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Abstract. In this work we continue our study initiated in [10] on the unique-

ness properties of real solutions to the IVP associated to the Benjamin-Ono
(BO) equation. In particular, we shall show that the uniqueness results es-

tablished in [10] do not extend to any pair of non-vanishing solutions of the
BO equation. Also, we shall prove that the uniqueness result established in

[10] under a hypothesis involving information of the solution at three different

times can not be relaxed to two different times.

1. Introduction

This work is concerned with special decay and uniqueness properties of real
solutions of the initial value problem (IVP) for the Benjamin-Ono (BO) equation

(1.1)

{
∂tu+H∂2

xu+ u∂xu = 0, t, x ∈ R,
u(x, 0) = u0(x),

where H denotes the Hilbert transform

(1.2)
Hf(x) =

1
π

p.v.(
1
x
∗ f)(x)

=
1
π

lim
ε↓0

∫
|y|≥ε

f(x− y)
y

dy = −i (sgn(ξ) f̂(ξ))∨(x).

The BO equation was deduced by Benjamin [3] and Ono [22] as a model for long
internal gravity waves in deep stratified fluids. Later, it was also shown that it is a
completely integrable system (see [2], [6] and references therein).

The problem of finding the minimal regularity property (measure in the Sobolev
scale Hs(R) =

(
1− ∂2

x

)−s/2
L2(R), s ∈ R) required in the data u0 which guarantees

that the IVP (1.1) is locally wellposed (LWP) or globally wellposed (GWP) has been
extensively considered. Thus, one has the following list of works: in [24] s > 3 was
proven, in [1] and [13] s > 3/2, in [23] s ≥ 3/2, in [17] s > 5/4, in [15] s > 9/8,
in [25] s ≥ 1, in [4] s > 1/4, and in [12] s ≥ 0. It should be pointed out that the
result in [21] (see also [18]) implies that none well-posedness in Hs(R), s ∈ R can
be established by a solely contraction principle arguments. For further results on
uniqueness and comments we refer to [19].

Our study here includes both the regularity and the decay of the solution measure
in the L2 sense. More precisely, we deal with persistence properties (i.e. if the data
u0 belongs to the function space X, then the corresponding solution of (1.1) defined
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a continuous curve on X, u ∈ C([0, T ] : X)) of real valued solutions of the IVP
(1.1) in the weighted Sobolev spaces

(1.3) Zs,r = Hs(R) ∩ L2(|x|2rdx), s, r ∈ R,

and

(1.4) Żs,r = {f ∈ Hs(R) ∩ L2(|x|2rdx) : f̂(0) = 0}, s, r ∈ R.

Notice that the conservation laws for real solutions of (1.1)

I1(u0) =
∫ ∞
−∞

u(x, t)dx =
∫ ∞
−∞

u0(x)dx,

guarantees that the property û0(0) = 0 is preserved by the solution flow.
As an extension of the results in [13], [14] the following theorems were proven in

[10]:

Theorem A. ([10]) (i) Let s ≥ 1, r ∈ [0, s], and r < 5/2. If u0 ∈ Zs,r, then the
solution u(x, t) of the IVP (1.1) satisfies that u ∈ C([0,∞) : Zs,r).

(ii) For s > 9/8 (s ≥ 3/2), r ∈ [0, s], and r < 5/2 the IVP (1.1) is LWP (GWP
resp.) in Zs,r.

(iii) If r ∈ [5/2, 7/2) and r ≤ s, then the IVP (1.1) is GWP in Żs,r.

Theorem B. ([10]) Let u ∈ C(R : Z2,2) be a solution of the IVP (1.1). If there
exist two different times t1, t2 ∈ R such that

(1.5) u(·, tj) ∈ Z5/2,5/2, j = 1, 2, then û0(0) = 0 , (so u(·, t) ∈ Ż5/2,5/2).

Theorem C. ([10]) Let u ∈ C(R : Ż3,3) be a solution of the IVP (1.1). If there
exist three different times t1, t2, t3 ∈ R such that

(1.6) u(·, tj) ∈ Z7/2,7/2, j = 1, 2, 3, then u(x, t) ≡ 0.

Remarks : (a) Theorem A with s ≥ r = 2, Theorem B with s ≥ r = 3, and
Theorem C with s = r = 4 were proved by Iorio, see [13], [14].

