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Abstract. We prove special decay properties of solutions to the initial value problem
associated to the k-generalized Korteweg-de Vries equation. These are related with
persistence properties of the solution flow in weighted Sobolev spaces and with sharp
unique continuation properties of solutions to this equation. As application of our method
we also obtain results concerning the decay behavior of perturbations of the traveling
wave solutions as well as results for solutions corresponding to special data.

1. Introduction

In this work we shall study special decay properties of real solutions to the initial value
problem (IVP) associated to the k-generalized Korteweg-de Vries (k-gKdV) equation

(1.1)

{
∂tu+ ∂3

xu+ uk∂xu = 0, x ∈ R, k ∈ Z+,

u(x, 0) = u0(x).

These decay properties of the solution u(t) will be measured in appropriate weighted
L2(wdx)-spaces.

First, we shall be concerned with asymmetric (increasing) weights, for which the result
will be restricted to forward times t > 0. In this regard we find the result in [8] for the
KdV equation, k = 1 in (1.1), in the space L2(eβxdx), β > 0. There it was shown that
the persistence property holds for L2-solutions in L2(eβxdx), β > 0, for t > 0 (persistence
property in the function space X means that the solution u(·) describes a continuous
curve on X, u ∈ C([0, T ] : X)). Moreover, formally in this space the operator ∂t + ∂3

x

becomes ∂t+(∂x−β)3 so the solutions of the equation exhibit a parabolic behavior. More
precisely, the following result for the KdV equation was proven in [8] (Theorem 11.1 and
Theorem 12.1)

Theorem A. Let u ∈ C([0,∞) : H2(R)) be a solution of the IVP (1.1) with k = 1 and

(1.2) u0 ∈ H2(R) ∩ L2(eβxdx), for some β > 0,

then

(1.3) e2βxu ∈ C([0,∞) : L2(R)) ∩ C((0,∞) : H∞(R)),
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with

(1.4) ‖u(t)‖2 = ‖u0‖2, ‖u(t)− u0‖−3,2 ≤ Kt, t > 0,

(1.5) ‖eβxu(t)‖2 ≤ eKt ‖eβxu0‖2, t > 0,

and

(1.6)

∫ ∞
0

e−Kt ‖eβx∂xu(t)‖2
2dt ≤

1

4β
‖eβxu0‖2

2,

where K = K(β, ‖u0‖2).
Moreover, the map data-solution u0 → u(t) is continuous from L2(R) ∩ L2(eβxdx) to

C([0, T ] : L2(eβxdx)), for any T > 0.

On a similar regard, in [4] a unique continuation result was established. This gives an
upper bound for the possible space decay of solutions to the IVP (1.1):

Theorem B. There exists c0 > 0 such that for any pair

u1, u2 ∈ C([0, 1] : H4(R) ∩ L2(|x|2dx))

of solutions of (1.1), if

(1.7) u1(·, 0)− u2(·, 0), u1(·, 1)− u2(·, 1) ∈ L2(ec0x
3/2
+ dx),

then u1 ≡ u2.

Above we used the notation: x+ = max{x; 0}. Similarly, we will use later on x− =
max{−x; 0}.

In a previous work [14] a similar result for the power 9/4 was established.
The power 3/2 in the exponent in (1.7) reflects the asymptotic behavior of the Airy

function. The solution of the initial value problem (IVP)

(1.8)

{
∂tv + ∂3

xv = 0,

v(x, 0) = v0(x),

is given by the group {U(t) : t ∈ R}

U(t)v0(x) =
1

3
√

3t
Ai

(
·

3
√

3t

)
∗ v0(x),

where

Ai(x) = c

∫ ∞
−∞

eixξ+iξ
3/3 dξ,

is the Airy function which satisfies the estimate

|Ai(x)| ≤ c
e−cx

3/2
+

(1 + x−)1/4
.
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Observe that Theorem B gives a restriction on the possible decay of a non-trivial solu-
tion of (1.1) at two different times. More precisely, taking u2 ≡ 0 one has that if u1(t) is
a solution of the IVP (1.1) such that

(1.9) |u1(x, t)| ≤ e−a0x
3/2
+ at t = 0, 1, for a0 >> 1, then u1 ≡ 0.

Our first theorem shows that the above result is close to be optimal. By rescaling, the

persistence property can not hold in the space L2(ea0x
3/2
+ dx) in an arbitrary large time

interval. However, it does it with a factor a(t) in front of the exponential term x
3/2
+ which

measures how this exponential property decreases with time.
To simplify the exposition, we shall first state our result in the case of the KdV, i.e.

k = 1 in (1.1) :

Theorem 1.1. Let a0 be a positive constant. For any given data

(1.10) u0 ∈ L2(R) ∩ L2(ea0x
3/2
+ dx),

the unique solution of the IVP (1.1) provided by Theorem C below satisfies that for any
T > 0

(1.11) sup
t∈[0,T ]

∫ ∞
−∞

ea(t)x
3/2
+ |u(x, t)|2dx ≤ C∗ = C∗(a0, ‖u0‖2, ‖ea0x

3/2
+ /2u0‖2, T ),

with

(1.12) a(t) =
a0

(1 + 27a2
0t/4)1/2

.

