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ABsTRACT. We study the existence and stability of space-periodic standing waves for the space-periodic
cubic nonlinear Schrédinger equation with a point defect determined by a space-periodic Dirac distri-
bution at the origin. This equation admits a smooth curve of positive space-periodic solutions with
a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and con-
tinuation argument, we prove that in the case of an attractive defect the standing wave solutions are
stable in Hper([—w7 7)) with respect to perturbations which have the same space-periodic as the wave
itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even
functions of Hper([—ﬂ' 7]) and unstable in Hp,,.([—m,x]) with respect to perturbations which have the
same space-periodic as the wave itself.

1. INTRODUCTION
Consider the semi-linear Schrédinger equation (NLS)
10w+ Au + JulPu =0, (z,t) € R" x R, (1.1)

where u = u(x,t) is a complex-valued function and 0 < p < co. This is a canonical dispersive equation
which arises as a model in several physical situations, see for example [48], [14], and references therein.

The mathematical study of the NLS (the local well posedness of its initial value problem (IVP) and
its periodic boundary value problem (PBVP) under minimal regularity assumptions on the data, the
long time behavior of their solutions, blow up and scattering results, etc) has attracted a great deal of
attention and is a very active research area (see [16], [10], [49], and [38]).

in [51] it was established that the 1-dimensional cubic case of (1.1) ( i.e. NLS with (n,p) = (1,
completely integrable. Thus, using the inverse scattering theory it can be solved in the hne R (IVP
in the circle T (PBVP) (see [1], [39] and references therein).

Special solutions of the NLS equation (1.1) have been widely considered in analytic, numerical and
experimental works. In particular, in the focussing case (+ in (1.1)) one has the “standing waves”
solutions

2) s
) an

an

us(w,t) = e“to(x), w >0, (1.2)

or their generalization “travelling waves” solutions
o 2
U (2, 1) = € =10 g — 2¢t), w>0, ceR", (1.3)
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with ¢ = ¢, being the unique positive, radially symmetric solution (ground state) of the nonlinear
elliptic problem

~A¢+wd(z) — P (z) =0, z€R", (1.4)
satisfying the boundary condition ¢(z) — 0 as |2| — oo. In the one dimensional case, n = 1, ¢ is given
by the explicit formula (modulo translation)

d(x) = ¢ p(z) = wsechQ(p#xﬂ % (1.5)

The stability and instability properties of the standing waves have been extensively studied. A crucial
role in the stability analysis is played by the symmetries of the NLS equation in R™. The most important
ones for this purpose are :

(1) phase invariance: u(x,t) — eu(x,t), 0 € R;

(2) translation invariance: u(x,t) - u(z +2y, t), y € R™;

(3) Galilean invariance: u(x,t) — ==y (x — 20t t), v € R™.

(4) Scaling invariance: u(z,t) — A\2/Pu(dz, \*t), X € R.
So, if one considers the orbit generated by the solution ¢ = ¢, of (1.4) and the phase-invariance
symmetries above, namely,

O(uw,p) = {ei9¢w7p(' +y):0€0,2m),y € R"}, (1.6)

is known that in the one dimensional case, n = 1, ©(¢, ) is stable in H'(R) by the flow of the NLS
equation provided that p < 4 and unstable for p = 4 (for details and results in higher dimensions see
Cazenave&Lions [17], Cazenave [16], Weinstein [50]). This means that for p < 4, if ug is close to (¢, p)
in H*(R"™), then the corresponding solution of (1.1) u(t) with initial data ug remains close to the orbit
O(¢y,p) for each t € R.

From now on we shall restrict our attention to the one dimensional focussing NLS

i0pu + 02u+ |uffu=0, p>0. (1.7)

In contrast to the standing waves solutions in the line commented above relatively less is known about
the existence and stability of periodic standing wave solutions, i.e., ¢ in (1.2) being a periodic solution
of the equation (1.4).

A partial spectral stability analysis was carried out by Rowlands [45] for the case p = 2 with respect
to long-wave disturbances, who showed that space-periodic waves with real-valued profile are unstable.
Similar results were also obtained for certain NLS-type equations with spatially periodic potentials by
Bronski&Rapti [12]. The first results concerning the nonlinear stability of space-periodic standing waves
are due to Angulo [5]. In [5] it was established the existence of a smooth family of dnoidal waves for the
cubic NLS equation (p = 2 in (1.7)) of the form

2
w € (575:+00) = du0 € Hig (=L, L)), (1.8)

where the profile of ¢, o is given by the Jacobian elliptic function called dnoidal, dn, by the formula

Gu0l€) = mn(-T5E k). (1.9)
with 71 € (y/w,v2w) and the modulus k£ € (0,1) depending smoothly on w. Angulo showed that for
every w > % the 2L-periodic wave ¢y, o is orbitally stable with respect to perturbations which have the
same period as the wave itself, and nonlinearly unstable with respect to perturbations which have two
times the period (4L) as the wave itself. Indeed, the same analysis used to obtain the instability result
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provides the nonlinear instability of the dnoidal wave by perturbations which have j-times (j > 2) the
period as the wave itself (for further details see also [5] and [6]).

In [24]-[25] Gallay&Haragus have shown the stability of space-periodic traveling waves described in
(1.3) for the cubic NLS equation by allowing the profile ¢ being complex-valued. In the case p = 4 in
(1.7), Angulo&Natali [9] have shown the existence of a family of periodic waves of the form described in
(1.2) for which there is a unique (threshold) value of the phase-velocity w which separates the two global
scenarios: stability and instability.

In the past years, the following nonlinear Schrodinger model (NLS-6 henceforth) in the line

i0pu + 0%u + Z6(x)u + JulPu = 0, (1.10)

where § is the Dirac distribution at the origin, namely, (§,v) = v(0) for v € H*(R), and Z € R, it
has received a good attention by mathematicians and physicists. The equation (1.10), Z # 0 has been
considered in a variety of physical models with a point defect, for instance, in nonlinear optics and Bose-
Einstein condensates. Indeed, the Dirac distribution is used to model an impurity, or defect, localized at
the origin, and it is is described by the following boundary problem (see Caudrelier&Mintchev&Ragoucy

[18])
i0pu(z,t) + 02u(z, t) = — |u(z, )P u(z,t), = #0
lim [u(z,t) — u(—z,t)] =0,

z—0t

lim [Oyu(z,t) — Opu(—2,t)] = —Zu(0,t)

z—0*t

(1.11)

mll)rjr[loou(:v, t) =0,
hence u(x,t) must be solution of the non-linear Schrodinger equation on R~ and R*, continuous at z = 0
and satisfy a “jump condition” at the origin and it also vanish at infinity. Also the NLS-0 equation (1.10)
can be viewed as a prototype model for the interaction of a wide soliton with a highly localized potential.
In nonlinear optics, this models a soliton propagating in a medium with a point defect or the interaction
of a wide soliton with a much narrower one in a bimodal fiber, see [26], [47], [15], [42], [41], [2], [11], [20],
[46], and the reference therein.

Equation (1.10) in the line with p = 2 has been considered by several authors. In a series of papers [29],
[30], [31], and [32] the phenomenon of soliton scattering by the effect of the defect was comprehensibly
studied. In particular, in [31] for the equation (1.10) with p = 2 and data

u(z,0) = e"“sech(x — xg), w0 << —1, (1.12)

it was shown that for the |Z| << 1 the corresponding solution, the traveling wave for ¢ > |z¢|/c remains
intact. The case Z > 0 and |c| >> 1 was examinated in [29], [30] where it was proven how the defect
separate the soliton into two parts: one part is transmitted past the defect, the other one is reflected at
the defect. The case Z < 0 and |c| >> 1 was considered in [19].

The existence of standing wave solutions of the equation (1.10) requires that the profile ¢ = ¢, z,p
satisfy the semi-linear elliptic equation

d2
(_ — —Z5(x))¢+w¢— 6|P$ = 0. (1.13)
In Fukuizumi& Jeanjean [22] (see also [26]) it was deduced the formula for the unique positive even solution
of (1.13), modulo rotations :

b2y @) = [L52 seer (2ol + roni ™ (522))]7,

==

z € R, (1.14)
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if w > Z?2/4. This solution is constructed from the known solution (1.5) in the case Z = 0 on each side of
the defect pasted together at = 0 to satisfy the conditions of continuity and the jump condition in the
first derivative at = 0, ¢/(0+) — ¢'(0—) = —Z¢$(0) determined by (1.11). So ¢ belongs to the domain
of the formal expression —9% — Z§ (see Section 3 below or [3])

{ue HY(R) N H*(R — {0}) : v/ (0+) — v/ (0—) = —Zu(0)}.

Notice that there is no nontrivial solution of (1.13) in H*(R) when w < Z2/4.

The basic symmetry associated to equation (1.10) is the phase-invariance since the translation invari-
ance of the solutions is not hold due to the defect. Thus, the notion of stability and instability will be
based only on this symmetry and is formulated as follows:

Definition 1.1. Forn > 0, let ¢ be a solution of (1.13) and define
_ " R
Unl(@) = {ve X : int Ju—cs|x <n}.

The standing wave €'¢ is (orbitally) stable in X if for any € > 0 there ewists n > 0 such that for any
up € Up(9), the solution u(t) of (1.10) with u(0) = uo satisfies u(t) € Uc(p) for all t € R. Otherwise,
et is said to be (orbitally) unstable in X.

Gathering the information in [22], [23], [26], [37], and [43] in the cases of X = H!(R) or X = H} ,(R),
one can summarize the known results on the stability and instability of standing waves associated to the
solitary wave-peak in (1.14) as follows:

e Let Z>0andw> Z%/4.
(a) If 0 < p < 4, the standing wave e™’¢,, 7, is stable in H'(R) for any w € (Z%/4, +).
(b) If p > 4, there exists a unique w; > Z2/4 such that !¢, 7, is stable in H*(R) for any
w € (Z?%/4,w1), and unstable in H'(R) for any w € (w1, +00).
o Let Z <0andw > Z2/4.
(a) If 0 < p < 2, the standing wave e™'¢,, 7, is stable in H} ,(R) for any w € (Z%/4,+c0).
(b) If 0 < p < 2, the standing wave e*“!¢,, 7, is unstable in H'(R) for any w € (Z2/4, +00).
(c) If 2 < p < 4, there exists a wy > Z2/4 such that e™'@,, 7, is unstable in H'(R) for any
w € (Z%/4,ws), and stable in H!, ,(R) for any w € (w2, +00).
(d) If 2 < p < 4, the standing wave e*!¢,, 7, is unstable in H!(R) for any w € (wa, +o0), where
wy is that in item (c) above, and unstable in H} ,(R) for w = wo.
(e) if p = 4, then the standing wave e®“'@,, 7, is unstable in H!(R).
In this paper, we study the existence and nonlinear stability in le)er([—ﬂ', 7]) of space-periodic standing

waves solutions of (1.10) in the case p = 2 and Z # 0, namely, for the NLS-6 model
i0pu + 0%u + Z6(x)u + [ul*u = 0, (1.15)
where 0 = §p represents the periodic Dirac distribution at the origin, namely, (§,v) = v(0) for v €
H}. (-7, 7]) and u(t) € H).,([—m,7]), t € R, satisfying the boundary conditions
mlir&[u(:v, t) —u(—2x,t)] =0,
mlirél+[8wu(x,t) — Opu(—2a,t)] = —Zu(0,1).

We note that by the periodic boundary conditions, the periodic Dirac distribution at the origin §p can
be changed by any periodic Dirac distribution do; centered in the point 2jm, j € Z. Here, we show the
existence of a branch of periodic solutions, w — ¢, z, for the semi-linear elliptic equation

d2
( ~ Tz Z5(33)) Yo,z + WPz = ¢l 7, (1.16)
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where ¢, z > 0 is a periodic real-valued function with prescribe period 27 and where w will belong to
a determined interval in R with w > Z2/4. Our solutions ¢ = ¢, z : R — R (see (1.23) and Figure 3
below) satisfy the following boundary conditions:

(1) pu,z(x +27) = @, z(x), forallzeR.

(2) pu.z € C}(R — {2n7 :n € Z}) N C(R),

3) — ¢l z(x) +wpy z(x) = ¢} ,(x) forx# +2nm, n € N.
(4) ¢, 7(04) — ¢, z(0—) = =Zpu,2(0).