(b) Theorem B shows that the condition û0(0) = 0 is necessary for persistence
property of the solution to hold in Zs,5/2, with s ≥ 5/2, so in that sence parts
(i)-(ii) of Theorem A are optimal. Theorem C affirms that there is an upper limit
of the spacial L2-decay rate of the solution i.e.

|x|7/2u(·, t) /∈ L∞([0, T ] : L2(R)), ∀T > 0,

regardless of the decay and regularity of the non-zero initial data u0. In particular,
Theorem C shows that Theorem A part (iii) is sharp.

In view of the results in Theorems A, Theorem B, and Theorem C the following
two questions present themselves.

Question 1 : Can these uniqueness results be extended to any pair of solutions
u1, u2 of the (1.1) with u1 6= 0, u2 6= 0?

We recall that the uniqueness results obtained in [8] for the IVP associated to
the k-generalized Korteweg-de Vries (k-gKdV) equation

(1.7) ∂tu+ ∂3
xu+ uk∂xu = 0, t, x ∈ R,
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and those in [9] for the IVP associated to the semi-linear Schrödinger (NLS) equa-
tion

(1.8) i∂tu+ ∆u = F (u, ū), t ∈ R, x ∈ Rn,
hold for any pair u1, u2 of solutions in a suitable class.

Our first result gives a negative answer to Question 1:

Theorem 1. There exist u1, u2 ∈ C(R : Z4,2), u1 6= 0, u2 6= 0 solutions of the
IVP (1.1) such that

u1 6= u2

and for any T > 0

(1.9) u1 − u2 ∈ L∞([−T, T ] : Z4,4).

Remarks : (a) Combining the argument presented here and those used in [10]
relying on the notion of A2 weight one can extend the result in Theorem 1 to the
index Z5,9/2− by assuming that u1, u2 ∈ C(R : Z5,2). This tells us that for a
uniqueness result involving any pair of suitable solutions of the BO equation to be
valid it should involve a decay index r ≥ 9/2.

Next, we observe that the hypothesis (1.6) in Theorem C involves requirement
of the solution u(x, t) at three different times t1 < t2 < t3.

Question 2: Can the assumption (1.6) in Theorem C be reduced to a two different
times t1 < t2?

We recall that the uniqueness results for the k-gKdV in [8], for the NLS in [9],
those obtained in [11] for the IVP associated to the Camassa-Holm equation

(1.10) ∂tu− ∂t∂2
xu+ 3u∂xu− 2∂xu∂2

xu− u∂3
xu = 0, t, x ∈ R,

as well as many other deduced for dispersive models require a condition involving
only two different times.

Surprisingly, our second result shows that for the BO this is not the case, the
condition involving three different times in Theorem C is necessary:
∃ u ∈ C(R : Ż5,7/2−), u 6= 0, solution of (1.1) for which there are t1, t2 ∈ R, t1 6= t2
such that

u(·, tj) ∈ Ż5,4 ⊂ Z7/2,7/2−, j = 1, 2.

More precisely, we shall prove :

Theorem 2. For any u0 ∈ Ż5,4 such that

(1.11)
∫ ∞
−∞

xu0(x)dx 6= 0,

the corresponding solution u ∈ C(R : Ż5,7/2−) of the (1.1) provided by Theorem A
part (iii) satisfies that

(1.12) u(·, t∗) ∈ Ż4,4,

where

(1.13) t∗ = − 4
‖u0‖22

∫ ∞
−∞

xu0(x)dx.
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Remarks : (a) The result in Theorem 2 is due to the relation of the dispersive
relation and the structure of the nonlinearity of the BO equation. In particular,
one can see that if u0 ∈ Ż5,4 verifying (1.11), then the solution W (t)u0(x) of the
associated linear IVP

∂tu+H∂2
xu = 0, u(x, 0) = u0(x),

satisfies

W (t)u0(x) = c(e−it|ξ|ξû0(ξ))∨ ∈ L2(|x|7−)− L2(|x|7), ∀ t 6= 0.

However, for the same data u0 one has that the solution u(x, t) of the (1.1) satisfies

u(·, 0), u(·, t∗) ∈ L2(|x|8dx), and u(·, t) ∈ L2(|x|7−)− L2(|x|7), ∀ t /∈ {0, t∗}.

(b) The value of t∗ described in (1.13) can be motivated from the identity

d

dt

∫ ∞
−∞

xu(x, t)dx =
1
2
‖u(·, t)‖22 =

1
2
‖u0‖22,

(using the second conservation law which tells us that the L2 norm of the real
solution is preserved by the solution flow) which describes the time evolution of the
first momentum of the solution∫ ∞

−∞
xu(x, t)dx =

∫ ∞
−∞

xu0(x)dx+
t

2
‖u0‖22.

