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Abstract. We study the existence and stability of space-periodic standing waves for the space-periodic
cubic nonlinear Schrödinger equation with a point defect determined by a space-periodic Dirac distri-
bution at the origin. This equation admits a smooth curve of positive space-periodic solutions with
a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and con-
tinuation argument, we prove that in the case of an attractive defect the standing wave solutions are
stable in H1

per
([−π, π]) with respect to perturbations which have the same space-periodic as the wave

itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even
functions of H1

per
([−π, π]) and unstable in H1

per
([−π, π]) with respect to perturbations which have the

same space-periodic as the wave itself.

1. Introduction

Consider the semi-linear Schrödinger equation (NLS)

i∂tu+ ∆u ± |u|pu = 0, (x, t) ∈ R
n × R, (1.1)

where u = u(x, t) is a complex-valued function and 0 < p < ∞. This is a canonical dispersive equation
which arises as a model in several physical situations, see for example [48], [14], and references therein.

The mathematical study of the NLS (the local well posedness of its initial value problem (IVP) and
its periodic boundary value problem (PBVP) under minimal regularity assumptions on the data, the
long time behavior of their solutions, blow up and scattering results, etc) has attracted a great deal of
attention and is a very active research area (see [16], [10], [49], and [38]).

in [51] it was established that the 1-dimensional cubic case of (1.1) ( i.e. NLS with (n, p) = (1, 2)) is
completely integrable. Thus, using the inverse scattering theory it can be solved in the line R (IVP) and
in the circle T (PBVP) (see [1], [39] and references therein).

Special solutions of the NLS equation (1.1) have been widely considered in analytic, numerical and
experimental works. In particular, in the focussing case (+ in (1.1)) one has the “standing waves”
solutions

us(x, t) = eiωtφ(x), ω > 0, (1.2)

or their generalization “travelling waves” solutions

utw(x, t) = eiωt ei(c·x−|c|2t)φ(x − 2ct), ω > 0, c ∈ R
n, (1.3)
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with φ = φω,p being the unique positive, radially symmetric solution (ground state) of the nonlinear
elliptic problem

−∆φ+ ωφ(x) − φp+1(x) = 0, x ∈ R
n, (1.4)

satisfying the boundary condition φ(x) → 0 as |x| → ∞. In the one dimensional case, n = 1, φ is given
by the explicit formula (modulo translation)

φ(x) = φω,p(x) =
[ (p+ 2)ω

2
sech2

(p√ω
2

x
)] 1

p

. (1.5)

The stability and instability properties of the standing waves have been extensively studied. A crucial
role in the stability analysis is played by the symmetries of the NLS equation in Rn. The most important
ones for this purpose are :

(1) phase invariance: u(x, t) → eiθu(x, t), θ ∈ R;
(2) translation invariance: u(x, t) → u(x+ y, t), y ∈ Rn;

(3) Galilean invariance: u(x, t) → ei(v·x−|v|2t)u(x− 2vt, t), v ∈ Rn.
(4) Scaling invariance: u(x, t) → λ2/pu(λx, λ2t), λ ∈ R.

So, if one considers the orbit generated by the solution φ = φω,p of (1.4) and the phase-invariance
symmetries above, namely,

Θ(φω,p) = {eiθφω,p(· + y) : θ ∈ [0, 2π), y ∈ R
n}, (1.6)

is known that in the one dimensional case, n = 1, Θ(φω,p) is stable in H1(R) by the flow of the NLS
equation provided that p < 4 and unstable for p ≧ 4 (for details and results in higher dimensions see
Cazenave&Lions [17], Cazenave [16], Weinstein [50]). This means that for p < 4, if u0 is close to Θ(φω,p)
in H1(Rn), then the corresponding solution of (1.1) u(t) with initial data u0 remains close to the orbit
Θ(φω,p) for each t ∈ R.

From now on we shall restrict our attention to the one dimensional focussing NLS

i∂tu+ ∂2
xu+ |u|pu = 0, p > 0. (1.7)

In contrast to the standing waves solutions in the line commented above relatively less is known about
the existence and stability of periodic standing wave solutions, i.e., φ in (1.2) being a periodic solution
of the equation (1.4).

A partial spectral stability analysis was carried out by Rowlands [45] for the case p = 2 with respect
to long-wave disturbances, who showed that space-periodic waves with real-valued profile are unstable.
Similar results were also obtained for certain NLS-type equations with spatially periodic potentials by
Bronski&Rapti [12]. The first results concerning the nonlinear stability of space-periodic standing waves
are due to Angulo [5]. In [5] it was established the existence of a smooth family of dnoidal waves for the
cubic NLS equation (p = 2 in (1.7)) of the form

ω ∈
( π2

2L2
,+∞

)
→ φω,0 ∈ H∞

per([−L,L]), (1.8)

where the profile of φω,0 is given by the Jacobian elliptic function called dnoidal, dn, by the formula

φω,0(ξ) = η1dn
( η1√

2
ξ; k

)
, (1.9)

with η1 ∈ (
√
ω,

√
2ω) and the modulus k ∈ (0, 1) depending smoothly on ω. Angulo showed that for

every ω > π2

2L2 the 2L-periodic wave φω,0 is orbitally stable with respect to perturbations which have the
same period as the wave itself, and nonlinearly unstable with respect to perturbations which have two
times the period (4L) as the wave itself. Indeed, the same analysis used to obtain the instability result
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provides the nonlinear instability of the dnoidal wave by perturbations which have j-times (j > 2) the
period as the wave itself (for further details see also [5] and [6]).

In [24]-[25] Gallay&Haragus have shown the stability of space-periodic traveling waves described in
(1.3) for the cubic NLS equation by allowing the profile φ being complex-valued. In the case p = 4 in
(1.7), Angulo&Natali [9] have shown the existence of a family of periodic waves of the form described in
(1.2) for which there is a unique (threshold) value of the phase-velocity ω which separates the two global
scenarios: stability and instability.

In the past years, the following nonlinear Schrödinger model (NLS-δ henceforth) in the line

i∂tu+ ∂2
xu+ Zδ(x)u+ |u|pu = 0, (1.10)

where δ is the Dirac distribution at the origin, namely, 〈δ, v〉 = v(0) for v ∈ H1(R), and Z ∈ R, it
has received a good attention by mathematicians and physicists. The equation (1.10), Z 6= 0 has been
considered in a variety of physical models with a point defect, for instance, in nonlinear optics and Bose-
Einstein condensates. Indeed, the Dirac distribution is used to model an impurity, or defect, localized at
the origin, and it is is described by the following boundary problem (see Caudrelier&Mintchev&Ragoucy
[18]) 




i∂tu(x, t) + ∂2
xu(x, t) = − |u(x, t)|p u(x, t), x 6= 0

lim
x→0+

[u(x, t) − u(−x, t)] = 0,

lim
x→0+

[∂xu(x, t) − ∂xu(−x, t)] = −Zu(0, t)

lim
x→±∞

u(x, t) = 0,

(1.11)

hence u(x, t) must be solution of the non-linear Schrödinger equation on R− and R+, continuous at x = 0
and satisfy a “jump condition” at the origin and it also vanish at infinity. Also the NLS-δ equation (1.10)
can be viewed as a prototype model for the interaction of a wide soliton with a highly localized potential.
In nonlinear optics, this models a soliton propagating in a medium with a point defect or the interaction
of a wide soliton with a much narrower one in a bimodal fiber, see [26], [47], [15], [42], [41], [2], [11], [20],
[46], and the reference therein.

Equation (1.10) in the line with p = 2 has been considered by several authors. In a series of papers [29],
[30], [31], and [32] the phenomenon of soliton scattering by the effect of the defect was comprehensibly
studied. In particular, in [31] for the equation (1.10) with p = 2 and data

u(x, 0) = eicxsech(x− x0), x0 << −1, (1.12)

it was shown that for the |Z| << 1 the corresponding solution, the traveling wave for t > |x0|/c remains
intact. The case Z > 0 and |c| >> 1 was examinated in [29], [30] where it was proven how the defect
separate the soliton into two parts: one part is transmitted past the defect, the other one is reflected at
the defect. The case Z < 0 and |c| >> 1 was considered in [19].

The existence of standing wave solutions of the equation (1.10) requires that the profile φ = φω,Z,p

satisfy the semi-linear elliptic equation

(
− d2

dx2
− Zδ(x)

)
φ+ ωφ− |φ|pφ = 0. (1.13)

In Fukuizumi&Jeanjean [22] (see also [26]) it was deduced the formula for the unique positive even solution
of (1.13), modulo rotations :

φω,Z,p(x) =
[ (p+ 2)ω

2
sech2

(p√ω
2

|x| + tanh−1
( Z

2
√
ω

))] 1
p

, x ∈ R, (1.14)
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if ω > Z2/4. This solution is constructed from the known solution (1.5) in the case Z = 0 on each side of
the defect pasted together at x = 0 to satisfy the conditions of continuity and the jump condition in the
first derivative at x = 0, φ′(0+) − φ′(0−) = −Zφ(0) determined by (1.11). So φ belongs to the domain
of the formal expression −∂2

x − Zδ (see Section 3 below or [3])

{u ∈ H1(R) ∩H2(R − {0}) : u′(0+) − u′(0−) = −Zu(0)}.
Notice that there is no nontrivial solution of (1.13) in H1(R) when ω ≦ Z2/4.

The basic symmetry associated to equation (1.10) is the phase-invariance since the translation invari-
ance of the solutions is not hold due to the defect. Thus, the notion of stability and instability will be
based only on this symmetry and is formulated as follows:

Definition 1.1. For η > 0, let φ be a solution of (1.13) and define

Uη(φ) =
{
v ∈ X : inf

θ∈R

‖v − eiθφ‖X < η
}
.

The standing wave eiωtφ is (orbitally) stable in X if for any ǫ > 0 there exists η > 0 such that for any
u0 ∈ Uη(φ), the solution u(t) of (1.10) with u(0) = u0 satisfies u(t) ∈ Uǫ(φ) for all t ∈ R. Otherwise,
eiωtφ is said to be (orbitally) unstable in X.

Gathering the information in [22], [23], [26], [37], and [43] in the cases of X = H1(R) or X = H1
rad(R),

one can summarize the known results on the stability and instability of standing waves associated to the
solitary wave-peak in (1.14) as follows:

• Let Z > 0 and ω > Z2/4.
(a) If 0 < p ≦ 4, the standing wave eiωtφω,Z,p is stable in H1(R) for any ω ∈ (Z2/4,+∞).
(b) If p > 4, there exists a unique ω1 > Z2/4 such that eiωtφω,Z,p is stable in H1(R) for any

ω ∈ (Z2/4, ω1), and unstable in H1(R) for any ω ∈ (ω1,+∞).
• Let Z < 0 and ω > Z2/4.

(a) If 0 < p ≦ 2, the standing wave eiωtφω,Z,p is stable in H1
rad(R) for any ω ∈ (Z2/4,+∞).

(b) If 0 < p ≦ 2, the standing wave eiωtφω,Z,p is unstable in H1(R) for any ω ∈ (Z2/4,+∞).
(c) If 2 < p < 4, there exists a ω2 > Z2/4 such that eiωtφω,Z,p is unstable in H1(R) for any

ω ∈ (Z2/4, ω2), and stable in H1
rad(R) for any ω ∈ (ω2,+∞).

(d) If 2 < p < 4, the standing wave eiωtφω,Z,p is unstable in H1(R) for any ω ∈ (ω2,+∞), where
ω2 is that in item (c) above, and unstable in H1

rad(R) for ω = ω2.
(e) if p ≧ 4, then the standing wave eiωtφω,Z,p is unstable in H1(R).

In this paper, we study the existence and nonlinear stability inH1
per([−π, π]) of space-periodic standing

waves solutions of (1.10) in the case p = 2 and Z 6= 0, namely, for the NLS-δ model

i∂tu+ ∂2
xu+ Zδ(x)u + |u|2u = 0, (1.15)

where δ = δ0 represents the periodic Dirac distribution at the origin, namely, 〈δ, v〉 = v(0) for v ∈
H1

per([−π, π]) and u(t) ∈ H1
per([−π, π]), t ∈ R, satisfying the boundary conditions





lim
x→0+

[u(x, t) − u(−x, t)] = 0,

lim
x→0+

[∂xu(x, t) − ∂xu(−x, t)] = −Zu(0, t).

We note that by the periodic boundary conditions, the periodic Dirac distribution at the origin δ0 can
be changed by any periodic Dirac distribution δ2jπ centered in the point 2jπ, j ∈ Z. Here, we show the
existence of a branch of periodic solutions, ω → ϕω,Z , for the semi-linear elliptic equation

(
− d2

dx2
− Zδ(x)

)
ϕω,Z + ωϕω,Z = ϕ3

ω,Z , (1.16)
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where ϕω,Z > 0 is a periodic real-valued function with prescribe period 2π and where ω will belong to
a determined interval in R with ω > Z2/4. Our solutions ϕ = ϕω,Z : R → R (see (1.23) and Figure 3
below) satisfy the following boundary conditions:

(1) ϕω,Z(x+ 2π) = ϕω,Z(x), for all x ∈ R.
(2) ϕω,Z ∈ C2(R − {2nπ : n ∈ Z}) ∩C(R),
(3) − ϕ′′

ω,Z(x) + ωϕω,Z(x) = ϕ3
ω,Z(x) for x 6= ±2nπ, n ∈ N.

(4) ϕ′
ω,Z(0+) − ϕ′

ω,Z(0−) = −Zϕω,Z(0).

(1.17)

The notation ϕ′
ω,Z(0±) in (1.17) is defined as ϕ′

ω,Z(0±) = limǫ↓0 ϕ′
ω,Z(±ǫ). From the periodicity of the

function ϕω,Z one also has that ϕ′
ω,Z(±2nπ+)−ϕ′

ω,Z(±2nπ−) = −Zϕω,Z(2nπ), for n ∈ N. We recall that

if ϕω,Z is a solution of (1.16) then ϕω,Z(· + y), y ∈ R, is not necessarily a solution of (1.16). Hence, our
stability study for the “periodic-peaks” ϕω,Z will be for the orbit generated by this solution and defined
in the form

Ωϕω,Z
= {eiθϕω,Z : θ ∈ [0, 2π]}. (1.18)

From equation (1.16) arises naturally the condition that our solutions ϕω,Z need to belong to the
domain of the formal expression

−∆−Z ≡ − d2

dx2
− Zδ. (1.19)

So, we shall develop a precise formulation for this periodic point interaction, also called a periodic δ-
interaction at the origin. We present a detailed study of the model of quantum mechanics (1.19) with a
potential supported on a δ and in the framework of periodic functions. In our study of the “solvability”
of this model we will describe their resolvents explicitly in terms of the interactions strengths, Z, and the
location of the source, x = 0. We start by establishing the definition of all the self-adjoint extensions of

the operator A0 = − d2

dx2 with domain

D(A0) = {ψ ∈ D(A) : δ(ψ) ≡ ψ(0) = 0}, (1.20)

which is a densely defined symmetric operator on L2
per([−π, π]) with deficiency indices (1, 1). Here A

represents the self-adjoint operator − d2

dx2 on L2
per([−π, π]) with the natural domainD(A) = H2

per([−π, π]).
Using the von Neumann theory of self-adjoint extensions for symmetric operators we can parametrize all
the self-adjoint extensions of A0 with the help of Z. Indeed, for Z ∈ [−∞,∞) we have





− ∆−Z = − d2

dx2

D(−∆−Z) = {ζ ∈ H1
per([−π, π]) ∩H2((0, 2π)) : ζ′(0+) − ζ′(0−) = −Zζ(0)}, Z 6= −∞,

(1.21)

the case Z = −∞ is discussed in Theorem 3.1 below. Then for ζ ∈ D(−∆−Z) we have

−∆−Zζ(x) = −ζ′′(x), for x 6= 2nπ, n ∈ Z.

