A THEOREM OF PALEY-WIENER TYPE FOR SCHRODINGER
EVOLUTIONS

C. E. KENIG, G. PONCE, AND L. VEGA

ABSTRACT. We prove unique continuation principles for solutions of evolution
Schrédinger equations with time dependent potentials. These correspond to
uncertainly principles of Paley-Wiener type for the Fourier transform. Our
results extends to a large class of semi-linear Schrodinger equation.

Titre : Un théoreme de type Paley-Wiener pour les évolutions de Schrodinger.

Résumé : On prouve des principes de prolongement unique pour les so-
lutions d’équations d’évolution de Schrédinger avec potentiels dépendant du
temps. Ceux-ci correspondent & des principes d’incertitude de type Paley-
Wiener pour la transformée de Fourier. Nos résultats se généralisent 4 une
large classe d’équations de Schrédinger semi-linéaires.

1. INTRODUCTION

In this paper we study unique continuation properties of solutions of Schrodinger
equations of the form

(1.1) O = i(Au+V(z,t)u), (z,t) eR"x[0,7], T >0.

The goal is to obtain sufficient conditions on the behavior of the solution u at two
different times and on the potential V' which guarantee that v = 0 in R™ x [0, T].
Under appropriate assumptions this result will extend to the difference v = u; — us
of two solutions uy, us of semi-linear Schrédinger equation

(1.2) Opu = i(Au+ F(u, 7)),

from which one can conclude that u; = us.

Defining the Fourier transform of a function f as

-~

Fle) = (@m) 2 / ()

1991 Mathematics Subject Classification. Primary: 35Q55.

Key words and phrases. Schrodinger evolutions, unique continuation.

The first and second authors are supported by NSF grants DMS-0968472 and DMS-1101499
respectively. The third author is supported by grants MTM2011-24054 and IT-305-07.

1



2 C. E. KENIG, G. PONCE, AND L. VEGA

one has
ilz—y|?/4t
i e
u(z, t) = e Pug(z) = / ity ? uo(y) dy
ilx|? /4t

e —2iz- ily|?

(1.3) = i / T/ P Aty () dy
Rn
ez’|x\2/4t x

= (Qit)"/2 (ei\'l /4tuO) (E)’

where e?*®ug(z) denotes the free solution of the Schrédinger equation with data ug
Ou =1ilu,  u(r,0) =up(z), (z,t) € R" xR.

The identity (1.3) tells us that this kind of results for the free solution of the
Schrodinger equation are closely related to uncertainty principles for the Fourier
transform. In this regard, one has the well known result of G. H. Hardy [9]:

If f(z)=0(e /%), f(&) =0 *¢/*") and aB <4, then f =0,
and if af =4, then f(z)= ce /B

Its extension to higher dimensions n > 2 was obtained in [15]. The following
generalization in terms of the L?-norm was established in [3]:

[Ed

2 2
4112 ~
If e»s?

f(x), e=? f(€) € L*(R™), and a3 < 4, then f = 0.

In terms of the free solution of the Schrédinger equation the L2-version of Hardy
Uncertainty Principle says :

|? Bk

(14) If e‘T“ uo(x), €= e ug(z) € L*(R"), and o B < 4t, then ug = 0.
In [6] the following result was proven:

Theorem. ([6]) Given any solution u € C([0,T] : L?(R™)) of

(1.5) Ou =1 (Au+V(x, t)u), (z,t) € R" x [0,T],

with V € L=(R" x [0, T]),

(1.6) L [[Vizsozyz=@n\g,) = 0.
and
loj? L ira 2(pn
eﬁzu(), e a? e UQGL(R),

with a8 < 4T, then ug = 0.

Notice that the above Theorem recovers the L?-version of the Hardy Uncertainty
Principle (1.4) for solutions of the IVP (1.5), except for the limiting case a8 = 4T
for which the corresponding result was proven to fail, see [6]. For further results in
this direction concerning other uncertainty principles we refer to [8] and references
therein.

Some previous results concerning uniqueness properties of solutions of the Schrodinger

equation were not directly motivated by the formula (1.3).
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For solutions u = u(x,t) of the 1-D cubic Schrédinger equation
(1.7 Opu = i(0%u =+ |u)?u),
B. Y. Zhang [17] showed :

If u(z,t) =0 for (z,t) € (—o0,a) x {0,1} (or (z,t) € (a,00) x {0,1}) for some
a € R, then u = 0.