So assuming that

(1.14)
∫ ∞
−∞

xu0(x)dx 6= 0,

one looks for the times where the average of the first momentum of the solution
vanishes, i.e. for t such that∫ t

0

∫ ∞
−∞

xu(x, t)dxdt =
∫ t

0

(
∫ ∞
−∞

xu0(x)dx+
t′

2
‖u0‖22)dt′ = 0,

which under the assumption (1.14) has a unique solution t = t∗ given by the formula
in (1.13).

(c) To prove Theorem 2 we shall work with the integral equation version of the
problem (1.1). Roughly speaking, from the result in [21] one cannot regard the
nonlinear term as a perturbation of the linear one. So to obtain our result we
use an argument similar to that in [14]. This is based on the special structure of
the equation and allows us to reduce the contribution of two terms in the integral
equation to just one. Also the use of the integral equation in the proof and the
result in [21] explains our assumption u0 ∈ Ż5,4 instead of the expected one from
the differential equation point of view u0 ∈ Ż4,4.

(d) One may ask if it is possible to have a stronger decay at t = t∗ than the one
described in (1.12). In this regard, our argument shows that for u0 ∈ Ż6,5 it follows
that

u(·, t∗) ∈ Ż5,5

if and only if

(1.15)
∫ t∗

0

∫ ∞
−∞

x2 u(x, t)dx dt = 0.
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However, the time evolution of the second momentum of the solution does not seem
to have a simple expression which allows to verify the identity (1.15).

(e) The result in Theorem 2 can be extended to higher powers of the BO equa-
tions

∂tu+H∂2
xu+ u2k+1∂xu = 0, k = 0, 1, 2, ...

where the formula (1.13) for t∗ in this case will be given as the solution of the
equation ∫ t∗

0

(
∫
xu0(x)dx+

t

2k + 2
‖u(t)‖2k+2

2k+2)dt = 0, k = 1, 2, ...

It is clear that if such a time t∗ exists it is unique.

(f) A close inspection of the proof of Theorem C in [10] gives us the following
result which allows us to establish a uniqueness result with a condition involving
only two times t1 = 0, t2 6= 0 for a suitable class of solutions:

Theorem 3. Let u ∈ C(R : Ż7/2,3) be a solution of the IVP (1.1) for which there
exist two times t1, t2 ∈ R, t1 6= t2 such that

u(·, tj) ∈ Ż7/2,7/2.

If ∫
xu(x, t1)dx = 0 or

∫
xu(x, t2)dx = 0,

then

u(x, t) ≡ 0.

(g) In a forthcoming work we shall consider the extentions of the results estab-
lished here and those in [10] to solutions of the IVP for the dispersive model

∂tu+D1+a
x ∂xu+ u∂xu = 0, t, x ∈ R, a ∈ (0, 1),

where

Dx = (−∂2
x)1/2 = H∂x.

Thus, the cases a = 0 and a = 1 correspond to the BO equation and the KdV
equation, respectively.

As it was mentioned above the proof of Theorem 3 is contained in the proof of
Theorem C given in [10], therefore it will be omitted.

We recall that if for a solution u ∈ C(R : Hs(R)), s ≥ 0 of (1.1) one has that
∃ t0 ∈ R such that u(x, t0) ∈ Hs′(R), s′ > s, then u ∈ C(R : Hs′(R)). So the
propagation of the Hs(R) regularity of the solution is not an issue.

The rest of this paper is organized as follows: section 2 contains all the estimates
needed in the proof of Theorems 1 and 2. The proof of Theorem 1 will be given in
section 3. Theorem 2 will be proven in section 4.
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2. Preliminary Estimates

As in [10] we shall use the following generalization of Calderón commutator
estimates [5] found in [7]:

Theorem 4. For any p ∈ (1,∞) and l, m ∈ Z+ ∪ {0}, l + m ≥ 1 exists c =
c(p; l;m) > 0 such that

(2.1) ‖∂lx[H; a]∂mx f‖p ≤ c‖∂l+mx a‖∞‖f‖p.

We shall also use the pointwise identities

[H;x]∂xf = [H;x2]∂2
xf = 0,

and more generally

[H;x]f = 0 if and only if
∫
fdx = 0,

and

[H;x2]f = 0 if and only if
∫
fdx =

∫
xfdx = 0.

