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DECAY PROPERTIES FOR SOLUTIONS OF FIFTH ORDER NONLINEAR
DISPERSIVE EQUATIONS

PEDRO ISAZA, FELIPE LINARES, AND GUSTAVO PONCE

ABSTRACT. We consider the initial value problem associated to a large class of fifth order
nonlinear dispersive equations. This class includes several models arising in the study of
different physical phenomena. Our aim is to establish special (space) decay properties
of solutions to these systems. These properties complement previous unique continuation
results and in some case, show that they are optimal. These decay estimates reflect the
“parabolic character” of these dispersive models in exponential weighted spaces. This
principle was first obtained by T. Kato in solutions of the KdV equation.

1. INTRODUCTION

In this work we shall study decay and uniqueness properties of solutions to a class of
higher order dispersive models. More precisely, we shall be concerned with one space
dimensional (1D) dispersive models in which the dispersive relation is described by the
fifth order operator 9. Roughly, the general form of the class of equations to be considered
here is

(1.1 O — 2u+ P(u, deu, 02u,d2u) = 0
where P(-) is a polynomial without constant or linear term, i.e.

(1.2) P=P(x1,x2,x3,x4) = Y, agx® N€Z', N>2, aqcR.
2<]a|<N

In this class one finds a large set of models arising in both mathematical and physical
settings. Thus, the case

(1.3) P(u, deut, d2u, 93 u) = 10ud?u + 200,ud>u — 30udu
corresponds to the third equation in the KdV hierarchy, where

(1.4) Ju+du=0

and the KdV

(1.5) O+ A2u+udu =0

are the first and second ones respectively in the hierarchy the jth being
(1.6) S+ (1705 ut+Qi(u,..., 05 \uy =0, jez",

with Q;(-) an appropriate polynomial (see [6]).
Further examples of integrable models of the equation in (1.1)-(1.2) were deduced in
[14] and [25] which also arise in the study of higher order models of water waves.
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In [1] the cases
1.7) Pi=ciudu, P = uafu + 23xu3xzu

were proposed as models describing the interaction between long and short waves.
In [20] the example of (1.1)-(1.2) with

(1.8) P = (u+u?)du+ (1 +u)(dud?u+ udu)

was deduced in the study of the motion of a lattice of anharmonic oscillators (by simplicity
the values of the coefficients in (1.8) have been taken equal to one). In [11] the equations
(1.1)-(1.2) with P = P as in (1.7) were proposed as a model for magneto-acoustic waves
at the critical angle in cold plasma.

Other cases of the equations (1.1)-(1.2) have been studied in [21], [15], ....

The well-posedness of the initial value problem (IVP) and the periodic boundary value
problem (PBVP) associated to the equation (1.1) have been extensively studied (in the well-
posedness of these problems in a function space X one includes existence, uniqueness of a
solution u € C([0,T]: X)N... with T = T(||uol|x) > 0, u(+,0) = up, and the map up — u
being locally continuous).

In [24] Saut proved the existence of solutions corresponding to smooth data for the IVP
for the whole KdV hierarchy sequence of equations in (1.6).

In [26] Schwarz considered the PBVP for the KdV hierarchy (1.6) establishing existence
and uniqueness in H*(T) for s > 3 — 1.

In [23] Ponce showed that the IVP for (1.1)-(1.2) with (1.2) as in (1.3) (i.e. the third
equation in the KdV hierarchy) is globally well posed in H*(R) for s > 4.

In [17] Kenig, Ponce and Vega established the local well-posedness in weighted Sobolev
spaces H*(R) N L?(|x|™) of the IVP for the sequence of equations in (1.6) for any polyno-
mial Q;(u,...,d¢ u), for s > jm and s > so(}).

The latter work motivated several further studies concerning the minimal regularity re-
quired in the Sobolev scale to guarantee that the IVP associated to (1.1)-(1.2) is locally
well-posed in H*(R). These results heavily depend on the structure of the nonlinearity
P(-) in (1.2) considered. In [22] Pilod showed that the IVP associated to the equation
(1.1)-(1.2) with a nonlinearity involving a quadratic term depending on 83 u (as in (1.3))
cannot be solved by an argument based on the contraction principle. This is not the case
when P(-) in (1.2) has the form P = P(u,dyu,d2u), see [17]. This is quite different to
the case for the KdV equation (1.5) for which the well posedness can be established via
contraction principle, see [19] for details and references.

Concerning the model (1.1) with P as in (1.3) in [18] Kwon obtained local well posed-
ness in H*(R) with s > 5/2. For the same problem Kenig and Pilod [16] and Guo, Kwak
and Kwon [7] simultaneously established local and global results in the energy space, i.e.
H*(R) with s > 2.

For other well posedness results concerning the IVP associated to the equation (1.1)
with different P in (1.2) see [2], [13], [3], [8] and references therein.

Special uniqueness properties of solutions to the IVP associated to the equation (1.1)-
(1.2) were studied by Dawson [4]. It was established in [4] that if u;,up € C([0,T] :
HO(R)NL?(|x*dx)), T > 1, are two solutions of (1.1)-(1.2) such that

2 x4/3+e
(1.9) (1 —u2)(-,0), (w1 —up) (-, 1) € L* (e dx)
for some € > 0, then u; = u. Moreover, in the case where in (1.2) one has
P = P(u,0u) = Z Aoy 0 U™ (Oxut)®2 NeZ"

2<a1+m <N
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the exponent 4/3 can be replaced by 5/4.

In fact one should expect the general result in [4] to hold with 5/4 in (1.9) instead of
4/3 for all P(-) in (1.2). However the argument of proof in [4] follows that given in [5] for
the KdV equation. More precisely, it was established in [5] that there exists ap > 0 such
that if uy,u, € C([0,T] : H*(R) N L?(|x|*>dx)), T > 1, are solutions of the IVP associated
to the KdV equation (1.5) with

(1.10) (ug —u2)(+,0), (uy —up)(-,1) € L? (eaoxi/z dx)

then u; = up. (Although, the statements in [5] and [4] contain stronger hypotheses than
the ones described in (1.9) and (1.10) respectively, these can be deduced by interpolation
between (1.9) and (1.10) and the corresponding inequalities following by the assumptions
on the class of solutions considered).