From (1.21) we have the following observations. For ζ ∈ D(−∆−Z) we have by periodicity ζ|(−2π,0) ∈
H2((−2π, 0)), then in particular ζ|(−π,π) ∈ H2((−π, π) − {0}). Moreover, since ζ|(0,2π) ∈ H2((0, 2π)),

ζ|(0,2π) ∈ C1([0, 2π]), so that ζ(0), ζ′(0+) and ζ′(0−)(= ζ′(2π−)) are well defined. These definitions
and observations are not only important to determine solutions for equation in (1.16) but also for our
nonlinear stability theory.

In Section 4, by using the theory of elliptic integral, the theory of Jacobi elliptic functions and the
implicit function theorem we will find a smooth branch of positive, even, periodic-peak solutions of (1.16),
ω → φω,Z ∈ Hn

per([−π, π]), n = 1, 2, 3, · · ·, such that φω,Z ∈ D(−∆−Z) (therefore we obtain the conditions
in (1.17)) and satisfying

lim
Z→0+

φω,Z = φω,0 (1.22)
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where φω,0 is the dnoidal traveling wave defined in (1.9). For Z > 0, the profile of φω,Z obtained is based
in the Jacobian elliptic function dnoidal and determined by the pattern

φω,Z(ξ) = η1,Zdn
(η1,Z√

2
|ξ| + a; k

)
, ξ ∈ [−π, π] (1.23)

where η1,Z and the modulus k depend smoothly of ω and Z. The shift value a is also a smooth function
of ω and Z satisfies that limZ→0+ a(ω,Z) = 0. See Figure 3 below for a general profile of φω,Z .

Similarly, we obtain for Z < 0 a smooth branch of positive, even, periodic-peak solutions of (1.16),
ω → ζω,Z ∈ Hn

per([−π, π]), such that ζω,Z ∈ D(−∆−Z) and satisfying

lim
Z→0−

ζω,Z = φω,0 (1.24)

where φω,0 is the dnoidal wave defined in (1.9). The profile of ζω,Z is determined by the pattern

ζω,Z(ξ) = η1,Zdn
(η1,Z√

2
|ξ| − a; k

)
, ξ ∈ [−π, π]. (1.25)

See Figure 4 below for a general profile of ζω,Z . We note that the periodic-peak φω,Z and ζω,Z “converge”

to the solitary wave-peak φω,Z,2 in (1.14) when we consider η1,Z →
√

2ω. We refer the reader to Section
4 for the precise details on this convergence.

Our approach for the stability theory of the periodic-peak family

ϕω,Z =

{
φω,Z , Z > 0,

ζω,Z , Z < 0,
(1.26)

with φω,Z and ζω,Z given in (1.23)-(1.24) and ω large (by technical reasons), it will be based in the general
framework developed by Grillakis&Shatah&Strauss [27], [28], for a Hamiltonian system which is invariant
under a one-parameter unitary group of operators. This theory requires the following informations :

• The Cauchy problem: The initial value problem associated to the NLS-δ equation is well-posedness
in H1

per([−π, π]).
• The spectral condition:

(a) The self-adjoint operator L2,Z

L2,Zζ = − d2

dx2
ζ + ωζ − ϕ2

ω,Zζ (1.27)

with domain D = D(−∆−Z) given in (1.21), is a nonnegative operator with the eigenvalue
zero being simple and with eigenfunction ϕω,Z in (1.26).

(b) The self-adjoint operator L1,Z

L1,Zζ = − d2

dx2
ζ + ωζ − 3ϕ2

ω,Zζ (1.28)

with domain D = D(−∆−Z) given in (1.21), has a trivial kernel for all Z ∈ R − {0}.
(c) The number of negative eigenvalues of the operator L1,Z .

• The slope condition: The sign of ∂ω

∫ π

−π
ϕ2

ω,Z(ξ)dξ.

The local well-posedness of the Cauchy problem for (1.15) in H1
per([−π, π]) is an consequence from

Theorem 3.7.1 in [16] and from the theory spectral established in Section 3 below for the operator−∂2
x−Zδ

for Z 6= 0 (see Proposition 3.1 below). The global existence of solutions in H1
per([−π, π]) is an immediate
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consequence of the following conserved quantities for (1.15): the energy and the charge, respectively,

E(v(·, 0)) = E(v(·, t)) =
1

2

∫ π

−π

|∂xv(x, t)|2 dx− Z

2
|v(0, t)|2 − 1

4

∫ π

−π

|v(x, t)|4 dx,

Q(v(·, 0)) = Q(v(·, t)) =
1

2

∫ π

−π

|v(x, t)|2 dx.
(1.29)

Now, since the profile ϕω,Z is positive and L2,Zϕω,Z = 0, we obtain from classical theory for self-
adjoint operators that L2,Z ≧ 0 (see Proposition 5.1 below). That the kernel of L1,Z is trivial is a very
delicate point in our theory (see Theorem 5.1 below). Here we need to use the specific spectral structure
associated to the periodic eigenvalue problem in L2

per([0, 2K]) for the Lamé’s equation,

{
Φ′′(x) + [λ− 6k2sn2(x; k)]Φ(x) = 0, x ∈ (0, 2K)

Φ(0) = Φ(2K(k)), Φ′(0) = Φ′(2K(k)), k ∈ (0, 1)
(1.30)

with sn being the Jacobian elliptic function called snoidal and K the complete elliptic integral of first
type.

Lastly, to count the number of negative eigenvalues of linear operators is in general a delicate issue in
any stability theory. In the case of the self-adjoint operator L1,Z our strategy is based in two basic facts.
The first one is that in the case Z = 0, the spectrum of the self-adjoint operator L0 ≡ L1,0

L0ζ = − d2

dx2
ζ + ωζ − 3φ2

ω,0ζ (1.31)

with general domain H2
per([0, 2L]) and ω > π2/2L2, has already been described in [5] and in [8]: there is

only one negative eigenvalue which is simple, zero is a simple eigenvalue with eigenfunction d
dxφω,0. The

rest of the spectrum is positive and discrete. The second one is that for Z small, L1,Z can be considered
as a real-holomorphic perturbation of L0. So, we have that the spectrum of L1,Z depends holomorphically
on the spectrum of L0. Then we obtain that for Z < 0 there are exactly two negative eigenvalues of
L1,Z and exactly one for Z > 0. We refer the reader to Subsection 6.1 for the precise details on these
statements.

Our main stability result is the following:

Theorem 1.1. We consider the family of periodic-peak ϕω,Z in (1.26). Then, for ω large one has:

(1) For Z > 0, the dnoidal-peak standing wave eiωtϕω,Z is stable in H1
per([−π, π]) by the flow detem-

ined by the NLS-δ equation (1.15).
(2) For Z < 0, the dnoidal-peak standing wave eiωtϕω,Z is unstable in H1

per([−π, π]) by the flow
detemined by the NLS-δ equation (1.15).

(3) For Z < 0, the dnoidal-peak standing wave eiωtϕω,Z is stable in H1
per,even([−π, π]) by the flow

detemined by the NLS-δ equation (1.15).

The restriction about ω being large in Theorem 1.1 is due to technical reasons determined by the
implicit function theorem (see Section 4) and in proving the strictly increasing property of the mapping
ω → ‖ϕω,Z‖2 (see Theorem 5.5 in subsection 5.4).

This paper is organized as follows. Section 3 is devoted to establish a spectral theory for the operator
−∂2

x −Zδ for Z 6= 0. Our analysis is based in the theory of von Neumann for self-adjoint extensions. We
also establish the periodic well-posedness theory for (1.10), p = 2, in H1

per([−π, π]). Section 4 describes
the construction, via the implicit function theorem, of a smooth curve of periodic-peak for equation
(1.16). Finally, in Section 5, the stability and instability theory of the dnoidal-peak is established.
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2. Notation

For any complex number z ∈ C, we denote by ℜ z and ℑ z the real part and imaginary part of z,
respectively. For s ∈ R, the Sobolev space Hs

per([−L,L]) consists of all periodic distributions f such

that ‖f‖2
Hs = 2L

∞∑
k=−∞

(1 + k2)s|f̂(k)|2 < ∞ (see [34]). We will use the notation Hs
per or Hs

per([0, 2L])

for Hs
per([−L,L]) in several places and H0

per = L2
per. We remark that L2

per and H1
per are regarded as real

Hilbert space with inner products

〈f, g〉L2 = ℜ
∫ L

−L

f(x)g(x)dx, 〈f, g〉H1 = 〈f, g〉L2 + 〈∂xf, ∂xg〉L2 . (2.1)

We denote ‖f‖L2 = ‖f‖ and 〈f, g〉L2 = 〈f, g〉. For Ω being an open set of R, Hn(Ω), n ∈ N, represents
the classical local Sobolev space. [Hs

per]
′, the topological dual of Hs

per , is isometrically isomorphic to H−s
per

for all s ∈ R. The duality is implemented concretely by the pairing

(f, g) = 2L

∞∑

k=−∞
f̂(k)ĝ(k), for f ∈ H−s

per, g ∈ Hs
per.

Thus, if f ∈ L2
per and g ∈ Hs

per, with s ≥ 0, it follows that (f, g) = 〈f, g〉. The convolution for f, g ∈ L2
per

is defined by f ⋆ g(x) = 1
2L

∫ L

−L
f(x − y)g(y)dy. The normal elliptic integral of first type (see [13]) is

defined by
y∫

0

dt√
(1 − t2)(1 − k2t2)

=

ϕ∫

0

dθ√
1 − k2 sin2 θ

= F (ϕ, k)

where y = sinϕ and k ∈ (0, 1). k is called the modulus and ϕ the argument. When y = 1, we
denote F (π/2, k) by K = K(k). The three basic Jacobian elliptic functions are denoted by sn(u; k),
cn(u; k) and dn(u; k) (called, snoidal, cnoidal and dnoidal, respectively), and are defined via the previous
elliptic integral. More precisely, let u(y; k) := u = F (ϕ, k) then y = sinϕ := sn(u; k) = sn(u) and

cn(u; k) :=
√

1 − y2 =
√

1 − sn2(u; k), dn(u; k) :=
√

1 − k2y2 =
√

1 − k2sn2(u; k). In particular, we

have that 1 ≧ dn(u; k) ≧ k′ ≡
√

1 − k2 and the following asymptotic formulas: sn(x; 1) = tanh(x),
cn(x; 1) = sech(x) and dn(x; 1) = sech(x).

3. The one-center periodic δ-interaction in one dimension and the global
well-posedness in H1

per

In this section for convenience of the reader we establish initially a precise formulation for the periodic
point interaction determined by the formal linear differential operator

− d2

dx2
+ γδ, (3.1)

defined on functions on the torus T = R/2πZ. γ represents the coupling constant or strength attached
to the point source located at x = 0. After that we show a global well-posedness theory in H1

per([−π, π])
for the NLS-δ equation (1.15).

We note that there are many approach for studying the operator in (3.1), for instance, by the use of
quadratic forms or by the self-adjoint extensions of symmetric operators. We also note that the quantum
mechanics model in (3.1) has been studied into a more general framework when it is associated with
the Kronig-Penney model in solid state physics (see Chapter III.2 in Albeverio et al. [3]) or when it is
associated to singular rank one perturbations (Albeverio et al. [4]).
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Our main purpose in the following is to obtain many basic structures of model in (3.1) which will be
necessary in our stability theory for the periodic-peak solutions (1.23)-(1.23). For instance, to determinate
the domain and the real-analytic property (on the parameter Z) of the the self-adjoint operators L1,Z ,L2,Z

in (1.27)-(1.28). So, we will show an explicit formula for the resolvents of (3.1) in terms of the interactions

strengths, γ, and a specific description of the spectrum. So, for A = − d2

dx2 being considered with domain

D(A) = H2
per([−π, π]) and the symmetric restriction A0 ≡ A|D(A0) with dense domain D(A0) = {ψ ∈

D(A) : (δ, ψ) ≡ ψ(0) = 0}, we obtain that the deficiency subspaces of A0,

D+ = Ker(A0∗ − i), and D− = Ker(A0∗ + i), (3.2)

has dimension (deficiency indices) equal to 1. It is no difficult to see that these subspaces are generated,
respectively, by g+i ≡ (A − i)−1δ and g−i ≡ (A + i)−1δ, called deficiency elements (see Lemma 1.2.3 in
[4]).

Next we present explicitly all the self-adjoint extensions of the symmetric operator A0, which will be
parametrized by the strength γ. From the von Neumann’s theory of self-adjoint extensions for symmetric
operators (see [44]) we obtain that all the closed symmetric extensions of A0 are self-adjoint and coincides
with the restriction of the operator A0∗. Moreover, for θ ∈ [0, 2π) the self-adjoint extension A0(θ) of A0

is defined as follows;
{
D(A0(θ)) = {ψ + λgi + λeiθg−i : ψ ∈ D(A0), λ ∈ C},
A0(θ)(ψ + λgi + λeiθg−i) = A0∗(ψ + λgi + λeiθg−i) = A0ψ + iλgi − iλeiθg−i.