To justify the finiteness of the quantities involved in the energy estimate used
in the proof of Theorem 1 we introduce the truncated weights wN (x). Using the
notation 〈x〉 = (1 + x2)1/2 we define

(2.2) wN (x) =

{
〈x〉 if |x| ≤ N ,
2N if |x| ≥ 3N,

wN (x) smooth and non-decreasing in |x| with w′N (x) ≤ 1 for all x ≥ 0. We observe
that

xw′N (x) ≤ cwN (x),
where the constant c is independent on N .

3. Proof of Theorem 1

We take two solutions u1, u2 of (1.1) whose data u1,0, u2,0 satisfy

(3.1) u1(x, 0) = u1,0(x), u2(x, 0) = u2,0(x) ∈ Z4,4,

with

(3.2)



∫ ∞
−∞

u1(x, 0) dx =
∫ ∞
−∞

u2(x, 0) dx,

∫ ∞
−∞

xu1(x, 0) dx =
∫ ∞
−∞

xu2(x, 0) dx,

‖u1,0‖2 = ‖u2,0‖2, u1,0 6= u2,0

u1,0 6= 0 , u2,0 6= 0.

Thus, from the result in [10] it follows that

u1, u2 ∈ C(R : Z4,5/2−).
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Defining
v(x, t) = u1(x, t)− u2(x, t),

one sees that v verifies the linear equation

(3.3) ∂tv +H∂2
xv + u1∂xv + ∂xu2v = 0,

with

(3.4) v ∈ C(R : Z4,5/2−),

and

(3.5)
∫ ∞
−∞

v(x, t) dx =
∫ ∞
−∞

x v(x, t) dx = 0, ∀t ∈ R.

The identities in (3.5) follow by combining our hypothesis (3.2), the first conserva-
tion law ∫ ∞

−∞
uj(x, t) dx =

∫ ∞
−∞

uj,0(x) dx, ∀ t ∈ R, j = 1, 2,

and the identity

d

dt

∫ ∞
−∞

xuj(x, t) dx =
1
2
‖uj(t)‖22 =

1
2
‖uj,0‖22, ∀ t ∈ R, j = 1, 2.

Now, differentiating the equation in (3.3) and multiplying the result by w2
N we

get

(3.6) ∂t(w2
N∂xv) + w2

NH∂2
x ∂xv + w2

N ∂x(u1∂xv + v∂xu2) = 0.

We rewrite the second term in (3.6) as

(3.7)

w2
NH∂2

x ∂xv

= H(w2
N∂

2
x ∂xv)− [H;w2

N ]∂3
x v

= H∂2
x(w2

N ∂xv)− 2H(∂xw2
N∂

2
xv)−H(∂2

xw
2
N ∂xv)− [H;w2

N ]∂3
x v

= G1 +G2 +G3 +G4.

Theorem 4 yields the inequality

‖G4‖2 = ‖[H;w2
N ]∂3

x v‖2 ≤ c ‖v‖2,

with c denoting a constant independent of N which may change from line to line.
Also one has that

‖G3‖2 = ‖H(∂2
xw

2
N ∂xv)‖2 ≤ c ‖∂xv‖2

To control ‖G2‖2 we use integration by part to get that

‖wN ∂2
xv‖22 ≤ ‖w2

N ∂xv‖ ‖∂3
xv‖2 + ‖∂xv‖22,

so
‖G2‖2 = ‖H(∂xw2

N ∂
2
xv)‖2 ≤ ‖wN ∂2

xv‖2 ≤ c(‖w2
N∂xv‖2 + ‖v(t)‖3,2).

In the energy estimate the contribution of the term G1 is null, since inserting it
in (3.6), multiplying the equation (3.3) by w2

N∂xv, and integrating the result in
the space variable after integration by parts it vanishes. It remains to bound the
contribution from the third term in (3.6) in the energy estimate, i.e.

N1(t) = |
∫ ∞
−∞

w2
N ∂x(u1∂xv + v∂xu2)w2

N∂xv dx|.
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Using the hypotheses and integration by parts it follows that for any T > 0

N1(t) ≤ cT (‖∂xu1(t)‖∞ + ‖∂xu2(t)‖∞)‖w2
N∂xv‖22

+ cT ‖u1‖∞‖x∂xv‖2‖w2
N∂xv‖2 + cT ‖∂2

xu2(t)‖∞‖x2v‖2‖w2
N∂xv‖2

≤ cT (‖w2
N∂xv(t)‖2 + ‖w2

N∂xv(t)‖22), ∀t ∈ [−T, T ],

with cT denoting a constant depending on the initial solutions and on their data
but independent of N whose value may change from to line. Collecting the above
information we conclude that for any T > 0

sup
t∈[−T,T ]

‖w2
N ∂xv(t)‖2 < cT .