This result extends to the difference of two appropriate solutions of the IVP (1.1) with
k = 1.

Theorem 1.2. Let a0 be a positive constant. Let u(t), v(t) be solutions of the IVP (1.1)
with k = 1 such that

(1.13)
u ∈ C([0,∞) : H1(R) ∩ L2(|x|dx)) ∩ . . . ,
v ∈ C([0,∞) : H1(R)) ∩ . . .

If

(1.14)

∫ ∞
−∞

ea0x
3/2
+ |u(x, 0)− v(x, 0)|2dx <∞,

then for any T > 0

(1.15) sup
t∈[0,T ]

∫ ∞
−∞

ea(t)x
3/2
+ |u(x, t)− v(x, t)|2dx ≤ C∗,

with

(1.16) C∗ = C∗(a0, ‖u0‖1,2, ‖v0‖1,2, ‖|x|1/2u0‖2, ‖u0 − v0‖1,2, ‖ea0x
3/2
+ /2(u0 − v0)‖2, T ),
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and

(1.17) a(t) =
a0

(1 + 27a2
0t/4)1/2

.

The results in Theorem 1.1 and Theorem 1.2 apply to other powers k in the IVP (1.1):

Theorem 1.3. Let a0 be a positive constant. For any given data

u0 ∈ Hsk(R) ∩ L2(ea0x
3/2
+ dx)

with s2 = 1/4 if k = 2, s3 = 0 if k = 3, and sk > (k − 4)/2k, k ≥ 4, then the unique
solution of the IVP (1.1) provided by Theorem D below satisfies (1.11) with a(t) as in
(1.12) for any T > 0 if k = 2, 3 and for T = T (‖u0‖sk,2) > 0 for k ≥ 4.

Similarly, for Theorem 1.2.
Remarks:
(a) Following the argument in the proof of Theorem 1.4 in [4] one has that given

a0 > 0, ε > 0, there exist u0 ∈ S(R), c1, c2 > 0 and ∆T > 0 such that the corresponding
solution u(x, t) of the IVP (1.1) with k = 1 satisfies

c1 e
−(a0+ε)x3/2 ≤ u(x, t) ≤ c2 e

−(a0−ε)x3/2 , x >> 1, t ∈ [0,∆T ].

(b) For different powers k in (1.1) one has that the same statement of Theorem 1.1 is
valid except for the last part concerning the continuity of the map data-solution u0 → u(t)
which will be continuous from Hsk(R)∩L2(eβxdx) to C([0, T ] : L2(eβxdx)) with sk and T
as in the statement of Theorem 1.3.

(c) For other results involving asymmetric weights of a polynomial type we refer to [11]
and [5].

(d) Consider the 1-D semi-linear Schrödinger equation

(1.18) ∂tv = i(∂2
xv + F (v, v)),

with F : C2 → C, F ∈ C2 and F (0) = ∂uF (0) = ∂ūF (0) = 0. As far as we are aware it is
unknown whether or not there exist non-trivial solutions v(t) of (1.18) satisfying

v(t) ∈ L2(ea0x
1+ε
+ dx) t ∈ [0, T ], for some T > 0, ε > 0.

Next, we consider weighted spaces with symmetric weight of the form

L2(〈x〉bdx) = L2((1 + x2)b/2dx)

for which persistent properties should hold regardless of the time direction considered,
i.e. forward t > 0 or backward t < 0.

In this setting our second result establishes that for a solution of the IVP (1.1) to satisfy
the persistent property in L2(〈x〉bdx) it needs to have a similar property in an appropriate
Sobolev space Hs(R), i.e. decay in L2 can only hold if u(t) is regular enough in L2 :
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Theorem 1.4. Let u ∈ C(R : L2(R)) be the global solution of the IVP (1.1) with k = 1
provided by Theorem C below. If there exist α > 0 and two different times t0, t1 ∈ R such
that

(1.19) |x|αu(x, t0), |x|αu(x, t1) ∈ L2(R),

then

(1.20) u ∈ C(R : H2α(R)).

Theorem 1.5. Let u, v ∈ C(R : H1(R)) be global solutions of the IVP (1.1) with k = 1
provided by Theorem C. If there exist α > 1/2 and two different times t0, t1 ∈ R such that

(1.21) |x|α(u(x, t0)− v(x, t0)), |x|α(u(x, t1)− v(x, t1)) ∈ L2(R),

then

(1.22) u− v ∈ C(R : H2α(R)).

Combining the results in Theorem 1.4 and the results in [13] one obtains:

Corollary 1.1. Let s′ > s > 0 and β > 0. If u0 ∈ Hs(R)∩L2(|x|βdx)−Hs′(R), then the
solution u = u(x, t) of the IVP (1.1) with k = 1 provided by Theorem C satisfies:
(i) u ∈ C(R : Hs(R) ∩ L2(|x|βdx) if 2β < s,
and
(ii) u(·, t) /∈ L2(|x|β) if 2β ≥ s′ and t 6= 0.