(3.3)

Now we give the profile of the deficiency elements g±i with ‖g±i‖ = 1. Since gi = g−i, we shall determine
a formula for g−i ∈ L2

per([0, 2π]). So, since g−i represents the fundamental solution associated to A + i

we have for Ki ∈ L2
per([−π, π]) such that

K̂i(k) =
1

k2 + i
, (3.4)

that g−i = 1
2π Ki(x) (in the distributional sense, g−i = (A+ i)−1δ = δ ⋆Ki = 1

2π Ki). Then, if we denote

β = 1+i√
2

(β2 = i) we obtain via the variational parameters method that

Ki(x) =
2π

2β sinh(βπ)
cosh

(
2πβ

( x

2π
−

[ x
2π

]
− 1

2

))
, x ∈ R. (3.5)

Here [·] stands for the integer part. Lastly, we obtain the following expression for the deficiency element
g−i. For σ = 1/(2β sinh(βπ)) and x ∈ [−π, π]

g−i(x) = σ
[
cosh

( |x| − π√
2

)
cos

( |x| − π√
2

)
+ i sinh

( |x| − π√
2

)
sin

( |x| − π√
2

)]
. (3.6)

See Figure 1 and Figure 2 below for the profile of the real and imaginary parts of g−i, ℜ(g−i) and ℑ(g−i),
respectively (We note that ℜ(g−i) has the peaks in ±2nπ, n ∈ Z, and ℑ(g−i) is a smooth periodic
function). Now, for ‖gi‖2 = ‖g−i‖2 = a0 with

a0 =

√
2

4

sinh(
√

2π) + sin(
√

2π)

cosh(
√

2π) − cos(
√

2π)

we obtain the normalized deficiency elements g̃±i = g±i

‖g±i‖
. But for convenience of notation we will continue

to use g±i. Thus, from the von Neumann formulas (3.3) we obtain from (3.6) that for ζ ∈ D(A0(θ)), in
the form ζ = ψ + λgi + λeiθg−i, we have the basic expression

ζ′(0+) − ζ′(0−) = −λ(1 + eiθ). (3.7)
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Next we find γ such that γζ(0) = −λ(1 + eiθ). Indeed, after some calculations we find the formula

γ(θ) =
−2 cos(θ/2)

ℜ[coth(βπ)ei( θ
2
−π

4
)]
, (3.8)

Therefore, if θ varies in [0, 2π), γ = γ(θ) varies in R ∪ {+∞}. For the unique θ0 ∈ [0, 2π) such that

ℜ[coth(βπ)ei(
θ0
2
−π

4
)] = 0 we have limθ↑θ0

γ(θ) = +∞.

Figure 1. Graphic of the function
ℜ(g−i) given by (3.6)

Figure 2. Graphic of the function
ℑ(g−i) given by (3.6)

So, from now on we parametrize all self-adjoint extensions of A0 with the help of γ. Thus we get,

Theorem 3.1. All self-adjoint extensions of A0 are given for −∞ < γ ≦ +∞ by the following formulas:
for γ ∈ (−∞,∞)





−∆γ = − d2

dx2

D(−∆γ) = {ζ ∈ H1
per

([−π, π]) ∩H2((0, 2π)) : ζ′(0+) − ζ′(0−) = γζ(0)}.
(3.9)

The special case γ = 0 just leads to the operator −∆ in L2
per

([−π, π]),

−∆ = − d2

dx2
, D(−∆) = H2

per
([−π, π]). (3.10)

For γ = +∞ we have −∆+∞ = − d2

dx2 , with a Dirichlet-periodic boundary condition at zero,

D(−∆+∞) = {ζ ∈ H1
per

([−π, π]) ∩H2((0, 2π)) : ζ(0) = 0}. (3.11)

Proof. By the arguments sketched above we obtain easily that A0(θ) ⊂ −∆γ , with γ = γ(θ) given in
(3.8). But −∆γ is symmetric in the corresponding domain D(−∆γ) for all −∞ < γ ≦ +∞, which implies
the relation A0(θ) ⊂ −∆γ ⊂ (−∆γ)∗ ⊂ A0(θ). It completes the proof of the Theorem. �

Remarks:

(1) From (3.9) we obtain that for ζ ∈ D(−∆γ), ζ ∈ H2((−π, π)−{0}) and ζ ∈ H2((2nπ, 2(n+1)π)),
n ∈ Z.

(2) (3.9) is the precise formulation of the formal linear differential operator − d2

dx2 + γδ, namely, for

ζ ∈ D(−∆γ), (− d2

dx2 + γδ)ζ(x) = −ζ′′(x) for every x 6= 2nπ, n ∈ Z.

Next for describing the resolvent of the self-adjoint operators −∆γ , we will use the general Krein’s
resolvent formula (see Theorem 1.2.1 in [4]). Since the proofs in the periodic case are similar to those
obtained on the line via the formula (3.12), we refer the reader to Chapters I.3 and III.2 in [3].
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By defining the integral kernel Jk ∈ L2
per([−π, π]) by

Jk(ξ) =
2π

2ik sinh(ikπ)
cosh

(
ik

(
|ξ| − π

))
, for ξ ∈ [−π, π], (3.12)

with k 6= n, n ∈ Z, we have,

Theorem 3.2. For −∞ < γ ≦ +∞, the resolvent of −∆γ in L2
per([−π, π]) is given for k 6= n, n ∈ Z,

and k2 ∈ ρ(−∆γ) by

(−∆γ − k2)−1 = (−∆ − k2)−1 − 1

4π2

2iγk

γ coth(ikπ) + 2ik
〈·, Jk〉Jk, (3.13)

Therefore, −∆γ has a compact resolvent for −∞ < γ ≦ +∞.

Next, we establish the basic spectral properties of −∆γ which will be relevant for our well-posedness
results below. We note that a more general result into the framework of the Kronig-Penney model in
solid state physics ([36]) can be established (see Chapter III.2, Theorem 2.3.1 in [3]).

Theorem 3.3. Let −∞ < γ ≦ +∞. Then the spectrum of −∆γ is discrete {θj,γ}j≧1 and such that

θ1,γ < θ2,γ ≦ θ3,γ ≦ · · ·. In particular, we have the following:

1) If −∞ < γ < 0, −∆γ has precisely one negative, simple eigenvalue, i.e.,

σp(−∆γ) ∩ (−∞, 0) = {−µ2
γ} (3.14)

where µγ is positive and satisfies γ = −2µγtanh(µγπ). The function

ψγ(ξ) =
2π

2‖Jiµγ
‖µγ sinh(µγπ)

cosh
(
µγ

(
|ξ| − π

))
(3.15)

for ξ ∈ [−π, π], is the strictly positive (normalized) eigenfunction associated to the eigenvalue
−µ2

γ. The nonnegative eigenvalues (are non-degenerate) are ordered in the increasing form 0 <

κ2
1 < 1 < κ2

2 < 22 < · · · < κ2
j < j2 < · · ·, where for j ≧ 1, κj is the only solution of

the equation cot(κπ) = 2κ
γ in the interval (j − 1

2 , j). The eigenfunction associated with κ2
j is

Jκj
∈ D(−∆γ). The sequence {j2}j≧1 is the classical set of eigenvalues associated to the operator

−∆ with associated eigenfunctions {sin(jx) : j ≧ 1} ⊂ D(A0) ⊂ D(−∆γ).
2) If γ > 0, −∆γ has nonnegative eigenvalues and the positive eigenvalues (are nondegenerate) are

ordered in the increasing form 0 < k2
1 < 1 < k2

2 < 22 < · · · < k2
j < j2 < · · ·, where for j ≧ 0, the

eigenvalue kj+1 is the only solution of the equation cot(kπ) = 2k
γ in the interval (j, j + 1

2 ). The

eigenfunction associated with k2
j+1 is Jkj+1

∈ D(−∆γ). The sequence {j2}j≧1 is the same as in

the item 1) above.
3) Zero is not eigenvalue of −∆γ for all γ 6= 0.
4) For γ = +∞, σ(−∆+∞) = {j2}j≧1 and with associated eigenfunctions {sin(jx) : j ≧ 1} ⊂

−∆+∞. The eigenvalues are nondegenerate.

Next we establish some remarks that deserve to be commented.
Remarks:

(1) It is well known from the formula in (3.12) that the resolvent for −∆ = − d2

dx2 in L2
per([−π, π]) is

given by (−∆ − k2)−1f = Jk ⋆ f , with k 6= n, n ∈ Z.
(2) Jk /∈ D(−∆γ) for k such that γ coth(ikπ) 6= −2ik. Indeed, J ′

k(0+) − J ′
k(0−) = −2π 6= γJk(0).

(3) Jk ∈ H1
per([−π, π])∩H2((2πn, 2(n+1)π)), and satisfies (−∆−k2)Jk(x) = 0 for x ∈ (−π, π)−{0}

with J ′
k(±π) = 0.
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(4) Formula (3.13) shows immediately the analytic property of the resolvent-mapping giving by
γ → (−∆γ − k2)−1. So, it property can be used for showing that the mapping of self-adjoint
operators Z → L1,Z and Z → L2,Z in (1.27)-(1.28), are real-analytic in the sense of Kato (see
section 6 below).

(5) The domain D(−∆γ), −∞ < γ ≦ +∞, consists of all elements ζ of the type

ζ(x) = ψ(x) − 2γβ

γ coth(βπ) + 2β
ψ(0)g−i(x), x ∈ R − 2πZ (3.16)

for ψ ∈ H2
per([−π, π]) and β2 = i. The decomposition (3.16) is unique with (−∆γ + i)ζ =

(−∆ + i)ψ. So, we obtain that if ζ ∈ D(−∆γ) and ζ(0) = 0 then ζ ∈ H2
per([−π, π]).

The following proposition is concerned with the well-posedness of equation (1.10) in H1
per([−π, π]).

Proposition 3.1. For any u0 ∈ H1
per([−π, π]), there exists T > 0 and a unique solution u of (1.10) such

that u ∈ C([−T, T ];H1
per([−π, π])) ∩ C1([−T, T ];H−1

per([−π, π])) and u(0) = u0. For each T0 ∈ (0, T ) the
mapping

u0 ∈ H1
per([−π, π]) → u ∈ C([−T0, T0];H

1
per([−π, π]))

is continuous. Moreover, since u satisfies the conservation of the energy and the charge defined in (1.29),
namely, E(u(t)) = E(u0), Q(u(t)) = Q(u0), for all t ∈ [0, T ), we can choose T = +∞.

If an initial data u0 is even the solution u(t) is also even.

Proof. We apply Theorem 3.7.1 of [16] to our problem. Indeed, from Theorem 3.3 we have −∆−Z ≧ −β0,
where β0 = µ2

−Z , if Z > 0 and β0 = 0 if Z < 0. So, for the self-adjoint operator A ≡ ∆−Z − β0 on

X = L2
per([−π, π]) with domain D(A) = D(−∆−Z) we have A ≦ 0. Now, from the min-max principle we

obtain that for Z > 0

λ = inf
{
‖vx‖2 − Z|v(0)|2 : ‖v‖ = 1, v ∈ H1

per([−π, π])
}

is given by λ = −β0. Therefore we may take for every Z ∈ R the space XA = H1
per([−π, π]) with norm

‖u‖2
XA

= ‖ux‖2 + (β0 + 1)‖u‖2 − Z|u(0)|2, which is equivalent to H1
per([0, 2π]) norm. So, it is very easy

to see that the uniqueness of solutions and the conditions (3.7.1), (3.7.3)-(3.7.6) in [16] hold choosing
r = ρ = 2. Finally, the condition (3.7.2) in [16] with p = 2 is satisfied because of A is a self-adjoint
operator on L2

per([−π, π]). �

4. Periodic travelling-wave for the NLS-δ model (1.15)

In this section we construct positive periodic solutions for the elliptic equation (1.16) such that the
conditions in (1.17) are satisfied. Indeed, our approach will show that is possible to have periodic peak

solutions with an arbitrary minimal period 2L and belonging to the domain of the operator − d2

dx2 − Zδ,
Z 6= 0. Our analysis is based in the theory of elliptic integral, the theory of Jacobi elliptic functions and
the implicit function theorem.

4.1. The quadrature method. We start by writing (1.17)-(3) in quadratic form. Indeed, for ϕ = ϕω,Z

and x 6= ±2nL we obtain

[ϕ′(x)]2 =
1

2
[−ϕ4(x) + 2ωϕ2(x) + 4Bϕ] ≡ 1

2
F (ϕ(x)), (4.1)

where F (t) = −t4 + 2ωt2 + 4Bϕ and Bϕ is a integration constant. We factor F (·) as

F (ϕ) = (η2
1 − ϕ2)(ϕ2 − η2

2) = 2[ϕ′]2, (4.2)
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where η1, η2 are the positive zeros of the polynomial F . We assume without loss of generality that
η1 > η2 > 0. So, η2 ≦ ϕ(ξ) ≦ η1 and

2ω = η2
1 + η2

2 , 4Bϕ = −η2
1η

2
2 . (4.3)

We note from (1.9) with k2 =
η2
1−η2

2

η2
1

, that the dnoidal-profile φω,0(ξ+ b) satisfies equation (4.2) for every

ξ ∈ R and any shift-value b.
Next, since ϕ is continuous one has [ϕ′(0+)]2 = 1

2F (ϕ(0)) and [ϕ′(0−)]2 = 1
2F (ϕ(0)). Then |ϕ′(0+)| =

|ϕ′(0−)|, which as we will show below implies that ϕ′(0+) = −ϕ′(0−), and so from (1.17)-(4)

ϕ′(0+) = −Z
2
ϕ(0). (4.4)

The case ϕ′(0+) = ϕ′(0−) can not occur. Indeed, from (1.17)-(4) it follows ϕ(0) = 0 and so ϕ′(0) exists.
Therefore from (4.2) [ϕ′(0)]2 = −η2

1η
2
2/2 which is a contradiction.

Next, we obtain restrictions on the value of ϕ(0). From (4.1) and (4.4) we need to have

Z2

4
ϕ2(0) =

1

2
F (ϕ(0)) > 0, (4.5)

and so η1 > ϕ(0) > η2. Next, since maxt∈R F (t) = ω2 +4Bϕ (which is attained for t > 0 in t0 =
√
ω), we

obtain the condition
Z2

4
ϕ2(0) ≦

ω2 + 4Bϕ

2
=

(ω − η2
2)2

2
, (4.6)

and from (4.5)

ϕ2(0) =
−(2ω − Z2

2 ) ±
√

(2ω − Z2

2 )2 + 16Bϕ

−2
. (4.7)

Since ϕ(0) ∈ R we need to have (2ω − Z2

2 )2 + 16Bϕ > 0. We start by considering the case of sign “ − ”
in the square root in (4.7), then:

(1) For 2ω − Z2

2 > 0, it follows from (4.3) that (2ω − Z2

2 )2 > 4η2
1η

2
2 and so

η1 − η2 > |Z|/
√

2. (4.8)

(2) From (4.7) we have as Z → 0 the asymptotic behavior ϕ2(0) → η2
1 .

(3) For 2ω − Z2

2 < 0 we obtain from (4.7) that 16Bϕ > 0, which is not possible from (4.3).

Now, we consider the case of sign “ + ” in the square root in (4.7), then:

(1) For 2ω − Z2

2 < 0 we have ϕ2(0) < 0, which is a contradiction.

(2) For 2ω − Z2

2 > 0 we still have relation (4.8), but as Z → 0 we obtain ϕ2(0) → η2
2 .

We are interested only in the sign “ − ” in (4.7) for our stability theory.