Therefore, taking N ↑ ∞ it follows that for any T > 0

(3.8) sup
t∈[−T,T ]

‖x2 ∂xv(t)‖2 < MT ,

with MT denoting a constant depending only on initial parameters and on T and
whose value may change from line to line. Since by hypothesis we have

sup
t∈[−T,T ]

‖∂3
xv(t)‖2 < MT ,

by integration by parts one gets that for any T > 0

sup
t∈[−T,T ]

‖x ∂2
xv(t)‖2 < MT .

Next, from the identity

xH ∂2
xv = H (x ∂2

xv) = H∂2
x(xv)− 2H∂xv,

we get the equation for w2
Nxv

(3.9)
∂t(w2

Nxv) +H∂2
x(w2

Nxv)− 2H(∂xw2
N∂x(xv))−H(∂2

xw
2
N xv)

− [H;w2
N ]∂2

x(xv)− 2w2
NH∂xv + w2

N x(u1∂xv + v∂xu2) = 0.

We recall that for all t ∈ R∫ ∞
−∞

v(x, t) dx =
∫ ∞
−∞

x v(x, t) dx = 0,

so that

(3.10) xH(v) = H(xv), and x2H(v) = H(x2v).

The following string of estimates

‖H(∂xw2
N∂x(xv))‖2 ≤ c(‖wNx∂xv‖2 + ‖wNv‖2) ≤ c(‖x2∂xv‖2 + ‖xv‖2),

‖H(∂2
xw

2
N xv)‖2 ≤ c‖xv‖2,

(by Theorem 4)

‖[H;w2
N ]∂2

x(xv)‖2 ≤ c‖∂2
xw

2
N‖∞‖xv‖2 ≤ c‖xv‖2,

(by (3.10))
‖w2

NH∂xv‖2 ≤ ‖(1 + x2)H∂xv‖2
≤ ‖∂xv‖2 + ‖x2H∂xv‖2 ≤ ‖∂xv‖2 + ‖xH(x∂xv)‖2
≤ ‖∂xv‖2 + ‖H(x2∂xv)‖2 ≤ ‖∂xv‖2 + ‖x2∂xv‖2,
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and (by integrating by parts)

|
∫
w2
N x(u1∂xv + v∂xu2)w2

Nxvdx|

≤ (‖∂xu1‖∞ + ‖∂xu2‖∞)‖w2
Nxv‖22 + ‖u1‖∞‖x2v‖2‖w2

Nxv‖2.

inserted in the energy estimate for (3.9) together with the result in the previous
step (3.8) allows us to conclude that for any T > 0

sup
t∈[−T,T ]

‖w2
Nxv‖2 ≤ cT ,

with cT independent of N . Hence, it follows that

(3.11) sup
t∈[−T,T ]

‖x3 v‖2 ≤MT .

Now, we shall estimate w2
Nx∂xv. From the equation

∂t(x∂xv) +H∂2
x (x∂xv)− 2H∂2

xv + x ∂x(u1∂xv + v∂xu2) = 0,

we obtain that

(3.12)

∂t(w2
Nx∂xv) +H∂2

x (w2
Nx∂xv)− 2H(∂xw2

N∂x(x∂xv))

−H(∂2
x(w2

N )x∂xv)− [H;w2
N ]∂2

x(x∂xv)− 2w2
NH∂2

xv

+ w2
Nx ∂x(u1∂xv + v∂xu2) = 0.

By integration by part one gets that

(3.13)
‖wN∂3

xv‖22 ≤ c(‖w2
N∂

2
xv‖2 ‖∂4

xv‖2 + ‖∂2
xv‖22),

‖w2
N∂

2
xv‖22 ≤ c(‖w3

N∂xv‖2 ‖wN∂3
xv‖2 + ‖wN∂xv‖22).

with a constant c independent of N . We observe that for each N fixed all the
quantities in (3.13) are finite. Hence, from (3.13) it follows that

(3.14)
‖wN∂3

xv‖2 ≤ c(‖w3
N∂xv‖

1/3
2 ‖∂4

xv‖
2/3
2 + ‖wN∂xv‖2 + ‖v‖4,2),

‖w2
N∂

2
xv‖2 ≤ c(‖w3

N∂xv‖
2/3
2 ‖∂4

xv‖
1/3
2 + ‖w3

N∂xv‖2 + ‖v‖2,2),

with c independent of N .
Returning to the equation (3.12) we shall use Theorem 4 to get that

‖w2
NH∂2

xv‖2 ≤ ‖H(w2
N∂

2
xv)‖2 + ‖[H;w2

N ]∂2
xv‖2

≤ c(‖w2
N∂

2
xv‖2 + ‖∂2

xw
2
N‖∞‖v‖2) = c(D1 + ‖v‖2).