Combining Theorem 1.1 and Theorem 1.4 and taking an initial data u0 ∈ L2(R) with
compact support such that

u0 /∈ Hs(R), ∀ s > 0,

one gets:

Corollary 1.2. There exists a solution

(1.23) u ∈ C(R : L2(R)) ∩ . . . .
of the IVP (1.1) with k = 1 provided by Theorem C such that

(1.24) u(·, 0) = u0(·)
has compact support and

(1.25)

u(·, t) ∈ C∞(R), ∀ t 6= 0,

u(·, t) /∈ L2(|x|εdx), ∀ ε > 0, ∀ t 6= 0,

u(t) ∈ L2(ea(t)x
3/2
+ /2dx), ∀ t > 0,

u(t) ∈ L2(ea(t)x
3/2
− /2dx), ∀ t < 0,

with

(1.26) a(t) =
a0

(1 + 27a2
0|t|/4)1/2

.
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The results in Theorem 1.4, Corollary 1.1 and Corollary 1.2 extend to the other powers
k = 2, 3, 4... in (1.1) with the appropriate modifications, accordingly to the value of k,
on the regularity and on the length of the time interval [0, T ] as it was described in the
statement of Theorem 1.3.

The result in Theorem 1.5 holds for any power k in (1.1) and any pair of solutions

u, v ∈ C([−T, T ] : H1(R))

for any T > 0 if k = 2, 3 and for T = T (‖u0‖1,2, ‖v0‖1,2) for k ≥ 4.
As a second consequence of our above results one has that there exist compact pertur-

bations of the travelling wave solution with speed c

(1.27) uk,c(x, t) = φk,c(x− ct),
with

(1.28) φk,c(x) = (ck c sech2(k
√
c x/2))1/k

for the equation in (1.1) which destroy its exponential decay character:

Corollary 1.3. For a given data of the form

(1.29) u0(x) = φk,c(x) + v0(x),

with v0 ∈ H1(R) compactly supported such that v0 /∈ H1+ε(R) for any ε > 0, then the
corresponding solution of the IVP provided by Theorem D

(1.30) u ∈ C([−T, T ] : H1(R)) ∩ . . .
of the IVP (1.1) satisfies that

(1.31) u(·, t) /∈ L2(|x|1+εdx), ∀ ε > 0, ∀ t ∈ [−T, T ]− {0}.

Remarks:
(a) As in Corollary 1.2, for t > 0 the loss of decay is in the left hand side of R, and for

t < 0 in the right hand side of R.
(b) Combining the results in Theorem 1.4, and its extension for all the equations in (1.1)

commented above, with those found in [13] one can also conclude that for k = 2, 4, 5, ...

|x|αu(·, t) ∈ L2(R), ∀ t ∈ [−T, T ],

and that for k = 1, 3 for any ε > 0

|x|α−εu(·, t) ∈ L2(R), t ∈ [−T, T ]− [t0, t1], |x|αu(·, t) ∈ L2(R), t ∈ [t0, t1].

The main difference between the cases k = 2, 4, 5, ... and k = 1, 3 is that for the later the
best available well-posedness results require the use of the spaces Xs,b defined in (1.32),
which makes fractional weights difficult to handle. In particular, the result in Corollary
1.1 part (i) holds for 2β ≤ s if k = 2, 4, 5, ...

(c) The equivalent of Theorem 1.4 for the semi-linear Schrödinger equation (1.18) in
all dimension n was obtained in [12].
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We need to recall some results concerning the well-posedness (local and global) of the
IVP (1.1). First, we remember the definition of the space Xs,b introduced in the context
of dispersive equations in [2].

For s, b ∈ R, Xs,b denotes the completion of the Schwartz space S(R2) with respect to
the norm

(1.32) ‖F‖Xs,b = (

∫ ∞
−∞

∫ ∞
−∞

(1 + |τ − ξ3|)2b(1 + |ξ|)2s|F̂ (ξ, τ)|2dξdτ)1/2.

The following result was established in [2], see also [10]:

Theorem C. There exists b ∈ (1/2, 1) such that for any u0 ∈ L2(R) there exists a unique
solution u(t) of the IVP (1.1) with k = 1 satisfying

(1.33) u ∈ C([0, T ] : L2(R)), for any T > 0,

(1.34) u ∈ X0,b, ∂x(u
2) ∈ X0,b−1, ∂tu ∈ X−3,b−1.

Moreover, the map data-solution from L2(R) into the class defined in (1.33)-(1.34) is
Lipschitz for any T > 0.

We recall that if b > 1/2 one has, using Strichartz estimates and Kato local smoothing
effects, that

(1.35) ‖f‖L4([0,T ]:L∞(R)) = (

∫ T

0

‖f(·, t)‖4
∞dt)

1/4 ≤ c‖f‖X0,b
,

and

(1.36) ‖∂xf‖L∞(R:L2[0,T ]) = sup
x∈R

(

∫ T

0

|∂xf(x, t)|2dt)1/2 ≤ c‖f‖X0,b
.

