wgy'? + (—18w + 1)¢*%y" + (—10w + 14)¢®y" +
21¢%% " + (9w + 20)¢®y" + (15w + 17)¢*2y" + ¢*2y* + (15w + 11)¢*'y" + ¢*'y* + (11w +
3)¢* Y +wyt + (6w —1)¢"y" + 2w+ 1)y  + (2w —2)¢"y" + (w+2)¢"*y* = 3¢'Ty" —
q16y7 _ q16y4 + (2(.(} + 1)q15y4 + 2wq14y4 _ 2q13y4 + <_w _ 3)q12y4 + (_w _ 4)q11y4 +
(—w

—3)¢"y" 4+ (2w — 1)’y + (—2w — 1)®y* + (—w — 1)q"y" + ¢*y + q2y> z?

—i—<(—w— 1)q93y21 —wq92y21 + (—w+1)q91y21 + (_w+3)q90y21 +(—w+2)q89y21 +(w
2)q88y21+<3w+2)q87y21+(2w+2)q86y21+(w+1)q85y18+(_w_1)q84y21+(w+2)q84y18_
q83y21+(w+3)q83y18+(4w+4)q82y18+(8w+5)q81y18+(1Ow+5)q80y18+(11w+2)q79y18—|—
(1w — 4)¢™8y*® + (8w — 10)¢" y'® + (3w — 14)¢"y'® + wq™y'® + (=bw — 17)¢"y'® +
2wq75y15 +(—12w— 18)q74y18 +(w— 2)q74y15 +(—15w — 15)q73y18 +(—2w— 6)q73y15 +
(—13w—=T7)q¢"y" + (—3w —10)¢™y"® = 9wg™y'® + (—9w — 13)¢" y"* + (—6w +3)¢y"* +
(—13w — 12)q™ Y™ + (—2w + 3)¢%¥y'® + (—19w — 12)¢%¥y"® + (2w + 3)¢%y*® + (—23w —
9)q68y15 + (2w + 2)q67y18 + (—26w — 6>q67y15 + (=220 + 3>q66y15 . q65y18 +(

9)q65y15 _q64y18+ (_16w+21)q64y15+ (_8w+28)q63y15+wq63y12+ (4w+37)q62y15 .
¢y + (17w +39)¢y" + (—3w—2)¢%"y"* + (26w +38) ¢y " + (4w —1)¢™y"* + (33w +
28)¢™y"® + (=5w + 3)¢™y"? + (31w + 17)¢*%y" 4 (—4w + 11)¢*%y"* 4 (24w +6) ¢y +
(5w+22)¢% "y + (13w —2) ¢y + (19w +31) g%y % + (6w — 7)¢%y'® + (34w +36) ¢*°y ' —
7q54y15+(50w~|—34)q54y12+(2w—2)q53y15+(58w+20)q53y12+wq52y15~|—(56w—1)q52y12+
(45w — 24)¢®y'2 — gPy5 + (25w — A7)0y 2 — ¢4° + (w — 1)gy'® — 65¢29y'2 + (—w —
2)q19y° — 18y + (—25w — T2)g*8y'2 — ¢18y° + (—45w — 69) 1Ty 2 + (—56w — 57)q*0y'2 +
(—w—=1)g"%y*+(—58w—38)¢"y"* +(—2w—4) ¢y’ +(—-50w—16)g*'y'* ~Tg"y +(—34w+
2)qBy'? + (—6w —13)¢*3y° + (= 19w+ 12) g2y + (= 13w — 15)¢*2y° + (—bw +17)¢" y*? +
(—24w—18)g* 9"+ (dw+15) g Y2+ (—31w—14)¢* %y + (5w+8) >y 2+ (—33w—5) >y +
(4w +3)¢**y" + (—26w +12)¢*y” + (Bw+1)¢* y"? + (= 17w +22)¢*"y’ — ¢*°y"* + (—4w +
33)¢°%y° + (—w —1)¢*y" + (8w +36) >y + (16w +37)¢**y” — ¢**y° + (21w +30)¢*y” —
¢*y° + (220 +25)¢”%y" + (26w +20)¢*'y° — 2wy + (23w +14) ™y + (—2w +1)¢*y° +

21w +

(19w +7)g*y® + (2w +5)¢*y® + (13w + 1)¢*y° + (6w + 9)¢**y5 + (9w — 4)¢*"y® + (9w +
9)¢*"y’+(Bw—T7)*y" + (13w+6)g*°y°+ (2w —4) ¢y’ +15wqg™y +(—w—3)¢*'y + (12w —
6)¢* Y5 + (—2w — 2)¢*y° + (5w — 12)¢® Y + (—w — 1)¢**y” + (—3w — 17)¢**y° + (—8w —
18)¢*y + (—11w — 15)¢®%y° + (= 11w — 9)¢*y° + (—10w — 5)¢'8y’ + (—8w — 3)¢'Ty® —
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4wq16y6 + (_w + 2)q15y6 _ q15y3 + (_w + 1)q14y6 +Wq14y3 _ Wq13y6 _ 2wq12y3 + (—Sw _
1)q11y3+(—w+1)q10y3+(w+3)q9y3+(w+4)q8y3+(W+2)q7y3+(W+1)q6y3+wq5y3>x4