4.2. Profile of positive periodic peaks for Z > 0. Next we will find a even periodic profile solution,
φω,Z for (1.16) such that the peaks will be happen in points of the form ±2ns, n ∈ Z, 2s a specific
minimal period, η1 > φω,Z(0) ≧ φω,Z(ξ) ≧ η2 for all ξ, and

lim
Z→0+

φω,Z(ξ) = φω,0(ξ), for ξ fixed in (0, 2L), (4.9)

where φω,0 is the dnoidal traveling wave defined in (1.9) with a minimal period 2L (see Theorem 4.1
below). In subsection 4.5 we will show that s can be chosen equal to L.

We can see from (4.2) and (4.7) (with the sign “-”) that for

a = dn−1
(φ(0)

η1
; k

)
, (4.10)
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with k defined by

k2 =
η2
1 − η2

2

η2
1

, (4.11)

the following even peak-function

φω,Z(ξ) = φ(ξ; η1, η2, Z) = η1dn
( η1√

2
|ξ| + a; k

)
, (4.12)

for ξ ∈ [−s, s], with s defined by s ≡
√

2
η1

(K − a), satisfies the equation

−φ′′ω,Z(ξ) + ωφω,Z(ξ) = φ3
ω,Z(ξ), for ξ ∈ (−s, 0) ∪ (0, s).

Moreover, since dn( η1√
2
s + a; k) = dn(K; k) =

√
1 − k2 = η2/η1 we obtain the equality φω,Z(±s) = η2.

Furthermore, from (4.5) we obtain the jump condition, φ′ω,Z(0+)−φ′ω,Z(0−) = 2φ′ω,Z(0+) = −Zφω,Z(0).

We note tha the shift-value a in (4.10) depends of the values of Z and ω. Moreover, since 1 >

φ(0)/η1 > k′ ≡
√

1 − k2 and 1 ≧ dn(x; k) ≧ k′ for all x ∈ R, k ∈ (0, 1), with k′ = dn(K; k), it follows
that a is well-defined and a ∈ [0,K]. Lastly, by using that dn has a minimal period 2K the relation

φω,Z(2s) = η1dn(2K − a) = η1dn(−a) = η1dn(a) = φ(0) (4.13)

implies that the profile φω,Z in (4.12) can be extend to all the line as a continuous periodic function
satisfying the conditions in (1.17) with a minimal period 2s and with peak points in ±2ns, n ∈ Z (see
Figure 3 below with s = 2).

Figure 3. Profile of the periodic dnoidal-peak φ in (4.12).

Next, we recall the following theorem in Angulo [5] which justify the point convergence in (4.9). It

result will be useful more later. For η ∈ (0,
√
ω), we define for M(η, ω) ≡ 1/

√
2ω − η2,

F (η, ω) = 2
√

2M(η, ω)K(k(η, ω)). (4.14)

Theorem 4.1. Let L > 0 fixed. Consider ω0 >
π2

2L2 and η0 = η(ω0) ∈ (0,
√
ω0) such that F (η0, ω0) =

2L. Then there are intervals J0(ω0) around ω0 and N0(η0) around η0, and a unique smooth function
Λ0 : J0(ω0) → N0(η0) such that Λ0(ω0) = η0 and for η ≡ Λ0(ω) one has F (η, ω) = 2L. Moreover,

N0(η0) × J0(ω0) ⊆ {(η, ω) : ω > π2

2L2 , η ∈ (0,
√
ω)}. Furthermore, J0(ω0) = ( π2

2L2 ,+∞) and for η1 =

η1(ω) =
√

2ω − η2, the dnoidal wave solution φω,0 defined in (1.9) has fundamental period 2L and satisfies
the equation

−φ′′ω,0(x) + ωφω,0(x) − φ3
ω,0(x) = 0 for all x ∈ R.

Also, ω ∈ J0(ω0) → φω,0 ∈ Hn
per([0, 2L]) is a smooth function for all n ∈ N.
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From Theorem 4.1 we have the following properties of φω,Z in (4.12) with ω > Z2/4: From (4.7) (with
sign “−”), φω,Z(0) → η1 as Z → 0+. Then from (4.10) and from the value of s follow for Z → 0+ that

a→ dn−1(1; k) = 0 and 2s→ 2
√

2K/η1 = 2L . So, at least formally, we have that

lim
Z→0+

φω,Z(ξ) = φω,0(ξ).

The last equality is in the sense that for ω > π2

2L2 fixed and ξ ∈ (0, 2L) (see Theorem 4.1), there is a

δ > 0 such that for Z ∈ (0, δ) and Z2/4 < ω we have that the periodic-peaks φω,Z , with minimal period
2s are defined in ξ. We note that this type of convergence is not convenient for our purposes, because
the period of φω,Z is changing .

4.3. Positive periodic peaks for Z < 0. We shall find a even periodic-peak, ζω,Z , with peaks in ±2nr,
2r a specific minimal period, n ∈ Z, η1 > ζ(0) > η2, η1 ≧ ζ(ξ) ≧ η2 for all ξ, and

lim
Z→0−

ζω,Z(ξ) = φω,0(ξ), for ξ fixed in (0, 2L), (4.15)

where φω,0 is the dnoidal traveling wave defined in (1.9) with a minimal period 2L. Indeed, by choosing
a and k as in (4.10) and (4.11) we define the following even peak-function

ζω,Z(ξ) = η1dn
( η1√

2
|ξ| − a; k

)
. (4.16)

for ξ ∈ [−r, r], with r defined by r ≡
√

2
η1

(K + a). So, we have that −ζ′′ω,Z(ξ) + ωζω,Z(ξ) = ζ3
ω,Z(ξ), for

ξ ∈ (−r, 0) ∪ (0, r). Furthermore, from the equality in (4.5) we obtain the condition required in (1.17).

We also have that ζω,Z(r) = η1dn(K; k) = η2 and for p0 =
√

2a/η1, ζω,Z(p0) = η1. So, from (4.2) follows
ζ′ω,Z(±r) = ζ′ω,Z(±p0) = 0. Moreover, p0 is the only point in (0, r) where the derivative of ζω,Z is zero.

In fact, since ζ′ω,Z(ξ) = 0 if and only if sn( η1√
2
ξ−a)cn( η1√

2
ξ−a) = 0 and we have that η1√

2
ξ−a ∈ (−K,K)

then follows that η1√
2
ξ = a.

Now, by using that ζω,Z(0) = η1dn(a) = φω,Z(0) the relation ζω,Z(2r) = η1dn(a) = ζω,Z(0) implies
that ζω,Z can be extend to all the line as a continuous periodic function satisfying the conditions in (1.17)
with a minimal period 2r and with peak points in ±2nr, n ∈ Z (see Figure 4 below with r = 2). In the
next subsection 4.4 we will show that it is possible to choose r = L for any L.

Lastly, from Theorem 4.1 and the convergences φω,Z(0) → η1, a → 0, and 2r → 2L+ as Z → 0−, we
have, at least formally, that equality in (4.15) is true.

Figure 4. Profile of the periodic dnoidal-peak ζ in (4.16).

Remark: For the “convergence” of the periodic-peak φω,Z and ζω,Z to the solitary wave peak (1.14),
with p = 2 we consider for a determined parameter (η2 is our case) the minimal period 2s or 2r sufficiently
large. Indeed, from (4.11) and (4.3) we obtain for all Z that k2(η2) → 1, and η2

1 = 2ω − η2
2 → 2ω as
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η2 → 0. We also have in this limit from (4.7) (with “-”) that φ2
ω,Z(0) = ζ2

ω,Z(0) → 2ω − Z2

2 . Now, the

identities sn−1(y; k) = dn−1(
√

1 − k2y2; k) and sn−1(y; 1) = tanh−1(y) (see pg. 31 in [13]) imply that

a = dn−1
(φω,Z(0)

η1
; k

)
= sn−1

(1

k

√

1 −
φ2

ω,Z(0)

η2
1

; k
)
→ tanh−1(Z/2

√
ω), (4.17)

as η2 → 0. Lastly, since dn(y; 1) = sech(y) we obtain the convergence (uniformly on compact-set)
φω,Z(ξ) → φω,Z,2(ξ), as η2 → 0. We note that s→ +∞ since K(k(η2)) → +∞ as η2 → 0.

4.4. Dnoidal-peak solutions to the NLS-δ with an arbitrary minimal period. In subsections
4.2 and 4.3 we found dnoidal-peak profiles (4.12) and (4.16) with a minimal period 2s and 2r. Next we
shall see that the equality s = L and r = L can be obtained by any a priori L. In the analysis below we
consider the case Z > 0, but a similar result can be established for Z < 0.

From the analysis in subsection 4.1, we start by defining the general notations to be used in the next
subsections. For 4ω > Z2 it follows from (4.11), (4.3), (4.8) and η1 > η2 > 0 that for all Z,

0 < η2 < θ(ω,Z) <
√
ω < λ(ω,Z) < η1 <

√
2ω (4.18)

where for g(ω,Z) =
√

(8ω − Z2)/8 we have

θ(ω,Z) = −
√

2

4
|Z| + g(ω,Z) and λ(ω,Z) =

√
2

4
|Z| + g(ω,Z). (4.19)

For η ∈ (0, θ(ω,Z)) we define the functions:

k2(η, ω) =
2ω − 2η2

2ω − η2
∈ (0, 1), (4.20)

k′2(η, ω) = 1 − k2(η, ω), and for M(η, ω) = 1/
√

2ω − η2, the period function

T−(η, ω, Z) = 2
√

2M(η, ω)[K(k(η, ω)) − a(η, ω, Z)] (4.21)

where
a(η, ω, Z) = dn−1(M(η, ω)Φ(η, ω, Z); k(η, ω)), (4.22)

with Φ(η, ω, Z) defined by (see (4.7))

Φ2(η, ω, Z) =
(2ω − Z2

2 ) +
√

(2ω − Z2

2 )2 − 4η2(2ω − η2)

2
. (4.23)

We note that the functions M , a and Φ defined above are independent of the sign of Z. We will denote
them by M(η), a(η), Φ(η) or M(ω), a(η, ω), Φ(η, ω) depending of the context. Moreover, the mapping
Z → a(·, ·, Z) is analytic.

Remark: For η ∈ (0, θ(ω,Z)) we obtain the a priori condition (4.6), namely, Z2

4 Φ2 ≦ (ω − η2)2/2.

In the following lemma we establish several properties of the periodic function T− which are main in
the existence of periodic peak with an arbitrary minimal period L and in the existence of a smooth curve
of positive periodic peak depending of the phase-velocity ω.

Lemma 4.1. For Z 6= 0 and ω > Z2/4 fixed, the mappings for η ∈ (0, θ(ω,Z))

η → a(η), η → Φ(η), and η →M(η)Φ(η) (4.24)

are well defined. Moreover, they are strictly increasing, strictly decreasing and strictly decreasing functions
respectively. Also, one has that

lim
η→0

T−(η) = +∞, (4.25)
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and
lim
η→θ

T−(η) = 2
√

2[λ(ω,Z)]−1[K(k0) − a0] ≡ T0(ω,Z), (4.26)

where a0 ≡ a0(ω,Z) ∈ (0,K(k0)) and k0 = k0(ω,Z) are defined by

dn(a0; k0) =
1

2
[λ(ω,Z)]−1(4ω − Z2)1/2, k2

0 =
1

2
|Z|[λ(ω,Z)]−2(8ω − Z2)1/2. (4.27)

Lastly, the mapping η ∈ (0, θ(ω,Z)) → T−(η) is a strictly decreasing function and so T−(η) ∈
(T0(ω,Z),+∞). Moreover, for η ∈ (0, θ(ω,Z)) it follows that for η1 ≡

√
2ω − η2 we have η1−η > |Z|/

√
2

(see (4.8)) and ω → a(ω) is a strictly decreasing function with

lim
ω→+∞

a(ω) = 0. (4.28)

Proof. Initially from (4.18) the relation 0 > Z2

2 −
√

2|Z|
√

(8ω − Z2)/8 > 2η2 − 2ω + Z2

2 , implies that
1 > M(η, ω)Φ(η) > k′(η, ω), and so a is well defined. Now, from (4.20) and (4.23) we have limη→0 a(η) =

α < ∞, with α satisfying sech(α) =
√

1 − Z2

4ω and (4.17)). So, since K(k) → +∞ as k → 1 we obtain

that the period function T−(η) satisfies (4.25).
Now, for η → θ one has k2(η) → k2

0 defined in (4.27). Since the mappping η → k2(η) is strictly
decreasing it follows that k(η) ∈ (k0, 1), for all η ∈ (0, θ(ω,Z)). We note that the condition ω > Z2/4

implies that the right hand side of (4.27) is bigger than k′0 ≡
√

1 − k2
0 and so a0 is well-defined. The

above considerations yield the limit in (4.26).
The decreasing property of the last two functions in (4.24) follows immediately. Next we see that

η ∈ (0, θ(ω,Z)) → a(η) is a strictly increasing function. We denote by ψ(η) the strictly decreasing
function M(η)Φ(η), then by (4.22) and the formula 710.53 in [13] we obtain

0 >
d

dη
ψ(η) =

d

dη
dn(a; k) = −k2sn(a)cn(a)

da

dη
+
ksn(a)cn(a)

k′2

[
E(a) − k′2a− dn(a)

sn(a)

cn(a)

]dk
dη
, (4.29)

with E(u) = E(u; k) =
∫ u

0 dn
2(y; k)dy. Since a ∈ [0,K] and dk

dη < 0 from (4.29) we only need to see

that the expression between the square brackets is negative for obtaining that da
dη > 0. Indeed, for

F (u) = E(u) − k′2u− dn(u) sn(u)
cn(u) we have F (0) = 0 and F (K) = −∞. Moreover, from [13] (pg. 20) we

obtain for u ∈ (0,K), F ′(u) = dn2(u) − k′2 + k2sn2(u) − dn2(u)
cn2(u) = − k′2

cn2(u) < 0. Therefore, F (a) < 0 for

a ∈ (0,K).
Now, since M2(ω)Φ2(ω) → 1 and k2(ω) → 1 as ω → +∞, we obtain limω→+∞ a(ω) = dn−1(1; 1) =

sech−1(1) = 0. Next we see that ω → a(ω) is a strictly decreasing function. If we denote by f(ω) =
M(ω)Φ(ω) we obtain similarly to (4.29) that

d

dω
f(ω) =

d

dω
dn(a; k) =

∂

∂a
dn(a; k)

da

dω
+

∂

∂k
dn(a; k)

dk

dω
. (4.30)

So, since ∂
∂kdn(a; k) < 0, dk

dω > 0 and ∂
∂adn(a; k) < 0 it is sufficient to show that d

dωf(ω) > 0. Indeed,

since f(ω) > 0 will be see that d
dω [f(ω)]2 > 0. So, from (4.23) we obtain that

d

dω
[f(ω)]2 > 0 if and only if

Φ2(ω)

η2
1

<
Φ2(ω) − η2

2Φ2(ω) + Z2

2 − 2ω
.