Therefore, combining these estimates and Theorem C one has that the map data-
solution is continuous from L2(R) to L4([0, T ] : L∞(R)), for any T > 0.

Gathering the local and the global well-posedness results in [9], [3], [15], [7] and [6] one
has:

Theorem D. (a) The IVP (1.1) with k = 2 is globally well-posed in Hs(R) for s ≥ 1/4
(see [3]).

(b) The IVP (1.1) with k = 3 is locally well-posed in Hs(R) for s ≥ −1/6, and globally
well-posed in Hs(R) for s > −1/42 (see [6], [15], [7]).

(c) The IVP (1.1) with k ≥ 4 is locally well-posed in Hs(R) for s ≥ (k − 4)/2k (see
[9]).

The rest of this paper is organized as follows: In Section 2 Theorem 1.1 will be proved.
Since the proofs of Theorems 1.2 and 1.3 are similar to the proof of Theorem 1.1 we will
omit them. The proof of Theorem 1.4 will be given in Section 3. The proof of Theorem
1.5 will be omitted since its proof follows analogous arguments as the ones of Theorem
1.4. Corollaries 1.2 and 1.3 are direct consequence of the previous results.
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2. Proof of Theorem 1.1

Consider the IVP

(2.1)

{
∂tu+ ∂3

xu+ u∂xu = 0, t ≥ 0, x ∈ R,
u(x, 0) = uε0(x).

where

(2.2) uε0(x) = ρε ∗ u0(·+ ε)(x) =

∫ ∞
−∞

1

ε
ρ(
y

ε
)u0(x+ ε− y)dy,

where ρ ∈ C∞(R) with supp ρ ⊂ {x ∈ R : |x| ≤ 1}, ρ ≥ 0 and
∫
ρ(x)dx = 1. We claim

that for any ε ∈ (0, 1)

(2.3) uε0 ∈ H∞(R) ∩ L2(ea0x
3/2
+ dx).

To see (2.3) we use Minkowski’s integral inequality to write:

(2.4)

‖ea0x
3/2
+ /2uε0‖2 = (

∫
ea0x

3/2
+ |
∫

1

ε
ρ(
y

ε
)u0(x+ ε− y)dy|2dx)1/2

= (

∫
|
∫
ea0x

3/2
+ /2ρε(y)u0(x+ ε− y)dy|2dx)1/2

≤
∫
ρε(y)(

∫
ea0x

3/2
+ |u0(x+ ε− y)|2dx)1/2dy

≤
∫
ρε(y)(

∫
ea0(x−ε+y)

3/2
+ |u0(x)|2dx)1/2dy

≤
∫
ρε(y)(

∫
ea0x

3/2
+ |u0(x)|2dx)1/2dy = (

∫
ea0x

3/2
+ |u0(x)|2dx)1/2,

since for y ∈ supp(ρε) one has that −ε+ y ≤ 0.
Also we recall that

(2.5) lim
ε↓0
‖uε0 − u0‖2 = 0.

Therefore, for any ε ∈ (0, 1) the corresponding solution uε(·) of the IVP (2.1) has the
properties stated in Theorems A and C.

Next, for any N ∈ Z+, N >> 1 we define the weight

(2.6) ϕN(x, t) =


ea(t)/4, x ≤ 0,

ea(t)θ(x), 0 ≤ x ≤ 1,

ea(t)x3/2 , 1 ≤ x ≤ N,

P2(x, t), x ≥ N,
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where

(2.7) a′(t) +
27

8
a3(t) = 0, a(0) = a0,

i.e.

(2.8) a(t) =
a0

(1 + 27a2
0t/4)1/2

∈ (0, a0], ∀ t ≥ 0,

(2.9) θ(x) =
1

4
+

15

8
x3 − 12

8
x4 +

3

8
x5,

and

(2.10)
P2(x, t) = ea(t)N3/2

+
3

2
a(t)N1/2ea(t)N3/2

(x−N)

+ ((
3

2
a(t)N1/2)2 +

3

4
a(t)N−1/2)ea(t)N3/2 (x−N)2

2
.

Remarks :
(i) For any N ∈ Z+, x ≥ 0 and t ≥ 0 one has

(2.11) ϕN(x, t) ≤ C(a0) ea(t)x3/2 ,

(ii) the function θ(·) matches the values of x3/2 at x = 1 and those ones of the constant
function f(x) = 1/4 at x = 0 and their derivatives up to order two and P2(x, t) matches

those ones of ea(t)x3/2 at x = N up to order two. Hence, ϕN(·, t) ∈ C2(R) and ϕN(·, t) ∈
C3(R− {0, 1, N}) for all t ≥ 0,

(iii) one has that

θ′′(x) =
3x

4
(15− 24x+ 10x2) =

3x

4
((
√

10x− 12√
10

)2 +
3

5
) ≥ 0,

with θ′(0) = 0, hence θ′(x) ≥ 0, x ∈ (0, 1].