The notation ¢, ,(0+) in (1.17) is defined as ¢/, ,(0+) = lime|o [, z(£€). From the periodicity of the
function ¢, z one also has that ¢, ,(£2n7+)—¢, z(E2n7—) = —Zyp,, z(2n), for n € N. We recall that
if w7 is a solution of (1.16) then ¢, z(- +¥y), y € R, is not necessarily a solution of (1.16). Hence, our
stability study for the “periodic-peaks’ ¢, z will be for the orbit generated by this solution and defined
in the form

(1.17)

oo, , = {e®p,.7: 0 € 0,27} (1.18)
From equation (1.16) arises naturally the condition that our solutions ¢, z need to belong to the

domain of the formal expression
d2
A_z= 727 Z0. (1.19)
So, we shall develop a precise formulation for this periodic point interaction, also called a periodic -
interaction at the origin. We present a detailed study of the model of quantum mechanics (1.19) with a
potential supported on a ¢ and in the framework of periodic functions. In our study of the “solvability”
of this model we will describe their resolvents explicitly in terms of the interactions strengths, Z, and the

location of the source, x = 0. We start by establishing the definition of all the self-adjoint extensions of

the operator A% = —j—; with domain

D(A%) = {¢ € D(A) : 6(y)) = 9(0) = 0}, (1.20)
which is a densely defined symmetric operator on L2, ([—,n]) with deficiency indices (1,1). Here A
represents the self-adjoint operator — j—; on L2, ([-m,n]) with the natural domain D(A) = H2,,([-m, 7).

Using the von Neumann theory of self-adjoint extensions for symmetric operators we can parametrize all
the self-adjoint extensions of A® with the help of Z. Indeed, for Z € [—o0, c0) we have
d2
“A-z=om (1.21)
D(=A-z) = {¢ € Hpee([=m, 7)) N H?((0,2m)) : {'(0+) = ¢'(0-) = =Z¢(0)},  Z # —oo,
the case Z = —oo is discussed in Theorem 3.1 below. Then for ¢ € D(—A_z) we have
—A_z((x) = —¢"(x), for x # 2nm, n€Z.

From (1.21) we have the following observations. For { € D(—A_z) we have by periodicity (|(_2x,0) €
H?((—2,0)), then in particular ¢|(_r ) € H?*((—m,m) — {0}). Moreover, since (|(g 2 € H?((0,2m)),
Clo,2my € C'([0,27]), so that ¢(0),¢'(04) and ¢'(0—)(= ¢'(2m—)) are well defined. These definitions
and observations are not only important to determine solutions for equation in (1.16) but also for our
nonlinear stability theory.

In Section 4, by using the theory of elliptic integral, the theory of Jacobi elliptic functions and the
implicit function theorem we will find a smooth branch of positive, even, periodic-peak solutions of (1.16),
w— ¢z € H ([-m,7]),n=1,2,3,--, such that ¢, z € D(—A_z) (therefore we obtain the conditions
in (1.17)) and satisfying

lim ¢,z = ¢u,0 (1.22)
Z—0t ’
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where ¢y, o is the dnoidal traveling wave defined in (1.9). For Z > 0, the profile of ¢,, z obtained is based
in the Jacobian elliptic function dnoidal and determined by the pattern

G2 () = nl,zdn(%|g| task),  €€[-m] (1.23)

where 11,z and the modulus k£ depend smoothly of w and Z. The shift value a is also a smooth function
of w and Z satisfies that limy_,¢+ a(w, Z) = 0. See Figure 3 below for a general profile of ¢, z.

Similarly, we obtain for Z < 0 a smooth branch of positive, even, periodic-peak solutions of (1.16),
w — Cu,z € Hp,.([=m,7]), such that (,, z € D(—A_z) and satisfying

lim Cw,Z = (bw,O (124)
Z—0~
where ¢, is the dnoidal wave defined in (1.9). The profile of (,, z is determined by the pattern

Goz@) =mzdn(TZN - k), € [-ml (1.25)
See Figure 4 below for a general profile of (,, 7. We note that the periodic-peak ¢, z and (., z “converge”
to the solitary wave-peak ¢, z o in (1.14) when we consider 71,z — v2w. We refer the reader to Section
4 for the precise details on this convergence.

Our approach for the stability theory of the periodic-peak family

¢w,Z7 Z > 07
Puw,Z =

Cw,z Z <0 (126)

with ¢, 7z and (,, z given in (1.23)-(1.24) and w large (by technical reasons), it will be based in the general
framework developed by Grillakis&Shatah&Strauss [27], [28], for a Hamiltonian system which is invariant
under a one-parameter unitary group of operators. This theory requires the following informations :

e The Cauchy problem: The initial value problem associated to the NLS-§ equation is well-posedness
in H,, ([, 7).

per
e The spectral condition:

(a) The self-adjoint operator L3 7

d2
Lo zC = —@C +wC — @2 4C (1.27)

with domain D = D(—A_y) given in (1.21), is a nonnegative operator with the eigenvalue
zero being simple and with eigenfunction ¢, z in (1.26).
(b) The self-adjoint operator L1 z

d2
Liz¢= —@C +w( — 392 5¢ (1.28)

with domain D = D(—A_y) given in (1.21), has a trivial kernel for all Z € R — {0}.
(c¢) The number of negative eigenvalues of the operator L1, 7.
e The slope condition: The sign of 0, ["_ 2 ,(&)dE.
The local well-posedness of the Cauchy problem for (1.15) in H,,,.([—m,7]) is an consequence from

Theorem 3.7.1 in [16] and from the theory spectral established in Section 3 below for the operator —92— 2§

for Z # 0 (see Proposition 3.1 below). The global existence of solutions in H},,.([-m,7]) is an immediate
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consequence of the following conserved quantities for (1.15): the energy and the charge, respectively,

1 (7 A 1 (7
E(v(-,0)) = E(v(-, 1)) = 5 |0,v(z, 1)[* do — = |v(0,8)]> — — lv(z,t)|* da,
/-: 2 4 /-” (1.29)

Qu0) = Q) =5 [ lo(a o da.
-

Now, since the profile ¢, 7 is positive and L9 z¢,, z = 0, we obtain from classical theory for self-
adjoint operators that Lo z = 0 (see Proposition 5.1 below). That the kernel of L; 7 is trivial is a very
delicate point in our theory (see Theorem 5.1 below). Here we need to use the specific spectral structure
associated to the periodic eigenvalue problem in Lf)er([(), 2K]) for the Lamé’s equation,

{ O (x) + [\ = 6k%sn®(z; k)|®(x) =0, € (0,2K) (1.30)

B(0) = (2K (k)), ¥'(0) = @’(2}((2)), ke (0,1)

with sn being the Jacobian elliptic function called snoidal and K the complete elliptic integral of first
type.

Lastly, to count the number of negative eigenvalues of linear operators is in general a delicate issue in
any stability theory. In the case of the self-adjoint operator L1 z our strategy is based in two basic facts.
The first one is that in the case Z = 0, the spectrum of the self-adjoint operator Lo = L o

d2
Lo¢ = = =5 ¢ +wC = 362 ¢ (1.31)

with general domain H2,,.([0,2L]) and w > 7%/2L?, has already been described in [5] and in [8]: there is
only one negative eigenvalue which is simple, zero is a simple eigenvalue with eigenfunction d%q%,o- The
rest of the spectrum is positive and discrete. The second one is that for Z small, L1,z can be considered
as a real-holomorphic perturbation of Ly. So, we have that the spectrum of £ z depends holomorphically
on the spectrum of Ly. Then we obtain that for Z < 0 there are exactly two negative eigenvalues of
L1,z and exactly one for Z > 0. We refer the reader to Subsection 6.1 for the precise details on these
statements.
Our main stability result is the following:

Theorem 1.1. We consider the family of periodic-peak ., z in (1.26). Then, for w large one has:

1) For Z > 0, the dnoidal-peak standing wave ey, 7 is stable in H', ([—m,7]) by the flow detem-
> per
ined by the NLS-6 equation (1.15).
2) For Z < 0, the dnoidal-peak standing wave e™‘@,, 7 is unstable in H},  ([—m,7]) by the flow
s per
detemined by the NLS-0 equation (1.15).
3) For Z < 0, the dnoidal-peak standing wave ey, 7 is stable in H} —m,m]) by the flow
El per,even
detemined by the NLS-0 equation (1.15).

The restriction about w being large in Theorem 1.1 is due to technical reasons determined by the
implicit function theorem (see Section 4) and in proving the strictly increasing property of the mapping
w — [|pw.z||* (see Theorem 5.5 in subsection 5.4).

This paper is organized as follows. Section 3 is devoted to establish a spectral theory for the operator
—02 — Z6 for Z # 0. Our analysis is based in the theory of von Neumann for self-adjoint extensions. We
also establish the periodic well-posedness theory for (1.10), p = 2, in ngr([—w, 7]). Section 4 describes
the construction, via the implicit function theorem, of a smooth curve of periodic-peak for equation
(1.16). Finally, in Section 5, the stability and instability theory of the dnoidal-peak is established.
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2. NOTATION

For any complex number z € C, we denote by Rz and $ z the real part and imaginary part of z,
respectively. For s € R, the Sobolev space HS  ([—L, L]) consists of all periodic distributions f such

per

that || f]|%. = 2L Z (14 k2)|f(k)|? < oo (see [34]). We will use the notation H:,, or H?,.([0,2L))
k=

per per

for HS,.([-L, L]) in several places and H

per
Hilbert space with inner products

pcr = Lgcr We remark that Lgcr and Hécr are regarded as real

L
<f7.g>L2 = %/ f(x)g(x)dac, <f7g>H1 = <fug>L2 +<awf78:vg>L2 (21)

-L
We denote ||f|lz2 = ||f|| and {f,g)r2 = (f,g). For Q being an open set of R, H™"(2), n € N, represents
the classical local Sobolev space. [H,.,]’; the topological dual of H,,,, is isometrically isomorphic to H,.

for all s € R. The duality is implemented concretely by the pairing

g)=2L ) fk)gk), for feH,: g€Hy,,.
k=—o0
Thus, if f € L2, and g € Hper, with s > 0, it follows that (f,g) = (f,g). The convolution for f,g € L2,
is defined by f *g(z) = 3¢ f f(z — y)g(y)dy. The normal elliptic integral of first type (see [13]) is
defined by

= F(Spvk)

%)
| 7=/
0\/(1—152)(1—1@2152 ) 1—k2s1n29

where y = singp and k € (0,1). k is called the modulus and ¢ the argument. When y = 1, we
denote F(n/2,k) by K = K(k). The three basic Jacobian elliptic functions are denoted by sn(u;k),
en(u; k) and dn(u; k) (called, snoidal, cnoidal and dnoidal, respectively), and are defined via the previous
elliptic integral More precisely, let u(y; k) := v = F(p,k) then y = sing := sn(u; k) = sn(u) and
en(usk) == /1 —y2 = /1 —sn2(u; k), dn(us k) == /1 —k2y? = /1 — k2sn2(u; k). In particular, we
have that 1 2 dn(u;k) 2 k' = v1—k? and the followmg asymptotic formulas: sn(z;1) = tanh(x),
en(x; 1) = sech(z) and dn(x; 1) = sech(x).

3. THE ONE-CENTER PERIODIC J-INTERACTION IN ONE DIMENSION AND THE GLOBAL
WELL-POSEDNESS IN H}!

per

In this section for convenience of the reader we establish initially a precise formulation for the periodic
point interaction determined by the formal linear differential operator
2

 da?

defined on functions on the torus T = R/27Z. - represents the coupling constant or strength attached
to the point source located at = 0. After that we show a global well-posedness theory in H;er([ m, 7))
for the NLS-4 equation (1.15).

We note that there are many approach for studying the operator in (3.1), for instance, by the use of
quadratic forms or by the self-adjoint extensions of symmetric operators. We also note that the quantum
mechanics model in (3.1) has been studied into a more general framework when it is associated with
the Kronig-Penney model in solid state physics (see Chapter III.2 in Albeverio et al. [3]) or when it is
associated to singular rank one perturbations (Albeverio et al. [4]).

+ 4, (3.1)
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Our main purpose in the following is to obtain many basic structures of model in (3.1) which will be
necessary in our stability theory for the periodic-peak solutions (1.23)-(1.23). For instance, to determinate
the domain and the real-analytic property (on the parameter Z) of the the self-adjoint operators L1z, L2,z
in (1.27)-(1.28). So, we will show an explicit formula for the resolvents of (3.1) in terms of the interactions

strengths, -, and a specific description of the spectrum. So, for A = —j—; being considered with domain
D(A) = H2 . ([-m,7]) and the symmetric restriction A® = A|p(40y with dense domain D(A") = {4 €
D(A) : (§,%) =9(0) = 0}, we obtain that the deficiency subspaces of A,

Dy =Ker(4°" —4), and D_ = Ker(A°" +1i), (3.2)

has dimension (deficiency indices) equal to 1. It is no difficult to see that these subspaces are generated,
respectively, by g1; = (A —i)716 and g_; = (A + i), called deficiency elements (see Lemma 1.2.3 in
[4))-

Next we present explicitly all the self-adjoint extensions of the symmetric operator A°, which will be
parametrized by the strength +. From the von Neumann’s theory of self-adjoint extensions for symmetric
operators (see [44]) we obtain that all the closed symmetric extensions of A? are self-adjoint and coincides
with the restriction of the operator A°*. Moreover, for 6 € [0, 27) the self-adjoint extension A°(#) of A°
is defined as follows;

D(A%6)) = {¥ + Agi + Ae?g_; - ¢ € D(A%), A € C},
AC(O) (% + Agi + Aeg_i) = A (1 + Agi + e g_;) = A% +idg; —idelg_,.