The value of the exponents above are dictated by the following decay estimate concern-
ing the fundamental solution of the associated linear problem

(1L.11) 8tv—|—c9xzj+1v=0,
' v(x,0) = vo(x).
In [27] it was shown that
cj T x—x
(112) V(.x,t) = m /Kj(m)vo(xl)dx/

—oo

with K;(-) satisfying

c o 2iD2)
(113) |KJ(.X)| S me CjXy
with x; = max{x,0}, x- = —min{x, 0}. Thus
X e x(z_,;+1) 1/2j
(1.14) K,(m) e ()T

For this reason and the result in [5] one should expect that (1.9) holds with 5/4 instead
of 4/3 for a large class of polynomials in (1.2) including that in (1.3). The obstruction
appears in [4] when the Carleman estimate deduced in [5] is used in this higher order
setting.

In [9] we proved that the result in [S] commented above is optimal. More precisely, the
following results were established in [9].

. 3/2 .
() If ug € L2(R) NL*(e“*+ " dx), ag > 0, then, for any T > 0, the solution of the IVP
for the KdV equation (1.5) satisfies

=

3/2 3/2
(1.15) sup /e"(’>"+ lu(x,1)|* dx < ¢* = ¢*(ao; ||uo]|2: He%“"x+ uol|2;T),
1€[0,7] 7

with

(1.16) a(t) =

ao

(1+27d3t/4)1/2"
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(i) If uy,up € C([0,00) : H'(R) N L?(|x|dx)) are solutions of the IVP for the KdV
equation (1.5) such that

T oan
(1.17) /e“°x+ |u1 (x,0) — ua (x,0)[> dx < oo,

then, for any 7' > 0,

oo

3/2

(1.18) sup [ X |uy (x,1) — up (x,1)|Pdx < ¢
(0.7,
with
c* = c*(ag: Jur (+,0)l[1.2: |2 (- 0) [ 1.2 [[1x]"/ %y (x,0) |2

It =) )l 23 0 ay =) (-, 0) ;)
with a(z) as in (1.16).

In order to simplify the exposition we state our main result first for the case of the [IVP

(1.19) {atu—axsu+b|u83u+b28xu&x2u+b3u28xu:O,
u(x,0) = up(x),

with by, by, b3 € R arbitrary constants.
Theorem 1.1. Let ay be a positive constant. For any given data
(1.20) uo € H3(R) mL2(e“0x5+/4 dx).

The unique solution u(-) of the IVP (1.19) provided in [16]

ueC([0,T]: H*(R))N...

satisfies
7 5/4 5/4
(1.21) sup [ %% u(x,0))?dx < ¢* = ¢*(ap; uo|3,25 ||€“*+ upl|2;T)
[0,7] 7
with
55
(1.22) alt) = —=2— with k=11

..
1+ kade 4

Theorem 1.2. Let ag be a positive constant. Let uy,uy be solutions of the IVP (1.19) such
that

up € C([0,T] : H3(R)NL?(|x|* dx)),
up € C([0,T] : H*(R)) N L2(|x|> dx)).
If

=

— aox5/4 _ 2 _ a()xs/4 _ 2
(123) A= [ €™ |up(x,0) —up(x,0)|"dx = | €™+ |ugpi(x) —u(x)|”dx < oo,

—o0

then, for0 < e < 1
7 5/4

(1.24) sup [ ¥ |y (x,1) — ua (x,1)) P dx < ¢**

(0,7]

—oo



I22b

theorem3

I23

I24

I25

I26

DECAY FIFTH ORDER DISPERSIVE EQUATIONS 5

where ¢** = c**(ao; ||uot ||s.2 ||uo2| 4,23 [|¥2uo1 |23 | x uoz

2 A€, T) and

a 5
alt) = —=2  with k=k(e) = %(%%)

v/ 1+ kagt

(1) Our method of proof is based on weighted energy estimates for which one needs
that

(1.25) Ruc LV ([-T,T]: L (R)).

Remarks.

By using Strichartz estimates it was shown in [16] that (1.25) holds for solutions
corresponding to datum uy € H*(R) with s > 9/4, (see section 2.5 in [16]). How-
ever, to obtain some interpolation inequalities needed in the proof and to simplify
the exposition we shall assume that ug € H>(R).

(ii) In the case when the local solutions extend to global ones, for example for the
case of the model described in (1.3) for which the solutions satisfy infinitely many
conservation laws, the result in Theorem 1.1 holds in any time interval [0,T)].

(iii) In the statement of Theorem 1.2 and Theorem 1.3 below we did not intend to
optimize the hypothesis on the regularity and decay of the data.

Our next results generalize those in Theorems 1.1 and 1.2 to the following class of
polynomials:

(1.26) P(u,du, 8xzu, B)?u) = Qo(u, oy, 8)6214) afu + 01 (u,dvu, afu)
with
Qo(x1,x2,x3) = Y, agx®, NeZ", N>1, ag €R,
I<|a|<N
and
Q1 (x1,x2,x3) = Y, bgx?, McZ", M>2, by €R.
2<]al<M
Notice that all the nonlinearities in the models previously discussed belong to this class.
For further discussion on the form of the polynomial P(-) in (1.1)-(1.2) see remark (iv)
after the statements of Theorem 1.3 and Theorem 1.4.

Theorem 1.3. Let ay be a positive constant. For any given data

(1.27) uo € HOR) N2 (0™ dx).

The unique solution u(-) of the IVP associated to the equation (1.1) with P(-) as in (1.26)
(1.28) ueC([0,T]: H(R))N...

satisfies

=

5/4 5/4
(129)  sup [ ™% Ju(x, )] dx < ¢ = " (ao3 |[uoll 10,25 [| () uol 23 |0+ uo|2; T)
[0,7]

with

55
(1.30) alt)= —2 with k=11%

<.
v/ 1+kagt 4
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Theorem 1.4. Let ay be a positive constant. Let uy,uy be solutions of the IVP associated
to the equation (1.1) with P(-) as in (1.26) in the class

I27

I28

If

(1.31)

ur,ur € C([0,T] : HO(R) NLA((x)* dx))N...

=)

— a0x5/4 _ 2 _ a0x5/4 _ 2
A= [ % |up(x,0) —up(x,0)|"dx = [ " |upi(x) —upz(x)|”dx < oo,

—o0

then for 0 < e < 1

(1.32)

a(t)x5/4 2 x5
sup [ e up(x,t) —up(x,1)|“dx < ¢
0,7

Lo

2
where ¢** = c**(ap; ¥ ([luojll10,2 + [ (x)*uojl2; As&;T) and
ap ) 5% /3 25
alt) = —— with k=k(g)= —5(7—1—7)
4/1+kdél 4 2 4(5*8)
Remarks.
(1) The hypotheses on the regularity of the initial data (and consequently on the solu-

(ii)

(iii)

(iv)

)

tions) in Theorems 1.3 and 1.4 are not sharp. They depend on the structure of the

polynomial under consideration. However as written they apply to any polynomial

P() in the class described in (1.26).