(iv) P2(x, t) ≥ 0 and

∂xP2(x, t) =
3

2
a(t)N1/2ea(t)N3/2

+ ((
3

2
a(t)N1/2)2 +

3

4
a(t)N−1/2)ea(t)N3/2

(x−N) ≥ 0,

for x ≥ N and t ≥ 0.
Therefore,

(2.12) ϕN(x, t), ∂xϕN(x, t) ≥ 0, (x, t) ∈ R× [0,∞).
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Moreover, for x ≥ N

(2.13)

∂xP2(x, t) ≤ 3

2
aN1/2P2(x, t) +

3

2
aN1/2eaN

3/2

(x−N)(
3

2
aN1/2 +

1

2N
)

≤ 3

2
aN1/2P2(x, t) + (

3

2
aN1/2 +

1

2N
)P2(x, t)

≤ (1 + 3a(t)N1/2)P2(x, t)

≤ (1 + 3a0x
1/2)ϕN(x, t).

Next, we multiply the equation in (2.1) by uεϕN(x, t) where uε denotes the solution of
the IVP (2.1), integrating the result and formally using integration by parts one has

(2.14)

d

dt

∫
(uε)2ϕNdx+ 3

∫
(∂xu

ε)2∂xϕNdx

=

∫
(uε)2(∂3

xϕN + ∂tϕN)dx+
2

3

∫
(uε)3∂xϕNdx.

To justify the integration by parts used to obtain (2.14) we observe that by Theorems
A and Theorem C

(2.15) uε ∈ C([0,∞) : H∞(R)), eβxuε ∈ C([0,∞) : L2(R)) ∀ β > 0.

In general, if for some β > 0 eβxf, ∂2
xf ∈ L2(R), then eβx/2∂xf ∈ L2(R), and so

eβx/2f ∈ H1(R) (in particular, eβx/2f(x)→ 0 as |x| → ∞) since

(2.16)

∫
eβx(∂xf)2dx ≤ β2

∫
eβxf 2dx+ |

∫
eβxf ∂2

xfdx|.

To prove (2.16) one first assumes that f ∈ H2(R) with compact support to obtain (2.16)
by integration by parts, and then use the density of this class to get the desired result.

Thus, reapplying the last argument and using (2.15) it follows that for

eβx∂jxu
ε ∈ L2(R), j = 1, 2, 3,

and so for any t ≥ 0

(2.17) eβx∂jxu
ε(x, t)→ 0 j = 0, 1, 2, as |x| → ∞,

which justify all integration by parts used to get (2.14) since at +∞, ϕN(x, t) as a function
of x is a polynomial of order two.

Since

∂xϕN(x, t) ≥ 0,

one can omit the second term on the left hand side (l.h.s.) of (2.14) to write

(2.18)
d

dt

∫
(uε)2ϕNdx ≤

∫
(uε)2(∂3

xϕN + ∂tϕN)dx+
2

3

∫
(uε)3∂xϕNdx.
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We shall consider the right hand side (r.h.s) of (2.18) in four different domains:

(2.19) (a) x ≤ 0, (b) 0 ≤ x ≤ 1, (c) 1 ≤ x ≤ N, (d) x ≥ N.

In the domain (a) (x ≤ 0) one has

∂jxϕN(x, t) = 0 j = 1, 2, 3, and ∂tϕN(x, t) ≤ 0,

therefore the contribution of this domain to the r.h.s. of (2.18) is non-positive so it does
not have to be considered.

In the domain (b) (0 ≤ x < 1) one has

ϕN(x, t) ≤ ϕN(1, t) = ea(t) ≤ ea0 ,

∂tϕN(x, t) = a′(t)ϕN(x, t) ≤ 0,

∂xϕN(x, t) = a(t)θ′(x)ϕN(x, t) ≤ c a0ϕN(x, t),

∂2
xϕN(x, t) = (a(t)θ

′′
(x) + (a(t)θ′(x))2)ϕN(x, t) ≤ c (a0 + a2

0)ϕN(x, t),

∂3
xϕN(x, t) = (a(t)θ(3)(x) + 3(a(t))2θ

′′
(x)θ′(x) + (a(t)θ′(x))(3))ϕN(x, t)

≤ c ( a0 + a2
0 + a3

0)ϕN(x, t).

Therefore

(2.20)

∫ 1

0

(uε)2(∂3
xϕN + ∂tϕN)dx ≤ K(a0)

∫ 1

0

(uε)2ϕNdx,

and

(2.21)

∫ 1

0

(uε)3∂xϕNdx ≤ K(a0) ‖uε(t)‖L∞(0≤x≤1)

∫ 1

0

(uε)2ϕNdx.

In the domain (c) (1 ≤ x < N) one has

(2.22) ∂3
xϕN + ∂tϕN = (

27

8
a3x3/2 +

27

8
a2 − 3

8
ax−3/2 + a′x3/2)ϕN(x, t).