Now we give the profile of the deficiency elements g1; with ||g+;]| = 1. Since g; = g—;, we shall determine

a formula for g_; € Lgcr([o, 27]). So, since g_; represents the fundamental solution associated to A + ¢

we have for X; € L2 ([-, n]) such that

per

(3.3)

—~ 1
:K'L' k) = ’
*) k2 +i
that g—; = 5=%;(z) (in the distributional sense, g_; = (A +14)7'0 = § x K; = 5-K;). Then, if we denote
8= 1—\751 (8% = i) we obtain via the variational parameters method that

- s o (- [2]-3) wer 59

Here [-] stands for the integer part. Lastly, we obtain the following expression for the deficiency element
g—i. For 0 =1/(2@sinh(f7)) and z € [—m, 7]

|z —7 B NP e A s
_ilz) =0 cosh( )cos( )—i—zsmh( )sm( )] 3.6
g-i(z) = o 7 7 7 7 (3.6)
See Figure 1 and Figure 2 below for the profile of the real and imaginary parts of g_;, ®(g—;) and S(g9—;),
respectively (We note that R(g_;) has the peaks in +2n7w, n € Z, and $(g—;) is a smooth periodic

function). Now, for ||g;[|* = ||g—i[* = ao with

Q sinh(v/27) + sin(v/27)
4 cosh(v/2m) — cos(v/27)

g+i
Tg+a)

to use g+;. Thus, from the von Neumann formulas (3.3) we obtain from (3.6) that for ¢ € D(A°(6)), in
the form ¢ = 1 + A\g; + Ae?? g_;, we have the basic expression

C'(04) = ¢'(0=) = =A(1 + €). (3.7)

(3.4)

apg =

we obtain the normalized deficiency elements g1; = . But for convenience of notation we will continue
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Next we find v such that v¢(0) = —A(1 + ¢%?). Indeed, after some calculations we find the formula
—2cos(0/2)
Rlcoth(Br)ei(s —%)]
Therefore, if 6 varies in [0,27), v = v(0) varies in R U {4+o00}. For the unique 6y € [0,27) such that

)

R[coth(B7)e!(Z~5)] = 0 we have limgyg, v(6) = +o0.

3 (3-8)

v(8) =

FIGURE 1. Graphic of the function FIGURE 2. Graphic of the function
R(g—;) given by (3.6) S(g—;) given by (3.6)

So, from now on we parametrize all self-adjoint extensions of A® with the help of v. Thus we get,
Theorem 3.1. All self-adjoint extensions of A° are given for —oo < v < 400 by the following formulas:
for v € (=00, 0)

d2
AL = —
K dx2 (3.9)
D(=A,) ={¢ € Hpe,([=m, 7)) N H((0,2m)) = ('(0+) = ¢'(0~) = ¢(0)}-

The special case v = 0 just leads to the operator —A in L2, ([—7, 7)),

per
d? 9
—A = o D(=A) = H,, ([-7, 7). (3.10)
For v = 400 we have —A = —j—;, with a Dirichlet-periodic boundary condition at zero,
D(=Ay) = {C € HL, (=, 7)) N H2((0,27)) : C(0) = 0}. (3.11)

Proof. By the arguments sketched above we obtain easily that A°(8) C —A,, with v = y(6) given in
(3.8). But —A, is symmetric in the corresponding domain D(—A,) for all —oo < v £ +o00, which implies

the relation A°(0) C —A, C (—=A,)* C A%(#). It completes the proof of the Theorem. O
Remarks:
(1) From (3.9) we obtain that for ¢ € D(—A,), ¢ € H?((—m,7)—{0}) and ¢ € H*((2nm,2(n+1)7)),
n € 2.

(2) (3.9) is the precise formulation of the formal linear differential operator —j—; + 748, namely, for
¢ e D(-A,), (—dd—; +70)¢(z) = —¢"(z) for every x # 2nm, n € Z.
Next for describing the resolvent of the self-adjoint operators —A., we will use the general Krein’s

resolvent formula (see Theorem 1.2.1 in [4]). Since the proofs in the periodic case are similar to those
obtained on the line via the formula (3.12), we refer the reader to Chapters 1.3 and II1.2 in [3].
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By defining the integral kernel J € L2, ([—m, 7]) by
2

J(€) = Wz(zkw) cosh (z’k(|§| - w)) for € € [, ], (3.12)

with k # n, n € Z, we have,

Theorem 3.2. For —oo < v < 400, the resolvent of —A in L2, ([—m,7]) is given for k # n, n € Z,

and k* € p(—A,) by
1 2ivk —
- — o JE) 3.13
Ar? vcoth(ikw)+2ik<’ ) Tk (3:13)

Therefore, —A~ has a compact resolvent for —oo <y < 4o00.

(~A =) = (—A - )

Next, we establish the basic spectral properties of —A, which will be relevant for our well-posedness
results below. We note that a more general result into the framework of the Kronig-Penney model in
solid state physics ([36]) can be established (see Chapter II1.2, Theorem 2.3.1 in [3]).

Theorem 3.3. Let —00 < v = +o00. Then the spectrum of —A., is discrete {0;,},;>1 and such that

01,y < b2 <03, < ---. In particular, we have the following:
1) If —oo <y <0, —A, has precisely one negative, simple eigenvalue, i.e.,
op(=Ay) N (=00,0) = {_Mg} (3.14)
where 1, ts positive and satisfies v = —2p tanh(pyw). The function
27
10 = 57 s < (0 (7)) (3.15)

for & € [—m, 7], is the strictly positive (normalized) eigenfunction associated to the eigenvalue

—u%. The nonnegative eigenvalues (are non-degenerate) are ordered in the increasing form 0 <

KT <1 <Ky <22 <0 <K
the equation cot(km) = 27’"“ in the interval (j — %,j). The eigenfunction associated with /{? is

< j2 < -+, where for j 2 1, k; is the only solution of

Jw; € D(=A,). The sequence {j*};>, is the classical set of eigenvalues associated to the operator
—A with associated eigenfunctions {sin(jz) : j = 1} C D(A") C D(-=A,).

2) If v > 0, —A, has nonnegative eigenvalues and the positive eigenvalues (are nondegenerate) are
ordered in the increasing form 0 < k¥ <1 < k3 <22 <..- < kJQ < j? <., where for j 20, the
eigenvalue ki1 is the only solution of the equation cot(km) = % in the interval (4,7 + %) The
eigenfunction associated with k3, is Ji,,, € D(=A,). The sequence {j*};>, is the same as in
the item 1) above.

3) Zero is not eigenvalue of —A,, for all v # 0.

4) For v = 400, 0(=A4o) = {j*};21 and with associated eigenfunctions {sin(jz) : j 2 1} C
—A4 . The eigenvalues are nondegenerate.

Next we establish some remarks that deserve to be commented.

Remarks:

(1) Tt is well known from the formula in (3.12) that the resolvent for —A = —j—; in L2, ([-m,7]) is
given by (—A — k)7 f = Jp x f, with k #n, n € Z.

(2) Ji ¢ D(—A,) for k such that ~ coth(ikn) # —2ik. Indeed, J;.(04) — J;(0—) = =271 # vJ;(0).

(3) Jr € Hl o ([=m, 7)) N H?((27n, 2(n+1)7)), and satisfies (—A —k?)Jy(x) = 0 for z € (—m,7) — {0}

with Jj (+m) = 0.
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(4) Formula (3.13) shows immediately the analytic property of the resolvent-mapping giving by
v — (=A, — k?)71. So, it property can be used for showing that the mapping of self-adjoint
operators Z — L1 z and Z — Lq z in (1.27)-(1.28), are real-analytic in the sense of Kato (see
section 6 below).

(5) The domain D(—A,), —co < v = +o00, consists of all elements ¢ of the type

— () — 2B
¢(@) = ¥(z) v coth(B7) + 20

for v € HZ, ([-m,7]) and 3> = i. The decomposition (3.16) is unique with (—A, +4){ =

per

(=A +1i)tp. So, we obtain that if ¢ € D(—A,) and ¢(0) = 0 then ¢ € HZ ([, 7).

The following proposition is concerned with the well-posedness of equation (1.10) in H;er([—w, 7).

¥(0)g—i(x), z€R—27Z (3.16)

Proposition 3.1. For any ug € H,,,.([—m,7]), there exists T > 0 and a unique solution u of (1.10) such
that w € C([-T,T]; H),,.([-m,x])) N CY([=T, T}; Hpor ([—7,7])) and u(0) = ug. For each Ty € (0,T) the
mapping

Up € Hl

per

([=m,7]) = u € C([=Tv, To]; Hpe, ([, 7))

per
is continuous. Moreover, since u satisfies the conservation of the energy and the charge defined in (1.29),
namely, E(u(t)) = E(ug), Qu(t)) = Q(uo), for allt € [0,T), we can choose T = +cc.

If an initial data ug is even the solution u(t) is also even.

Proof. We apply Theorem 3.7.1 of [16] to our problem. Indeed, from Theorem 3.3 we have —A_z = — [,
where By = p2 4, if Z > 0 and By = 0if Z < 0. So, for the self-adjoint operator A = A_z — (3 on
X = L2, .([-=,7]) with domain D(A) = D(—A_z) we have A < 0. Now, from the min-max principle we

obtain that for Z > 0

per

A= inf {[loal|? = ZIw(O) : ol = 1,0 € Hj, ((~m,7])}

is given by A = —fy. Therefore we may take for every Z € R the space X4 = H,,,.([—,7]) with norm
ull%,, = lluall® + (Bo + 1)||ul|* = Z|u(0)[?, which is equivalent to H,,,([0,27]) norm. So, it is very easy
to see that the uniqueness of solutions and the conditions (3.7.1), (3.7.3)-(3.7.6) in [16] hold choosing
r = p = 2. Finally, the condition (3.7.2) in [16] with p = 2 is satisfied because of A is a self-adjoint
operator on L2 ([—m,7]). O

4. PERIODIC TRAVELLING-WAVE FOR THE NLS-0 MODEL (1.15)

In this section we construct positive periodic solutions for the elliptic equation (1.16) such that the

conditions in (1.17) are satisfied. Indeed, our approach will show that is possible to have periodic peak
solutions with an arbitrary minimal period 2L and belonging to the domain of the operator —% — 70,

Z # 0. Our analysis is based in the theory of elliptic integral, the theory of Jacobi elliptic functions and
the implicit function theorem.

4.1. The quadrature method. We start by writing (1.17)-(3) in quadratic form. Indeed, for ¢ = ¢, z

and x # +2nL we obtain

1

[/ (@))* = 5[—904(1’) + 2w’ (2) + 4B,] = 5 F(p()), (4.1)

where F(t) = —t* 4 2wt? + 4B, and B, is a integration constant. We factor F(-) as

F(p) = (i — e*)(* —m3) = 2[¢', (4.2)

N =
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where 71,72 are the positive zeros of the polynomial F. We assume without loss of generality that
nm >mn2 > 0. So, n2 £ p(€) < m and

2w=ni+mn3, 4B, = —nins. (4.3)

We note from (1.9) with k2 = #, that the dnoidal-profile ¢, o(£ + b) satisfies equation (4.2) for every
¢ € R and any shift-value b.

Next, since ¢ is continuous one has [¢’(04)]? = 1 F(¢(0)) and [¢'(0—)]*> = $F((0)). Then |¢'(0+)| =
|’ (0—)|, which as we will show below implies that ¢’'(0+) = —¢’(0—), and so from (1.17)-(4)

#(04) = ~ 5 (0). (4)

The case ¢’ (0+) = ¢’(0—) can not occur. Indeed, from (1.17)-(4) it follows ¢(0) = 0 and so ¢'(0) exists.
Therefore from (4.2) [¢’(0)]? = —n?n3 /2 which is a contradiction.
Next, we obtain restrictions on the value of ¢(0). From (4.1) and (4.4) we need to have
ZQ

Z2(0) = 5F(0(0)) > 0. (45)

and so 71 > ¢(0) > n2. Next, since maxser F(t) = w? + 4B, (which is attained for ¢ > 0 in to = \/w), we
obtain the condition 72 2, 4 ( 22
w* + w =1
A~ (4.)