By our construction in subsection 4.1 we have that Φ2(ω) < η2
1 , so only remains to show that the positive

function g(ω) = 2Φ2(ω)+ Z2

2 − 2ω satisfies g(ω) < Φ2(ω)− η2. Indeed, after some algebra we obtain that

g(ω) < Φ2(ω) − η2 ⇔ (2ω − 2η2) >

√(
2ω − Z2

2

)2

− 4η2(2ω − η2),
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which is true if and only if ω > Z2

8 . Since ω > Z2

4 , we finish the proof.
The fact that the mapping η ∈ (0, θ(ω,Z)) → T−(η) is a strictly decreasing function follows from the

analysis in Theorem 4.2 below. �

Next we show that there is a 2L-periodic peak solution for equation (1.16) with the profile (4.12). It
existence will be crucial in the next subsection for applying the implicit function theorem.

We start our analysis by studying the behavior of the mapping ω ∈ (Z2

4 ,+∞) → T0(ω,Z) given in

(4.26), with Z fixed. From (4.27) one has for ω → +∞ that k2
0 → 0, then K(k0) → π

2 and so from the
definition of λ(ω,Z) and a0 we obtain immediately that

lim
ω→+∞

T0(ω,Z) = 0. (4.31)

Hence for L > 0 fixed there exists ω > Z2

4 such that 2L > T0(ω,Z). Consequently, from Lemma 4.1 there
is a unique η = η(ω) ∈ (0, θ(ω,Z)) such that

2s = T−(η) = 2L. (4.32)

Lastly, from the above analysis, if we define η1 ≡
√

2ω − η2 for η satisfying (4.32), k2 and a via the
relations in (4.20) and (4.22), respectively, we obtain the that peak-function φω,Z in (4.12) can be extend
to all the line as a even periodic function with a minimal period 2s = 2L and in the interval [0, 2L] it is
symmetric with regard to the line ξ = L. Hence, we have obtained a periodic dnoidal-peak solution for

equation (1.16) which satisfies all the properties in (1.17) and it belongs to the domain of − d2

dx2 − Zδ.

Remarks:

(1) for Z fixed, ω → T0(ω,Z) is a strictly decreasing function.

(2) For ω fixed and ω > Z2

4 , T0(ω,Z) →
√

2π/
√
ω, as Z → 0+, and Z → T0(ω,Z) is a strictly

increasing function. Then from the relation 2L > T0(ω,Z) we obtain that ω must satisfy ω > π2

2L2

(see Theorem 4.1 for the case Z = 0 in (1.16)).

4.5. Smooth curve of periodic peaks to the NLS-δ with Z 6= 0. In this section we construct a
smooth curve of positive periodic peak solutions of (1.16), ω → ϕω,Z , with Z fixed. These solutions
ϕ = ϕω,Z have a priori fundamental period 2L, satisfy the conditions in (1.17) (with π = L), and

ϕω,Z ∈ D(− d2

dx − Zδ). Moreover, for ω > Z2

4 and ω fixed and large one has that

lim
Z→0

ϕω,Z(x) = φω,0(x) for x ∈ [−L,L], (4.33)

where φω,0 is defined in (1.9). Our analysis will show also that the mapping Z → ϕω,Z is analytic. This
will be essential in our stability theory. In addition, we shall need to show that the map ω → η(ω) ∈
(0, θ(ω,Z)) is smooth.

First we consider the case Z 6= 0 and small.

4.5.1. Smooth curve of periodic peaks to the NLS-δ with Z > 0. We shall show that for Z > 0 fixed,
there exists a smooth curve ω → φω,Z ∈ H1

per([−L,L]) satisfying the conditions in (1.17). Moreover, the

convergence in (4.33) can be justified at least for Z → 0+. The proof will be a consequence of the implicit
function theorem, Lemma 4.1 and Theorem 4.1. We recall that ω > Z2/4.

Theorem 4.2. Let L > 0 fixed, δ small, δ < π2

2L2 , and Z ∈ (−δ, δ). Let ω0 >
π2

2L2 and η0 be the unique
η0 ∈ (0,

√
ω0) such that F (η0, ω0) = 2L. Then,
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(1) there are an rectangle R = J(ω0)× (−δ0, δ0) around (ω0, 0), an interval N1(η0) around η0, and a
unique smooth function Λ1 : R → N1(η0) such that Λ1(ω0, 0) = η0 and

2
√

2

η1
[K(k) − a(ω,Z))] = 2L, (4.34)

where η2
1 = η2

1,Z ≡ 2ω − η2
2,Z for (ω,Z) ∈ R and η2,Z = Λ1(ω,Z).

(2) J(ω0) = ( π2

2L2 ,+∞) and k ∈ (k0, 1), k0 defined in (4.27).

(3) N1(η0)× ⊂ G = {(η, ω, Z) : ω > π2

2L2 , 2L > T0(ω,Z), η ∈ (0, θ(ω,Z))}.
(4) For Z = 0 we have a(ω, 0) = 0 and so from Theorem 4.1 it follows that Λ1(ω, 0) = Λ0(ω).

Therefore,

lim
Z→0+

η2,Z(ω) = η(ω).

(5) For Z ∈ (0, δ0) we denote η2,Z by η2,+. Then the dnoidal-peak solution φω,Z in (4.12) with η1

being η1,+ = (2ω2 − η2
2,+)1/2, has minimal period 2L and satisfies for ω > π2

2L2 ,

lim
Z→0+

φω,Z(x) = φω,0(x), for x ∈ [−L,L].

(6) Z → φω,Z ∈ H1
per

([−L,L]) is real-analytic.

Proof. The proof is a consequence of the implicit function theorem applied to the periodic-mapping

T−(η, ω, Z) = 2
√

2M(η, ω)[K(k(η, ω)) − a(η, ω, Z)] ≡ F (η, ω) − 2
√

2M(η, ω)a(η, ω, Z)

with domain G. From (4.31) follows G 6= ∅. Moreover, if (η0, ω0, Z) ∈ G then for all ω > ω0 we obtain
(η0, ω, Z) ∈ G ( T−(η0, ω0, 0) = 2L). Next, we claim that ∂ηT−(η0, ω0, 0) < 0. Indeed, from Theorem
2.1 in Angulo [5] we have ∂ηF (η, ω) < 0 since ∂ηk(η, ω) is a strictly decreasing function of η, since
∂ηa(η, ω, Z) > 0 (see Lemma 4.1) we prove the claim. Theorem 4.1 implies item (2) above.

Finally, since the functions a in (4.22) and Λ1 are analytic, the mapping (ω,Z) → φω,Z is analytic for
(ω,Z) ∈ {(ω,Z) : ω > Z2/4}, Z small. This finishes the proof of the Theorem. �

Corollary 4.1. Consider the mapping Λ1 : R → N(η0) obtained in Theorem 4.2. Then for Z > 0
fixed and ω large, the mapping ω → η2,+(ω) = Λ1(ω,Z) is a strictly decreasing function. Moreover,
for k(ω) = k(η2,+(ω), ω) and a(ω) = a(η2,+(ω), ω) defined in (4.20) and (4.22) respectively, one has
d

dωk(ω) > 0 and d
dωa(ω) < 0.

Proof. Let Z > 0 fixed. Since T−(Λ1(ω,Z), ω, Z) = 2L one has that ∂T−

∂η η
′
2,+(ω) = −∂T−

∂ω . Using the

relation ∂ωT−(η, ω, Z) < 0 (see Appendix) we obtain η′2,+(ω) < 0. Next, for a(ω) ≡ a(Λ1(ω,Z), ω, Z)

we obtain d
dωa(ω) = ∂a

∂Λ1

dΛ1

dω + ∂a
∂ω < 0, since ∂a

∂Λ1
> 0 and ∂a

∂ω < 0 (see Lemma 4.1). Finally, from the

formula in (4.20) it follows immediately that k(ω) is a strictly increasing function. This completes the
proof of the Corollary. �

In the next section, we will need to use that the mapping Z → φω,Z is analytic for Z > 0 (we recall
that this property is local type). So, by using an argument similar to that provided in the proof of
Theorem 4.2 and the analysis in subsection 4.4 we obtain :

Theorem 4.3. Let L > 0 fixed and Z0 > 0. Consider ω0 >
Z2

0

4 such that 2L > T0(ω0, Z0) and ω0 >
π2

2L2 .
Let η2,0 = η2,0(ω0, Z0) ∈ (0, θ(ω0, Z0)) the unique value such that T−(η2,0, ω0, Z0) = 2L. Then,

(1) there are an rectangle S(ω0, Z0) = H(ω0) × I(Z0) around (ω0, Z0), an interval N2(η2,0) around
η2,0, and a unique smooth function Λ2 : S(ω0, Z0) → N1(η2,0) such that Λ2(ω0, Z0) = η2,0 and
T−(η2,+, ω, Z) = 2L for η2,+ = Λ2(ω,Z).
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(2) H(ω0) can be choosen as (µ(Z,L),+∞), where µ(Z,L) >
Z2

0

4 and µ(Z,L) > π2

2L2 . For Z = 0 we

have µ(0, L) = π2

2L2 .

(3) the dnoidal-peak solution in (4.12), φω,Z(ξ) ≡ φ(ξ; η1,+), determined by η1,+ ≡ (2ω − η2
2,+)1/2

satisfies the properties in (1.17). Moreover, the mapping Z → φω,Z ∈ H1
per

([−L,L]) is real-
analytic.

Corollary 4.2. For Z > 0 fixed and ω large, the mapping ω → η2,+(ω) = Λ2(ω,Z) is a strictly decreasing
function. Moreover, for k(ω) = k(η2,+(ω), ω) and a(ω) = a(η2,+(ω), ω) defined in (4.20) and (4.22)

respectively, one has that d
dωk(ω) > 0 and d

dωa(ω) < 0

Corollary 4.3. For Z ≧ 0 fixed, consider the mapping a : (µ(Z,L),+∞) → R defined in Corollary 4.1
and Corollary 4.2. Then a(ω) → 0 as ω → +∞.

Proof. From Corollary 4.2 it follows that for ω > ω1, 0 ≦ ω−1η2
2,+(ω) ≦ ω−1η2

2,+(ω1). Thus, k2(ω) →
1+ and M(η2,+, ω)Φ(ω) → 1+ as ω → +∞. Therefore, (4.22) yields the identity limω→+∞ a(ω) =
sech−1(1) = 0. �

4.5.2. Smooth curve of periodic peaks to the NLS-δ with Z < 0. The following Theorem shows that
for Z < 0, fixed, there exists a smooth curve ω → ζω,Z ∈ H1

per([−L,L]), with ω large, satisfying the

conditions in (1.17) and that the convergence in (4.33) for Z → 0− is possible. The proof is similar to
that of Theorem 4.2 and Theorem 4.3, so we shall only describe the main points in the argument. We
start by defining

T+(η2, ω) = 2
√

2M(η2, ω)[K(k(η2, ω)) + a(η2, ω)] (4.35)

and T1(ω,Z) = 2
√

2[λ(ω,Z)]−1[K(k0)+a0], where T1(ω,Z) = limη2→θ T+(η2, ω). Since limω→+∞ a0(ω) =
0 it follows that limω→+∞ T1(ω,Z) = 0. Therefore, since the mapping ω → T1(ω,Z) is a strictly

decreasing function we obtain a unique ω1 >
Z2

4 such that 2L > T1(ω1, Z) and for every ω > ω1, 2L >
T1(ω,Z). Now, for ω chosen in this form one finds a unique η2,1 = η2,1(ω) ∈ (0, θ(ω,Z)) such T+(η2,1, ω) =
2L, because of limη2→0 T+(η2, ω) = +∞ and ∂ηT+ < 0 for ω large (see Appendix). Moreover, since

T1(ω,Z) = T0(ω,Z) + 4
√

2
λ(ω,Z)a0 →

√
2√
ω
π as Z → 0−, we obtain a priori the condition ω > π2

2L2 .

We have the following theorem of existence.

Theorem 4.4. Let L > 0 fixed and Z0 < 0. Consider ω1 large such that 2L > T1(ω1, Z0). In particular,

ω1 >
Z2

0

4 and ω1 >
π2

2L2 . Let η2,1 = η2,1(ω1, Z0) ∈ (0, θ(ω1, Z0)) the unique value such that T+(η2,1) = 2L.
Then,

(1) there are an rectangle W (ω1, Z0) = Q(ω1) × V (Z0) around (ω1, Z0), an interval N2(η2,1) around
η2,1, and a unique smooth function Λ3 : W (ω1, Z0) → N2(η2,1) such that Λ3(ω1, Z0) = η2,1 and
T+(η2,−, ω, Z) = 2L for η2,− = Λ3(ω,Z),

(2) Q(ω1) can be choosen as (ν(Z,L),+∞), where ν(Z,L) >
Z2

0

4 and ν(Z,L) > π2

2L2 . For Z = 0 we

have ν(0, L) = π2

2L2 ,
(3) for Z = 0 we have a(ω, 0) = 0 and so from Theorem 4.1 we have Λ3(ω, 0) = Λ0(ω). Therefore,

limZ→0− η2,−(ω) = η(ω),

(4) the dnoidal-peak solution in (4.16), ζω,Z(ξ) ≡ ζ(ξ; η1,−), determined by η1,− ≡ (2ω − η2
2,−)1/2

satisfies the properties in (1.17). Moreover, the mapping Z → ζω,Z ∈ H1
per

([−L,L]) is real-
analytic,

(5) limZ→0− ζω,Z(ξ) = φω,0(ξ), for ξ ∈ [−L,L].

Corollary 4.4. For Z < 0 fixed and ω large, the mapping ω → η2,−(ω) = Λ3(ω,Z) is a strictly de-
creasing function. Moreover, for k = k(Λ3(ω,Z), ω) and a = a(Λ3(ω,Z), ω) defined in (4.20) and (4.22)
respectively, one has that d

dωk(ω) > 0 and d
dωa(ω) < 0



STABILITY OF PERIODIC-PEAK TRAVELLING WAVES SOLUTIONS 21

Proof. For T+ defined in (4.35), it follows that ∂ηT+ < 0 and ∂ωT+ < 0 for ω large (see Appendix). Then
for Λ3 satisfying T+(Λ3(ω,Z), ω) = 2L we obtain that Λ′

3(ω) < 0 and a′(ω) < 0. �

Corollary 4.5. For Z ≦ 0 fixed, consider the mapping a : (ν(Z,L),+∞) → R determined by Theorem
4.4. Then a(ω) → 0 as ω → +∞.

5. Stability of Dnoidal-Peak for the NLS-δ model (1.15)

In this section we study the stability of the orbit

Ωϕω,Z
= {eiθϕω,Z : θ ∈ [0, 2π)}, (5.1)

generated by the smooth curve of dnoidal-peak ω → ϕω,Z , where ϕω,Z is defined as in (1.26). Moreover,

lim
Z→0

ϕω,Z(ξ) = φω,0(ξ), for ξ ∈ [−π, π], (5.2)

where φω,0 being the dnoidal-wave solution to the cubic Schrödinger equation determined by Theorem
4.1.