Theorem 1.1 and Theorem 1.3 tell us that solutions of the equation (1.1) with P(-)
as in (1.2) decay accordingly to that of the fundamental solution K (-) described
in (1.14) with j =2.

Theorem 1.2 and Theorem 1.4 suggest that the results in [4] described in (1.9)
should hold with 5/4 instead of 4/3 in the exponent for any polynomial in (1.2).
However this remains as an open problem.

We recall that in [17] a local existence theory in weighted Sobolev spaces (H*(R) N
L?((x)% dx) with s > 4], s large enough) for the IVP associated to the equation
(1.1) with a general polynomial P(-) as in (1.2) was established. This involves
the use of a gauge transformation which transforms the equation (1.1) into an
equivalent system. So one can ask if our argument presented here in Theorem 1.3
and Theorem 1.4 extends to this general case. In this case, however, this general
result requires (decay and regularity) hypotheses involving the data (Theorem 1.3)
or the solutions (Theorem 1.4) as well as some some of their derivatives. Also in
this case the constant function a(t) described in (1.22) may be smaller (i.e. weaker
decay).

Concerning the existence of the solutions uy,u; in the class described in Theorem
1.2 and Theorem 1.4 we recall the result in [17] . The fact that the operator
[ = x+5td} commutes with L = 9, — 32, and the “identity”

| “W (2o = W (1) [x]*uto + W (1){ P r.a (i) (§)}* ()
which holds for o € (0,1), where

{Pr.oc (@) (§)} 112 < e (1 + [t (fluoll2 + [D**uoll2),
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and W (t) denotes the unitary group associated to the linear equation in (1.1) (see
[101), imply in particular that in order to control x* decay in the L* norm one
needs at least to have Dféa derivatives in L*. Thus combining these ideas the result
of existence of the solutions uy,u in the class described follows.

In the proofs of Theorem 1.1 and Theorem 1.3 we need an intermediate decay result con-
cerning the solutions of the IVP. More precisely, in [12] T. Kato showed that H>-solutions
u of the generalized KdV defined in the time interval [0, T

du+ddu+utdu=0, keZt,
with data uy € L?(eP*dx), B > 0 satisfy

(1.33) P uec([0,1]: L2(P¥dx))NC((0,T) : H*(R)).
Roughly in the linear case this follows from his observation that if u is solution of
S+ du=0

and v(x,1) = eP*u(x,1), then
v+ (0 —[3)3\/ =0.
So our next result, which will be used in the proofs of Theorems 1.1 and 1.3 extends
Kato’s result to solutions of the IVP (1.1) with P(-) as in (1.26).

Theorem 1.5. Let u € C([0,T] : H*(R)) be a solution of the IVP for the equation (1.1)
with P as in (1.26), corresponding to data ug € H®(R) NL2(eP*dx), B > 0. Then

ePruec([0,T]: L2(R))NC((0,T) : H*(R)),

and
leP*u®)]l2 < c|leP*uoll2, € [0,T].

We recall that although this is a subclass of the previously considered in Theorems 1.1-
1.4, this class includes all models previously discussed. The restriction appears in our
wish to use Kato’s approach. In fact by using the idea developed in the proof of Theorems
1.1-1.4 one can extend the result in Theorem 1.5 to the whole class in (1.2).

Also the hypotheses in Theorem 1.5, ug € H®(R) can be significantly lower once a
particular form of the polynomial P in (1.26) is considered.

The paper is organized as follows. The construction of the weights to put forward
the theory will be given in Section 1. The proofs of Theorem 1.1 and Theorem 1.2 will be
presented in Section 3. In Section 4, Theorem 1.3 and Theorem 1.4 will be proven. Finally,
the proof of the extension of Kato’s result will be detailed in Section 5.

2. CONSTRUCTION OF WEIGHTS
Consider the equation
2.1) du—u=F(x,1), >0, xeR.

Formally, we perform (weighted) energy estimates in the equation (2.1), i.e., we mul-
tiply (2.1) by ugy, with ¢y = ¢n(x,z) and N € Z*, and integrate the result in the space
variable. Thus after several integration by parts one gets

i/uz(}bNd)c—/uzr?,(p]\zd)c—i-5/((9xzu)2(9x¢Nd)c

2.2) dt
—5/(axu)za§¢Ndx+/uza§¢Ndx = 2/Fu¢Ndx.
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Using that
(2.3) -5 /(axu)zafdnvdx = 5/u8§u8€¢Ndx— % /u23§¢Ndx.

From the Cauchy-Schwarz and Young inequalities we have that for any € € [0, 1]

3 2
5’/u8x2uaf¢jvdx‘ gs(/(agu)zaxqmdx)l/z(/uz (%xzzlvv) i)'

25 (d3n)?
<(5- d7u)* o pyd / SRR R
<(5-e) [ (2P a.on ey L st
(we remark that the integral above are taken on the set where ¢y does not vanish. We

will show that d,@y does not vanish in the support of 83 ¢on). Then, from (2.2)-(2.4) it
follows that for any € € [0, 1]

(2.4)

dt

3 [ 255 25 2 (90 0n)?
(2.5) —E/u 8x¢Ndx—4(5_8) /u X dx

i/u2¢Ndx—/uzatqudx—i-e/(&fu)ZqubNdx

< 2/Fu¢Ndx,

i.e. for € € [0,1]
%/uzq;Nders/(afu)zaxq)Ndx

) 3 s 25 (9 ¢n)?
(2.6) < /u ((9t¢N+§9x o+ 45—€) Oy )dx

+2/uF¢Ndx.

We shall use the inequality (2.6) with 0 < € < 1. Then in order to simplify the proof
we shall carry the details in the case € = 0 and remark that all the estimates involving the
coefficient 25/4(5 — €) are strict inequalities which also proves their extension to € > 0
with € < 1.

We shall construct a sequence of weights {¢y }5_, which will be a key ingredient in the
proof of our main theorems.

Theorem 2.1. Given ag > 0 and € € [0,1], € < 1, there exists a sequence {Qe N} N_| =
{On}N_, of functions with
2.7) oy : R x[0,00) = R
satisfying for any N € 7+
(i) oy € CHR x [0,00)) with I29n¢(-,t) having a jump discontinuity at x = N.