[IA

and from (4.5)

2w — £ j:\/2w—— +168,

¥*(0) = (4.7)

Since ¢(0) € R we need to have (2w — ZT) + 16B, > 0. We start by considering the case of sign “ —
in the square root in (4.7), then:
(1) For 2w — ZTQ > 0, it follows from (4.3) that (2w — —) > 4nins and so
— 1 > |Z|/V2. (4.8)
(2) From (4.7) we have as Z — 0 the asymptotic behavior ¢?(0) — n3.

3) For 2w — £ < 0 we obtain from (4.7) that 16B,, > 0, which is not possible from (4.3).
2 @
Now, we consider the case of sign “ + 7 in the square root in (4.7), then:

”

(1) For 2w — ZTQ < 0 we have ¢%(0) < 0, which is a contradiction.
2) For 2w — £ > 0 we still have relation (4.8 , but as Z — 0 we obtain ©?(0) — n3.
2 2 2

We are interested only in the sign “ — 7 in (4.7) for our stability theory.

4.2. Profile of positive periodic peaks for Z > 0. Next we will find a even periodic profile solution,
¢w,z for (1.16) such that the peaks will be happen in points of the form +2ns, n € Z, 2s a specific
minimal period, 71 > @u.z(0) 2 Py, z(€) = 12 for all £, and

Jim 6,,2(€) = bu0(€),  for € fixed in (0,2L) (4.9)
where ¢, is the dnoidal traveling wave defined in (1.9) with a minimal period 2L (see Theorem 4.1

below). In subsection 4.5 we will show that s can be chosen equal to L.
We can see from (4.2) and (4.7) (with the sign “-”) that for

a=dn! (@;k), (4.10)

m
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with k& defined by
=

k? =
i

, (4.11)
the following even peak-function
— (e — n .
6.2(€) = 9{& 12 Z) = madn(T[e] + ai k). (4.12)
for € € [—s, s], with s defined by s = %(K — a), satisfies the equation

_¢ZJ,Z(§) + W¢W,Z(§) = i,Z(g)v for 5 € (_57 0) U (07 3)'

Moreover, since dn(%s +ajk) = dn(K; k) = V1 — k2 = n2/m we obtain the equality ¢, z(£s) = na.
Furthermore, from (4.5) we obtain the jump condition, ¢;, 7(0+) — ¢/, ,(0—) = 2¢[, 7(0+) = —Z ¢, z(0).
We note tha the shift-value @ in (4.10) depends of the values of Z and w. Moreover, since 1 >
$0)/m >k =vV1—-k?and 1 2 dn(z;k) 2 k' for all x € R, k € (0,1), with ¥ = dn(K; k), it follows
that a is well-defined and a € [0, K]. Lastly, by using that dn has a minimal period 2K the relation

buw,z(25) = mdn(2K — a) = mdn(—a) = mdn(a) = ¢(0) (4.13)

implies that the profile ¢, z in (4.12) can be extend to all the line as a continuous periodic function
satisfying the conditions in (1.17) with a minimal period 2s and with peak points in £2ns, n € Z (see
Figure 3 below with s = 2).

FIGURE 3. Profile of the periodic dnoidal-peak ¢ in (4.12).

Next, we recall the following theorem in Angulo [5] which justify the point convergence in (4.9). It
result will be useful more later. For n € (0, y/w), we define for M (n,w) = 1//2w — 1?2,

F(n,w) = 2v2M (n,w)K (k(n,w)). (4.14)

Theorem 4.1. Let L > 0 fized. Consider wy > % and n9 = n(wo) € (0, /wo) such that F(ng,wo) =
2L. Then there are intervals Jo(wp) around wy and No(ng) around ng, and a unique smooth function
Ao : Jo(wo) — No(no) such that Aog(wo) = no and for n = Ag(w) one has F(n,w) = 2L. Moreover,

No(no) x Jo(wo) C {(n,w) : w > %, n € (0,/w)}. Furthermore, Jo(wp) = (%,—I—oo) and for n; =
m(w) = /2w — n?, the dnoidal wave solution ¢, o defined in (1.9) has fundamental period 2L and satisfies

the equation

—qﬁgyo(x) + woyo(z) — (bi)o(x) =0 forall z € R.
Also, w € Jo(wo) = du,o € HL,.([0,2L]) is a smooth function for all n € N.

per
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From Theorem 4.1 we have the following properties of ¢, 7z in (4.12) with w > Z?/4: From (4.7) (with
sign “—"), ¢w.z(0) — m1 as Z — 0T. Then from (4.10) and from the value of s follow for Z — 01 that
a — dn~'(1;k) = 0 and 2s — 2v/2K/n; = 2L . So, at least formally, we have that

Jim, bw,z(§) = du,0(§)-

The last equality is in the sense that for w > % fixed and € € (0,2L) (see Theorem 4.1), there is a
§ > 0 such that for Z € (0,6) and Z2/4 < w we have that the periodic-peaks ¢, z, with minimal period
2s are defined in £&. We note that this type of convergence is not convenient for our purposes, because
the period of ¢, 7 is changing .

4.3. Positive periodic peaks for Z < 0. We shall find a even periodic-peak, (., z, with peaks in +2nr,
2r a specific minimal period, n € Z, m1 > ¢(0) > n2, 1 = (&) = o for all €, and

Zlinolf Cw,Z(g) = ¢w,0(§)7 for 6 fixed in (07 2L)7 (415)

where ¢, ¢ is the dnoidal traveling wave defined in (1.9) with a minimal period 2L. Indeed, by choosing
a and k as in (4.10) and (4.11) we define the following even peak-function

Go.2€) = mn (T le] — ask). (4.16)

for £ € [—r,r], with r defined by r = %(K + a). So, we have that —(/} ;(&) 4+ wCu,z(§) = ¢ 4(€), for
& € (—r,0)U(0,r). Furthermore, from the equality in (4.5) we obtain the condition required in (1.17).
We also have that ¢, z(r) = nidn(K; k) = nz and for po = v/2a/n1, Cw.z(po) = m. So, from (4.2) follows
! o(£r) =, ,(£po) = 0. Moreover, pg is the only point in (0,7) where the derivative of ¢, z is zero.
In fact, since (;Z(g) = 0 if and only if sn(%{ - a)cn(%ﬁ —a) = 0 and we have that \%5 —a€(—K,K)
then follows that %{ =a.

Now, by using that ¢, z(0) = mdn(a) = ¢u, z(0) the relation (, z(2r) = nidn(a) = (. z(0) implies
that {, z can be extend to all the line as a continuous periodic function satisfying the conditions in (1.17)
with a minimal period 2r and with peak points in +2nr, n € Z (see Figure 4 below with r = 2). In the
next subsection 4.4 we will show that it is possible to choose » = L for any L.

Lastly, from Theorem 4.1 and the convergences ¢, z(0) — n1, a — 0, and 2r — 2L as Z — 0~, we
have, at least formally, that equality in (4.15) is true.

FIGURE 4. Profile of the periodic dnoidal-peak ¢ in (4.16).

Remark: For the “convergence” of the periodic-peak ¢, z and ¢, z to the solitary wave peak (1.14),
with p = 2 we consider for a determined parameter (7s is our case) the minimal period 2s or 2r sufficiently
large. Indeed, from (4.11) and (4.3) we obtain for all Z that k%(n2) — 1, and 7} = 2w — 72 — 2w as
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12 — 0. We also have in this limit from (4.7) (with “”) that ¢2 ,(0) = ¢Z 7(0) — 2w — 272 Now, the
identities sn ' (y; k) = dn~'(\/1 — k2y%; k) and sn~'(y; 1) = tanh™ ' (y) (see pg. 31 in [13]) imply that

0.2(0 1 AL _
_ dn*l(M;k) - sn*l(E 0 ’Zz( );k) — tanh~1(Z/2v/@), (4.17)
m mn
as 72 — 0. Lastly, since dn(y;1) = sech(y) we obtain the convergence (uniformly on compact-set)

bw,z(§) = Pu,z2(E), as n2 — 0. We note that s — +oo since K (k(n2)) — 400 as 2 — 0.

4.4. Dnoidal-peak solutions to the NLS-§ with an arbitrary minimal period. In subsections
4.2 and 4.3 we found dnoidal-peak profiles (4.12) and (4.16) with a minimal period 2s and 2r. Next we
shall see that the equality s = L and r = L can be obtained by any a priori L. In the analysis below we
consider the case Z > 0, but a similar result can be established for Z < 0.

From the analysis in subsection 4.1, we start by defining the general notations to be used in the next
subsections. For 4w > Z? it follows from (4.11), (4.3), (4.8) and 11 > 12 > 0 that for all Z,

0<m<O(w,Z) < Vw<\Nw,Z) <m < V2w (4.18)
where for g(w, Z) = /(8w — Z?2)/8 we have
O(w, Z) = —?|Z| +9w,Z) and Aw,Z)= ?|Z| + 9w, Z). (4.19)
For n € (0,0(w, Z)) we define the functions:
2w — 2n?
2 —
k*(n,w) = S € (0,1), (4.20)
k"2 (n,w) =1 — k?*(n,w), and for M (n,w) = 1/4/2w — 1?2, the period function
T-(n,w, Z) = 2v2M (n,w)[K (k(n,w)) — a(n,w, Z)] (4.21)
where
a(n,w, Z) = dn™' (M (n,w)®(n,w, Z); k(n,w)), (4.22)

with ®(n,w, Z) defined by (see (4.7))

(2w~ Z) + /(2w — £2)2 — 4r2(2w — )

5 .
We note that the functions M, a and ® defined above are independent of the sign of Z. We will denote
them by M(n), a(n), ®(n) or M(w), a(n,w), ®(n,w) depending of the context. Moreover, the mapping
Z — af(-,-, Z) is analytic.

P (n,w, Z) = (4.23)

. . . oy 2
Remark: For 7 € (0,0(w, Z)) we obtain the a priori condition (4.6), namely, Z-®* < (w — n?)?/2.

In the following lemma we establish several properties of the periodic function 7_ which are main in
the existence of periodic peak with an arbitrary minimal period L and in the existence of a smooth curve
of positive periodic peak depending of the phase-velocity w.

Lemma 4.1. For Z #0 and w > Z?/4 fized, the mappings for n € (0,0(w, Z))
n—a(m), n—e(n), and n— M(@n)e(n) (4.24)

are well defined. Moreover, they are strictly increasing, strictly decreasing and strictly decreasing functions
respectively. Also, one has that

lir% T_(n) = +o0, (4.25)
”7—)
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and

lim 7 () = 2V3Nw, 2)] K (ko) ~ a0] = Tolw, 2) (4.26)
where ag = ag(w, Z) € (0, K (ko)) and ko = ko(w, Z) are defined by
dn(ag; ko) = %[/\(w, Z)| 4w — Z22)V/2, k3 = %|Z|[)\(w, Z)] 728w — Z22)Y2, (4.27)

Lastly, the mapping n € (0,0(w,Z)) — T-(n) is a strictly decreasing function and so T_(n) €
(To(w, Z), +00). Moreover, forn € (0,0(w, Z)) it follows that for m = /2w — n? we have 1 —n > |Z|/v/2
(see (4.8)) and w — a(w) is a strictly decreasing function with

liIJIrl a(w) = 0. (4.28)
Proof. Initially from (4.18) the relation 0 > ZTQ —V2|Z|\/(8w — Z2)/8 > 2n? — 2w + ZTZ, implies that
1> M(n,w)®(n) > k' (n,w), and so a is well deﬁned Now, from (4.20) and (4.23) we have lim, o a(n) =

o < 0o, with a satisfying sech(a) = y/1 — 2> and (4.17)). So, since K (k) — 400 as k — 1 we obtain
that the period function 7T_(n) satisfies (4.25).

Now, for n — 6 one has k?(n) — k2 defined in (4.27). Since the mappping n — k?(n) is strictly
decreasing it follows that k(n) € (ko, 1), for all n € (0,0(w, Z)). We note that the condition w > Z2/4
implies that the right hand side of (4.27) is bigger than k, = /1 — k% and so ag is well-defined. The
above considerations yield the limit in (4.26).