Thus, by combining the second inequality in (3.14) and Young’s inequality it follows
that

D1 ≤ c(‖w2
Nx∂xv‖2 + ‖v‖4,2).

Theorem 4 yields the inequality

‖[H;w2
N ]∂2

x(x∂xv)‖2 ≤ c ‖x∂xv‖2,

with c independent of N whose value may change from line to line. Also one has

‖H(∂2
xw

2
N x∂xv)‖2 ≤ c ‖x∂xv‖2.
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To control the third term in (3.12) we write

‖∂x(w2
N ) ∂x(x∂xv)‖2

≤ c(‖wNw′Nx∂2
xv‖2 + ‖wNw′N∂xv‖2

≤ c(‖w2
N∂

2
xv‖2 + ‖x∂xv‖2) = c(D2 + ‖x∂xv‖2).

Thus, by using the second inequality in (3.14)

D2 ≤ c(‖w2
Nx∂xv‖2 + ‖v‖4,2).

So besides the first two terms in (3.12) it remains to bound the contribution from
the last term in the energy estimate, i.e.

N2(t) = |
∫ ∞
−∞

w2
N x∂x(u1∂xv + v∂xu2)w2

N x∂xv dx|.

Using our hypothesis and integration by parts it follows that for any T > 0

N2(t) ≤ c(‖∂xu1‖∞ + ‖∂xu2‖∞)‖w2
Nx∂xv‖22

+ (‖u1‖∞‖x2∂xv‖2 + ‖∂2
xu2‖∞‖x3v‖2)‖w2

Nx∂xv‖2,
with cT depending on the initial solutions and their data but independent of N .
Collecting the above information we conclude that for any T > 0

sup
t∈[−T,T ]

‖w2
N x∂xv(t)‖2 < cT ,

with cT depending on the initial solutions u1, u2, the initial data, and on T , but
independent of N . Therefore, taking N ↑ ∞ it follows that for any T > 0

(3.15) sup
t∈[−T,T ]

‖x3 ∂xv(t)‖2 < MT ,

with MT denoting a generic constant which may change line to line but depending
only on initial parameters and on T . From (3.14) we have

sup
t∈[−T,T ]

‖x2∂2
xv(t)‖2 < MT ,

by integration by part one gets that for any T > 0

(3.16) sup
t∈[−T,T ]

‖x ∂3
xv(t)‖2 < MT .

Using the identity

x2H ∂2
xv = H∂2

x(x2v)− 4H∂x(xv) + 2Hv,
we get the equation for w2

Nx
2v

(3.17)

∂t(w2
Nx

2v) +H∂2
x(w2

Nx
2v)− 2H(∂xw2

N∂x(x2v))

−H(∂2
xw

2
N x

2v)− [H;w2
N ]∂2

x(x2v)− 4w2
NH∂x(xv)

+ 2w2
NHv + w2

N x
2(u1∂xv + v∂xu2) = 0.

We recall that for all t ∈ R∫ ∞
−∞

v(x, t) dx =
∫ ∞
−∞

x v(x, t) dx = 0,

so that

(3.18) xH(v) = H(xv), xH(xv) = H(x2v), and x2H(v) = H(x2v).
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We shall deduce the following estimates:
(using (3.18))

‖w2
NHv‖2 ≤ ‖(1 + x2)Hv‖2 ≤ ‖xv‖2 + ‖x2Hv‖2 ≤ ‖xv‖2 + ‖x2v‖2,

(using (3.18) and (3.16))

‖w2
NH∂x(xv)‖2 ≤ ‖(1 + x2)H∂x(xv)‖2
≤ ‖H∂x(xv)‖2 + ‖x2H∂x(xv)‖2
≤ ‖∂x(xv)‖2 + ‖xH(x∂x(xv))‖2
≤ ‖∂x(xv)‖2 + ‖xH(∂x(xv))‖2 + 2‖xH(xv)‖2
≤ ‖∂x(xv)‖2 + ‖x∂x(xv)‖2 + 2‖x2v‖2,

(using Theorem 4)