(i) on(x,t) >0 forall (x,t) € Rx]0,c0).

(iii) Aoy (x,2) >0 forall (x,1) €R x[0,00).

(iv) There exist constants cy = ¢(N) > 0 and co = co(ag) > 0 such that
(2.8) o (x,1) <eyco i)

with

(2.9) xy =max{0;x}, (x)=(1+x2)"/2
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(v) For T > 0 there is Ny € 7" such that

5/4
A9b | (2.10) Ov(x,0) <e“™  if N>Np.
Also
5/4
li £ = a(t)xJr
ngloqbv(x, )=e

foranyt > 0and x € (—e0,0) N (1,00) where

a 5
a)= —2 i k:k(e):j—s(%+4(52i8)).

1+ kaét

(vi) There exists a constant co = co(ap) > 0 such that for any € € [0,1], e < 1,

25 (3 ¢9w)?
4(5_8) ax‘PN

3
At0] (2.11) a,¢N+§aj¢N+ <oy

Sfor any (x,t) € R x [0,00).
(vii) There exist constants cj = cj(j;a0) >0, j=1,2,...,5 such that

A1] (2.12) 10w (x,1)] < ¢; (x)7/* B (x,1)

Sor any (x,t) € R x [0,00).

Proof of Theorem (2.1)

Given ag > 0, for N € Z+ we define
A2| (2.13) o (x,1) = { e 1<x<N

where

A3 (2.14) alt) = ——L <qy, >0,

IVAES 4kagt

ap being the initial parameter and k = k(&) > 1 is a constant whose precise value will be
deduced below,

r4] (2.15) o(x) = (1-n(x)x +nx) x>, xp =max{x;0}
for x € (—oo, 1] where 1 € C*(R), ' >0 and
0, x<1/2,
A5| (216 -
(2.16) n(x) {1’ ©> 34,

(i.e. for each x € [0,1] @(x) is a convex combination of x> and x%/*) and Py(x,?) is a
polynomial of order 4 in x which matches the value of 4 and its derivatives up to
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order 4 at x = N:

PN()CJ) =
5 5 —N 2
{142 N = N)+ 35 (522N +aN—3/4)%
a6] (2.17) s o
+ o (256N 1 150N 2/~ 3aN ) %

_ 4
+ 45—4 (1256*N + 150a°N /4 — 45a°N~6/* 4-21aN~11/4) b NE 4{\7) }e“N5/4,

with a = a(t) as in (2.14).
Thus to prove (2.8)-(2.12) (i)-(vii) we consider the intervals (—eo,0], [0, 1], [1,N] and
[N, e0).

The interval (—eo,0]: In this case

(1) =0 =1
which clearly satisfies (2.8) (i)-(vii).

The interval [0, 1]: In this case
Oy (x,1) = D9
with
P(x) = (1-n(x)+nx)*"* >0, x€[0,1]

with 7 as in (2.16). Since in this interval x>/* > x° it follows that
§'() = (1 -5 410025+ ()3 )
A17 | (2.18) 5

> (1-n(x))5x* +n(x) 2" >0,

and there exist c; >0, j=0,1,...,5 such that

A18] (2.19) oV (x) <c¢c;, xelo,1].
Since
A19| (2.20) d(t)<0 onehas a(t)<ay for t>0

and we can conclude that

(2.21) dlon(x,1) < c(jiao) on(x,1), x€[0,1],1>0.
Also
(2.22) 0N (x,1) = d (1) o(x) dn(x,1) < 0.

Next we want to show that in this interval there exists co = co(ap) > 0 such that

(92 ow(x.1))>
8x¢N(x7t)

i

22| (2.23) < coPn(x,1),

ie.

A23] (2.24) (97 o (x,1))% < co o (x,1) AP (x,1).
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Since

oy = a@'¢n,
I on = (ap® +(ag')?) g,
2 on = (a9 +3a’ 0P ¢’ + (ag')*) gy,
one has that forx ~0 (x > 0)
Ocfn ~ aSx* ¢y,
A2y ~ (a20x° +a*25x%) ¢y,
Py ~ (a60x> +3a*100x” +a>125x'?) ¢,
Hence for x ~ 0 (x > 0)
(8)C3¢N)2 <cla+ad*)?x* o}
and
v Ay > Sax* 93

Using (2.20) (i.e. a(t) < agp for ¢ > 0) it follows that there exists & > 0 and a universal
constant ¢ > 0 such that

(2.25) (930n)> < clao+a}) oy digy for xe€[0,8),1>0.

In the interval [§, 1] is easy to see that (2.25) still holds (with a possible large ¢ > 0).
Combining the above estimates we see that (2.8) (i)-(vii) hold in this interval.

The interval [1,N]: In this region

(2.26) ov(x,r) =@y e [1N], £>0.
We calculate
S 1/
Oy = Zax oy >0,
8 oy = (5a2x2/4+ax 3/4)¢N,

227) oy = (25a3x3/4+15ax 24 _3ax 7Yy,

U]-lk

oy = (125a X+ 15003 x4 —4502x6/* £ 21ax /%) gy,

Dy = 5 45 (6250°°% +1250a" — 37503/ 1+ 375a%x 10 — 231ax™ 15/ .
Hence ¢y, 8x¢N > 0 and
(33¢N)2 5 5.5/4 2 —10/4 15/4
(2.28) 3 s =3 (625 x4 +750a* + 758 x5/* — 90a%x 104 4 9ax 1/ )‘PN-
xYN
Hence
5 (930n)’
dhoN+ 5 a5<Z5N+
229 4 dify

:{a'x5/4+ka5x5/4+04a +C3ax 5/4—|—c a’x lo/4+c1ax715/4}¢1v
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with
(a) k:ié(%+§) >1
(b) cs= :—5(%1250+ 2750) >0
(230) @ o= (3375 275) <0
d) e = %(%(375) + %(—90)) >0
(€) 1= %(%(—231)+%9) <o.