n (wq99y23+wq98y23 Ty (—w— 2) g%y (e 2)g%5y P — Py 93y _ 220,
(=2 — 2)¢°1 5 + (—4w — 3)g™y + (—dw — 2)g5%2° — 5wy + (5w + 2)¢*Ty20 +
(—5w+2)g*0y20 + (— 3w+ 4) g%y + Tg¥y? + (—w—1)g™ T + (2w +9) g™y —wg®By'7 +
(4w +8)¢** Y + (—w+3) ¢y "+ (6w +6) ¥ y* + (—w+6)¢* Yy "+ (Tw +4)¢*y?° + (3w +
9)4%y!™ + (6w +2)g™y + (10w + 13)g™y"7 + 3wg™y + (180 + 14)g™y'7 — 2477y +
(23w + 9)7Ty!7 — 2470y + 22g™ 1T — gy 4+ (15w — 12)q™y"7 + (6w — 21)g™y!7 +
(=5w=26)¢"y""+(w+1)q"y "+ (13w —24)g"y '+ (w+1)g ™y + (- 16w—20)¢" y' "+
wg™ g 4 (—16w — 15)g™17 + (2w — 1)g™0y™ + (—1dw — 9)g™y!T + (2w — 3)¢*y™ +
(—14w —5)¢%y'" — 8¢y + (—12w —3)¢*"y' " + (—Hw — 14)¢*"y** — 8wy " + (— 15w —
20)q%0y1 + (—4w +5) g%y + (—27w — 24) g%y + (—w + 7) g%y + (36w — 18) g%y +
(w4 6)g% Y17 + (=390 — 2)g%y 1 + (2w +4)¢52y' T+ (=31 +20)¢%2y™ + (3w +3) ¢y +
(—12w +41)¢% y* + (3w +2)¢%y'T + (14w + 56) ¢y + ¢Oy™ + (w + 1)¢»y' ™ + (39w +
58)¢PyM + (—w + 2)¢yM + (53w + 45)¢°% Y + 4¢ Y + (53w + 23)¢" Ty + (Bw +
6)4" Ty + (42w + 1)g%yM + (Tw +T)g™yM + (250 — 16)g%y M + (11w + T)g™y! + (8w —
26) 7y M + (1w + 6)g>y ' + (—dw — 27) g%y + (14w + 1)¢%yM + (— 11w — 24) Py +
(13w — 6)¢>?y' + (—13w — 19)® Y™ + (11w — 13)¢*'y"! + (— 14w — 13)¢*y™* + (4w —
23) %0y 4 (— 14w —8) gy M + (—8w—34)g ¥y +(— 11w —4) g%y + (—25w—41) ¢Sy —
Twg* Tyt + (—42w —41)¢* Y™ + (= 3w +3) ¢* 0yt + (—53w — 30) ¢y + 4¢Py + (—H3w —
8)gy™ 4 (w + 3)gMy™ + (—39w + 19)g My — wgtly® + ¢ By 4 (—1dw + 42)gBy" +
(=3w—1)g"y®+ (12w +53)¢**y"! — 3wg*?y® + (31w +51)¢* y™ + (—2w+2)g* y® + (39w +
37)q" %" + (—w +5)q"y® + (36w + 18)¢™y™ + (w + 8)¢™y® + (27w + 3)¢**y" + (4w +
9)¢*y® + (15w — 5)@3TyM + (8w + 8) 3 "y® + (5w — 9) %y + (12w + 9) 3%y — 8¢yt +
(14w +9)¢*y® + (—2w — 5)¢**y" + (14w + 5) PP + (—2w — 3)¢®y ™ + (16w + 1)¢*3y® +
(—w— 1)y + (160 — 4) 2y — wg®y™ + (13w — 11)¢%1y® — wg®y' + (5w —21)¢>y® +
(—6w — 27)¢*%y® + (— 15w — 27)¢*y® — ¢*%y° + (—22w — 22)¢*"y® — 2¢*Ty° + (—23w —
14)¢%%y® — 2¢°%9° + (—18w — 4)¢®y® + (—3w — 3)¢®y® + (—10w + 3)¢*y® + (—bw —
)y + (3w +6)¢*y® + (—Tw — 3)¢?y° + (w + 7)¢*y® — 6wg™y’ + (W +4)¢*'y® +
(—dw +4)¢*'y° + (W + 1)g*y® + (2w + 7)g™y° + wg'y® + 7¢"%y° + (3w + 7)¢'®y* +
(5w +T7)q  y° + (5w +7)¢* %y + (5w +5)¢'5y° + (4w +2)¢My° + (4w + 1) ¢'3y° + 2wq'?y° —
0"y’ ="’ =’y + (=D + (w0 —1)q"y* = ¢°y* + (~w—1)g°y* + (~w — 1)q4y2>x5
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_|_<q106y25+q100y22+<w+1)q99y22+2wq98y22+(2w+1)q97y22+(w_1)q96y22_4q95y22+
(_w_2)q94y22+(_2w_ 1)q93y22+(-2w_2)q92y22+(W— 1)q92y19_wq91y22 _q91y19+
q90y22+(_<x)_1)q90y19+(_3w_5)q89y19+q88y22+(_4W_3)q88y19+q87y22_6wq87y19_
5wq86y19+(_3w+3)q85y19+10q84y19+(3w+6)q83y19_q83y16+<5w+6)q82y19_+_(_w_
2)q82y16+(7W+8)q81y19—3wq81y16+(7W+2)(]80y19+(—300+1)q80y16+(7w—1)q7gy19+
4q79y16+4wq78y19+(4w—|—11)q78y16+(w—6)q77y19+(1OW+11>q77y16+(—2w—8)q76y19+
(15w +5)q 0y 0+ (—3w —3) g™y 2+ (15w +2) ¢y + (—4w — 3) ™y + (10w — 9) ¢y 1® +
(_3w_2)q73y19_|_(w_22)q73y16+(_w+1)q72y19+(_10w_19)q72y16+q71y19+(_19w_
19>q71y16 + (-22&) _ 18)q70y16 + (w _ 1)q70y13 + q69y19 + (-20&) _ 2)q69y16 _ q69y13 +
(—15w + 7)¢%y'% + (—w — 1)¢%®y® + (—=8w + 7)¢%y'® + (—3w — 5)¢%y'3 + 175016 +
(—4w—3)q66y13—1—(6w—|—19)q65y16—|—(—6w—1)q65y13—|—(9w+1O)q64y16+(—6w—3)q64y13—|—
(11w_|_11)q63y16+(_7w+1)q63y13+(11w+8)q62y16+(_6w+11)q62y13+(gw_l)q61y16+
11q61y13+(6w_1>q60y16+(9w+20)q60y13+(2w_2)q59y16+(20w+28)q59y13+(_w_
7)Yy 5+ (29w +17) "8y 3+ (—2w —4) ¢ Y0 + (33w +5) "y + (— 2w —1) "y 0 4 (25w —
6)q56y13+q56y10+(—2w_2)q55y16+(1ow—30)q55y13+(W+1)q55y10—Wq54y16+(—10w—
40)q54y13+2wq54y10+q53y16+(_25w_31)q53y13+(2W+1>q53y10+(_33w_28>q52y13+
(2w—2)¢"?y' 0+ (29w —12) " Y3 + (w—6) Ly + (—20w +8) g%y 3 + (— 2w —4) %y 10 +
(—9(.() + 11)q49y13 + (—GW . 7>q49y10 + 11q48y13 + (—9(.{) - 10)q48y10 + (6(4) + 17)q47y13 +
(_11w_3)q47y10+(7w+8>q46y13_11wq46y10+(6w+3)q45y13+(_9w+ 1)q45y10+(6w+
5)q44y13+(_6w+13>q44y10+(4w+1)q43y13+17q43y10+(3w—2)q42y13+(8w+15)q42y10+
way'® + (15w +22)¢* y'0 — ¢y + (20w + 18) ¢y '* + ¢* %y " + (—w — 2)¢*y"® + (22w +
4)q39y10+19wq38y10+q38y7+(].OUJ—9)q37y10+(u)+2)q37y7+(_w_23)q36y10+(3W‘|‘
D)@y + (—10w — 19)¢*y'0 + (4w + 1)¢**y" + (= 15w — 13)¢**y'° + 3w y™ + (— 15w —
10)g33y' %+ (2w —6) ¢33y + (= 10w+ 1) g3y 0+ (—w — 1) g3y + (—dw + 7)1y + (— 4w —
DAy + 4¢3y + (= Tw — 8)®y" + (Bw +4) ¢y + (=Tw — 5)¢®y" + (3w + 3)¢*8y !0 +
(=Tw+1)g®y +(w—1)g* Ty +(=5w+1)¢*"y" —¢*°y "+ (=3w+3) >’y +10¢*°y "+ (3w+
6)q”y" + (5w +5)¢*y" + (6w +6)¢**y" + ¢**y* + (4w +1)¢*'y" + ¢*'y* + (3w — 2)¢*°y" +
u)quy7 + q19y4 _ q18y7 + (w + 1)q18y4 + (_w _ 2>q17y7 + 2wq17y4 + (2&) + 1)q16y4 + (w o
1)q15y4—4q14y4+(—w—2)q13y4+(—2w—1)q12y4+(—Qw—Q)qH?f—wq10y4+q9y4+q3y)xG