‖[H;w2
N ]∂2

x(x2v)‖2 ≤ c‖∂2
xw

2
N‖∞‖x2v‖2 ≤ c‖x2v‖2,

‖H(∂2
xw

2
Nx

2v)‖2 ≤ ‖x2v‖2,
(using (3.15))

‖H(∂xw2
N∂x(x2v))‖2 ≤ ‖∂xw2

N∂x(x2v)‖2
≤ 8(‖wNw′Nxv‖2 + ‖wNw′Nx2∂xv‖) ≤ 8(‖x2v‖2 + ‖w3

N∂xv‖2),

and integrating by parts (for the last term in (3.17))

|
∫
w2
N x

2(u1∂xv + v∂xu2)w2
Nx

2vdx|

≤ (‖∂xu1‖∞ + ‖∂xu2‖∞)‖w2
Nx

2v‖22 + ‖u1‖∞‖w2
Nxv‖2‖w2

Nx
2v‖2.

Collecting this information in the energy estimate for (3.17) together with the result
in the previous steps (3.16) and (3.15) allows us to conclude that for any T > 0

sup
t∈[−T,T ]

‖w2
Nx

2v‖2 ≤MT ,

with MT independent of N . Hence, it follows that

(3.19) sup
t∈[−T,T ]

‖x3 v‖2 ≤MT .

Hence, for any T > 0
v ∈ L∞([−T, T ] : Z4,4),

which yields the desired result.

4. Proof of Theorem 2

We introduce the notation

(4.1) Fj(t, ξ, û0) = ∂jξ(e
−it|ξ|ξû0), j = 0, 1, 2, 3, 4.

Therefore,

F3(t, ξ, û0) = ∂3
ξ (e−it|ξ|ξû0)

= e−it|ξ|ξ(8it3ξ3û0 − 12t2ξû0 − 12t2ξ2∂ξû0

− 6it sgn(ξ)∂ξû0 − 6it|ξ|∂2
ξ û0 − 2itδû0 + ∂3

ξ û0).

(4.2)
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We observe that since the initial data u0 has zero mean value the term involving
the Dirac delta in (4.2) vanishes. Thus, under the assumption that u0 has zero
mean value one finds that

F4(t, ξ, û0) = ∂4
ξ (e−it|ξ|ξû0)

= e−it|ξ|ξ(12t2û0 + 48it3ξ|ξ|û0 + 16t4ξ4û0

− 48t2ξ∂ξû0 − 6itδ∂ξû0 + 24it3|ξ|ξ2∂ξû0

− 12it sgn(ξ)∂2
ξ û0 − 24t2ξ2∂2

ξ û0 − 8it|ξ|∂3
ξ û0 + ∂4

ξ û0)

= E1(t, ξ, û0) + .....+ E10(t, ξ, û0).

(4.3)

Hence

(4.4) û(ξ, t) = F0(t, ξ, û0)−
∫ t

0

F0(t− t′, ξ, ẑ(t′)) dt′,

and

(4.5) ∂4
ξ û(ξ, t) = F4(t, ξ, û0)−

∫ t

0

F4(t− t′, ξ, ẑ(t′)) dt′,

where

ẑ =
1
2
∂̂xu2 = i

ξ

2
û ∗ û.

Next, we shall see that if u0 ∈ Ż4,4 all terms Ej , j = 1, ..., 10 in (4.3) except

(4.6) E5(t) = e−it|ξ|ξ(−6itδ∂ξû0(ξ)) = −6itδ∂ξû0(0) = −6 t δ
∫
xu0(x)dx,

are in L2(R). Thus, we have

(4.7)



‖E1‖2 = ‖12t2 e−it|ξ|ξû0‖2 ≤ ct ‖u0‖2,
‖E2‖2 = ‖48t3 |ξ|ξe−it|ξ|ξû0‖2 ≤ ct ‖∂2

xu0‖2,
‖E3‖2 = ‖16t4 ξ4e−it|ξ|ξû0‖2 ≤ ct ‖∂4

xu0‖2,
‖E4‖2 = ‖48t2 ξe−it|ξ|ξ∂ξû0‖2 ≤ ct (‖u0‖2 + ‖x∂xu0‖2),
‖E6‖2 = ‖24t3 |ξ|ξ2e−it|ξ|ξ∂ξû0‖2 ≤ ct (‖x∂3

xu0‖2 + ‖∂2
xu0‖2,

‖E7‖2 = ‖24t2 ξ2e−it|ξ|ξ∂2
ξ û0‖2 ≤ ct (‖u0‖2 + ‖x2∂2

xu0‖2 + ‖x∂xu0‖2),
‖E8‖2 = ‖12t sgn(ξ)e−it|ξ|ξ∂2

ξ û0‖2 ≤ ct ‖x2u0‖2,
‖E9‖2 = ‖8t |ξ|e−it|ξ|ξ∂3

ξ û0‖2 ≤ ct (‖x3∂xu0‖2 + ‖x2u0‖2),
‖E10‖2 = ‖e−it|ξ|ξ∂4

ξ û0‖2 ≤ ct ‖x4u0‖2.