Notice that if we change the coefficient 5/4 in (2.29) by 25/4(5—¢€), e €[0,1], e < 1,
the factor 5/4 in (2.30) (a)-(e) changes in a similar manner, and the value of k in (2.30) (a)
will increase to

55 /3 25
231 k£:—<f 7)>1
@31) © =53 1529
and ¢y, ¢y, ¢3, ¢4 remain with the same sign, uniformly bounded in € € [0, 1], € < 1, and as
we shall see below, the exact values of ¢;’s, j = 1,2,3,4, are not relevant in the discussion
below.
Next we solve the equation

(2.32) d(1) = —ka’ (1)
which eliminates the terms with power 5/4 on the right hand side of (2.29). Thus

(2.33) alt) = ——20
1+ 4kagt
Therefore to show that
2
3.5 5 (3 9n)
. — — <
(2.34) 9:¢N+29x¢1v+4 o <cod

with ¢ = ¢o(ap) > 0 from (2.30) it suffices to see that for x > 1.
(2.35) C4a4 + 03a3x75/4 + cza2x710/4 + cla)c*ls/4 < c¢p.
Since a(t) = a < ap, c1,c3 <0, and x > 1 one just needs to take c¢( such that
C4aé + cza(z) < .
Next, from (2.27)

5
PN = Zax'/“szv < cap(x) ¢y,

92y < c(ad+ao) (x)' ¢y,
(2.36)

930w < c(ay+ao) (x)°/* 9.
Finally we remark that
(2.37) o (x,1) = @0 < QN g 150 x e [1,N]

which completes the proof of (2.8) (i)-(vi) in this interval.
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The interval [N, 0): In this region

on(ea) = Bylxn) = {1+ %aNlM(x—N)

42 <§a2N2/4 + %azv*/“) (x—N)?

2
(2.38) 45 %5 15 3
3a73/4 207-2/4 ~7/4 3
+4—3(€a1v/ +oaN = ZaN /)(x—N)
S (125 qpapa 150 30 qpa 45 onea 2L o iiga 4\ jand/*
+44<24aN +24aN 24aN +24aN )(x N)}e ,

with a = a(t) as in (2.33).

First we shall show that the negative coefficients of (x — N)3, i.e. —15aN~7/*/384 and
of (x—N)* i.e. —225a>N~%/* /6144 can be controlled by the other ones. More precisely,
we shall see that there exists a universal constant ¢ > 0 such that

i(@cﬁN*]/“— gazN’ﬁ/“—i—%aN*”/“) (x—N)*

44\ 24
53 51
— = ZaN *(x =N+ = 2aN /4 (x = N)> = Ry(x,1
2.39) PEr (x—N) t 2aN (x—N) N (x,1)

> c{(a3N71/4+a2N76/4+aN7”/4)(x—N)4

+aNA(x—N)? +aN—3/4(x—N)2},

ORy (x,1) > c{(cﬁzv*l/“ F AN aN T (- N)3

(2.40)
+aN T (x=N) +aN (- N) |,
and
HRylut) c{(@N Va4 NI (-
(2.41) a'()

+N*7/4(x—N)3+N*3/4(x—N)2}.

Once (2.39)-(2.41) have been established it follows that there exists ¢ > 0 such that for
x>N

1/4 2072/4 34 (x=N)?
Py (x,1) 2c{1+aN/ (x—N) + (a>N*/* +aN—>/ )T
3
+(a3N3/4+a2N*2/4+aN*7/4)M
(2.42) 3!
4
drA/4 | 3a—1/4 | 2a—6/4 —11/4 (x—N) } aN>/4
+(a*N'*+a’N~ /" 4+a°N +aN )74! e
> ¢V >0
(which proves (2.8) (ii) in this interval).
From (2.38)-(2.40) it can also be seen that
5 i S 2o
Py (x,1) E{ZaN + 5 N =)
(2.43)
53 a3N3/4 54— (14N4/4

NS4
T B L
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(which proves (2.8) (iii) in this interval) and

(2.44) APy (x,1) = d (1) Sn (,1) "+ (1) N3/ By (x,1),
where
_ x—N)?
Sn(x,1) > C{N1/4(X—N) +(aN**+N 3/4)%
3
(2:49) N a2 a7 BN
. _ 4
(N NV a4 a1 & 4'1\’) } >0,

The proof of (2.39) and (2.40) are similar, so we restrict ourselves to present the details
of that for (2.39).
First we observe that for any a > 0

1/2p7—11/8 —11/4
(2.46) AN-6/% — o 32N-1/8 a' N1/ < l(azaa N1 % )
a 2 a

Thus taking @ = V6 it follows that
(2.47) 545+ 1)a®N~%* < 5(149a°N~1/* 4 4aN—"1/%).

Hence

5
4424 (1506131\/_1/4 —4542N0/4 —|—21aN—11/4)

(2.48)

5 3a7—1/4 2a7—6/4 —11/4
> gy (@N V4 @NO 4 17aN ),

This takes care of the term with coefficient —45-5a2N~9/%/(4*.24) in (x — N)*, see
(2.42). To handle the term —15aN~"7/4(x— N)3/(4 - 6) we write

N77/4(X_N)3 — aN73/S (X—N) N*II/S(X_N)Z

(2.49) o
L/ o34 2, N x—N)*
< S (N VNP )

for any o > 0, and so taking o = v/6 one has that

15+1 1

iaN77/4(x—N)3 = —aN *(x—N)?

43.6 24
(2:30) 1 3/4 2 80 11/4 4

< gaN (x—N) +maN (x—N)".

Collecting the above estimates we obtain (2.39).
Next we shall show that there exists co = co(ap) > 0 (independent of N) such that if
x>N

3 25 (dew)?

2.51 PN + =05 X <
(2.51) o+ 5 X¢N+4(5_£) o <co¢n,
which in this region reduces to

25
(2.52) Py 0Py + 4 5o (93Py)? < co Py 9, Py,

for any € € [0,1], € < 1. As we have done before we first consider the case € = 0.
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Thus we have

5 5(/5 75 15
2(93p )2 =2 3N3/4 L D2 an2/a 7/4
(2.53) 4(x ) 4{(43 N A e N T g )

+(54 ANV L 750 AN o 105 N—11/4)( N)}ze2aN5/4
4 e o ’

since, d'(t) < 0, by (2.44) and (2.42)
(2.54) Py < d ()NS/*Py < d (1)N3/* V"
Thus, by (2.43)

O PyokPy < d (t)N*/*x
(2.55) 53 3N3/4
43 2
First we shall use d,Py d,Py to control the terms in (2.53) involving the highest power

in N. (Notice that we only handle the positive terms in (2.53)).
Thus using (2.30)—(2.32) it follows that

{4 aN'* + 4 2N2/4(x N+ (x_N)Z}eQaNS/“.