We start obtaining the spectral information associated to the operators in (1.27) and (1.28) necessary
to establish our stability theorem. We denote L2

per([−π, π]) and H1
per([−π, π]) simply by H1

per and L2
per,

respectively.

5.1. The basic linear operators L1,Z and L2,Z. For u ∈ H1
per we write u = u1 + iu2. Let Hω,Z be

defined by

Hω,Zu = L1,Zu1 + i L2,Zu2 (5.3)

where the linear operators Li,Z , i = 1, 2, are defined as in (1.28) and (1.27), respectively. Next, for Z ∈ R

and the subspace D defined as

D = {ζ ∈ H1
per ∩H2((2nπ, 2(n+ 1)π)) : ζ′(0+) − ζ′(0−) = −Zζ(0)}, n ∈ Z, (5.4)

we have that Li,Z are self-adjoint operators on L2
per with domain D(Li,Z ) = D (see the Stability Self-

Adjoint Theorem in Kato [35]).
We note that the linear operators Li,Z are related with the the second variation of Gω,Z = E + ωQ

at ϕω,Z . More exactly, let u = ζ + iψ with ζ, ψ ∈ D and v = v1 + iv2 ∈ H1
per then

〈G′′
ω,Z(ϕω,Z)u, v〉 = 〈Hω,Zu, v〉 = 〈L1,Zζ + iL2,Zψ, v〉 = 〈L1,Zζ, v1〉 + 〈L2,Zψ, v2〉. (5.5)

Indeed, we define Q(ζ, v1) = ω
∫
ζv1dx− 3

∫
ϕ2

ω,Zζv1dx. Thus,

〈L1,Zζ, v1〉 = [ζ′(0+) − ζ′(0−)]v1(0) + 〈ζ′, v′1〉 + Q(ζ, v1) = −Zζ(0)v1(0) + 〈ζ′, v′1〉 + Q(ζ, v1). (5.6)

Similarly, we obtain 〈L2,Zψ, v2〉 = −Zψ(0)v2(0) + 〈ψ′, v′2〉+ ω〈ψ, v2〉 − 〈ϕ2
ω,Zψ, v2〉. A simple calculation

shows that 〈G′′
ω,Z(ϕω,Z)(ζ, ψ), (v1, v2)〉 = 〈L1,Zζ, v1〉 + 〈L2,Zψ, v2〉.

5.2. Some spectral structure of L1,Z and L2,Z. This subsection is concerned with some specific
spectral structure of the linear operators Li,Z . By convenience we will denote Li,Z only by Li.

Proposition 5.1. Let Z ∈ R and ω > Z2/4. Then,

(1) L2 is a nonnegative operator with a discrete spectrum, σ(L2) = {λn : n ≧ 0}, ordered in the
increasing form 0 = λ0 < λ1 ≦ λ2 ≦ λ3 ≦ λ4 · ··. The eigenvalue zero is simple with eigenfunction
ϕω,Z .

(2) L1 is a operator with a discrete spectrum, σ(L1) = {αn : n ≧ 0}, ordered in the increasing form
α0 < α1 ≦ α2 ≦ α3 ≦ α4 · ··
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Proof. From Section 3, Theorem 3.3, it follows that the operators Li have a compact resolvent and so its
spectrum is discrete. Since ϕω,Z ∈ D and satisfies equation (1.16) we obtain that L2ϕω,Z = 0 for all Z.
Moreover, ϕω,Z being positive it corresponds to the first eigenvalue of L2 which is simple. �

Next we have the following kernel-structure of L1.

Theorem 5.1. Let Z ∈ R − {0} and ω large. Then L1 has a trivial kernel.

Proof. Let v ∈ D such that L1v = 0 and Z > 0 (so ϕω,Z = φω,Z). Therefore v satisfies the following
problem {

v ∈ H2(0, 2π)

L1v(x) = 0 for x ∈ (0, 2π).
(5.7)

From item (3) in (1.17) it follows that cφ′ω,Z(x) for x ∈ (0, 2π) and any c ∈ R satisfies (5.7). We note

that φ′ω,Z is a 2π-periodic odd function with jump-discontinuity in ±2nπ, n ∈ Z.

Next, we consider the transformation Λ(x) = v(βx), for β =
√

2
η1
, x ∈ (0, 2(K − a)), with a defined in

(4.22). Then from Theorems 4.2 and 4.3 we have βx ∈ (0, 2π) and so (5.7) implies that

Λ′′(x) + [σ − 6k2sn2(x + a; k)]Λ(x) = 0 for x ∈ (0, 2(K − a)), (5.8)

where σ = (6η2
1,+ − 2ω)/η2

1,+ = 4 + k2. Now, for Υ(x) = Λ(x− a) with x ∈ (a, 2K − a) we have that Υ
satisfies the following Lamé’s equation

Υ′′(x) + [σ − 6k2sn2(x; k)]Υ(x) = 0, for x ∈ (a, 2K − a). (5.9)

Now, from Theorem 5.2 below the periodic eigenvalue problem in L2
per([0, 2K])

{
Φ′′(x) + [λ− 6k2sn2(x; k)]Φ(x) = 0, x ∈ (0, 2K)

Φ(0) = Φ(2K(k)), Φ′(0) = Φ′(2K(k)), k ∈ (0, 1)
(5.10)

has the first three eigenvalues λ0, λ1, λ2 simple and the rest of the eigenvalues are distributed in the
form λ3 ≦ λ4 < λ5 ≦ λ6 < · · · and satisfying λ3 = λ4, λ5 = λ6, ..., i.e., they are double eigenvalues
and so for these values of λ all solutions of (5.10) have period 2K(k). In particular, λ1 = 4 + k2 and
Φ1(x) = sn(x; k)cn(x; k) = C0

d
dxdn(x; k), for x ∈ [0, 2K(k)], k ∈ (0, 1). Now, from Floquet theory

(see pg. 7 in [21]) the other solution for the Lamé’s equation in (5.10) with λ = λ1 is of the form
Ψ(x) = xΦ1(x) + p2(x), where p2(x) is even with period 2K(k). In fact, the variational parameter
method shows that for E(x) = E(x; k) =

∫ x

0
dn2(y)dy (the normal elliptic integral of the second kind),

Ψ1(x) = 2xΦ1(x) −
2 − k2

1 − k2
E(x)Φ1(x) +

1

1 − k2
dn(x)[sn2(x) − (1 − k2)cn2(x)] (5.11)

satisfies (5.10) with λ = λ1. Next, by considering the Zeta function de Jacobi, Z(x) = Z(x; k), defined
by

Z(x) =

∫ x

0

[
dn2(y; k) − E(k)

K(k)

]
dy

which is an odd periodic function de x with period 2K(k), we can rewrite Ψ1 as

Ψ1(x) = x
[
2 − 2 − k2

1 − k2

E(k)

K(k

]
Φ1(x) +

[ 1

1 − k2
dn(x)[sn2(x) − (1 − k2)cn2(x)] − 2 − k2

1 − k2
Z(x)Φ1(x)

]

≡ xβΦ1(x) + p1(x).

(5.12)
Hence we obtain the representation Ψ = 1

β Ψ1 = xΦ1 + p2, with p2 ≡ 1
β p1 and p2 being an even periodic

function with periodic 2K(k). Since {Φ1,Ψ} is a linearly independent (LI) set of solutions for the Lamé’s
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equation in (5.9) on R, then it is a base of solutions for (5.9) on the interval (a, 2K − a). Hence the
following functions on (0, 2π), for η1 = η1,+,





Λ1(x) = Dφ′ω,Z(x), and

Λ2(x) =
( η1√

2
x+ a

)
Λ1(x) + p2

( η1√
2
x+ a

) (5.13)

with D = −
√

2
η2
1
k2 , are a LI set of solutions for (5.7) on (0, 2π). Therefore, there are α, γ ∈ R such that

v(x) = αΛ1(x) + γΛ2(x), x ∈ (0, 2π). (5.14)

Next we show that α = −γK. The continuity of v implies that
{
v(0) = v(0+) = αΛ1(0+) + γ[aΛ1(0+) + p2(a)], and

v(2π) = v(2π−) = αΛ1(0−) + γ[(2K − a)Λ1(0−) + p2(2K − a)],
(5.15)

where we are used that 2(K−a) = 2π√
2
η1. Then, since v(0) = v(2π), p2 is symmetric with regard to x = K

and Λ1(0−) = −Λ1(0+) 6= 0 follow from (5.15) that α = −γK. Therefore, we obtain for v satisfying
(5.7) and v(0) = v(2π) that

v(x) = γ[−KΛ1(x) + Λ2(x)], for all x ∈ (0, 2π). (5.16)

Hence, the subspace K = {v ∈ H2(0, 2π) : v satisfies (5.7) and v(0) = v(2π)} is one-dimensional.
Next we show that for v ∈ D satisfying L1v = 0 we have that v is an even function. We start

by establishing a similar problem to (5.7) on (−2π, 0). Hence the following functions on (−2π, 0), for
η1 = η1,+, 




Λ̃1(x) = Dφ′ω,Z(x), and

Λ̃2(x) =
( η1√

2
x− a

)
Λ̃1(x) + p2

( η1√
2
x− a

) (5.17)

are a LI set of solutions on (−2π, 0). Therefore, there are r, q ∈ R such that

v(x) = rΛ̃1(x) + qΛ̃2(x), x ∈ (−2π, 0). (5.18)

Now, from (5.14) and (5.18) we obtain that v(π) = γp2(K) and v(−π) = qp2(K), then since v is 2π-
periodic and p2(K) 6= 0 (Λ1 and Λ2 can not have zeros in a same point) we obtain γ = q. Moreover, from
the continuity of v in x = 0 we obtain that

{
v(0+) = αΛ1(0+) + γ[aΛ1(0+) + p2(a)], and

v(0−) = rΛ1(0−) + γ[−aΛ1(0−) + p2(−a)].
(5.19)

Therefore, r = −α. So, we have for x ∈ (0, 2π) that




v(−x) = rΛ̃1(−x) + γ
[(

− η1√
2
x− a

)
Λ̃1(−x) + p2

(
− η1√

2
x− a

)]

= −rΛ1(x) + γ
[( η1√

2
x+ a

)
Λ1(x) + p2

( η1√
2
x+ a

)]
= v(x).

(5.20)

Now, since v is just even we obtain that v′(0+) = −v′(0−) and so from the condition v′(0+)−v′(0−) =
−Zv(0) we obtain

v′(0+) = −Z
2
v(0). (5.21)

Next we show that equality (5.21) implies that γ in (5.16) is equal to zero. Indeed, for φ(x) = φω,Z(x)
the relations

sn2 − (1 − k2)cn2 =
2 − k2

k2
(1 − dn2) − (1 − k2), Λ1(0+) =

Z

2

√
2

k2η2
1

φ(0), and dn(a) =
φ(0)

η1
,
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imply from (5.16) that

v(0) = γ
[
D(a−K)φ′(0+) +

1

β
p1(a)

]
(5.22)

where

p1(a) =
1

1 − k2

φ(0)

η1

[2 − k2

k2

(
1 − φ2(0)

η2
1

)
− (1 − k2)

]
− Z

2

√
2

k2η2
1

2 − k2

1 − k2
Z(a)φ(0). (5.23)

Now we calculate v′(0+). Since φ′′(0+) = limx→0+ φ′′(x) = (ω − φ2(0))φ(0) and φ′(0+) = −Z
2 φ(0)

follow from (5.16) and (5.13),

v′(0+) = γ
[
D(a−K)(ω − φ2(0))φ(0) −DZ

η1

2
√

2
φ(0) +

η1√
2
p′2(a)

]
. (5.24)

Now, from the relations

p′1(x) = sn(x)cn(x)
[
k2+

(E(k)

K(k)
−1

)2 − k2

1 − k2

]
+

4 − 2k2

1 − k2
sn(x)cn(x)dn2(x)− 2 − k2

1 − k2
Z(x)[1−2sn2(x)]dn(x)

(5.25)
and k2sn2 + dn2 = 1, we obtain

η1√
2
p′1(a) =

Z

2

1

k2η1

[
k2 +

(E(k)

K(k)
− 1

)2 − k2

1 − k2

]
φ(0) +

Z

2

1

k2η1

4 − 2k2

1 − k2

φ3(0)

η2
1

− 2 − k2

1 − k2
Z(a)

[k2 − 2

k2
+

2

k2

φ2(0)

η2
1

]φ(0)√
2
.

(5.26)

Next we suppose γ 6= 0. From (5.21), (5.22)-(5.23)-(5.24)-(5.26) we obtain from the equalities ω =
(2−k2)η2

1

2 , dn2(a) = φ2(0)
η2
1

, and some cancelations the following equality

[
β(K − a) +

2 − k2

1 − k2
Z(a)

][Z2

4
+ φ2(0) − ω

]
=

η1

2
√

2
Z

[
β +

2 − k2

1 − k2

(
dn2(a) +

E

K

)]

=
η1

2
√

2
Z

[
2 +

2 − k2

1 − k2
dn2(a)

]
,

(5.27)

where in the last equality we use the value of β. Next, by using that the Jacobian Zeta function Z(a)
can be rewrite in the form

Z(a) = E(a) − a
E(k)

K(k)

and once again the value of β we obtain from (5.27),
[
2(K(k) − a) +

2 − k2

1 − k2
(E(a; k) − E(k))

][Z2

4
+ φ2(0) − ω

]
=

η1

2
√

2
Z

[
2 +

2 − k2

1 − k2
dn2(a; k)

]
. (5.28)

Now we see that equality in (5.28) give us a contradiction. Indeed, from (4.7) (with the sign “−”) we

have that Z2

4 + φ2(0)−ω > 0. Next we show that there is a δ > 0 (independent of k) such that for every
ζ ∈ [0, δ] we have

g(ζ, k) =
2 − k2

1 − k2
dn2(ζ; k) > 2 for all k ∈ (0, 1). (5.29)

Initially we see that the equation g(ζ, k) = 2 has solution if and only if ζ ∈ (π/4,+∞). Indeed, since

dn−1(y; k) = sn−1(
√

1−y2

k2 ; k) ([13]-pg. 31) we have that ζ needs to satisfy

ζ = sn−1
( 1√

2 − k2
; k

)
. (5.30)
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Now since sn−1(1/
√

2; 0) = sin−1(1/
√

2) = π
4 , sn−1(1; 1) = tanh−1(1) = +∞, and the right-hand side of

(5.30) is a strictly increasing mapping of k ∈ (0, 1) we obtain our affirmation. Thus since g(0, k) > 2 for
every k ∈ (0, 1) the intermediate value theorem shows the inequality in (5.29).