Numerator:

U = <q86y19 + q77y16 + (W + 1)q76y16 _|_ 2wq75y16 + <2W _|_ 1)q74,y16 _|_ ((U _ 1)q73y16 _
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4qT2y16 1 (—w— 2>q71y16 +(—2w— 1>q70y16 +(—2w— 2>q69y16 By 1+ ¢TI0 ¢ (w—
1)q66y13 — Sy + (—w— 1>q64y13 4 (—3w— 5)q63y13 + (—dw — 3)q62y13 — BuwgBly!3 —
5wq60y13+(_3w+3)q59y13+10q58y13+(3w+6)q57y13+(5w+5)q56y13+(6w+6)q55y13+
(4w + 1)q54y13 Py (3w — 2)q53y13 F(—w— 2)q53y10 LWy — 3wgyl0 — Byt 4
(=3w+ 1)y + (—w—2)¢" Yy +4¢°y " + (dw+11)¢*y " + (10w +11) ¢*¥y '+ (15w +
5)q 7y + (15w + 2)¢*y'% + (9w — 8)¢*y'® — 20¢*y'% + (—9w — 17)¢*3y'° + (—15w —
13)¢*y*0 + (—15w — 10)¢*y'% + (=10w + 1)¢*y*° + (—4w + 7) ¢y + 4¢389'° + (w —
Dg*y" + (Bw+4)*y" —¢*Ty" + (3w +3)¢*y "+ (—w —1)¢*y + (w—1)¢*y "+ (—3w—
5)g%yT — ¢*yl0 + (—dw — 3)y" — 6wg®yT — BwgyT + (—3w + 3)¢Ly” + 10¢%%y7 +
(3w +6)¢*%y" + (5w +5)¢®y" + (6w +6)¢*Ty" + (4w +1)¢*°y™ + (3w — 2)¢®y" +wg*'y™ —
03y + (—w — 2)¢22y7 + ¢yt + (w+ 1)g®y* + 2wg Yt + (2w + 1)g Syt + (w — 1)g Tyt —
49"y + (—w = 2)¢Py* + (—2w — 1)g"y* + (—2w — 2)¢"y* — wey* + ¢yt + q2y>x

—|—<(—w — 1)+ (—w — 1)y — wg®y'S + ¢y + Byt — wgy'S + 2q79y'S +
2q78y18 + 2q77y18 + (4&) + 5>q76y18 + (5&) + 4)q75y18 + (w + 1)q75y15 + 3wq74y18 + <3w _
1)q73y18+(2w_1>q72y18+(3w+1)q72y15+(_W_Q)q71y18+2wq71y15_|_(_w_1)q70y18+
2uq™0y'5 + (4w —1)¢%%9" + (w —5)¢%y"® + (—w — 6>q67y15 — 5¢%0y15 4 (—5w — 9)¢®y'5 +
(—Tw— 8)q64y15 F(—2w— 1>q64y12 +(—5w— 5)q63y15 Sy 4 (—10w — 8)¢52y" + (w+
1)q62y12 +(—1lw— 6)q61y15 — wgSly'? — Twgyts 4 (w— 1>q60y12 +(=Tw+ 1)q59y15 B
24712 + (—5w +3>q58y15 +(—Tw— 5>q58y12 +(w+ 7)q57y15 +(—Tw— 1)q57y12 + 2w+
5)q*y"® + (—4w +3)¢*y™ + (w + 2)¢™y" + (= Tw + 6)¢™y"* + (3w + 2)¢™y"* + (w +
13)¢*y' 2+ (2w +1) g3y + (6w +13) g3 y? + (5w +11) > y'? —wq*y? + (9w +13) ¢y 2 +
(—wH+ 1)@y +(13w+13)¢*y "+ (3w+3) g™y 4+ (11w+10) ¢ ¥y "+ (3w+2) ¢y + (18w+
13)¢"y"? + 3wg™y? + 21w+ 7)g"Ty" + (6w — 1)¢"y" + (14w — 4)¢"y" + (w = 5)¢"y" +
(10w =9)g®y" + (—4w = T7)¢"y’ + (Bw — 14)¢™y " — 4™y’ + (—8w —17)¢"y " + (—w —
3)gy? +(—10w—11)¢*2y2 + (—3w—3) "y’ + (= Tw—4) " y'? + (3w —4) g™y + (— 6w —
1)g*y"? + (2w — 10)¢*y° + (—2w + 2)¢¥y"* + (= 10w — 13)¢*y” + (2w + 3)¢*y"* +
11w—12)¢%*y +(w+1)¢°y"? +(—16w—10)¢°Ty’ + (= 17w —2)¢*y’ + (—2w—1)¢*y° +
8w +6)g*y” — wg®y° + (—4w +6)¢*y? + ¢*'y° + (2w + T)¢Py” 4+ (—2w +2) ¢ y° +