56664 / 545 1/4 6/4 6
ZI“N/ +a(t)N/ZaN/ aN®/ 4(460 +a())

5 556 56,3 25
a3 (s (5 - S 3 25)) <o
glge? ) =4 435 3\2735)) <
Notice that the last inequality above still holds with 25/4(5 —¢), € € [0,1], € < 1, instead
of 25/4-5 and 5/4.
Also by (2.30)(2.32)
5

22(43 N (44 4N4/4>(x—N)+a()N5/4 @NY4(x—N)

52 56
= a2N7/4E(x—N) (ZEQ +a ( ))
52 56
= a2N7/4E(x—N) (246615 —ka5>
52 56 55,3 25
s G A C)
N 2 <0
aNTEE=N2E -5 5T
(where the remark after (2.56) also applies), and again by (2.30)—(2.32)
558 33 3N3/4

ZBaSNz(x N) +a()N5/443

(2.56)

(2.57)

(x—N)?

535, 5 /5% 1
= —a’N*(x—N) (—a +=d'(t ))
FER 46 2
(2.58) .

53 3a2 s 15
4—3aN (x—N)? (46 —Eka)
56 15,3 25
82

e (15 () =

=N N (35T 0)) <
(where the remark after (2.56) also applies).

We bound the remaining terms in (2.53) by co0; PydyPy . For that we use the fact that

NPy < PydPy, x>N.
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Thus, from (2.43)

4 3 3/4
355" IO a1/ (RN < 3N (x

(2.59) 4744 44 = OE(Z 2
<co ﬁxPNe"NSM < Co PNaxPNa

5/4
7N)2€2aN /

by taking
(2.60) co > cag, ¢ universal constant.

Notice that with this choice of ¢y (2.59) holds even when the factor 5/4 in the left hand
side is replaced by 25/4(5—¢€), € € [0,1], € < 1. Also, from (2.43)

2 (44 a4N4/4 3 a N7 /4 + 7(Z3N71/4 3 a N3/4> (’C N)e aNS/

5 :
<c¢p EazNz/4 (x—N) ezaNi/4 < co 0Py e“N5/4 < ¢o Py, Py
by taking cg as in (2.60) (where the remark after (2.60) also applies). Also
55 5 3475
Vg
by taking cg as in (2.60) (and the remark after (2.60) also applies).

This handles all the terms in (2.53) having a positive coefficient and a positive power of
N. The reminder ones having positive coefficients can be bounded by

5
(2.62) 2 AN 242N < ¢ ZaNl /462“N5/4 < co Pyo,Py

5
co ZaN 174,
Combining the above estimates with (2.39)—(2.45) completes the proof of (2.52).
Finally (2.42) yields (2.12) in this region x > N.
To finish the proof we need to prove (v) in the region [N, ). We use (2.27) with r =0

g/

. . . 5
and observe that the negative terms in the expression for ﬁe can be absorved by the

positive terms for x > N and N sufficiently large. More precisely,
1250a8 > 2-375agx>/* and  375a3N"'%* > 2.231g9x" 13/

if ¥O/4 > ¢/ap, where c is an absolute constant. To have this for x > N, it sufficies to take
N in such a way that N°/* > ¢/ag. This is, N > c4/5aa4/5 =No.
In this way,
5

dx’

dS
5/4 — Py(x,0)) = Eeao)ﬁm >0

( e0x

for x > N > No. Since e®*"* and Py (x,0) coincide at x = N up to the fourth derivative, we
conclude that ¢%*”* > Py(x,0) for x > N > Ny , which proves (v) in this region.
Thus we have completed the proof of (2.7) (i)-(vii), (2.8)—(2.12).

Corollary 2.2. There exists ¢o = ¢o(ao; T) > 0 such that for any N € Z* sufficiently large,
xeR, t€]0,7T]

(2.63) On (1) < 2 (14 () dedw(x,1)).

The proof follows from the construction of the weight ¢y .
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3. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

Proof of Theorem 1.1

Using the result in Theorem 1.5 (and the remark afterwards) we have that our solution
u of the IVP (1.19) satisfies

(3.1) u e C([0,T);H*(R)NL?(eP*dx)) for any B > 0.
Therefore, by interpolation one has that
(3.2) dlu e C([0,T);H>(R)NLA (WP 4qyx))  j=0,1,2,3.

In particular u € C([0,T]; L?({x)*dx)), for any k. Suppose first that u is sufficiently regular,
say u € C([0,T]; H>(R)). Then we can perform energy estimates for u using the weights
{¢n} (since ¢y < c(x)*). Thus, we multiply the equation in (1.19) by u¢y and integrate by
parts in the space variable to obtain

(3.3) / Juudy — / 2 uudy + by / uduudy + by / dud*uudy + b3 / u? dsuugy =0,

and applying (2.6) and (2.11) we have
2(/3tuu¢Ndx7/afuu¢Ndx) > %/u2¢Ndx+8/(83u)28x¢Ndx

2 3, 25 (9¢n)?
(3.4) ‘/ ! (3f¢N+zaX¢N+4(5—s) o )
d [ |
= u2¢1vdx+8/(3fu)23x¢1vdx_CO./ W

with € € [0,1], € << 1, and ¢p = cp(ap). In the proof of Theorem 1.1 we will only use
(3.4) with e = 0.

Now we shall handle the third, fourth and fifth terms on the right hand of (3.3). Thus
we write

= [ wduudya < |3l [ ovar,
by integration by parts
. 1 .
(3.6) / Oudluugy dx = -3 / O un® Py dx — 3 / 02 un® 0, gy dx
=E +E.

We recall hat the ten ||d2u(t) || is integrable in the time interval [—T,T], (see remark (i)
after the statement of Theorem 1.2).
The bound for E; is similar to that in (3.5). To control E; we recall that (see (2.12))

3.7 0 < g (x,1) < e1 () Hon(x1) < e(1+€") g (x,1)
SO

B> < (e 02l + |02ul-) [ wguax.

Notice that by combining Sobolev embedding and (3.2) one has that [ [|e*02ul|(t)dt
is finite.
Finally for the fifth term in (3.3) we have that

(3.8) /uz(?xuu(])Nde ||u8xu||w/u2q)1vdx.
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Collecting the above information, from (3.4) we can conclude that for any N € Z*

%/MZ(x,t)(pN(x,t)dng(t) /uz(x,t)qu(x,t)dx

with M(t) € L=([0,T]), where M(-) depends on ao; ||€*ug||2; ||uo||32. Hence, from prop-
erty (v) in (2.10), and Gronwall’s Lemma we see that for z € [0,T]

/uZ(x,t)q)N(x,t)dx < c(/u(%(x)(PN(x,O)dx)efoTM(r’)d,/

(3.9) s -
< c(ao, |20 w2, [luoll32,T) | up(x)e™+ dx.