For the third term on the r.h.s. of (2.22) we observe that

(2.23) − 3

8
a(t)x−3/2ea(t)x3/2 ≤ 0,

so it can be omitted. Next, we use that

(2.24) a′(t) +
27

8
a3(t) = 0,

which combined with (2.23) and (2.24) gives us the estimate

(2.25)

∫ N

1

(uε)2(∂3
xϕN + ∂tϕN)dx ≤ 27

8
a2(t)

∫ N

1

(uε)2ϕNdx ≤
27

8
a2

0

∫ N

1

(uε)2ϕNdx.
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For the other term on the r.h.s. of (2.18) in this domain one sees that

(2.26)

∫ N

1

(uε)3∂xϕNdx =
3

2

∫ N

1

a(t)x1/2(uε)3ϕNdx

≤ 3

2
a0‖x1/2uε(t)‖L∞(1<x<N)

∫ N

1

(uε)2ϕNdx.

Finally, we consider the domain (d) (x ≥ N). Since in this domain

∂3
xP2(x, t) ≡ 0, ∂tP2(x, t) = a′(t){·} ≤ 0,

one has ∫ ∞
N

(uε)2(∂3
xϕN + ∂tϕN)dx ≤ 0,

so the contribution of this term on the r.h.s. of (2.18) does not need to be considered. To
bound the contribution of the other term on the r.h.s. of (2.18) using (2.13) we write

(2.27)

∫ ∞
N

(uε)3∂xϕNdx

=

∫ ∞
N

(uε)3(1 + 3a0x
1/2)P2(x, t)dx

≤ K(a0) ‖x1/2uε(t)‖L∞(x≥N)

∫ ∞
N

(uε)2ϕN(x, t)dx.

It remains to estimate the terms in the L∞-norm in (2.21), (2.26) and (2.27). We
estimate the terms (2.26) and (2.27), the estimation in (2.21) being similar. For (2.26)
and (2.27), using (1.5) in Theorem A and an estimate similar to that in (2.4), we have

(2.28)

‖x1/2uε(t)‖L∞(x>1) ≤ ‖exuε(t)‖∞ ≤ ‖exuε(t)‖1/2
2 ‖∂x(exuε(t))‖

1/2
2

≤ ‖exuε(t)‖1/2
2 (‖exuε(t)‖1/2

2 + ‖ex∂xuε(t)‖1/2
2 )

≤ 2‖exuε(t)‖2 + ‖ex∂xuε(t)‖2

≤ 2eM‖exuε0‖2 + ‖ex∂xuε(t)‖2

≤ 2eM‖exu0‖2 + ‖ex∂xuε(t)‖2.

From (1.6) in Theorem A and an argument similar to that in (2.4) we obtain the bound
for the integral in time interval [0, T ] of the last term in (2.28)

(2.29)

∫ T

0

‖ex∂xuε(t)‖2dt ≤ T 1/2(

∫ T

0

‖ex∂xuε(t)‖2
2dt)

1/2

≤ T 1/2 1

4
eMT‖exuε0‖2

2 ≤ T 1/2 1

4
eMT‖exu0‖2

2,

with M = M(‖u0‖2).
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Inserting the above estimates in (2.18), using Gronwall’s inequality, and applying (2.11)
with t = 0, one gets that

(2.30) sup
t∈[0,T ]

∫ ∞
−∞
|uε(x, t)|2ϕN(x, t)dx ≤ C∗ = C∗(a0, ‖u0‖2, ‖ea0x

3/2
+ /2u0‖2, T ).

We observe that for each N ∈ Z+ fixed there exists cN such that

(2.31) ϕN(x, t) ≤ cNe
a0x, x ≥ 0,

and by the continuity of the map data-solution, in Theorem A it follows that

(2.32) sup
t∈[0,T ]

∫ ∞
−∞

ea0x|uε(x, t)− u(x, t)|2dx→ 0 as ε ↓ 0.

Combining (2.31) and (2.32) one concludes that

(2.33) sup
t∈[0,T ]

∫ ∞
−∞

ϕN(x, t)|uε(x, t)− u(x, t)|2dx→ 0 as ε ↓ 0.

Hence, for any t ∈ [0, T ]∫ ∞
−∞

ϕN(x, t)|uε(x, t)|2dx→
∫ ∞
−∞

ϕN(x, t)|u(x, t)|2dx as ε ↓ 0,

and consequently, for any t ∈ [0, T ]

(2.34)

∫ ∞
−∞

ϕN(x, t)|u(x, t)|2dx ≤ C∗ = C∗(a0, ‖u0‖2, ‖ea0x
3/2
+ /2u0‖2, T ).

Finally, letting N ↑ ∞ in (2.34) Fatou’s lemma yields the desired result

(2.35)

∫ ∞
−∞

ea(t)x
3/2
+ |u(x, t)|2dx ≤ C∗ = C∗(a0, ‖u0‖2, ‖ea0x

3/2
+ /2u0‖2, T ).