(_
<_
(4w + 7)Y + (w0 + 3)¢™y° + (2w + 2)¢*' Y + (4w + 4)¢*' Y + (—w + 1)¢*y" + (v +
2)¢*°y° +(w+3)g™y? + (2w +2) ¥y’ + (w+2)¢*y 4+ (5w +2)¢**y° + 47Ty +2¢7 Ty + 2w+
2)g*%y’ + (2w +3)g*°y° + (2w + 1)¢™y” + (6w + 3)g®y° + (4w +2)¢*'y° + (3w + 1)¢*y° +
(5w = D¢y + (w = 3)®y° + (w = D)™’ + (w0 = 2)¢"y° + wg"y® + (—w — 3)¢"*y® —
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¢SP4+ (—w—2)¢" Ty’ + (—2w—2)¢" Ty — ¢Sy + (—w —2) "y + (—w—1) ¢y + (—2w—
1)q15y3—wq14y6—3wq14y3+q13y3+(w—l—1)q12y3—quyS—i—(—w+1)q8y3+q7y3+w>x2

—|—<wq95y23 — ¥y — By 1 (—2w — 1)q87y20 +(—w — 1)q86y20 +(—w — 1)q85y20 .
2wq84y20_qu81y20_Wq81y17+q80y20_Wq80y17+(W+2>q7gy20+2q78y20+(_W+3)q78y17+
(W+1)q77y20+(_W+3)q77y17+wq76y20+<4W+4)q76y17+(4W+6>q75y17+(4w+5)q74y17+
(8(,&} + 1)q73y17 + (5w + 1)q72y17 + (3(4) _ 1>q71y17 + q71y14 + (4L¢J _ 4)q70y17 + 2wq70y14 _
5q69y17+2wq69yl4+(_3w_5)q68y17_q68y14_5q67y17+(W_4)q67y14+<_4W_4)q66y17+
(2(,() _ 3)q66y14 + (—4&) _ 2)q65y17 + (—3(,() _ 3)q65y14 + (_w _ 2)q64y17 + (_w _ 7)q64y14 +
(=20 = 1)g%y"" + (—w = 8)¢™y™ + (=3w — 1)¢™y"" + (—10w — 8)¢*y™ + (—13w —
13)q61y14 _ wq60y17 + (-13&) _ 8>q60y14 _ q60y11 + (_w + 1>q59y17 + (—19(4} + 1)q59yl4 +
(—2w=1)¢y" +(—1204T7)¢**y +(=3w—1)¢"y ! +(—w+14)¢" Y+ (—3w—1)¢* Ty "' +
(Bw+21)g* 0y +(—3w+3)* Y + (11w+16)¢* y "+ (—3w+4) " y ' + (15w+10) >y +
(3W+7)q54y11—|-(9w+7)q53y14+(4W+11)q53y11+(9W+3)q52y14+(6w+11)q52y11+(7w—
1)q51yl4+(15w+9)q51y11 +2wq50y14+(16w+12)q50y11+4wq49y14+<13w_'_4)q49y11+
(4w—2)q48y14+(16w—5)q48y11 _2q47y14+(11w_7>q47y11 _2q46y14+<_w_14)q46y11+
q46y8—2q45y14+(—Qw—21)q45y11+(w—|—1)q45y8+(—2w—1)q44y14+(—10w—16)q44y11+
3w+1)q44y8_wq43y14_|_(_15w_12)q43y11+3wq43y8+(_12w_13)q42y11+<3w_4)q42y8+
120=6)¢"y!" +(w=T)g"y* + (= 1Bw—1)g"y " + (—6w—10)¢"y* + (6w —1)g*y " +
1w —13)¢¥y8 + (—6w + 1) ¢33y + (= 12w — 8)¢*¥y8 + (—4w + 6) 3"y — 15w Ty® +
w+4)q* Yt + (10w +3)g* Y + (w+3)¢Py + (2w +10)¢7y" + (w +3) ¢y + (w+

(
(_
(_
(

15)q34y8 + (3(,0 + 2)q33y11 + (4&) + 9)q33y8 + wq32y11 + (9&) + 8)q32y8 _ qulyn + (5&) +
10)@3 2+ (Tw+T7) 3y —wq® y® + (10w +4) ¢?y® —wq* Yy’ + (8w+6) ¢* Y8 +2¢* Yy + (8w +
1)q27y8+(w+3)q27y5+(7(—0—4)q26y8+(3w+3)q26y5+(w—5)q25y8+(4w+3)q25y5+(—w_
4)q24y8+(4a)+1)q24y5+(—W—4)q23y8+(4w_2)q23y5+(—3w—2)q22y8+(2w—2)q22y5—
wgy® 4+ (—w = 4)¢?y° + (~w = 6)¢*°y° + (=3w — 4)¢"y’ + (—6w — 3)¢"%y’ + (4w —
3)q' Ty’ = 3wy’ +(=3w+2)¢"°y’ + (—w+ 1)y’ + ¢y + ¢y’ + (W D'y + (~w—
Dg"y? + (—w = 1)¢"%* = wg’y® + ¢y + (w+ 1)q"y? + (w0 + 1)¢°y* + wgy® + wq4y2) a