Now, we will establish (3.9) for our less regular solution u € C([0,T]; H*(R)). To do
that, we consider the IVP (1.19) with regularized initial data u 5 := ps * u(- +§,0), where

0>0,ps= %p(g), p € C*(R) is supported in (-1,1), and [p = 1. Since
(3.10) ups — g in H*(R) as & — 0,

by the well-posedness result in [16] for the IVP (1.19) in H3 (R), the corresponding solu-
tions ug satisfy ug(t) — u(t) in H*(R) uniformly for ¢ € [0, 7] as § — 0. In particular, by
Sobolev embeddings, for fixed ¢

3.11) us(x,t) > u(x,t) forallxeR asd — 0.
Also, it can be proved (see Theorem 1.1 in [9]) that

5/4 5/4
(3.12) 20 ug 512 < e 0 uo .

Since ug is sufficiently regular we have (3.9) with us and u 5 instead of u and ug. In this
way, for ¢ fixed, using (3.10)-(3.12), and applying Fatou’s Lemma we see that

2 la x5/4 2 a x5/4
(3.13) u”(x,1) Py (x,1) dx < C(ag, ||e2 ugl|2, |Jug||32,T) | ug(x)e®~+ dx
Now, we make N — oo and apply property (v) in Theorem 2.1 and Fatou’s Lemma again to

obtain

5/4
sup [ u?(x,0)e® D dx < ex,
t€[0,7]

which is the desired result.

Proof of Theorem 1.2

We consider the equation for the difference of the two solutions
(3.14) w(x,t) = (u; —up)(x,1)
that is,
315 ohw — 8xsw = —b (u18x3w + QSLQW) - bg(axulaxzw + axzugz?xw)
— b3 (Oxuz (g + u2)w + 13 A, w).

We follow the argument given in the proof of Theorem 1.1 with € € [0, 1], € < 1. Hence
we multiply (3.15) by w@y and integrate in the variable x and use that

(3.16) /ul(?SWW(])Ndx: %/ul(PNa)?(wz)dx—3/.u1(])N3xw3x2wdxEFl+F2
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where
1 3 2

(317) F1 = _5/8x (u1¢N)w dx.
Then using (2.12) it follows that

3
(3.18) Rl Y 1607403 e [ wowdx

Jj=0

and after some integration by parts

b= —%/ul@vax(&xwydx: —%/GX(ulng)waxzwdx—&—%/ag(ulq)N)Wzdx

(3.19)
= F21 —|—F22.
We observe that the same bound for Fj given in (3.18) applies to F22 For le we write
(3.20) R = —% /Bxul(])Nwaxzwd — %/ulaxq)Nwaszdx =F"+F7",
with
|F2] 2 < ;/(afw)zax%, dx+ g /u%w28x¢1v dx

(3.21) e .
<5 [@wpPagwdx+ ()2 [wionax

using (2.12) and
FM < co / 191 (14 () 3w ) w2 w| dx
:co/\8Xu1w3x2w|dx+c0/|8Xu1<x>w8fw\8x¢1vdx
/
<o / \8xu1w8x2w|dx+§ / (afw)23x¢Ndx+%0 / 19uttr [2(x) 2w Ar oy dx

< co/\8xu1w3xzw|dx+2/(8fw)23x¢1vdx+ §H<x>l+1/88xu1||Z°/w2¢Ndx

by using Corollary 2.2 (2.63) and (2.12).
Directly one has that

/Bﬁuzwzq)Ndx < ||8X3u2||oc /W2¢Ndx.
The estimate for the term

/ olt] 8x2ww¢N dx

is similar to that given above for le’l.
Similarly, we have that

/axzuzaxwwq);vdx:—%/8x(83u2¢;\/)w2dx:—%/8fu2w2(]);\1d —%/8§u23x¢1vw2dx
with
’/8fu28x¢1vw2dx| < /|8fu2|(x>l/4¢1vw2dx§ ||<x)1/4c9fu2||m/w2¢1vdx

and

‘/aguzwzd)[vdx‘ < ||83u2||w/w2(i)1vdx.
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Finally, the terms

/8xu2(u1 +M2)w2¢ndx+ /u%&xww(])gvdx

can be handled analogously.
Thus combining the inequalities

/atwwq);vdxf/@fwwqb;vdxz 2%/wz(pz\/der&‘/(axzw)zﬁx(])zvdxfco/w2 O dx
(see (3.4)),
[ 1wl < s | wla 92w = L0,
and the above estimates we have that
% / W2 (x,1) o (x, 1) dx < M (1) / w2 (6,1 (x, 1) dx+ (1)

where

3 . .
M) = c(e) (L1170 o+ 1 (6) /001
j=0

1107wz e+ 11(0) 49 2| oo 4+ | Butaz el | oo + ||u2||oc))
with M,L € L*([0,T]). Therefore

. T
sup [ w?(x,2)dy (x,1) dx < c(/wz(x,O)(j)N(x, 0) dx+/ L(t)dt) el M)t
(0,7] 0

which basically yields the desired result.

4. PROOFS OF THEOREM 1.3 AND THEOREM 1.4

Proof of Theorem 1.3

To simplify the exposition and illustrate the argument of proof we restrict ourselves to
consider the most difficult case P(u, duu, d2u, d3u) = d2ud’u. Thus we have the equation

Ot — du+ad’udu=0, acR.

Now we follow the argument given in the proof of Theorem 1.1. Then we need to
consider the term

I= /8fu8fuu¢1vdx.
By integration by parts it follows that
1 1 1
1= 70 /8; (uu)udy dx — 1 ud> uudy dx — 3 /8Xu8;‘uu¢1v dx
=hL+hL+15.
Hence
1
L= —%/GS(M(pN)uzdx
Thus

5
@1 11 < e Y 1@403 ull [ oy
=0
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Similarly,
b < cl35ull. [ owds
and after integration by parts
I < (10fullo+ 10 H0ful-) [ gy .

Therefore one has that

5 .
42) 1< e Y 67403 .. / W2y dx.
j=0
Now using Theorem 1.5 and interpolation one has that for j =0,1,...,6

sup|le! P 9u(r)||2 <,
[0,7]

which combined with (4.2) and Sobolev embedding yields the desired result.