The decreasing property of the last two functions in (4.24) follows immediately. Next we see that

€ (0,0(w,Z)) — a(n) is a strictly increasing function. We denote by () the strictly decreasing
function M (n)®(n), then by (4.22) and the formula 710.53 in [13] we obtain

d d da  ksn(a)cen(a) sn(a)7 dk
0> (n) = —dn(a; k) = —k> 2, smajemd) o

> dnw(n) d77 n(a’7 ) S’I’L(G)Cn(a) d77 kl2 Cn(a) d’l]’
with E(u) = E(u;k) = [, dn®*(y; k)dy. Since a € [0, K] and g—f] < 0 from (4.29) we only need to see
that the expression between the square brackets is negative for obtaining that Z—f] > 0. Indeed, for

F(u) = E(u) — K?u — dn(u) 2 we have F(0) = 0 and F(K) = —oo. Moreover, from [13] (pg. 20) we

cn(u) . .
obtain for u € (0,K), F'(u) = dn?(u) — k'* + k*sn?(u) — 'Z&—ES; = m’g( 5 < 0. Therefore, F(a) <0 for
€ (0,K).
Now, since M?(w)®?(w) — 1 and k%(w) — 1 as w — +00, we obtain lim,_, 1 a(w) = dn=(1;1) =
sech™(1) = 0. Next we see that w — a(w) is a strictly decreasing function. If we denote by f(w) =
M (w)®(w) we obtain similarly to (4.29) that

E(a) — k"™a — dn(a)

(4.29)

d d 0 da 0 dk
— = —d k k —dn(a; k 4.
1) = L nas k) = -dna: k)9 1O ana; k)0 (4.30)
So, since Zdn(a;k) <0, & > 0 and 2 dn(a' k) < 0 it is sufficient to show that - f(w) > 0. Indeed,
since f(w) > 0 will be see that %[f(w)]2 . So, from (4.23) we obtain that
d 2 : o 2% (w) @*(w) — 1’
—|f(w)]” >0 if and only if .
ao!/ ) TR T )+ 2w

By our construction in subsection 4.1 we have that ®*(w) < 7, so only remains to show that the positive

function g(w) = 202 (w) + 272 — 2w satisfies g(w) < ®%(w) —n%. Indeed, after some algebra we obtain that

)
g(w) < P*(w) —n* & (2w —21%) > (2w - 272)2 — 42 (2w — 1?),
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which is true if and only if w > %2. Since w > 272, we finish the proof.

The fact that the mapping n € (0,6(w, Z)) — T—(n) is a strictly decreasing function follows from the
analysis in Theorem 4.2 below. (Il

Next we show that there is a 2L-periodic peak solution for equation (1.16) with the profile (4.12). It
existence will be crucial in the next subsection for applying the implicit function theorem.

We start our analysis by studying the behavior of the mapping w € (ZTQ, +o0) — To(w, Z) given in
(4.26), with Z fixed. From (4.27) one has for w — 400 that k§ — 0, then K (ko) — 3 and so from the
definition of A(w, Z) and ay we obtain immediately that

lir_{_l To(w, Z) = 0. (4.31)
Hence for L > 0 fixed there exists w > ZT2 such that 2L > Ty(w, Z). Consequently, from Lemma 4.1 there
is a unique 7 = n(w) € (0,0(w, Z)) such that

2s = T_(n) = 2L. (4.32)

Lastly, from the above analysis, if we define 7, = /2w — n? for 1 satisfying (4.32), k? and a via the
relations in (4.20) and (4.22), respectively, we obtain the that peak-function ¢, z in (4.12) can be extend
to all the line as a even periodic function with a minimal period 2s = 2L and in the interval [0,2L] it is
symmetric with regard to the line £ = L. Hence, we have obtained a periodic dnoidal-peak solution for

equation (1.16) which satisfies all the properties in (1.17) and it belongs to the domain of —j—:z — Z6.

Remarks:

(1) for Z fixed, w — Tp(w, Z) is a strictly decreasing function.
2

(2) For w fixed and w > Z-, To(w, Z) — V21/\/w, as Z — 0%, and Z — Ty(w, Z) is a strictly

71,2

increasing function. Then from the relation 2L > Ty(w, Z) we obtain that w must satisfy w > 77
(see Theorem 4.1 for the case Z = 0 in (1.16)).

4.5. Smooth curve of periodic peaks to the NLS-§ with Z # 0. In this section we construct a
smooth curve of positive periodic peak solutions of (1.16), w — ¢, z, with Z fixed. These solutions
@ = @,z have a priori fundamental period 2L, satisfy the conditions in (1.17) (with 7 = L), and

Yu,7 € D(—g—i — Z4). Moreover, for w > 272 and w fixed and large one has that

%imo Cuw,z(T) = Py 0(x) for z € [-L, L], (4.33)

where ¢, is defined in (1.9). Our analysis will show also that the mapping Z — ¢, 7z is analytic. This
will be essential in our stability theory. In addition, we shall need to show that the map w — n(w) €
(0,6(w, Z)) is smooth.

First we consider the case Z # 0 and small.

4.5.1. Smooth curve of periodic peaks to the NLS-0 with Z > 0. We shall show that for Z > 0 fixed,
there exists a smooth curve w — ¢,z € H),,.([—L, L]) satisfying the conditions in (1.17). Moreover, the
convergence in (4.33) can be justified at least for Z — 0F. The proof will be a consequence of the implicit

function theorem, Lemma 4.1 and Theorem 4.1. We recall that w > Z2/4.

Theorem 4.2. Let L > 0 fized, 0 small, 6 < %, and Z € (=4,9). Let wy > % and ng be the unique
no € (0, /wo) such that F(no,wo) = 2L. Then,
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(1) there are an rectangle R = J(wg) X (=00, o) around (wo,0), an interval Ni(no) around no, and a
unique smooth function Ay : R — Ni(no) such that Ai(wo,0) =1 and

2V2
m
where 0} = niz = 2w — 775,2 for (w,Z) € R and 12,z = M (w, Z).
(2) J(wo) = (%,—i—oo) and k € (ko, 1), ko defined in (4.27).
(3) Ni(0)x € G = {(1,w, 2) : > 572, 2L > To(w, Z), 1 € (0,0(w, Z))}.
(4) For Z = 0 we have a(w,0) = 0 and so from Theorem 4.1 it follows that A1(w,0) = Ag(w).
Therefore,

[K (k) — a(w, Z2))] = 2L, (4.34)

A 72,z(w) = n(w).
(5) For Z € (0,00) we denote 2.z by nz2.+. Then the dnoidal-peak solution ¢y, z in (4.12) with m;
being 1,4 = (2w° —n3 )!/?

zh_>r3+ Gw,z(x) = dwo(x), for x€[-L, L]

(6) Z — ¢u.z € HE, ([-L, L)) is real-analytic.

per

, has minimal period 2L and satisfies for w > %,

Proof. The proof is a consequence of the implicit function theorem applied to the periodic-mapping
T (775 W, Z) = 2\/§M(777 W)[K(k(ﬁv w)) - a(na W, Z)] = F(nv w) - 2\/§M(777 W)a(ﬁv W, Z)

with domain G. From (4.31) follows G # (). Moreover, if (19,wp, Z) € G then for all w > wy we obtain
(no,w, Z) € G ( T—(no,wo,0) = 2L). Next, we claim that 0,7 (ny,wo,0) < 0. Indeed, from Theorem
2.1 in Angulo [5] we have 0,F(n,w) < 0 since d,k(n,w) is a strictly decreasing function of 7, since
Opa(n,w, Z) > 0 (see Lemma 4.1) we prove the claim. Theorem 4.1 implies item (2) above.

Finally, since the functions a in (4.22) and A; are analytic, the mapping (w, Z) — ¢, z is analytic for
(w,2) € {(w,Z) : w > Z?/4}, Z small. This finishes the proof of the Theorem. O

Corollary 4.1. Consider the mapping Ay : R — N(no) obtained in Theorem 4.2. Then for Z > 0
fized and w large, the mapping w — no.1(w) = A1(w, Z) is a strictly decreasing function. Moreover,
for k(w) = k(2 +(w),w) and a(w) = a(ne +(w),w) defined in (4.20) and (4.22) respectively, one has
L (w) >0 and La(w) < 0.

Proof. Let Z > 0 fixed. Since T_(A1(w, Z),w,Z) = 2L one has that %n&ﬁﬂw) = —%. Using the
relation 9,7 (n,w, Z) < 0 (see Appendix) we obtain 75 , (w) < 0. Next, for a(w) = a(Ay(w, Z),w, Z)
we obtain %a(w) = Qa dhy 4 g—z < 0, since 8—“1 > 0 and g—z < 0 (see Lemma 4.1). Finally, from the

AT dw oA
formula in (4.20) it follows immediately that k(w) is a strictly increasing function. This completes the
proof of the Corollary. O

In the next section, we will need to use that the mapping Z — ¢, z is analytic for Z > 0 (we recall
that this property is local type). So, by using an argument similar to that provided in the proof of
Theorem 4.2 and the analysis in subsection 4.4 we obtain :

Theorem 4.3. Let L > 0 fized and Zy > 0. Consider wy > ZT‘? such that 2L > Ty(wo, Zop) and wo > %
Let 2,0 = n2,0(wo, Zo) € (0,0(wo, Zo)) the unique value such that T_(nz,0,wo, Zo) = 2L. Then,
(1) there are an rectangle S(wo, Zo) = H(wo) x I(Zy) around (wo, Zo), an interval Na(n2,0) around
M2,0, and a unique smooth function As : S(wo, Zo) — Ni(n20) such that As(wo, Zo) = 12,0 and
T—(n?,-‘ruwu Z) =2L for M+ = A?(wa Z)
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(2) H(wo) can be choosen as (1(Z, L), +00), where u(Z, L) > ZTS and (Z,L) > % For Z =0 we
have (0, L) = %

(3) the dnoidal-peak solution in (4.12), ¢ z(€) = ¢(§;m +), determined by m .+ = (2w — 77%#)1/2
satisfies the properties in (1.17). Moreover, the mapping Z — ¢z € H). (=L, L]) is real-
analytic.

Corollary 4.2. For Z > 0 fized and w large, the mapping w — n2 4+ (w) = Aa(w, Z) is a strictly decreasing
function. Moreover, for k(w) = k(n2.+(w),w) and a(w) = a(nz +(w),w) defined in (4.20) and (4.22)
respectively, one has that “£k(w) > 0 and “La(w) < 0

Corollary 4.3. For Z = 0 fized, consider the mapping a : (u(Z,L),+00) — R defined in Corollary 4.1
and Corollary 4.2. Then a(w) — 0 as w — +o0.

Proof. From Corollary 4.2 it follows that for w > w1, 0 £ w™'n3 | (w) £ w™'n3 | (w1). Thus, k*(w) —
1" and M(n2 4+,w)®(w) — 11T as w — +oo. Therefore, (4.22) yields the identity lim, 4o a(w) =
sech™1(1) = 0. O

4.5.2. Smooth curve of periodic peaks to the NLS-6 with Z < 0. The following Theorem shows that
for Z < 0, fixed, there exists a smooth curve w — (.7 € H).,.([—L,L]), with w large, satisfying the
conditions in (1.17) and that the convergence in (4.33) for Z — 0~ is possible. The proof is similar to
that of Theorem 4.2 and Theorem 4.3, so we shall only describe the main points in the argument. We
start by defining
T (n2,w) = 2V2M (02, w)[K (k(12,w)) + a(112,w)] (4.35)
and T1(w, Z) = 2v/2[Nw, Z)| 7 [K (ko) +ao], where T (w, Z) = lim,, ¢ T (12, w). Since lim,,_, 4 o ag(w) =
0 it follows that lim, 400 T1(w,Z) = 0. Therefore, since the mapping w — Tj(w,Z) is a strictly
decreasing function we obtain a unique wy > ZTZ such that 2L > Ty (w1, Z) and for every w > wy, 2L >
Ty (w, Z). Now, for w chosen in this form one finds a unique 721 = 72,1 (w) € (0, 0(w, Z)) such T4 (12,1, w) =
2L, because of lim,, .o T4 (n2,w) = 400 and 9,71 < 0 for w large (see Appendix). Moreover, since
Ty (w,Z) =To(w, Z) + /\Elw—‘{éz)ao — %w as Z — 07, we obtain a priori the condition w > %
We have the following theorem of existence.
Theorem 4.4. Let L > 0 fized and Zy < 0. Consider wy large such that 2L > Ty (w1, Zo). In particular,
wy > ZTS and wy > % Let a1 = n2,1(w1, Zo) € (0,0(wn1, Z0)) the unique value such that Ty (n2,1) = 2L.
Then,
(1) there are an rectangle W (w1, Zo) = Q(w1) x V(Zp) around (w1, Zp), an interval Na(n21) around
N21, and a unique smooth function Ag : W(w1, Zo) — Na(n2,1) such that As(wr, Zo) = 121 and
Ty (2 —,w,Z) =2L forns_ = As3(w, Z),
(2) Q(w1) can be choosen as (v(Z,L),+o0), where v(Z,L) > ZTg and v(Z,L) > % For Z =0 we
have v(0,L) = %,
(3) for Z =0 we have a(w,0) = 0 and so from Theorem 4.1 we have Az(w,0) = Ag(w). Therefore,
limz_o- n2,—(w) = n(w),

(4) the dnoidal-peak solution in (4.16), Cw.z(€) = ((&;m =), determined by m, - = (2w — 77%77)1/2
satisfies the properties in (1.17). Moreover, the mapping Z — (u.z € H). (=L, L]) is real-
analytic,

(5) limy_,o- Cw.,Z(f) = ¢w,0(§); for e [-L,L].
Corollary 4.4. For Z < 0 fized and w large, the mapping w — n2,_(w) = As(w, Z) is a strictly de-
creasing function. Moreover, for k = k(As(w, Z),w) and a = a(As(w, Z),w) defined in (4.20) and (4.22)
respectively, one has that f-k(w) > 0 and f=a(w) <0
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Proof. For T defined in (4.35), it follows that 9, Ty < 0 and 0,7 < 0 for w large (see Appendix). Then
for A3 satisfying Ty (As(w, Z),w) = 2L we obtain that A5(w) < 0 and o' (w) < 0. O

Corollary 4.5. For Z < 0 fized, consider the mapping a : (v(Z,L),+00) — R determined by Theorem
4.4. Then a(w) — 0 as w — 400.