Next we show that the following function

F (ζ, k) = 2(K(k) − ζ) +
2 − k2

1 − k2
(E(ζ; k) − E(k)) (5.31)

for (ζ, k) ∈ I = [0, δ]× [0, 1], with δ < π/4, assumes its maximum value on the boundary of the rectangle
I and it which is zero. Therefore,

F (ζ, k) < 0 for all (ζ, k) ∈ (0, δ) × (0, 1). (5.32)

We note initially from the relations E(ζ; 1) =
∫ ζ

0
sech2(x)dx < 1, E(1) = 1 and limk→1+(1−k2)K(k) = 0,

that for every ζ ∈ [0, δ] we have F (ζ, 1) = limk→1+ F (ζ, k) = −∞. Moreover, from (5.29) and the relations
([13]-pg. 282)

∂F

∂ζ
= −2 +

2 − k2

1 − k2
dn2(ζ; k) > 0,

∂F

∂k
=
k(E(k) −K(k))

1 − k2
− 2k

(1 − k2)2
(E(k) − E(ζ; k)) < 0 (5.33)

we obtain that F do not have critical point in the interior of I. Now, since K(0) = E(0) = π
2 and

E(ζ; 0) = ζ it follows that for every ζ ∈ [0, δ], F (ζ, 0) = 0 and so from (5.33) we have that F (δ, k) < 0
and F (0, k) < 0 for all k ∈ (0, 1). Thus we obtain inequality in (5.32).

Now, from the theory in Section 4 we know that a and k are smooth functions of ω with a(ω) → 0 as
ω → +∞, therefore if follows from (5.32) that the right-hand side of (5.28) is negative for ω large, which
a contradiction.

Therefore γ = 0 and so for Z > 0 one has that Ker(L1) = {0}. The case Z < 0 follows similarly.
This finishes the proof. �

The next result will be used more later, but it is also interesting by itself.

Proposition 5.2. Let Z ∈ R−{0}. If λ is an simple eigenvalue for L1 then the eigenfunction associated
is either even or odd.

Proof. let v ∈ D(L1)−{0} such that L1v = λv. Then, since ϕω,Z is even, we also have for ζ(x) ≡ v(−x)
the relation L1ζ(x) = λζ(x). Then there exists β ∈ R such that v(x) = βv(−x) for x ∈ R. If v(0) 6= 0
then β = 1 and thus v is even. If v(0) = 0 from (5.4) we have that v ∈ H2

per and so v′(x) exists for x ∈ R.
Then we get that v′(0) = −βv′(0) and from the Cauchy uniqueness principle v′(0) 6= 0 (in other way,
v ≡ 0). Therefore β = −1 and so v is a odd function. �

5.3. Counting the negative eigenvalues for L1,Z . In this subsection we use the theory of perturbation
for linear operators to determinate the number of negative eigenvalues of L1,Z for Z 6= 0. We will use
the theory of analytic perturbation for linear operators (see [35] and [44]) and some arguments found in
[37]. Our study will be divided into four steps:

(I) From our analysis in Section 4 it follows that by fixing ω large one has the convergence in (5.2)
being in H1

per.

(II) The linear operators Li in (1.27)- (1.28) are the self-adjoint operators on L2
per associated with the

following bilinear forms defined for v, w ∈ H1
per ,

Q
1
ω,Z(v, w) = 〈vx, wx〉 + ω〈v, w〉 − Zv(0)w(0) − 〈3ϕ2

ω,Zv, w〉
Q

2
ω,Z(v, w) = 〈vx, wx〉 + ω〈v, w〉 − Zv(0)w(0) − 〈ϕ2

ω,Zv, w〉.
(5.34)
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Indeed, since the proof for L1 is similar to the one of L2, we only deal with L1. Since the form Q1
ω,Z has

domainH1
per×H1

per and it is symmetric, bounded from below and closed, from the theory of representation
of forms by operators (The First Representation Theorem in [35], VI. Section 2.1), one has that there is

a self-adjoint operator L̃1 : D(L̃1) ⊂ L2
per → L2

per such that

D(L̃1) = {v ∈ H1
per : ∃w ∈ L2

per s.t. ∀z ∈ H1
per, Q

1
ω,Z(v, z) = 〈w, z〉}, (5.35)

and for v ∈ D(L̃1) we define L̃1v ≡ w, where w is the (unique) function of L2
per which satisfies Q1

ω,Z(v, z) =

〈w, z〉 for all z ∈ H1
per . A similar operator L̃2 and domain D(L̃2) associated to Q2

ω,Z is obtained.

Next, we describe explicitly the self-adjoint operators L̃1 and L̃2.

Proposition 5.3. The domain for both L̃1 and L̃2 in L2
per is

DZ = {ζ ∈ H1
per

∩H2((0, 2π)) : ζ′(0+) − ζ′(0−) = −Zζ(0)}, (5.36)

and for v ∈ DZ one has that

L̃1v = − d2

dx2
v + ωv − 3ϕ2

ω,Zv, L̃2v = − d2

dx2
v + ωv − ϕ2

ω,Zv. (5.37)

Proof. Since the proof of L̃2 is similar to the one of L̃1, we only deal with L̃1. We consider Q1
ω,Z = Q1

Z +Q1
ω

with Q1
Z : H1

per ×H1
per → R and Q1

ω : L2
per × L2

per → R defined by

Q
1
Z(v, z) = 〈vx, zx〉 − Zv(0)z(0), Q

1
ω(v, z) = ω〈v, z〉 − 3〈ϕ2

ω,Zv, z〉. (5.38)

We denote by T1 (resp. T2) the self-adjoint operator on L2
per (see Kato [35], VI. Section 2.1) associated

with Q
1
Z (resp. Q

1
ω). Thus, D(T1) = D(L̃1) (D(T2) = L2

per). We claim that T1 is a self-adjoint extension

of the operator A0 defined in Section 3. Let v ∈ H2
per such that v(0) = 0, and define w ≡ −vxx ∈ L2

per.

Then for every z ∈ H1
per we have Q1

Z(v, z) = (w, z). Thus, v ∈ D(T1) and T1v = w = − d2

dx2 v. Hence,

A0 ⊂ T1. So, using Theorem 3.1 there exists β ∈ R such that D(T1) = D(−∆β) which yields the
claim. Next we shall show that β = −Z. Take v ∈ D(T1) with v(0) 6= 0. Following the ideas in
(5.6) we obtain 〈T1v, v〉 = [v′(0+) − v′(0−)]v(0) + ‖vx‖2 = ‖vx‖2 + β[v(0)]2, which should be equal to
Q1

Z(v, v) = ‖vx‖2 − Z[v(0)]2. Therefore β = −Z, and the Proposition is proved. �

(III) By Proposition 5.3 we can drop the tilde over L̃1 and L̃2 and work with the operators L1,Z and
L2,Z . The following Lemma verifies the analyticity of the families of operators Li,Z .

Lemma 5.1. As a function of Z, (L1,Z) and (L2,Z) are two real-analytic families of self-adjoint operators
of type (B) in the sense of Kato.

Proof. From Proposition 5.3, Theorem VII-4.2 in [35], it suffices to prove that the families of bilinear
forms (Q1

ω,Z) and (Q2
ω,Z) defined in (5.34) are real-analytic family of type (b). Indeed, it is immediate

that they are bounded from below and closed. Moreover, Theorems 4.3-4.4 and the decomposition of
Q1

ω,Z into Q1
Z and Q1

ω, implies that Z → 〈Q1
ω,Zv, v〉 is analytic. The proof of the analyticity of the family

(Q2
ω,Z) is similar to the one of (Q1

ω,Z). �

Remark: The explicit resolvent formula for −∆−Z in (3.13) can be used to give another proof of the
fact that the families (Li,Z ) are real-analytic in the sense of Kato.

The following result is a consequence of the classical Floquet theory (see [40], [33] and [5]) and it gives
a precise description of the spectrum of the self-adjoint operator in (1.31) which we want to perturb.
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Theorem 5.2. The operator L0 has exactly one negative simple isolated first eigenvalue τ0. The second
eigenvalue is zero, and it is simple with associated eigenfunction d

dxφω,0. The rest of the spectrum is
positive and discrete.

Remark: The Theorem 5.2 can also be shown by using a Fourier approach developed by An-
gulo&Natali in [8].

Proposition 5.4. There exist Z0 > 0 and two analytic functions Π : (−Z0, Z0) → R and Ω : (−Z0, Z0) →
L2

per such that

(i) Π(0) = 0 and Ω(0) = d
dxφω,0.

(ii) For all Z ∈ (−Z0, Z0), Π(Z) is the simple isolated second eigenvalue of L1,Z and Ω(Z) is an
associated eigenvector for Π(Z).

(iii) Z0 can be chosen small enough such that, except the two first eigenvalues, the spectrum of L1,Z

is positive.

Proof. From Theorem 5.2 we separate the spectrum σ(L0) of L0 in (1.31) into two parts σ0 = {τ0, 0} and
σ1 by a closed curve Γ (for example a circle) such that σ0 belongs to the inner domain of Γ and σ1 to the
outer domain of Γ (note that σ1 ⊂ (b,+∞) for b > 0). From Lemma 5.1 follows that that Γ ⊂ ρ(L1,Z)
for sufficiently small |Z| and σ(L1,Z) is likewise separated by Γ into two parts so that the part of σ(L1,Z )
inside Γ consists of a finite system of eigenvalues with total multiplicity (algebraic) two. Therefore we
obtain from the Kato-Rellich Theorem (see Theorem XII.8 in [44]) the existence of two analytic functions
Π,Ω defined in a neighborhood of zero such that we obtain the items (i), (ii) and (iii). This completes
the proof of the Proposition. �

Next we shall study how the perturbed second eigenvalue Π(Z) changes depending on the sign of Z.
For Z small we have the following picture.

Theorem 5.3. There exists 0 < Z1 < Z0 such that Π(Z) < 0 for any Z ∈ (−Z1, 0) and Π(Z) > 0 for
any Z ∈ (0, Z1). Therefore, for Z negative and small L1,Z has exactly two negative eigenvalues and for
Z positive and small L1,Z has exactly one negative eigenvalue.

Proof. From Taylor’s theorem we the following expansions

Π(Z) = βZ +O(Z2), and Ω(Z) = φ′ω,0 + Zψ0 +O(Z2) (5.39)

where φ′ω,0 = d
dxφω,0, β ∈ R (β = Π′(0)) and ψ0 ∈ L2

per (ψ0 = Ω′(0)). The desired result will follow if we

show that β > 0. From Theorems 4.2, 4.3 and 4.4 there exists χ0 ∈ H1
per such that for Z close to zero

ϕω,Z = φω,0 + Zχ0 +O(Z2). (5.40)

Now, using (5.40) to substitute into (1.16) and differentiating with respect to Z, we obtain

〈L0χ0, ψ〉 = φω,0(0)ψ(0) +O(Z), (5.41)

for any ψ ∈ H1
per.

We develop β with respect to Z. We compute 〈L1,ZΩ(Z), φ′ω,0〉 in two different ways.
(1) Since L1,ZΩ(Z) = Π(Z)Ω(Z) it follows from (5.39) that

〈L1,ZΩ(Z), φ′ω,0〉 = βZ‖φ′ω,0‖2 +O(Z2). (5.42)

(2) Since L1,Z is self-adjoint, φ′ω,0 ∈ D(L1,Z) and

L1,Zφ
′
ω,0 = −6Zφω,0φ

′
ω,0χ0 +O(Z2), (5.43)
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we obtain from (5.39) and (5.43) that

〈L1,ZΩ(Z), φ′ω,0〉 = −6Z〈φ′ω,0, χ0φω,0φ
′
ω,0〉 +O(Z2). (5.44)

It is easy to see that L0(ωφω,0 − φ3
ω,0) = 6φω,0(φ

′
ω,0)

2, which combined with (5.44) and (5.41) gives us
the last equality

〈L1,ZΩ(Z), φ′ω,0〉 = −Z[ωφ2
ω,0(0) − φ4

ω,0(0)] +O(Z2). (5.45)

Finally, a combination of (5.42) and (5.45) leads to

β = −ωφ
2
ω,0(0) − φ4

ω,0(0)

‖φ′ω,0‖2
+O(Z). (5.46)

Now, from Theorem 4.1 we have φω,0(0) ∈ (0,
√
ω) and so β > 0 for Z small. Hence, the first equality

in (5.39) completes the proof. �

(IV) Now we are in position for counting the number of negative eigenvalues of Li,Z for all Z, using
a classical continuation argument based on the Riesz-projection. We denote the number of negatives
eigenvalues of Li,Z by n(Li,Z).

Theorem 5.4. Let ω be large. Then

(1) for Z > 0, n(L1,Z) = 1,
(2) for Z < 0, n(L1,Z) = 2.

Proof. We recall that for ω large and Z 6= 0, Ker(L1,Z) = {0}. Let Z < 0 and define Z∞ by

Z∞ = inf{z < 0 : L1,Z has exactly two negative eigenvalues for all Z ∈ (z, 0)}.
From Theorem 5.3 one has that Z∞ is well defined and Z∞ ∈ [−∞, 0). We claim that Z∞ = −∞.
Suppose that Z∞ > −∞. Let N = n(L1,Z∞) and Γ a closed curve (for example a circle or a rectangle)
such that 0 ∈ Γ ⊂ ρ(L1,Z∞) and such that all the negatives eigenvalues of L1,Z∞ belong to the inner
domain of Γ. From Lemma 5.1 it follows that there is a δ > 0 such that for Z ∈ [Z∞ − δ, Z∞ + δ]
we have Γ ⊂ ρ(L1,Z) and for ξ ∈ Γ, Z → (L1,Z − ξ)−1 is analytic. Therefore the existence of an
analytic family of Riesz-projections, Z → P (Z), given by P (Z) = − 1

2πi

∫
Γ
(L1,Z − ξ)−1dξ, implies that

dim(Rank P (Z)) = dim(Rank P (Z∞)) = N , for all Z ∈ [Z∞ − δ, Z∞ + δ]. Now by definition of
Z∞, there exists z0 ∈ (Z∞, Z∞ + δ) and L1,Z has exactly two negative eigenvalues for all Z ∈ (z0, 0).
Therefore L1,Z∞+δ has two negative eigenvalues and N = 2, hence L1,Z has two negative eigenvalues for
Z ∈ (Z∞ − δ, 0) contradicting the definition of Z∞. Therefore, we have established the claim Z∞ = −∞.
A similar analysis is applied to the case Z > 0. This finishes the proof of the Theorem. �

Remark: We can choose Γ independently of the parameter Z < 0 in the beginning of the proof of
Theorem 5.4 in the following manner : since for all Z, ϕω,Z ≦ η1,+ ≦

√
2ω, for ‖f‖ = 1 and f ∈ D,

〈L1,Zf, f〉 ≧ −3
∫
ϕ2

ω,Zf
2dx ≧ −6ω. Therefore, inf σ(L1,Z) ≧ −6ω for all Z < 0. So, Γ can be chosen as

the rectangle Γ = ∂R for R being R = {z ∈ C : z = z1 + iz2, (z1, z2) ∈ [−6ω−1, 0]× [−a, a], for some a >
0}.
Proposition 5.5. The function Ω(Z) defined in Proposition 5.4 and associated to the second negative
eigenvalue of L1,Z can be extended to (−∞,∞). Moreover, Ω(Z) ∈ H1

per is an odd function for Z ∈
(−∞,∞).