3. Proof of Theorem 1.4

Without loss of generality we assume t0 = 0 and t1 > 0.
First we shall consider the case α ∈ (0, 1/2].
For x ≥ 0, N ∈ Z+ and α > 0 we define

(3.1) ϕN,α(x) =

{
(1 + x4)α/2 − 1, x ∈ [0, N ],

(2N)2α, x ≥ 10N,

with ϕN,α ∈ C3((0,∞)), ϕN,α(x) ≥ 0, ϕ
′
N,α ≥ 0 and for α ∈ (0, 1/2]

(3.2) |ϕ(j)
N,α(x)| ≤ c, j = 1, 2, 3, c independent of N.
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Let φN,α be the odd extension of ϕN,α, i.e.

(3.3) φN,α(x) = φN(x) =

{
ϕN,α(x), x ≥ 0,

− ϕN,α(−x), x ≤ 0.

Notice that

(3.4) φ
′

N(x) ≥ 0, ∀x ∈ R, φN ∈ C3(R), ‖φN‖∞ = (2N)2α.

Next, we consider a sequence of data (u0,m)m∈Z+ ⊂ S(R) such that

(3.5) ‖u0 − u0,m‖2 → 0 as m ↑ ∞,

and denote by um the solution of the IVP (1.1) with k = 1 and data um(x, 0) = u0,m(x).
From the results in [8] one has that

(3.6) um ∈ C(R : S(R)).

By the continuous dependence of the solution upon the data (see Theorem C and com-
ments after its statement) one has that for each T > 0

(3.7)

(a) sup
t∈[0,T ]

‖u(t)− um(t)‖2 → 0 as m ↑ ∞,

(b)

∫ T

−T
‖u(t)− um(t)‖4

∞dt→ 0 as m ↑ ∞,

(c) sup
x∈R

∫ T

−T
|∂x(u− um)(x, t)|2dt→ 0 as m ↑ ∞.

Since um ∈ C(R : S(R)) satisfies the equation in (1.1) with k = 1, multiplying it by
um φN after integration by parts (justified since φN is bounded) one gets

(3.8)
d

dt

∫
(um)2φNdx+ 3

∫
(∂xum)2φ

′

Ndx =

∫
(um)2φ

(3)
N dx+

2

3

∫
(um)3φ

′

Ndx.

We observe that for m large enough

(3.9)

|
∫

(um)2φ
(3)
N dx| ≤ c‖u0,m‖2

2 ≤ 2c‖u0‖2
2,

|
∫

(um)3φ
′

Ndx| ≤ c‖um(t)‖∞‖u0,m‖2
2 ≤ 2c‖um(t)‖∞‖u0‖2

2.

Integrating in the time interval [0, t1] the identity (3.8) and using (3.9) it follows that

(3.10)

∫ t1

0

∫
(∂xum)2(x, t)φ

′

N(x)dxdt ≤ ‖(um(t1))2φN‖1 + ‖(u0,m)2φN‖1

+ c t1‖u0‖2
2 + c t

3/4
1 ‖u0‖2

2 (

∫ t1

0

‖um(t)‖4
∞dt)

1/4,
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where c denotes a constant whose value may change from line to line and is independent
of the initial parameters of the problem. Letting m ↑ ∞, using (3.7) part (c), Theorem
C, and (1.35), one gets that

(3.11)

lim
m↑∞

∫ t1

0

∫
(∂xum)2(x, t)φ

′

N(x)dxdt ≤ ‖(u(t1))2φN‖1 + ‖(u0)2φN‖1

+c t1‖u0‖2
2 + c t

3/4
1 ‖u0‖2

2 (

∫ t1

0

‖u(t)‖4
∞dt)

1/4 ≤M,

with M = M(‖〈x〉αu0‖2, ‖〈x〉αu(t1)‖2). Next, we use (3.7) part (c) to conclude that for
any N̄ ∈ Z+ fixed

(3.12) ∂xum → ∂xu in L2([−T, T ]× [−N̄ , N̄ ]) as m ↑ ∞.

Since φ
′
N has compact support one gets that

(3.13)

∫ t1

0

∫
(∂xu)2(x, t)φ

′

N(x)dxdt ≤M.

Finally, we recall that φ
′
N(x) is even, φ

′
N(x) ≥ 0, and for x > 1

φ
′

N(x)→ 2αx3

(1 + x4)1−α/2 ∼ 〈x〉
2α−1,

therefore using Fatou’s lemma in (3.13) one concludes that

(3.14)

∫ t1

0

∫
|x|≥1

(∂xu)2(x, t)〈x〉2α−1 dxdt ≤M.

Since (see Theorem C and (1.36))∫ t1

0

∫
|x|≤1

(∂xu)2(x, t) dxdt ≤M,

one concludes that

(3.15)

∫ t1

0

∫
(∂xu)2(x, t) 〈x〉2α−1 dxdt ≤M.

Once we have obtained (3.15) we reapply the above argument with ψN,α(x) = ψN(x)
the even extension of ϕN,α instead of φN(x), i.e.

(3.16) ψN,α(x) = ψN(x) =

{
ϕN,α(x), x ≥ 0,

ϕN,α(−x), x ≤ 0.