5. STABILITY OF DNOIDAL-PEAK FOR THE NLS-6 MODEL (1.15)

In this section we study the stability of the orbit

Qoo , =10 7:0 €0,2m)}, (5.1)
generated by the smooth curve of dnoidal-peak w — ¢y, z, where ¢, 7z is defined as in (1.26). Moreover,
lim g 2(€) = duol6), for € € [-m,7, (5:2)

where ¢, o being the dnoidal-wave solution to the cubic Schrédinger equation determined by Theorem
4.1.

We start obtaining the spectral information associated to the operators in (1.27) and (1.28) necessary
to establish our stability theorem. We denote L2, ([—m,7]) and H,,, (-, x]) simply by H},, and L2,
respectively.

we write u = uj + tus. Let H, z be

5.1. The basic linear operators L; z and L; 7. For u € H;er

defined by
Hy, zu = L1 zur + 1 Lo zusg (5.3)

where the linear operators L; z, i = 1,2, are defined as in (1.28) and (1.27), respectively. Next, for Z € R
and the subspace D defined as

D ={¢€H,, NH*(2nm,2(n+1)m)): ' (0+) - ' (0-) =-2¢(0)}, neZ, (5.4)

we have that L; 7 are self-adjoint operators on Lge with domain D(L; z) = D (see the Stability Self-

Adjoint Theorem in Kato [35]).
We note that the linear operators L; 7 are related with the the second variation of G, z = E + wQ
at ¢, z. More exactly, let u = ¢ + 9 with (,% € D and v = v1 +ivg € H;W then

(GY 7(Puw,z)u,v) = (Hy zu,v) = (L1,2¢ + Lo z9,v) = (L1,2¢,v1) + (La,29, va). (5.5)
Indeed, we define Q(¢,v1) = w [ Cvide — 3 [ @2, ;Cvidz. Thus,
(L1,2¢,v1) = [¢'(0+) — ¢'(0—)]vr(0) + (¢, v1) + Q(C,v1) = —Z¢(0)v1(0) + (¢, vh) +Q(C,v1).  (5.6)

Similarly, we obtain (Lo 79, v2) = —Z1(0)v2(0) + (¥, vh) +w (e, va) — (@2 7, va). A simple calculation
shows that (G7, 7(w,2)((,¥), (v1,v2)) = (L1,2(,v1) + (L2, 29, v2).

‘s

5.2. Some spectral structure of L; 7z and L 7. This subsection is concerned with some specific
spectral structure of the linear operators L; z. By convenience we will denote L; 7 only by L,.

Proposition 5.1. Let Z € R and w > Z?/4. Then,

(1) L3 is a nonnegative operator with a discrete spectrum, o(L2) = {An : n 2 0}, ordered in the
increasing form 0= Ao < A1 £ Ao £ A3 £ Mg+ . The eigenvalue zero is simple with eigenfunction
Pw,Z -

(2) L1 is a operator with a discrete spectrum, o(L1) = {ay, : n 2 0}, ordered in the increasing form
ap<arSaxZazSag--
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Proof. From Section 3, Theorem 3.3, it follows that the operators £; have a compact resolvent and so its
spectrum is discrete. Since ¢, z € D and satisfies equation (1.16) we obtain that L2, z = 0 for all Z.
Moreover, ¢, z being positive it corresponds to the first eigenvalue of Ly which is simple. ([

Next we have the following kernel-structure of L.
Theorem 5.1. Let Z € R — {0} and w large. Then L1 has a trivial kernel.

Proof. Let v € D such that L1v =0 and Z > 0 (so @uw,z = ¢u.z). Therefore v satisfies the following
problem
ve H*0,2r
( ) (5.7)
Liv(z) =0 for z € (0,2m).
From item (3) in (1.17) it follows that c¢], (z) for z € (0,27) and any c € R satisfies (5.7). We note
that ¢fu, 7 1s a 2m-periodic odd function with jump-discontinuity in +2nm, n € Z.
Next, we consider the transformation A(x) = v(f8z), for § = V2 ge (0,2(K —a)), with a defined in

m
(4.22). Then from Theorems 4.2 and 4.3 we have Sz € (0,27) and so (5.7) implies that

AN'(x) 4 [0 — 6k*sn®(z + a; k)|A(z) =0 for x € (0,2(K — a)), (5.8)

where o = (617 , — 2w)/ni ; =4+ k?. Now, for T (z) = A(x — a) with = € (a,2K — a) we have that T
satisfies the following Lamé’s equation

Y (z) + [0 — 6k?sn?(x; k)| Y (2) =0, for z € (a,2K — a). (5.9)
Now, from Theorem 5.2 below the periodic eigenvalue problem in L2 ([0, 2K])

{ @"(x) + [A = 6k%sn®(2; k)] ®(x) =0, € (0,2K) (5.10)

B(0) = ®(2K (k)), ®'(0) = &' (2K (k)), k€ (0,1)

has the first three eigenvalues Ay, A1, A2 simple and the rest of the eigenvalues are distributed in the

form A3 < Ay < A5 £ Xg < - - - and satisfying A3 = g, A5 = Xg, ..., i.e., they are double eigenvalues

and so for these values of A all solutions of (5.10) have period 2K (k). In particular, A\; = 4 + k% and

®(z) = sn(z;k)en(z;k) = Cofedn(a;k), for x € [0,2K(k)], k € (0,1). Now, from Floquet theory

(see pg. 7 in [21]) the other solution for the Lamé’s equation in (5.10) with A = Ay is of the form

U(z) = x®1(z) + p2(z), where pa(x) is even with period 2K (k). In fact, the variational parameter
method shows that for E(z) = E(x;k) = [; dn*(y)dy (the normal elliptic integral of the second kind),

B 2 — J2 1

Uy (2) = 2201 (2) — mE(m)fbl(x) +T =

satisfies (5.10) with A = A\;. Next, by considering the Zeta function de Jacobi, Z(x) = Z(z; k), defined

by
Z(x) :/0 [dnz’(y;k)— % dy

which is an odd periodic function de z with period 2K (k), we can rewrite ¥y as

_ .2 12
i - 22 %(kk)] 1 (x) + {ﬁdn(z)[srﬁ(x) — (1= B)en?(x)] - f_—;Z(g;)cpl(x)}

= 2P (z) + p1 (o).

dn(z)[sn?(x) — (1 — k?*)en?(z)) (5.11)

Uy (x) = x[2—

(5.12)
Hence we obtain the representation ¥ = %\Ifl = 2Py + po, with ps = %pl and po being an even periodic
function with periodic 2K (k). Since {®;, U} is a linearly independent (LI) set of solutions for the Lamé’s
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equation in (5.9) on R, then it is a base of solutions for (5.9) on the interval (a,2K — a). Hence the
following functions on (0, 27), for ny = 4+,

Ai(z) = D¢, z(x), and

Ao(z) = (%x—l—a)/\l(x) —l—pz(%x—l—a) (5.13)
with D = —5\1/2%, are a LI set of solutions for (5.7) on (0,27). Therefore, there are o,y € R such that
v(x) = ali(z) + yA2(x), =z € (0,2m). (5.14)
Next we show that o = —yK. The continuity of v implies that
{’U(O) =v(0+) = aA1(0+) + y[aA1(0+) + p2(a)], and (5.15)
v(27) = v(27—) = al1(0—) + 7[(2K — a)A1(0—) 4+ p2(2K — a)],

where we are used that 2(K —a) = 2—\/’%771. Then, since v(0) = v(27), ps is symmetric with regard to x = K
and A;(0—) = —A1(0+) # 0 follow from (5.15) that @« = —yK. Therefore, we obtain for v satisfying
(5.7) and v(0) = v(27) that

v(z) = y[-KA1(x) + Aa(x)], for all = € (0,2m). (5.16)

Hence, the subspace KX = {v € H?(0,2) : v satisfies (5.7) and v(0) = v(27)} is one-dimensional.

Next we show that for v € D satisfying L1v = 0 we have that v is an even function. We start
by establishing a similar problem to (5.7) on (—2w,0). Hence the following functions on (—2m,0), for
m ="+, N

A (z) = D(bi)_z(x), and

Aoly) = (1 ™ m (5.17)
Ao(z) = (\/5:17 a)Al(x) +p2(\/§:1: a)
are a LI set of solutions on (—2m,0). Therefore, there are r, ¢ € R such that
v(z) = A (2) + qAa(2), @ € (—2,0). (5.18)

Now, from (5.14) and (5.18) we obtain that v(w) = yp2(K) and v(—=n) = gp2(K), then since v is 27-
periodic and pa(K) # 0 (A7 and As can not have zeros in a same point) we obtain v = q. Moreover, from
the continuity of v in x = 0 we obtain that

{ v(04) = a1 (0+) + v[aA1(0+) + p2(a)], and (5.19)
v(0—) = rA1(0—=) + y[—aA1(0—) + pa(—a)]. '
Therefore, r = —a. So, we have for z € (0, 27) that
— A (— M VA (— _m,
v(—x) = rAq( a:)—l—”y[( \/5:17 a)Al( a:)—l—pg( \/5:17 a)}
N 520
= —rAi(x) + ”y[(Ex + a) 1(x) —l—pz(ﬁx + a)} = v(x).
Now, since v is just even we obtain that v'(0+) = —v’(0—) and so from the condition v'(0+)—v'(0—) =
—Zv(0) we obtain
Z
V' (0+) = —E’U(O). (5.21)
Next we show that equality (5.21) implies that + in (5.16) is equal to zero. Indeed, for ¢(z) = ¢y, z(x)

the relations
2—k? Z 2 #(0)

n? = (1= Bjen? = (1= dn®) = (1= 4. Aa(04) = S 0(0). snddnfa) = £,
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imply from (5.16) that

(0) =7 [Dla=K)¢/(04) + 5 (@) (522
where
_ k2 2 _ 1.2
mio = O R (- S ] - 2 e, 6

Now we calculate v/(0+). Since ¢”(0+) = lim, o+ ¢ (x) = (w — ¢%(0))$(0) and ¢'(0+) = —%gb(())
follow from (5.16) and (5.13),

’ 2 Ui
(05) = Dla — K)w = 6*(0))6(0) = DZ51=6(0) + Tsph(a)]. (5.24)

Now, from the relations

py(z) = sn(z)en(x) [kz—i- (IE{((?) - 1) i : :2} 41__2:2 sn(x)en(z)dn?(z) — i:—;Z(x)[l —2sn?(x)]dn(x)
(5.25)
and k?sn? + dn? = 1, we obtain
mo,, . Z 1 E(k)  \2- k2 Z 1 4-2k2¢30)
715191(@) = 2% {kQ (K(k:) N 1) k2}¢(0) TR T
L | (5.26)

k-2 2 4°(0)14(0

— A — .

1— k2 (a){ 2R } V2

Next we suppose v # 0. From (5.21), (5.22)-(5.23)-(5.24)-(5.26) we obtain from the equalities w =

Rt #(0)
n2(a) = 4

, and some cancelations the following equality

(i@ + )]

2 — k2 A }

BIK - a) + T 2(0)| [ T +¢%(0) - z[p+2

2\[ (5.27)

M 2—k?

= L z[2+ = dn*(a),
2v/2 e (@

where in the last equality we use the value of 3. Next, by using that the Jacobian Zeta function Z(a)

can be rewrite in the form

Z(a) = E(a) — a%

and once again the value of 5 we obtain from (5.27),

2 —k? zZ? m 2 -k
(205 (k) — a) + 5 (B(aik) - E(k))] [T +62(0) -] = 2—\/52[2 + T dn(a: B].  (5.28)
Now we see that equality in (5.28) give us a contradiction. Indeed, from (4.7) (with the sign “—") we

have that Z + ¢2(0) —w > 0. Next we show that there is a § > 0 (independent of k) such that for every
¢ €10,9] we have

9(¢, k) = 122 dn*(¢; k) > 2 for all k€ (0,1). (5.29)

Initially we see that the equation g(C, k) = 2 has solution if and only if { € (7/4,+00). Indeed, since

2

dn=Y(y; k) = sn=1(4/ 1;5’ i k) ([13]-pg. 31) we have that ¢ needs to satisfy

¢= sn_l(i_2 1_ = ; k) (5.30)
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Now since sn~!(1/v/2;0) = sin™*(1/v2) = Z, sn™'(1;1) = tanh™'(1) = +00, and the right-hand side of
(5.30) is a strictly increasing mapping of k 6 (O, 1) we obtain our affirmation. Thus since g(0, k) > 2 for
every k € (0,1) the intermediate value theorem shows the inequality in (5.29).