+(wq94y22+wq93y22+(_w_1)q91y22+q89y22+q88y22_q88y19_q87y19+(_w_1>q86y19+
(—2w —2)g® Y1 + (—w — 1)y + (2w + 1)y + (—2w + 1)¢32y™* + wg®y' + (w +
2)¢3y 0+ (—w+1) g™y L+ (—w—1) g™y 0+ (w—1)g 3y 0+ (—w—1) g™y O+ (2w-+1)q Ty 0+
(—w+2)q Ty + ¢y + (—2w+2)g ™0y + (w—2) gy + 247y 0 + (w — 2)¢ 4y + (dw+
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6)g™y"" + (—w = 1)g"y" + (3w +6)¢"y" + (2w — 2)¢"y" + (5w + 1)¢"?y'* + (—w —
1)q71y19 + (6w + 2)q71y16 . wqmylg + (2w 2)q70y16 — wg®yt + (w— 4)q69y16 + (3w —
3)¢% Y10 + (w+1) g%y — 3wty + (w+1)¢8Ty"3 + (— 3w — 3)g%y16 — 2456513 — 3¢55y16 +
N — 1)q65y13 +(—3w+ 3)q64y16 +(w+ 1)q64y13 +(—dw + 1)q63y16 t(~w— 3)q63y13 +
2w+2)¢%y" + (3w —2)¢%y " + (2w +6)¢" Y + (2w +1)¢% y*? + (W +5) g%y + (—2w —
6)q60y13 + (6&) + 3)q59y16 _ 9q59y13 + (Gw + 4)q58y16 + (—3&) _ 4)q58y13 + 2Wq57y16 +
(_gw_7>q57y13+(Qw_2)q56y16+(_4w_7)q56y13+<2w_1)q55y16+(_2w+2)q55y13+
(w+1)g”y '+ (—w=1)g*y "+ (=bw+1)¢*y P + (—w = )¢y + (-w—1)¢”y '+ (w—
5)q53y13+(—w—2)q53y10—|—(2w—2)q52y13—wq52y10+(—7w—4)q51y13—4wq51y10+(—7w—
)70y + (—3w — 2)¢7y™0 + (—4w — 3)¢ Y3 + 4g¥%y10 — 9wy + (—3w + 3)¢*y'0 +
(—6w—2)q"y " +(—dw—1)g" Ty ' +(w+2)¢" 'y P +(w+5)¢" 'y '+ (—2w+3)g Py P+ (—dw+
8)¢" Y% + (—3w — 1)g*y'® + (—2w+6) g™y + (w + 1)gBy"3 + (6w + 13) ¢y + (—w +
2)q42y13+<9w+18>q42y10_2wq41y13+(9w+9>q41y10+(w+1)q40y13+(18w+9)q40y10+
(wH1)g Yy +(w+1)g?y P +(13w+6)q™y " +(w+2)¢ ™y +(6w—2)¢*y * +wg™y "+ (8w—
4)q37y10—|—4wq37y7+(5w—|—1)q36y10+4wq36y7+(—w—4)q35y10—5q35y7+(3w—3)q34y10—

—~

6q34y7+4wq33y10+ (_w_4)q33y7+ (—20() _3)q32y10 + (—6w - 7)q32y7 _4q31y10 + (_4w_
6)q31y7 _ q30y10 + (—U) _ 1)q30y7+ (—2(4} _ 1)q29y10 + (-50) _ 4)q29y7 + (-Ld _ 1)q28y10 +
(—4w =5)¢*y" + (w + 1)¢*y" + (—w = 1)g*Ty" + (6w — 4)¢*y" + (= Tw = 6)¢*y" +
(—4w—1)q24y7—6wq23y7—wq23y4—5wq22y7—wq22y4—|—4q21y7+2q21y4+4q20y7+2q20y4+
"y 4"y 4 (2w +1) ¢y 4+ (3w+3) ¢y - (w 1) Ty 4+ (2w +2) ¢y 4 (2w +2) g Py +
<3w+3)q14y4+wq13y4+2wq12y4+2wq11y4_q10y4_q9y4+(_w_1)q4y_'_(_w_1)q3y)x4