We observe that

(3.17) |ψ′N(x)| ≤ c〈x〉2α−1.
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Using the formula (3.8) with ψN(x) instead of φN(x), and estimates similar to that in
(3.9) it follows that

lim
m↑∞

∫ t1

0

∫
(∂xum)2ψ′N(x)dxdt =

∫ t1

0

∫
(∂xu)2ψ′N(x)dxdt,

and

|
∫ t1

0

∫
(∂xu)2ψ′N(x)dxdt| ≤

∫ t1

0

∫
(∂xu)2〈x〉2α−1dxdt ≤M.

From these estimates and integrating in the time interval [0, t] ⊂ [0, t1] one obtains that

(3.18) 〈x〉α u(t) ∈ L2(R) t ∈ [0, t1].

Combining (3.15) and (3.18) one sees that there exists t∗ ∈ [0, t1] such that

〈x〉α u(t∗), ∂xu(t∗)〈x〉α−1/2 ∈ L2(R).

Hence,

(3.19) 〈x〉αu(t∗), J(〈x〉α−1/2u(·, t∗)) = (1− ∂2
x)

1/2(〈x〉α−1/2u(t∗)) ∈ L2(R).

Next we shall use the following lemma (see [1] and [12]) :

Lemma 3.1. Let a, b > 0. Assume that Jaf = (1− ∂2)a/2f ∈ L2(R) and
〈x〉bf = (1 + |x|2)b/2f ∈ L2(R). Then for any θ ∈ (0, 1)

(3.20) ‖Jθa(〈x〉(1−θ)bf)‖2 ≤ c‖〈x〉bf‖1−θ
2 ‖Jaf‖θ2.

Defining
f = 〈x〉α−1/2u(t∗)

it follows that
Jf, 〈x〉1/2f ∈ L2(R)

and one gets from (3.20) with θ = 2α that

(3.21) J2α(〈x〉1/2−αf) = J2αu(·, t∗) ∈ L2(R).

Once (3.21) has been established the rest of the proof of Theorem 1.4 follows the argument
described in [13].

Next, we consider the case α ∈ (1/2, 1].
From the previous case we already know that

u ∈ C([0, t1] : H1(R) ∩ L2(〈x〉dx)).

We also observe that for α ∈ (1/2, 1]

φ′N,α(x) + |ψ′N,α(x)|+ |φN,α−1/2(x)| ≤ c 〈x〉, |φ(3)
N,α(x)| ≤ c.

As before we get

(3.22)
d

dt

∫
(um)2φN,αdx+ 3

∫
(∂xum)2φ

′

N,αdx =

∫
(um)2φ

(3)
N,αdx+

2

3

∫
(um)3φ

′

N,αdx,
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with um ∈ C(R : S(R)) which justifies the integration by parts in (3.22).
In (3.22) we first use that

(3.23) |
∫

(um)2φ
(3)
N,αdx| ≤ c‖u0,m‖2

2 ≤ 2c‖u0‖2
2.

Next, we estimate the cubic term in (3.22) (last term there). For this we observe that

(3.24) |φ′N,α(x)| ≤ c |φN,α−1/2(x)|2,

with c independent of N . Thus,

(3.25) |
∫

(um)3φ′N,α(x)dx| ≤ c‖um(t)‖∞‖um(t)φN,α−1/2‖2
2.

Combining the facts that for each N fixed the φN,α’s are bounded and that

sup
[0,t1]

‖(um − u)(t)‖2 → 0 as m ↑ ∞,

one has

sup
[0,t1]

‖(um − u)(t)φN,α−1/2‖2 → 0 as m ↑ ∞,

and consequently,

(3.26) sup
[0,t1]

‖um(t)φN,α−1/2‖2 ≤ 2 sup
[0,t1]

‖u(t)φN,α−1/2‖2 ≤ 2 sup
[0,t1]

‖〈x〉1/2u(t)‖2 ≤M,

with M = M(‖〈x〉1/2u0‖2, ‖〈x〉1/2u(t1)‖2) for m >> 1.
Inserting the above estimates in (3.22) and following the argument in the previous case

α ∈ (0, 1/2] one gets that

(3.27)

∫ t1

0

∫
(∂xum)2(x, t)φ

′

N(x)dxdt ≤ (1 + t1)M,

for m >> 1 and

(3.28)

∫ t1

0

∫
(∂xu)2(x, t) 〈x〉2α−1dxdt ≤ (1 + t1)M,

where M = M(‖〈x〉1/2u0‖2, ‖〈x〉1/2u(t1)‖2).
Next, we deduce (3.22) with ψN,α instead of ϕN,α and use (3.27) and (3.28) as in the

previous case to get that

(3.29) 〈x〉αu(t) ∈ L2(R) t ∈ [0, t1].

Once that the estimates (3.28) and (3.29) have been established the argument in the
previous case involving Lemma 3.1 provides the desired result.

A similar boot-strap argument can be used in the case α ∈ (1, 3/2] and respectively for
higher α.
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