Next we show that the following function

F(C,k):2(K(k)—C)+2_k (E(C; k) — E(k)) (5.31)

for (¢,k) € I =10,4] x [0, 1], with § < 7/4, assumes its maximum value on the boundary of the rectangle
I and it which is zero. Therefore,

F(C,k)<0  forall (C,k) € (0,6) % (0,1). (5.32)

We note initially from the relations E(¢; 1) fo sech?(z)dr < 1, E(1) = 1 and limy,_,1+ (1—k*)K (k) = 0,
that for every ¢ € [0, §] we have F(¢,1) = llmk,_,1+ F(¢, k) = —oc0. Moreover, from (5.29) and the relations
([13]-pg. 282)

oF 2 — k? OF Kk(E(k)— K(k)) 2k

o0 = 2Tt Gh >0 =T TS
we obtain that F' do not have critical point in the interior of I. Now, since K(0) = F(0) = 3 and
E(¢;0) = ¢ it follows that for every ¢ € [0,4], F({,0) = 0 and so from (5.33) we have that F(0,k) <
and F(0,k) < 0 for all £ € (0,1). Thus we obtain inequality in (5.32).

Now, from the theory in Section 4 we know that a and k are smooth functions of w with a(w) — 0 as
w — 400, therefore if follows from (5.32) that the right-hand side of (5.28) is negative for w large, which
a contradiction.

Therefore v = 0 and so for Z > 0 one has that Ker(L;) = {0}. The case Z < 0 follows similarly.
This finishes the proof. O

E(k)— E(Gk) <0  (5.33)

The next result will be used more later, but it is also interesting by itself.

Proposition 5.2. Let Z € R—{0}. If X is an simple eigenvalue for L1 then the eigenfunction associated
is either even or odd.

Proof. let v € D(L1) — {0} such that L1v = Av. Then, since ¢, z is even, we also have for {(x) = v(—x)
the relation £1¢(z) = A{(z). Then there exists § € R such that v(z) = pv(—=z) for x € R. If v(0) # 0
then § = 1 and thus v is even. If v(0) = 0 from (5.4) we have that v € H2, and so v/(z) exists for z € R.

Then we get that v'(0) = —Bv’(0) and from the Cauchy uniqueness principle v'(0) # 0 (in other way,
v =0). Therefore § = —1 and so v is a odd function. 0

5.3. Counting the negative eigenvalues for £; 7. In this subsection we use the theory of perturbation
for linear operators to determinate the number of negative eigenvalues of L1 7 for Z # 0. We will use
the theory of analytic perturbation for linear operators (see [35] and [44]) and some arguments found in
[37]. Our study will be divided into four steps:

(I) From our analysis in Section 4 it follows that by fixing w large one has the convergence in (5.2)
being in H;er

(IT) The linear operators L; in (1.27)- (1.28) are the self-adjoint operators on L2, associated with the

following bilinear forms defined for v,w € H},,,

QL,Z(”) w) = (Vg, We) + wiv,w) — Zv(0)w(0) — <3¢37Zv, w)

; 2 (5.34)
9 z(v,w) = (vz, we) +w (v, w) = Zv(0)w(0) = (), 70, w)-
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Indeed, since the proof for £ is similar to the one of Lo, we only deal with £;. Since the form Q}u, » has
domain H),, x H}., and it is symmetric, bounded from below and closed, from the theory of representation

of forms by operators (The First Representation Theorem in [35], VI. Section 2.1), one has that there is

a self-adjoint operator £ : D(L1) € L2, — L2, such that

T per

D(£Tl) ={veH),  Fwel;, st.VzeH),, Q ,(v,2) = (w,2)}, (5.35)

per>

and for v € D(L;) we define L1v = w, where w is the (unique) function of L., which satisfies O}, ,(v, 2) =
(w, z) for all z € H}

per- A similar operator E; and domain D(E;) associated to QZ) 7 s obtained.

Next, we describe explicitly the self-adjoint operators a and ng
Proposition 5.3. The domain for both EI and i:; m Lger 18
Dz = {¢ € Hpe, N H*((0,2m)) = ¢'(04) = ¢'(0-) = —Z¢(0)}, (5.36)

and for v € Dz one has that

~ > 2 s d? 2

Liv = —@v—l—wv—?)gowyzv, Lov = —@U—va—cp%zv. (5.37)
Proof. Since the proof of Ly is similar to the one of £y, we only deal with £;. We consider Qb 7z =95+9,
with QL : Hl x Hl  — Rand QL : L2 x L2, — R defined by

per per per per

9, (v,2) = (vo, 22) — Zv(0)2(0), QL (v, 2) = w(v,z) — 3(p2 40, 2). (5.38)

We denote by Ty (resp. T2) the self-adjoint operator on L2, (see Kato [35], VI. Section 2.1) associated
with Q% (resp. QL). Thus, D(T7) = D(E;) (D(T2) = L2,,). We claim that T} is a self-adjoint extension
of the operator A° defined in Section 3. Let v € HZ,, such that v(0) = 0, and define w = —v,, € L2,.
Then for every z € HJ,, we have Q4 (v,2) = (w,z). Thus, v € D(T1) and T1v = w = —j—;v. Hence,

A% C T1. So, using Theorem 3.1 there exists 8 € R such that D(T;) = D(—Ap) which yields the
claim. Next we shall show that § = —Z. Take v € D(771) with v(0) # 0. Following the ideas in
(5.6) we obtain (T1v,v) = [v'(0+) — v/(0-)]v(0) + ||vz]|* = ||ve]|? + B[v(0)]?, which should be equal to
9L (v,v) = ||vz]|? — Z[v(0)]?. Therefore 8 = —Z, and the Proposition is proved. O

(IIT) By Proposition 5.3 we can drop the tilde over a and E; and work with the operators L,z and
Lo, z. The following Lemma verifies the analyticity of the families of operators £; z.

Lemma 5.1. As a function of Z, (L1,z) and (L2,z) are two real-analytic families of self-adjoint operators
of type (B) in the sense of Kato.

Proof. From Proposition 5.3, Theorem VII-4.2 in [35], it suffices to prove that the families of bilinear
forms (Ql, ;) and (QZ, ;) defined in (5.34) are real-analytic family of type (b). Indeed, it is immediate
that they are bounded from below and closed. Moreover, Theorems 4.3-4.4 and the decomposition of
Q. 7 into Q% and Q! implies that Z — (Ql, ,v,v) is analytic. The proof of the analyticity of the family
(92 ) is similar to the one of (Q, ). O

Remark: The explicit resolvent formula for —A_z in (3.13) can be used to give another proof of the
fact that the families (L; z) are real-analytic in the sense of Kato.

The following result is a consequence of the classical Floquet theory (see [40], [33] and [5]) and it gives
a precise description of the spectrum of the self-adjoint operator in (1.31) which we want to perturb.
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Theorem 5.2. The operator Ly has exactly one negative simple isolated first eigenvalue 9. The second
eigenvalue is zero, and it is simple with associated eigenfunction d%(bw-,o- The rest of the spectrum is
positive and discrete.

Remark: The Theorem 5.2 can also be shown by using a Fourier approach developed by An-
gulo&Natali in [8].

Proposition 5.4. There exist Zy > 0 and two analytic functions 1 : (—Zy, Zp) — R and Q : (—Zy, Zy) —
L2, such that

per
(1) 11(0) = 0 and ©(0) = L.
(ii) For all Z € (—Zy, Zy), II(Z) is the simple isolated second eigenvalue of L1,z and Q(Z) is an
associated eigenvector for 11(Z).
(i) Zo can be chosen small enough such that, except the two first eigenvalues, the spectrum of L1,z
18 positive.

Proof. From Theorem 5.2 we separate the spectrum o(Lg) of Lg in (1.31) into two parts o9 = {70,0} and
o1 by a closed curve I' (for example a circle) such that oy belongs to the inner domain of I' and o7 to the
outer domain of I' (note that o1 C (b, +00) for b > 0). From Lemma 5.1 follows that that I' C p(L4 z)
for sufficiently small |Z| and (L4 z) is likewise separated by I" into two parts so that the part of o(L1 z)
inside I" consists of a finite system of eigenvalues with total multiplicity (algebraic) two. Therefore we
obtain from the Kato-Rellich Theorem (see Theorem XI1.8 in [44]) the existence of two analytic functions
IT, © defined in a neighborhood of zero such that we obtain the items (i), (ii) and (iii). This completes
the proof of the Proposition. (|

Next we shall study how the perturbed second eigenvalue II(Z) changes depending on the sign of Z.
For Z small we have the following picture.

Theorem 5.3. There erists 0 < Zy < Zy such that II(Z) < 0 for any Z € (—Z1,0) and II(Z) > 0 for
any Z € (0,Z1). Therefore, for Z negative and small L1,z has exactly two negative eigenvalues and for
Z positive and small L1 7 has exactly one negative eigenvalue.

Proof. From Taylor’s theorem we the following expansions

(Z) = BZ+0(Z%), and QUZ) =+ Zho + O(Z?) (5.39)
where ¢,y = L, 0, B €R (8 =1I'(0)) and ¢ € L2., (o = '(0)). The desired result will follow if we
show that 3 > 0. From Theorems 4.2, 4.3 and 4.4 there exists xo € H;ET such that for Z close to zero

Pu.z = buo+ Zxo+ O(Z?). (5.40)
Now, using (5.40) to substitute into (1.16) and differentiating with respect to Z, we obtain
(Loxo, ¥) = bu0(0)(0) + O(2), (5.41)

for any ¢ € H),,.
We develop 3 with respect to Z. We compute (L1,2(Z), ¢, o) in two different ways.
(1) Since L1, 2Q(Z) =I1(Z)QU(Z) it follows from (5.39) that

(L1,202), ¢l,.0) = BZ| 0, 01> + O(2?). (5.42)
(2) Since L, 7 is self-adjoint, ¢, 5 € D(L1,7) and
L1200 = —6Z¢u 08, 0X0 + O(Z?), (5.43)
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we obtain from (5.39) and (5.43) that
(£1,22), ¢, 0) = —6Z(d, 0, X00w,000, 0) + O(Z?). (5.44)

It is easy to see that Lo(wdw,o — @2 o) = 60u,0(¢), ¢)% which combined with (5.44) and (5.41) gives us
the last equality

(£1.29(2), ¢, 0) = = Z[wd?, (0) — 65 0(0)] + O(Z?). (5.45)
Finally, a combination of (5.42) and (5.45) leads to

Wéf’i,o(o) - Qf;,o(o)

B=- EANE +0(Z). (5.46)
w,0
Now, from Theorem 4.1 we have ¢, 0(0) € (0, /w) and so 8 > 0 for Z small. Hence, the first equality
in (5.39) completes the proof. (]

(IV) Now we are in position for counting the number of negative eigenvalues of L; 7 for all Z, using
a classical continuation argument based on the Riesz-projection. We denote the number of negatives
eigenvalues of L; z by n(L; z).

Theorem 5.4. Let w be large. Then
(1) for Z>0, n(Lq1,z) =1,
(2) for Z <0, n(Lq,z) =2.

Proof. We recall that for w large and Z # 0, Ker(L1,z) = {0}. Let Z < 0 and define Z, by
Zoo = inf{z < 0: L, z has exactly two negative eigenvalues for all Z € (z,0)}.

From Theorem 5.3 one has that Z. is well defined and Z,, € [—00,0). We claim that Z, = —oo.
Suppose that Zo, > —c0. Let N =n(Lq 2z, ) and I" a closed curve (for example a circle or a rectangle)
such that 0 € I' C p(L1,z..) and such that all the negatives eigenvalues of L1 z_ belong to the inner
domain of I'. From Lemma 5.1 it follows that there is a § > 0 such that for Z € [Zo — 6, Zoc + J]
we have I' C p(L1.z) and for € € T, Z — (L1.z — €)1 is analytic. Therefore the existence of an
analytic family of Riesz-projections, Z — P(Z), given by P(Z) = —5& [(L1,z — £)7'd¢, implies that
dim(Rank P(Z)) = dim(Rank P(Z«)) = N, for all Z € [Zoo — §,Zs + d]. Now by definition of
Z oo, there exists zp € (Zoo, Zoo + 0) and L3 z has exactly two negative eigenvalues for all Z € (zo,0).
Therefore L1,z s has two negative eigenvalues and N = 2, hence £ 7 has two negative eigenvalues for
7Z € (Zs — 4,0) contradicting the definition of Z,. Therefore, we have established the claim Z,, = —oo.
A similar analysis is applied to the case Z > 0. This finishes the proof of the Theorem. (]

Remark: We can choose I' independently of the parameter Z < 0 in the beginning of the proof of
Theorem 5.4 in the following manner : since for all Z, ¢,z < m + < V2w, for ||f|| = 1 and f € D,
(Lrzf, f) 2 =3 [¢l ;f?dx 2 —6w. Therefore, inf (L1, z) 2 —6w for all Z < 0. So, T' can be chosen as
the rectangle I' = OR for R being R = {z € C: z = 21 +i29, (21, 22) € [-6w—1,0] x [—a, a], for some a >

0}.