+<q100y24 + q94y21 + (w + 1)q93y21 + 2wq92y21 + (20) + 1)q91y21 + wq90y21 _ 2q89y21 _
2q86y21+(w_1)q86y18+(_w_1)q85y21_q85y18+(_w_1)q84y21+(_w_z)q83y21_|_(_w_
3)q83y18_wq82y21+(_w_2)q82y18_wq81y21+(_2w_1)q81y18+(_Qw_4)q80y18+(_4w_
4)q79y18 — BwgTyS 4 (—5w — 3)q77y18 — Ty — BugTy's + (—w— 2)q76y15 +(—dw +
4)q75y18—2wq75y15+(—w—|—3)q74y18—2wq74y15+(w—|—5)q73y18—2wq73y15—|—(w+8)q72y18—|—
(—QW+4)(]72y15+(5W+4)q71y18+4q71y15+(6W+4)q70y18+2q70y15+(4W+4)(]69y18+
(—w+T7)g"y" + (3w —1)¢%y " + (3w +9)¢*y " + (3w —1)¢°Ty"* + (7w +9) ¢y " + (10w +
15)q%y15 — 85918 + (16w +11) %y — gy'3 + (21w+3) gy — g0y 2+ (14w —1)¢%y 1 +
gS3y12 + (Tw — 12)¢°%y5 + (2w + 3)¢%2y'2 + (w — 19)¢%y" + (3w + 1)¢%y!2 + (—8w —
13)¢y"° + (3w +1)¢%y*? + (= 13w —13)¢*y"® + (4w +1) ¢y 2 + (—8w —10) ¢*3y > + (6w —
4)g%y'2 + (8w — 1)¢7y' + (w — 6)¢>y'2 + (—Tw — 1)g%0y'5 + (—w — 6)¢%0y'2 + (— 3w —
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3)¢ Y’ + (—w — 13)¢®y*? + (=3w + 2)¢*y'® + (—6w — 12)*y'? + (—dw + 1)¢%3y" +
(_13w_12)q53y12_wq52y15+(_12w_15>q52y12+2q51y15+(_16w_10>q51y12_|_2q50y15+
(—210() _ 2)q50y12 + wq49y15 + (—14&) _ 1)q49y12 _ q49y9 + (_7w + 11)q48y12 + (_QW _
3)q48y9 + (_5w+ 16)q47y12 + <_4(.U _ 1)q47y9 + (4w+ 13)q46y12 + (_4(.&) _ 1)q46y9 + (12w+
16)g*y"* + (—=5w + 1)¢*y° + (9w + 15)¢*y"? + (—dw + 7)¢*y” + (11w + 6)¢**y"* + (w +
8)g"*y’+(11w+4)q"y"? +(6w+8)¢"*y +(Tw+3)g "y + (4w +10)g" y "+ (4w —3) g™y "+
(Tw +T7)q"%y" + (3w —3)¢*y'? + (10w +5)¢*y° + (—w — 3) ¢y 2 + (8w +9)¢*y° + (—w —
3y 2+ (9w+4) ¢y + (—w—2) ¢y 2+ (15w+1) ¢y —w@®y 2+ (10w —2) ¢y + (3w —
10)q34y9+(w+1)q34y6_15q33y9+wq33y6+(_8w_12)q32y9+wq32y6+(_13w_11)q31y9+
(w=1)g*y° +(=10w—6)g"y"+(2w—3) g™y’ +(—Tw+1)¢*y* = 3¢*y° +(—dw+3) g™y +
(=3w—4)g2y5 +3¢27%+ (—3w— 6) g2y + (w+3) g%y + (— 4w — 3)g245 + (w+1)g24° +
(—6w — 1)¢®y°® + wg*y® + (—dw — 1)¢*y® + (—2w + 2)¢®y’ + (—2w + 4)¢*y5 + (w +
4)q2 5 + (3w +4) g2y + (3w +3) g 0y0 + (3w -+ 1)g 85 + 20wg Ty — qLBy8 + g6y — q13y6 +
053 4 (0 + 1)g" P + (w0 + 1)g %y + w2y — ¢y + (—w — 1)g10%° + (—w — 1)q9y30)x5

+<(_w_1)q95y23+(_w_l)q94y23+<_w_1)q89y20+<_2w_1)q88y20+(_w+2)q87y20+
(—w+3)g%y20 + 365520 + (4w + 5) 52 + (5w + 4)g53y + 20g®2y™ 4 20g® 4 + (w+
)Y +20gB % + (2u+3) g1 — gy 4 (20 + 1)g7 1 + g™y + (5w 2)g Byl +
g™y + (Tw + 1)y — ¢y + (3w — 5)q™ Y7 + (w — 7)g™y'T — Tq™ "7 + (—6w —
1)y 4+ (—8w — 10)g™2" + (w+1)g"2y M + (—5w —5)q7 17 + (3w +2)g ™y + (—8w —
Y + (2w — 2)q0M + (—9w — 5)g17 + (—w — 6)g%yM — gyl + (—dw —
Byt 4 (=6 — 1)¢5y T + (11w — 10)g57yM + (— 5w + 1)¢%y17 + (— 17w — 8)%y +
(—w + 4)¢%y'T + (= 14w + 3)¢%y™ + 2¢%4y*" + (—9w + 10)¢%y™* + 2¢53y'7 + (—dw +
14)¢53y™ + (w + 3)g%2"7 + (Tw + 21)¢%2y™ + (13w + 18)¢" g™ + (10w + 11)g%0y™ +
(@ + Dg™®y7 + (130 + 13)¢%5™ + (w + 2)¢5™ + (13w + 9)g™y™ + (2w + 2)g™y +
(11w +5)¢" "y + we® Yyt + (13w + 6) ¢y + (2w + 1)¢*°y" + (13w + 1)¢%y'* + (3w +
Dg”y" + (6w = 7)g"y™ + (w = Dg™y' + (Bw — 9)g™y™ + (2w + 2)¢™y" + (—w —
TV2yM 4 (Tw+4)72 M + (5w — TPy + (Tw — 2)¢ Y — 20g™y™ + (6w — 4) gy +
(—w+1)g% ™ + (6w — 8)g™ 0y — g™y 4 (=2 — 17)g By + (w + 1)g Ty + (— 10w —
16) "y +wg M 4 (—12w — 11)g 0y + (—w — 2)g 5™ + (— 13w — 10)g 2y — ¢15y® +
(10w = 2)g"y" + (—w = 1)g"y® + (4w + 3)¢®y"! — wg®y® + (—3w — 3)¢"y!" +
(=20 — D™y + (—3w — D'y + (=3w — 1)g"y® — dwgy™ + (2w + 1)q™0y® +
(7w —4) ¢y + (—w+1)¢*y® + (=bw + 1) Byt + (—=3w + 1)¢®y® + (—w +6) Tyt +
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(—w+5)a"y® +3¢y" + (W +3)g™y* + (2w +3) Py + (2w +4) g™y + (3w +3)g* 'y +
(Bw+6)*'y® + (w — 1)g®y" + (3w +2)¢®y® — ¢**y" + 2wgy® + (2w +5)¢* y® + (2w +
2)g*y® + (2w +1)¢*y® + (4w + 4)¢*%y® + (Bw + 1)¢*"y* + wgy’ + (2w — 2)¢*0y® + (w —
1)q26y5 + Wq25y8 _ q24y8 + (_w _ 2)q23y8 _ q23y5 + (w + 1)q22y5 + wq21y5 _ 3q20y5 +
(—w — 2)¢"%° + (—2w — 1) + (—2w — 2)g" Ty — wq'®yP® + ¢5yd + q9y2>x6