Proof of Theorem 1.4

As in the proof of Theorem 1.3 we shall consider the most significant form of the poly-
nomial P(-) in (1.26), P(u, dyu, d2u, du) = d>ud3u. Thus we consider the equation

du—d u+ad?udlu=0, acR.
Hence w = u; — u, satisfies
Ow —Bw+ad?u 03w+ adluyd*w = 0.
Following the argument given in the proof of Theorem 1.2 we shall estimate
E| = /afulafwwq)]vdx

and
E = /8fu283ww¢N dx.

More precisely, we have
4.3) %/w2¢,vdx+e/(afw)2ax¢1vdx <o /w2¢n dx+E\ +Es.
To bound E; we use Corollary 2.2 and (2.11)
Bal < o [ 02ud2ww(1 + (x)0,0w)
< eo/ajuz 92 (1 — 2 (101 — 02
(44) +ee [(@2 W agydr+e [(02wPadwdx
< M({t)+co / (@2u2)> (2 4w gy dx + € / (92w)29 0w dx
< M)+ el 00w 2 [ wewdr e [(@2w)?andx,

where 0 < €/ < €.
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To control E| we write
El=— /83u18)(2ww¢1vdx—/8x2ul8fw8xw¢1v — /8)(2u18x2ww8x¢1vdx
:E}+E%+Ei
The bound for E 11 is similar to the one deduced above for E,. For E 13 we write
B < [(@2wPagudr+ee [(Qun)w?oigndx,

hence a bound similar to that obtained for |E,| applies.
Finally, to estimate £ 12 we write

' 1/ 1
Elz :/3fu18xzw8xw¢1vdx: 5/83u18xw8xw¢1vdx+E/Qfm&xwaxwaxq);vdx
1
= / w2 0u(D}010x) + 20,331 9cn) + Du( O 92w | dx
1 1
— E/afula)?ww(pjvdx— E/&fmw&fwax(p[vdx
=E) +EP B
Thus from (2.12) one has that
5
EP < Y I@407 Tl [ wioydx
j=0
and also
EP| <€ / (92w)2 ey dx +ce / (92u1)* W,y dx

<& [(@2wPagwdx+ce [ (@2 () v g
Finally an argument similar to that given in (4.4) shows that
<M(t)+ce /(aful )4 W gy dx+- €' /(szw)zaxq)]v dx.

Inserting these estimates in (4.3) one gets the desired result.
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5. PROOF OF THEOREM 1.5
Proof of Theorem 1.5

We shall follow Kato’s approach in [12] and define for § > 0

ePx
Thus one has
1

(52) PsEL™(R) and  [psl= .
(5.3) 0< a5 =P < Bost)

. S OxPs - (1+5eﬁx)2 S P Qs )

2 ,Bx(1 _ S,Bx

(5.4) axz(Ps(X) — M

(14+8eP7
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DECAY FIFTH ORDER DISPERSIVE EQUATIONS 23

[¢]
o

o
~

then
(5.5) 920500 < B2t
. X —
A (1+ 5ebx)2
3 ﬁx(1745eﬁx+5zezﬁx)
5.6 93 _Pe
(5.6) x(pﬁ(x) (1+8eﬁx)4 ’
SO
(5.7) 197 95(x)| <2/33L
' P LIS 2P ey
and
58 9J cepi i=1,2,3,4,5
() |x(P5(x)|—CjB mv J=12,5,4,0.
Also we have that
(95 95)* s b
) < 4
(5.9) 0< 0y < B (17 582
Therefore
0] 610 el B B s P
. . 510 @5 (x i5-2) 0.0 <o (1+5eﬁx)2_co Ps(x
Moreover
11 (5.11) ¢5(X)§(P5/()C) xeR if 0<d8 <6
and
(5.12) lim g (x) = P*.

810
As in Theorem 1.3 and Theorem 1.4 we shall consider the most relevant case in (1.26).
13| (5.13) P(u, 8xu,8xzu,8x3u) = aaxzuafu, acR,
to get the equation
14| (5.14) O — 97 u+ad?udiu = 0.

We employ an argument similar to that exposed in (3.5). Indeed, we multiply equa-
tion (5.14) by u@s and integrate by parts. Then we use the Cauchy-Schwarz and Young
inequalities and the property (5.10), to obtain the estimate

2(/.8tuu(p5dx—/8x§u(p5dx)

= i/uz (pgdx+5/(8x2u)28xqo5 dx—l—S/u&xzur?f(pg dx — %/uzaxs(pgdx

dt
3 25 (dlgs)?

S 4 [ / 2,20, _/ 2(335 &

= fu Qsdx—+¢€ | (D u) OxPsdx— [ u <2|c9x(p5|+4(5_8) 05 )

2% uz(pgdx—l-s/(&fu)z&)(gogdx—coﬁs/uz s dx
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with € € [0,1), € < 1 and ¢ > 0. With this estimate we deduced that
% /uz(pg (x)dx+¢ /(GXQu)z&x(pg (x)dx

< cof’ / u* @5 (x) dx + |a/8xzuax3uu(p5 (x) dx|.
Next we estimate the last term of (5.16). We integrate by parts and write

/afuzQ)?uu(pg(x) dx= %/axs(uz)u(pg(x) dx— lio/m?)fuu(pg(x) dx— %/&uafuuq)g (x)dx
=FE+E,+Es.

(5.16)

Thus one has

1 n
E = —ﬁ/uz%?(u(pg(x))dx.
Therefore by (5.1)-(5.8)

5 . .
Bl <c Y B103 Tu(n)le [ 1s(o)dx.
j=0

Also _
|E3| < c([10ullo + B195 1) /u2¢a(X)dx
and

Bal < 103l [ osx)dx.

Inserting these estimates in (5.16) it follows that

5
& [ osx)ax < o (B° + L8107 )] [ 95y

which implies that

sup u(xaf)(Ps(x)de/ug(x)(pg(x)dxefOTN(’)d’
(5.17) [0.7]

S/uo(x)(po(x)dxeng(’)dt
with

5
N(t) = co(B° + gﬁf\\af*fu(t)nm)
=

Since the right hand side of (5.17) is independent of & taking & | 0 we obtain the desired
result.

We shall notice that in the argument above we assumed the solution sufficiently smooth
to perform the integration by parts, otherwise we consider the IVP associated to the equa-
tion (5.14) with regularized initial data as was done in the proof of Theorem 1.1.
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