Proposition 5.5. The function Q(Z) defined in Proposition 5.4 and associated to the second negative
eigenvalue of L1z can be extended to (—oo,00). Moreover, Z) € H),, is an odd function for Z €
(—00,00).

Proof. From Lemma 5.1 and Theorem XIIL.7 in [44] the set I'g = {(Z,\)|Z € R, A € p(L1,2)} is open and
(Z,\) € Ty — (L1,z — A)~!is a analytic function in both variables. So, the argument in Proposition 5.4
implies that the functions Q(Z) and II(Z) are analytic for every Z € R. Next we consider Z < 0 (the
case Z > 0 is similar). From Proposition 5.2 and Proposition 5.4 the eigenvectors 2(Z) are even or odd

T
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and Q(0) = %qﬁw’o is odd. Then, from the equality limz_,0(Q(Z),Q(0)) = [|€2(0)||*> # 0, one has that
(Q(Z),Q(0)) # 0 for Z close to 0. Thus Q(Z) is odd. Let zo be 200 = {z < 0: Q(Z) is odd for any Z €
(z,0]}. Suposse now that zoo > —o00. If Q(24) is odd, then by continuity there exists § > 0 such that
Q(z00 — ) is odd which is a contradiction. Thus Proposition 5.2 implies that Q(z.) is even. Now, since
Q(zo0) is the limit of odd functions we obtain that Q(zo) is odd. Therefore Q(z) = 0, which is a
contradiction because (2 ) is an eigenvector. This concludes the proof of the Proposition. g

5.4. Convexity condition. Here, we shall prove the increasing property of the mapping w — [|pw, z||%,
for all Z, which suffices for our stability /instability results for the orbit defined in (1.18).

Theorem 5.5. Let Z € R — {0} and w large. Then the dnoidal-peak smooth curve w — ¢, z given in
(1.26) satisfies ¢y, z||* > 0.

Proof. For Z > 0 we have ¢, z = ¢.,z. Then via a change of variable and from Theorem 4.3 we have
fora=a(w),m =m4, k=k(w) and K —a = \’7/1—7T the equality

louzl? =t [ an f|s|+ak)ds—2f mIB(k) — B(@)] = 2V3n[B() - B(ea k). (547)

Here E(pq, k) = [ V1—k2sin®0 df = [ dn®(u;k) du = E(a), with sinp, = sn(a) and E(k) =
E(r/2,k). Next we consider the identity

d dn OEN dk  OF dyp,
qoloell? = 2VTL 1B () — Blew B +2om (B0 - 5r) o - -] 649)
We shall calculate the differentiation terms in (5.48).
(1) From the definition of E(:,-) one has that aE (par k) = /1 —Ek?sn2(a
(2) From [13] we obtain Oy E(pq, k) = (E(a) — a)/k
(3) Next, since sn(u+ K) = Zzgzg = cd(u) one has that ¢, (w) = sin~*[cd(n7/v/2)]. So
d _dn d mo
—pa= dwcd(ﬁw, k). (5.49)
Now, from using [13] again one finds that
d T 0 dn 0 dk
Lea( Mgy = = Cog( M) 9 g )&
dw (\/5 k) V2 0u (\/_ ) +8k (\/_ )dw
k/27T dm sn { ( ) _ k,QEF} dk
V2 dw dn? kdn2 V2 ldw
So, from (5.49) and from the equality dn(u + K) = k' /(dnu)
d ™ dm 1 Ui o 1dk
o = dna 2 dw k2 {E(\/g”) k \/5”} %) (5:50)
(4) Combining the identities
d . E(k)-K?K(k)  wdg _ d ke,
and E("T ) — E(k)+k"?%a = f;;_a[k” — dn?(u)]du = —k? f;f_a en?(u)du it follows that
d ko[ dk
P = dn(a) [a/(w) — /Kia cn%u)dua} = dn(a)A(w). (5.51)

We observe that A(w) < 0 and so %g@a < 0.
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Then, gathering the information in (5.48) and from (1)-(4) above we obtain that

d ., Ar, , dk

— ||| ==K (k)| E(k) — FE E' (k) K(k)—a]|=—

lull? = = [K'(R)[E(k) - E(a)] + B'(W)[K (k) - a]| ==

- F k

QT(CL)Z— — 2v2m1dn?(a) A(w).

Now, since a — E(a) = [¢'[1 — dn®(u)]du = k? [ sn®(u)du > 0, E(k) — E(a) > 0, a/(w) <0, A(w) <0

and 4£ > 0 we obtain that the expression on the second hne in (5.52) is positive. Therefore from (5.52)
one concludes that

(5.52)
~ 24 BK) ~ Bla)] + ~[K(k) —a

" gual? > LK) ER)) ~ Bla) = K (k) — a- (k) .
> IR (R)IB()) — a-c [ (K) + B(B)] > (K (RJE(K) — 5 (K(k) + E(k))

where w is chosen large enough such that a(w) < % We note that here we have used that the mapping

k — K (k) + E(k) is increasing and so - [K (k) + E(k)] = L [K (k) + E(k)]9£ > 0. Since - [K(k)E(k) —

(K (k) + E(k))} > 0, it follows from (5.53) that - ||, z[|* > 0 for w large.
Next, we consider the case Z < 0. For ¢, 7z = CW,Z and 3 = \/_/771 one has that

el =t [ an (el o)=L [ =1 [ =0, G

using that K +a = 7. So, £ |1C. 7[> = G'(8)F = V—gma/(ﬁ), where

¢ =15 [ s+ 55 [ ] = 167210 (5.55)

The idea now is to show that H(8) < 0. Indeed, from Section 4 we have w — 72(w) is a positive decreasing
function, then for w — +oo follows 73 /2w — 0. So, Theorem 4.4 implies that k2 — 1 and n?/2w — 1 for
w — +oo. Thus, # — 0 as w — +o0o. Hence, a(8) = a(n; *(v2/3)) — 0 as 8 — 0 (see Corollaries 4.3
and 4.5). Since dn(z;1) = sech(z) and K(1) = +oo we obtain H(0) = — [ sech?(y)dy < 0. Therefore
H(B) < 0 for (3 close to zero. This completes the proof of the Theorem. O

5.5. Stability results. From the last subsections our stability results associated to the orbit in (5.1)
generated by the dnoidal-peak solution profile ¢, z in (1.26) can be now established. As it was pointed
the abstract theory of Grillakis, Shatah and Strauss [28] shall be use, and so we briefly discuss the
criterion for obtaining stability or instability in our case. Consider the linear operator H,, 7 defined in
(5.3) and denote by n(H,, z) the number of negative eigenvalues of H,, 7. Define

(w0) 1, if Oullpwzl|? >0, at w=wo,
w =

bzl 0, if dullpwzl®* <0, at w=wo.
Then, having established the Assumption 1, Assumption 2 and Assumption 3 of [28], namely, the exis-
tence of global solutions (Proposition 3.1), the existence of a smooth curve of standing-wave, w — ¢, z

(Theorem 4.3 - Theorem 4.4), and Ker(L1,z) = {0}, Ker(L2,z) = [¢uw,z], the next Theorem follows from
the Instability Theorem and Stability Theorem in [28].

(5.56)

Theorem 5.6. Let wy be large.

(1) If n(Hwy,z) = pz(wo), then the dnoidal-peak standing wave "' oy, 7 is stable in H,, .([—m,7])
by the flow determined by the NLS-§ equation (1.15).
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(2) If n(Hyy.z) — pz(wo) is odd, then the dnoidal-peak standing wave €™t
H!, ([-m,7]) by the flow determined by the NLS-§ equation (1.15).

per

Puwo,z 18 unstable in

Now we can prove our main result Theorem 1.1

Proof. From Theorem 5.5 follows that pz(w) =1 for all Z € R— {0} and w large. Next, from Proposition
5.1 we have that Ly 7 has zero as a simple eigenvalue and from Theorem 5.1 we have L1 z has a trivial
kernel. Thus, from Theorem 5.6, Theorem 5.4 we obtain the item (1) and item (2).

Proposition 5.5 assures that the second eigenvalue of £; 7 considered in the whole space Lper([ T, 7))
is associated with an odd eigenfunction, and thus dissapears when the problem is restricted to sub-
space of even periodic functions. Moreover, since ¢, 7 is an even function and trivially satisfies that
(L1,20w.z,pw,z) < 0, for Z < 0, we obtain that the first negative eigenvalue of L; z is still present

when the problem is restricted to the subspace of even periodic function of per([ 7, 7)), namely,
H}\op coen([=7, 7). So we obtain in this case that n(H, zlmy,, o (=) = 1. Therefore item (3)

of the Theorem follows from item (1) of Theorem 5.6 and Proposition 3.1. This finishes the proof of the
Theorem. 0

6. APPENDIX
We shall establish two main properties of the period functions 7 and T’ defined in (4.21) and (4.35),
respectively. Namely, d,7- < 0 and 9,1 < 0.
1) 0,T- < 0 for w large: We denote g = ﬁ\/&u —n2, then ¢T_ = K — a. So,
1 Ek)—(1-k)K(k)dk d

g@wT,:— (K—a)+ k(l—k2) @—%

S a(w). (6.1)

Next, for f(w) = M(w)®(w) and ¢ = sin_l( 1;!2 ), we obtain from the relation a = dn=1(f; k)
F(p; k) that (see pgs. 282 and 284 in [13])

d 1 0y E(a) — (1 —k?)a  ksn(a)en(a) 7dk
2w = dn(a)% [ k1—k2)  (1— k%dn(aﬂ@' (62)
Now, since dk = m follows from (6.2) that gd,7— < 0 if and only if
2 Zsn(a)en(a
—(K —a)+ E(k) — E(a) — (2w — nQ)d:(a) g—i + i dE”L()CL) @) < 0. (6.3)
Next,
Jp 1 1 1 d o 2sn?(a)dk
dw  2cn(a)sn(a)l ﬁ@(f )- k %} (64)
implies that (6.3) is equivalent to
(K = a) + E(b) ~ Ela) + g (77) (a)%(‘f2)+%<0' (6.5)

So, since a(w) — 0 and k — 1 as w — 400 we have from (6.5) that it is sufficient to show that
limg, oo 22— " “4(f2) = 0, because of K(1) = 400, E(1) =1, E(0) = 0, dn(0) = cn(0) = 1 and

sna

sn(0) = 0. Indeed from the definition of f and (4.23) follow that

: 22 d 2\ _ 72
Jlim (2w =) () = 22, (6.6)
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So, since f?(w) — 1 a2s w — +oo and sn(a) = %\/1 — f? we obtain that the " Hospital’s rule
implies lim,, | %%(ﬂ) = Z2limg, 4 oo W =27% 2 limyyoe /1 — f2=0.
2) 0,T <0 for w large: From g7y = K + a we obtain

7 Ek)—(1-k)K(k)dk d
Ty = ———(K — 4+ — 6.7
gOont + 2w_772( +a’)+ k(l—k2) d77 d?’]a ( )
Next, by using a similar formula to (6.2) for d%]a and g—f] = (7225_(717;;2,3 follow from (6.7) that
g0,T+ < 0 if and only if
2 2 2 2 2

n n 1nk*(2w —n*) Op  k*sn(a)cen(a)
—K(k)—Ek)+ —a—F - =+ —— <. 6.8
w (k) (k) + w " (a) + 2 wdn(a) In dn(a) < (6:8)

Now, since % = 2(21:,5) and k — 1, %ZK(k) — E(k) — —1 and a(w) — 0 as w — 400, we have

that for obtaining (6.8) it is sufficient to show that
2w —n?0
lim X -1 9% _

0. 6.9
w—+00 w 377 ( )

Indeed, since sn(0) = 0, g—: —0, (2w — nz)d%(fz) — —4n as w — 400,

2sn2(a) dk

O¢ ! [ . d(fQ)—Td—n ) (6.10)

an - 2cn(a)sn(a) L k2 dp
im0 = = limy o %\/1 — f?2 =0, by 'Hospital’s rule and (6.6), we obtain (6.9).
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