n <wq88y22 g2y — By 4 (=20 — 2)¢*%1 + (—w — 2)¢7 Y0 + (—2w — 1)"y"® —
oqTy 4 (—w 4+ 1)g™5™ + (W + 2)g™y"® + 247y + (—2w — 1)g™y'® + (w + 1)g7y1 —
Wg™YS 4 wg™y 4 g2y18 4 (=20 + 3)qT 6 + (w + 4)g 0 + (6w + 6)¢%y'® + (5w +
5451 1 (6w + 3)¢5y'® + 10wgsy6 + (3w — 3)g% Y6 — wgby'® — 5¢Byl6 4 (—w +
1)g545" — 65y"® 1 (304 3)¢%y"3 + (— 3w — 4)¢%y" + (4w +3) g2 + (5w —3) gty 16 +
Aeog®y 1B 4 (—w— 1)g%% ™ 4 (Tw — 4)g80y™ — w6 + (w — 10)g7y ™ + (—w+ 1)g"y 0 +
(—10w—15)¢"%y"* +(—13w—15)¢" "y "+ (= 17w—9)¢y "> —20wq* y ">+ (—8w+9) >y "* +
(2w+15)¢>3y"3 + (5w +15) ">y + (—2w — 1)y + (11w +10) "1y —we Y0 + (1w +
)¢ 4 010 4 Aog®y ™ 4 (=20 + 3) g 10+ (w— 3)g By 4 (w+ 4)g Y0 — 3¢4Ty1 +
(6w+6)g Ty + (—2w —1)g %y B + (5w +5)¢*0y'® —wq®y'3 + (6w +3)¢*y ' + 10wq*y 10 +
(3w—3) #3410 — 5g*2y10 — 64110 1 (— 30— 4)q 1010 4 (— 5w — 3) Py 0+ (—w— 1) g3y 10 +
WGy — w0 — Ty 4 (—w+ 1)y + (=2 — 2)gyT + (—w — 2)¢%yT + (—2w —
1)q34y7—4wq33y7—|—(—w—i—1)q32y7—|—(w+2)q31y7+2q30y7—|—(w+1)q29y7+wq28y7+wq22y4>a:7

Defining f' = v~1u, it can be verified computationally using Magma that o(f’) = f/,
f'9 = qgf" and k(z,y)” = kq(f', 9)-

A.4 Computation of prime ideals in O(GLs3)

In Theorem 5.4.2, we use computation in Magma to verify that certain ideals are

prime. The ideals in question are
Q)\ - <61 - /\lfl’ sy Ep — >\nfn> C O(GL?))/Iw

as defined in (5.4.1).

Since @\ € Q\B, N O(GL3)/1, = P, N O(GL3)/1, and P, is known to be a non-

trivial ideal in B, we can conclude that D ¢ (). The ideal @), is therefore prime in
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O(GL3)/1, if and only if I, + @, is prime in O(GLs) if and only if (1, + Q) N O(M3)
is prime in O(M3).

We are only interested in the commutative algebra structure of O(M;) rather than the
Poisson algebra structure, so we may view O(M3) as a polynomial ring in 9 variables.
It is now easy to verify that the four ideals I, + @, are prime in O(Mj3) for the

appropriate values of w, which we do as follows.

> field<i>:=CyclotomicField(4);
> K<x11,x12,x13,x21,x22,%x23,%x31,%x32,x33>:=PolynomialRing(field,9);

> Det:=x11%(x22*x33-x23*x32) - x12%(x21*x33-x23*x31) \
+ x13%(x21%x32-x22%x31) ;

> M13:=x21%x32 - x22%x31;
> M31:=x12*x23 - x22%x13;
> M21:=x12*x33 - x13%x32;
> M32:=x11%x23 - x13%x21;

> // (321,321)
> I1:=ideal<K|Det-1,M13-x13,M31-x31>;

> // (321,312)
> I2:=ideal<K|Det-1,x13,x12*x23-x31>;

> // (231,231)
> I3:=ideal<K|Det-1,x31,M31,M21-x21,M32-x32>;

> // (132,312)

> J4:=ideal<K|Det-1,x13,x21,x31,x11*x32-x23>;
>

> IsPrime(I1);

true

> IsPrime(I2);
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true
> IsPrime(I3);
true
> IsPrime(I4);

true
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H-prime Figures

w_
321 231 312 132 213 123
W

000 O 0o0ce o©ee O0OO0e Oee
321 | coo o 000 000 ©OO® OO0e
000 000 000 OO0 000 000
000 O 00ce O©ee O0O0e Oee
231 000 O 000 000 ©OOCe O0O0e
@00 @00 600 @00 e0O0 @00
312 000 O 0oce o©ee O0OO0e Oee
o [jj o o ° °
P o Ho HOs Og Oop
000 O 00ce O©ee O0O0e Oee
132 @00 @ @00 @00 eO0e eO0e
@00 00O @00 e00 @00 @00

000 0 coe 00
213 000 O 000 000 ©OOCe O0O0e

00 @000 @00 oo
000 0 0o0e O©ee O0O0e Oee
123 @00 @ @00 @00 eO0e eo0e
000 000 000 000 000 000

Figure B.1: Generators for H-primes in O,(GLs) and O(GLs).

This figure is reproduced from [29, Figure 1] and represents the 36 H-primes in
O,(GL3) and O(GL3). Each ideal is represented pictorially by a 3 x 3 grid of dots: a
black dot in position (i, ) denotes the element X;;, and a square represents a 2 x 2
(quantum) minor in the natural way. For example, the ideal in position (231,231)

denotes the ideal generated by X3; and [3|1], in O,(GLs3), or the ideal generated by

zz and [3|1] in O(GL3), as appropriate.