Since u0 ∈ Z4,4 = H4(R) ∩ L2(|x|8dx), by using interpolation it follows directly
that all the terms on the left hand side of (4.7) are bounded.

Now we shall consider the integral term in (4.5)

Ω(t) ≡
∫ t

0

F4(t− t′, ξ, ẑ(t′)) dt,

with

ẑ =
1
2
∂̂xu2 = i

ξ

2
û ∗ û.

We are assuming that u0 ∈ Ż5,4, therefore from Theorem A we have that the
corresponding solution u(x, t) of (1.1) satisfies that

u ∈ C(R : Ż5,7/2−).
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Thus,
û ∈ C(R : Z7/2−,5),

and hence
û ∗ û ∈ C(R : Z6,5),

so we can conclude that

(4.8) ξ û ∗ û ∈ C(R : Z4,4).

Above we have seen that if u0 ∈ Ż4.4, then all the ten terms of F4(t, ξ, û0) (see
(4.3)) except E5 (see (4.6)) are in L2. The same argument, the fact that u∂xu has
mean value zero, (4.7), and (4.8) proves that

Ω(t) =
∫ t

0

F4(t− t′, ξ, ẑ(t′))dt′ =
10∑
j=1

∫ t

0

Ej(t− t′, ξ, ẑ(t′))dt′

with∫ t

0

Ej(t− t′, ξ, ẑ(t′))dt′ ∈ C([−T, T ] : L2(R)), 1 ≤ j ≤ 10, j 6= 5, ∀ t ∈ R.

Therefore, for any t ∈ R

(4.9)

Ω(t)−
∫ t

0

E5(t− t′, ξ, ẑ(t′))dt′

= Ω(t) + 6i
∫ t

0

(t− t′)e−i(t−t
′)|ξ|ξδ∂ξ(

iξ

2
û ∗ û)(ξ, t′)dt′

= Ω(t) + 6i δ
∫ t

0

(t− t′) ∂ξ(
iξ

2
û ∗ û)(0, t′)dt

≡ Ω(t) +B5(t) ∈ L2(R).

We observe that

(4.10)
∂ξ(

iξ

2
û ∗ û)(0, t′) = ̂−ixu∂xu(0, t′) = −i

∫ ∞
−∞

xu∂xu(x, t′)dx

=
i

2
‖u(t)‖22 =

i

2
‖u0‖22 = i

d

dt

∫ ∞
−∞

xu0(x)dx.

Using (4.10) and integration by parts it follows that

(4.11)

B5(t) = 6i δ
∫ t

0

(t− t′) ∂ξ(
iξ

2
û ∗ û)(0, t′)dt

= 6i δ
∫ t

0

(t− t′) (i
d

dt

∫
xu(x, t′)dx) dt

= −6 δ( (t− t′)
∫
xu(x, t′)dx|t

′=t
t′=0 +

∫ t

0

(
∫
xu(x, t′)dx) dt′)

= 6 δ( t
∫
xu0(x)dx +

∫ t

0

(
∫
xu(x, t′)dx) dt′).

Collecting the above information we have that

∂4
ξ û(ξ, t) = F4(t, ξ, û0)−

∫ t

0

F4(t− t′, ξ, ẑ(t′)) dt′ − E5(t)−B5(t) ∈ L2(R).
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But
E5(t) +B5(t)

= −6 t δ
∫
xu0(x)dx+ 6 δ

(
t

∫
xu0(x)dx +

∫ t

0

(
∫
xu(x, t′)dx

)
dt′)

= 6 δ
∫ t

0

(
∫
xu(x, t′)dx) dt′) = 6 δ

∫ t

0

(
∫
xu0(x)dx+

t′

2
‖u0‖22)dt

= 6 δ (t
∫
xu0(x)dx+

t2

4
‖u0‖22),

which vanishes only at

t∗ = − 4
‖u0‖22

∫ ∞
−∞

xu0(x)dx,

and at that time we have that

∂4
ξu(ξ, t∗) ∈ L2(R),

which yields the desired result.
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