Proof. From Lemma 5.1 and Theorem XII.7 in [44] the set Γ0 = {(Z, λ)|Z ∈ R, λ ∈ ρ(L1,Z)} is open and
(Z, λ) ∈ Γ0 → (L1,Z − λ)−1 is a analytic function in both variables. So, the argument in Proposition 5.4
implies that the functions Ω(Z) and Π(Z) are analytic for every Z ∈ R. Next we consider Z < 0 (the
case Z > 0 is similar). From Proposition 5.2 and Proposition 5.4 the eigenvectors Ω(Z) are even or odd
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and Ω(0) = d
dxφω,0 is odd. Then, from the equality limZ→0〈Ω(Z),Ω(0)〉 = ‖Ω(0)‖2 6= 0, one has that

〈Ω(Z),Ω(0)〉 6= 0 for Z close to 0. Thus Ω(Z) is odd. Let z∞ be z∞ = {z < 0 : Ω(Z) is odd for any Z ∈
(z, 0]}. Suposse now that z∞ > −∞. If Ω(z∞) is odd, then by continuity there exists δ > 0 such that
Ω(z∞ − δ) is odd which is a contradiction. Thus Proposition 5.2 implies that Ω(z∞) is even. Now, since
Ω(z∞) is the limit of odd functions we obtain that Ω(z∞) is odd. Therefore Ω(z∞) ≡ 0, which is a
contradiction because Ω(z∞) is an eigenvector. This concludes the proof of the Proposition. �

5.4. Convexity condition. Here, we shall prove the increasing property of the mapping ω → ‖ϕω,Z‖2,
for all Z, which suffices for our stability/instability results for the orbit defined in (1.18).

Theorem 5.5. Let Z ∈ R − {0} and ω large. Then the dnoidal-peak smooth curve ω → ϕω,Z given in

(1.26) satisfies d
dω‖ϕω,Z‖2 > 0.

Proof. For Z > 0 we have ϕω,Z = φω,Z . Then via a change of variable and from Theorem 4.3 we have
for a = a(ω), η1 = η1,+, k = k(ω) and K − a = η1√

2
π the equality

‖φω,Z‖2 = η2
1

∫ π

−π

dn2
( η1√

2
|ξ| + a; k

)
dξ = 2

√
2η1[E(k) − E(a)] = 2

√
2η1[E(k) − E(ϕa, k)]. (5.47)

Here E(ϕa, k) =
∫ ϕa

0

√
1 − k2 sin2 θ dθ =

∫ a

0 dn
2(u; k) du = E(a), with sinϕa = sn(a) and E(k) =

E(π/2, k). Next, we consider the identity

d

dω
‖φω‖2 = 2

√
2
dη1
dω

[E(k) − E(ϕa, k)] + 2
√

2η1

[(
E′(k) − ∂E

∂k

) dk
dω

− ∂E

∂ϕa

dϕa

dω

]
. (5.48)

We shall calculate the differentiation terms in (5.48).

(1) From the definition of E(·, ·) one has that ∂E
∂ϕa

(ϕa, k) =
√

1 − k2sn2(a) = dn(a).

(2) From [13] we obtain ∂kE(ϕa, k) = (E(a) − a)/k.

(3) Next, since sn(u+K) = cn(u)
dn(u) ≡ cd(u) one has that ϕa(ω) = sin−1[cd(η1π/

√
2)]. So,

d

dω
ϕa =

dn

k′sn

d

dω
cd

( η1√
2
π; k). (5.49)

Now, from using [13] again one finds that

d

dω
cd

( η1√
2
π; k) =

π√
2

∂

∂u
cd

( η1√
2
π; k

)dη1
dω

+
∂

∂k
cd

( η1√
2
π; k

) dk
dω

= −k
′2π√
2

dη1
dω

sn

dn2
+

sn

kdn2

[
E

( η1√
2
π
)
− k′2

η1√
2
π
] dk
dω
.

So, from (5.49) and from the equality dn(u +K) = k′/(dnu)

d

dω
ϕa = dna

[
− π√

2

dη1
dω

+
1

kk′2

[
E

( η1√
2
π
)
− k′2

η1√
2
π
] dk
dω

]
(5.50)

(4) Combining the identities

d

dk
K(k) =

E(k) − k′2K(k)

kk′2
,

π√
2

dη1
dω

=
d

dk
K(k)

dk

dω
− a′(ω),

and E
(

η1√
2
π
)
− E(k) + k′2a =

∫ K

K−a[k′2 − dn2(u)]du = −k2
∫ K

K−a cn
2(u)du it follows that

d

dω
ϕa = dn(a)

[
a′(ω) − k

k′2

∫ K

K−a

cn2(u)du
dk

dω

]
≡ dn(a)A(ω). (5.51)

We observe that A(ω) < 0 and so d
dωϕa < 0.
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Then, gathering the information in (5.48) and from (1)-(4) above we obtain that

d

dω
‖φω‖2 =

4

π

[
K ′(k)[E(k) − E(a)] + E′(k)[K(k) − a]

] dk
dω

− 4

π
a′(ω)[E(k) − E(a)] +

4

π
[K(k) − a]

a− E(a)

k

dk

dω
− 2

√
2η1dn

2(a)A(ω).

(5.52)

Now, since a−E(a) =
∫ a

0
[1− dn2(u)]du = k2

∫ a

0
sn2(u)du > 0, E(k)−E(a) > 0, a′(ω) < 0, A(ω) < 0

and dk
dω > 0 we obtain that the expression on the second line in (5.52) is positive. Therefore from (5.52)

one concludes that

π

4

d

dω
‖φω,Z‖2 >

d

dω
[K(k)E(k)] − E(a)

d

dω
K(k) − a

d

dω
E(k)

>
d

dω
[K(k)E(k)] − a

d

dω
[K(k) + E(k)] >

d

dω
[K(k)E(k) − 1

2
(K(k) + E(k))]

(5.53)

where ω is chosen large enough such that a(ω) ≦ 1
2 . We note that here we have used that the mapping

k → K(k)+E(k) is increasing and so d
dω [K(k)+E(k)] = d

dk [K(k)+E(k)] dk
dω > 0. Since d

dk

[
K(k)E(k)−

1
2 (K(k) + E(k))

]
> 0, it follows from (5.53) that d

dω‖φω,Z‖2 > 0 for ω large.

Next, we consider the case Z < 0. For ϕω,Z = ζω,Z and β =
√

2/η1 one has that

‖ζω,Z‖2 = η2
1

∫ π

−π

dn2
( η1√

2
|ξ| − a

)
dξ =

4

β

∫ π
β
−a

−a

dn2(y)dy =
4

β

∫ K

−a

dn2(y)dy ≡ G(β), (5.54)

using that K + a = η1√
2
π. So, d

dω‖ζω,Z‖2 = G′(β) dβ
dω = −

√
2

η2
1

dη1

dω G
′(β), where

G′(β) = 4β−2
[
−

∫ K

−a

dn2(y)dy + β
d

dβ

∫ K

−a

dn2(y)dy
]
≡ 4β−2H(β). (5.55)

The idea now is to show that H(β) < 0. Indeed, from Section 4 we have ω → η2(ω) is a positive decreasing
function, then for ω → +∞ follows η2

2/2ω → 0. So, Theorem 4.4 implies that k2 → 1 and η2
1/2ω → 1 for

ω → +∞. Thus, β → 0 as ω → +∞. Hence, a(β) = a(η−1
1 (

√
2/β)) → 0 as β → 0 (see Corollaries 4.3

and 4.5). Since dn(x; 1) = sech(x) and K(1) = +∞ we obtain H(0) = −
∫ ∞
0
sech2(y)dy < 0. Therefore

H(β) < 0 for β close to zero. This completes the proof of the Theorem. �

5.5. Stability results. From the last subsections our stability results associated to the orbit in (5.1)
generated by the dnoidal-peak solution profile ϕω,Z in (1.26) can be now established. As it was pointed
the abstract theory of Grillakis, Shatah and Strauss [28] shall be use, and so we briefly discuss the
criterion for obtaining stability or instability in our case. Consider the linear operator Hω,Z defined in
(5.3) and denote by n(Hω,Z) the number of negative eigenvalues of Hω,Z . Define

pZ(ω0) =

{
1, if ∂ω‖ϕω,Z‖2 > 0, at ω = ω0,

0, if ∂ω‖ϕω,Z‖2 < 0, at ω = ω0.
(5.56)

Then, having established the Assumption 1, Assumption 2 and Assumption 3 of [28], namely, the exis-
tence of global solutions (Proposition 3.1), the existence of a smooth curve of standing-wave, ω → ϕω,Z

(Theorem 4.3 - Theorem 4.4), and Ker(L1,Z) = {0}, Ker(L2,Z) = [ϕω,Z ], the next Theorem follows from
the Instability Theorem and Stability Theorem in [28].

Theorem 5.6. Let ω0 be large.

(1) If n(Hω0,Z) = pZ(ω0), then the dnoidal-peak standing wave eiω0tϕω0,Z is stable in H1
per([−π, π])

by the flow determined by the NLS-δ equation (1.15).
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(2) If n(Hω0,Z) − pZ(ω0) is odd, then the dnoidal-peak standing wave eiω0tϕω0,Z is unstable in
H1

per([−π, π]) by the flow determined by the NLS-δ equation (1.15).

Now we can prove our main result Theorem 1.1

Proof. From Theorem 5.5 follows that pZ(ω) = 1 for all Z ∈ R−{0} and ω large. Next, from Proposition
5.1 we have that L2,Z has zero as a simple eigenvalue and from Theorem 5.1 we have L1,Z has a trivial
kernel. Thus, from Theorem 5.6, Theorem 5.4 we obtain the item (1) and item (2).

Proposition 5.5 assures that the second eigenvalue of L1,Z considered in the whole space L2
per([−π, π])

is associated with an odd eigenfunction, and thus dissapears when the problem is restricted to sub-
space of even periodic functions. Moreover, since ϕω,Z is an even function and trivially satisfies that
〈L1,Zϕω,Z , ϕω,Z〉 < 0, for Z < 0, we obtain that the first negative eigenvalue of L1,Z is still present
when the problem is restricted to the subspace of even periodic function of H1

per([−π, π]), namely,

H1
per,even([−π, π]). So we obtain in this case that n(Hω,Z |H1

per,even([−π,π])) = 1. Therefore item (3)

of the Theorem follows from item (1) of Theorem 5.6 and Proposition 3.1. This finishes the proof of the
Theorem. �

6. Appendix

We shall establish two main properties of the period functions T− and T+ defined in (4.21) and (4.35),
respectively. Namely, ∂ωT− < 0 and ∂ηT+ < 0.

1) ∂ωT− < 0 for ω large: We denote g = 1
2
√

2

√
2ω − η2, then gT− = K − a. So,

g∂ωT− = − 1

2ω − η2
(K − a) +

E(k) − (1 − k2)K(k)

k(1 − k2)

dk

dω
− d

dω
a(ω). (6.1)

Next, for f(ω) = M(ω)Φ(ω) and ϕ = sin−1
(√

1−f2

k2

)
, we obtain from the relation a = dn−1(f ; k) =

F (ϕ; k) that (see pgs. 282 and 284 in [13])

d

dω
a(ω) =

1

dn(a)

∂ϕ

∂ω
+

[E(a) − (1 − k2)a

k(1 − k2)
− ksn(a)cn(a)

(1 − k2)dn(a)

] dk
dω
. (6.2)

Now, since dk
dω = 1−k2

(2ω−η2)k follows from (6.2) that g∂ωT− < 0 if and only if

−(K − a) + E(k) − E(a) − (2ω − η2)
k2

dn(a)

∂ϕ

∂ω
+
k2sn(a)cn(a)

dn(a)
< 0. (6.3)

Next,

∂ϕ

∂ω
=

1

2

1

cn(a)sn(a)

[
− 1

k2

d

dω
(f2) − 2sn2(a)

k

dk

dω

]
(6.4)

implies that (6.3) is equivalent to

−(K − a) + E(k) − E(a) +
2ω − η2

2dn(a)cn(a)sn(a)

d

dω
(f2) +

sn(a)dn(a)

cn(a)
< 0. (6.5)

So, since a(ω) → 0 and k → 1 as ω → +∞ we have from (6.5) that it is sufficient to show that

limω→+∞
2ω−η2

sn(a)
d

dω (f2) = 0, because of K(1) = +∞, E(1) = 1, E(0) = 0, dn(0) = cn(0) = 1 and

sn(0) = 0. Indeed, from the definition of f and (4.23) follow that

lim
ω→+∞

(2ω − η2)2
d

dω
(f2) = Z2. (6.6)



32 J. ANGULO AND G. PONCE

So, since f2(ω) → 1 as ω → +∞ and sn(a) = 1
k

√
1 − f2 we obtain that the l’ Hospital’s rule

implies limω→+∞
2ω−η2

sn(a)
d

dω (f2) = Z2 limω→+∞
1

(2ω−η2)
√

1−f2
= Z2 · 4

Z2 · limω→+∞
√

1 − f2 = 0.

2) ∂ηT+ < 0 for ω large: From gT+ = K + a we obtain

g∂ηT+ =
η

2ω − η2
(K + a) +

E(k) − (1 − k2)K(k)

k(1 − k2)

dk

dη
+

d

dη
a. (6.7)

Next, by using a similar formula to (6.2) for d
dηa and dk

dη = −2ω(1−k2)
(2ω−η2)ηk follow from (6.7) that

g∂ηT+ < 0 if and only if

η2

ω
K(k) − E(k) +

η2

ω
a− E(a) +

1

2

ηk2(2ω − η2)

ωdn(a)

∂ϕ

∂η
+
k2sn(a)cn(a)

dn(a)
< 0. (6.8)

Now, since η2

ω = 2(1−k2)
2−k2 and k → 1, η2

ω K(k) − E(k) → −1 and a(ω) → 0 as ω → +∞, we have

that for obtaining (6.8) it is sufficient to show that

lim
ω→+∞

2ω − η2

ω

∂ϕ

∂η
= 0. (6.9)

Indeed, since sn(0) = 0, dk
dη → 0, (2ω − η2) d

dη (f2) → −4η as ω → +∞,

∂ϕ

∂η
=

1

2cn(a)sn(a)

[
− 1

k2

d

dη
(f2) − 2sn2(a)

k

dk

dη

]
, (6.10)

limω→+∞
1

ωa = limω→+∞
2

ω2 d
dω

(f2)

√
1 − f2 = 0, by l’Hospital’s rule and (6.6), we obtain (6.9).
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