These ideals are indexed by w = (w4, w_) € S5 x S3, following the notation of [29].
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000
000
000
(321,321)
coe 000 000 0 [
000 . 000 . ] © . o
000 p= @00 o p= 000
(321,312) (231,321) (312,321) (321,231)
°0 oo
®00 pe o
(231,231) (312,312)
8¢ on
@00 S o
(231,312) (312,231)
cee 000 000 coe
000 @00 000 coe
000 ?’ @00 7 000 7’ 000
(321,132) (132,321) (213,321) (321,213)
cee 000
coe @00
000 ? 00
(321,123) (123,321)
coe cee coe coe
000 000 ooe 000
YeYe) ? @00 7 00 7’ Y Xo)
(132,312) (231,132) (231,213) (213,312)
Sopl Sopl Sopl Sopl
o coe cee o)

U] ]
200 ?’ [ c.> 7 [ 8 7’ :oo
(213,231) (312,213) (312,132) (132,231)

cee ocoe
@00 . coe
@00 0 00
(132,132) (213,213)
coe cee cee O [
@00 coe ° °
Y Yo ?’ @00 ? U o 7’ 'Y Xe
(123,312) (231,123) (312,123) (123,231)
cee coe
000 eo0e@
(X Xo ?’ [ YeXe)
(213,132) (132,213)
cee cee cee coe
@00 eo0e@ ocoe eo0e@
Y Xo) ?’ @00 7 000 ? Y Xe
(123,132) (132,123) (213,123) (123,213)
cee
e0e
00
(123,123)

Figure B.2: H-primes grouped by orbit
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Simplified generators

178

(Wi, w-) original Ore set Additional generators
[o)e)
[eXeXe} e - -
°° (3217321) X317 X137 [1‘3]117 [3| ]q X117 X127 X217 [3|3]q
080
[oXe) ~ ~ o~
(321,312) Xa1, [1]3]g, X3, X1o Xi1, Xot, [3[3],
o0
*o° (231,231) Xor, Xsa, [21]g, [3(2]4 Xz, [1]1],
coe
oXele} o
®o°  (231,312) Xot, Xaz, Koz, Xio [1]1]q, Xas
OSO e
°°  (321,132) X1, [113],, X3 Xs2, X33
cee
coe e
°0°  (321,123) X1, [113], X1
O
[ JeXe}
°° (132,312) X3a, Xog, X12 X3
cee
[ _NeoXe}
°° (132,132) X33, Xo3 Xs3
O
[ _NeXe}
*°  (123,312) Xo3, X120
cee
[eXeXe}
*° (213,132) Xo1, Xos
cee
[ NeXe}
*° (123,132) Xo3
cee
[ JoX J
*° (123,123)

Figure B.3: Definitive sets of generators for the Ore sets F,,.

E,, is defined to be the multiplicative set generated by all of the elements in the row

corresponding to 1,; those cases not listed explicitly here can be obtained by applying

the appropriate combination of 7, p and S from Figure B.2. Elements of E, are

considered as coset representatives in O(GLs)/1,.

E,, also denotes the corresponding multiplcative set in O(GLs3)/1,,, where we replace

each X;; with x;; and [i|j], with [z]7].
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(Wi, w_) Localization is quantum torus on these generators
[oXe)
[oXeje} ~ o~ ~ o~ ~ ~
°0° (321,321) Xy, Xip, Xis, Xov, Xan, [313]g, [3]1]g, [1]3]g, Det,
ocoe
[oXe)e} ~ ~ ~ o~
°° (321,312) Xy, Xip, Xou, Xas, Xsy, [313]g, [113]g, Dety
o
o U
®°°  (231,231) Xi3, Xo1, X2, Xas, [2[1]4, [1[1]g, Det,
ocoe
[oXeje} ~ ~
*°°  (231,312)  Xia, Xo1, Xog, Xao, Xas, [1[1],, Det,
cee
[oXeje} ~ ~ ~ o~
°°  (321,132) X1, Xos, Xa1, Xaa, Xas, [1]3]4, [1]1]4
cee
coe ~ ~
°°  (321,123) X1, Xo1, Xao, Xar, [113]g, Xaa
coe
[_JeXe} ~ ~
°°  (132,312) X1, Xuo, Xog, Xso, X3, [1[1],
cee
[_JeXe} ~ o~
°° (132,132) Xy, Xog, Xap, Xag, [1]1],
ce
[ _JeXe}
*° 0 (123,312)  Xi1, Xio, Xoo, Xoz, X3
cee
[oXe)e}
*° (213,132)  Xi1, Xoi, Xoo, Xoz, X33
cee
[_JeXe}
*° (123,132) Xi1, Xoo, Xog, Xs3
cee
[ JoX J
® O

(123,123) X1, Xog, X3

Figure B.4: Generators for the quantum tori A, = Oq(GLs)/I,, [E;Y].

The localizations O,(GLs)/1, at the Ore sets E,, listed in Figure B.3 are computed in

[29, §4], and we reproduce this information here for convenience.

A, is always isomorphic to a quantum torus kq[Ry', ..., Rt!], and Figure B.4 lists
a choice for the generators R; for each case (those not listed explicitly here can be
obtained by applying the appropriate combination of 7, p and S from Figure B.2).
The g-commuting relations R;R; = ¢*9 R;R; are not needed for this thesis, but can

easily be computed from the relations in O,(GLs3).

By Proposition 5.3.9, Figure B.4 also describes sets of generators for the Poisson

algebras B,,, subject to replacing X;; with z;;, [i|j], with [i|j] and Det, with Det.
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(Wi, w-) Generators of the centre
OO0
[eXeXe} e o
°°  (321,321) Det,, [113]X5", [3]1]X5,
080
°°  (321,312) Dety, X1 Xo03X5,"
o
O A~ o~ o~ o~
®°°  (231,231) Det,, [2]1]X5,", [3]2] X5
ocoe
ec0
(231,312) Det,
cee
588
(321,132) Det,
cee
coe e
°0°  (321,123) Det,, Xao[1|3]X5"
ocoe
[ _NeXe}
*°° (132,312) Dety, X11X32X53'
cee
[ _NeXe}
*°° (132,132 Det,, X11, Xo3Xay
080
®O0
(123,312) Det,
cee
[oXeXe}
®O0
(213, 132) Det,
cee
[ _NeXe}
*®°  (123,132) Det,, X1
cee
[ JoX J
*° (123,123) Det,, X11, Xoo

Figure B.5: Generators for the centres of the localizations A,,.

By the Stratification Theorem, the centre of A, is always a Laurent polynomial ring.
This figure lists a set of generators for Z(A,), reproduced from the results of [29, §5].
The other 24 cases may be obtained by applying the appropriate combinations of 7, p,
and S from Figure B.2; implicitly, we ignore any extra factors of the central element

Det, which might appear after applying S.

By Proposition 5.3.14, this figure also lists generating sets for the Poisson centres

PZ(B,), subject only to replacing X;; by z;;, [i|7], by [¢|j] and Det, by Det.
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