The proof is based on the inverse scattering method, which uses the fact that
the equation in (1.7) is a completely integrable model.

In [13], under general assumptions on F in (1.2), it was proven that :

If uy, ug € C([0,1] : H*(R™)), with s > max{n/2; 2} are solutions of the
equation (1.2) with F as in (1.2) such that

uy(w,t) = uz(x,t), (x,t) €'y x{0,1},

where I'{  denotes the complement of a cone 'y, with vertex xo € R" and opening
< 1800, then u; = us.

For further results in this direction see [12], [13], [10], [11], and references therein.
Note that in [8] a unified approach was given to both kinds of results, using Lemma
3 and Corollary 1 below.

Returning to the uncertainty principle for the Fourier transform one has :

If f € L'(R™) is non-zero and has compact support, then ]? cannot satisfy a
condition of the type f(y) = O(e=I¥l) for any € > 0.

This is due to the fact that f(y) = O(e~“¥!) implies that f has an analytic
extension to the strip {z € C" : [Im(2)| < €}.

In this regard the Paley-Wiener Theorem [14] gives a characterization of a func-
tion or distribution with compact support in term of the analyticity properties of
its Fourier transform.

Our main result in this work is the following:

Theorem 1. Let u € C([0,1] : L?(R™)) be a strong solution of the equation

(1.8) Ou = i(Au+ V(z, t)u), (x,t) € R™ x [0,1].
Assume that
(1.9) sup / lu(z,t)|*dx < Ay,

0<t<1 JRn
(1.10) / e?ul@il jy(z,0)2de = Ay < 0o,  for some a; > 0,
(1.11) suppu(-,1) C {z € R" : &1 < az}, for some ay < o0,
with
(1.12) Ve L¥R" < [0,1]),  [[Vlze@nxpo,11) = Mo,
and
(1.13) S Vi, @ng,)) = 0-

Then u=0.
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Remarks: (a) Note that in order to prove Theorem 1, by translation in 1, we can
choose who ag is. We will show that there exists m > 0 (small) with the property
that if (1.9), (1.10), (1.12), (1.13) hold and (1.11) holds with az = m, then

u(z,1) =0 for x €R™ such that m/2 <z; < m.

This clearly yields the desired result. Without loss of generality we will assume
m < 1.

(b) By rescaling it is clear that the result in Theorem 1 applies to any time
interval [0, T].

(c) We recall that in Theorem 1 there are no hypotheses on the size of the
potential V' in the given class or on its regularity.

(d) A weaker version of Theorem 1 was announced in [8].

As a direct consequence of Theorem 1 we get the following result regarding the
uniqueness of solutions for non-linear equations of the form (1.2).

Theorem 2. Given
uy, ug € C([0,T] : H*(R™)), 0<T < oo,

strong solutions of (1.2) with k € Z*, k > n/2, F : C> - C, F € C* and
F(0) = 0,F(0) = 95 F(0) = 0 such that

(1.14) supp (u1(-,0) —u2(-,0)) C {x € R" : 23 <ag}, a2 <oo.
If for some t € (0,T) and for some e >0
(1.15) uy (-, t) — ug (-, t) € L2(e 1™ d),

then uy = usg.

Remarks: (a) In particular, by taking us = 0, Theorem 2 shows that if uy(-,0)
has compact support, then for any ¢ € (0,7 u1(-,t) cannot decay exponentially.

(b) In the case F(u,u) = |u|* tu, with a > n/2 if a is not an odd integer, we
have that if ¢ is the unique non-negative, radially symmetric solution of

—Ap+we=|p[* Ty, w >0,
then
(1.16) up (z,t) = e“'o(x)
is a solution (“standing wave”) of
(1.17) Oru = i(Au + |[u|* u).
It was established in [16], [1] that there exist constants cg, ¢; > 0 such that
(1.18) o(x) < coe el

Therefore, if we denote by us(z,t) the solution of the equation (1.17) with o > n/2
and data uz(x,0) = o(x) + ¢(x), ¢ € H*(R™), s > n/2 having compact support it
follows from Theorem 2, (1.16) and (1.18) that for any ¢ # 0

(1.19) us(-,t) ¢ L*(e®lde),  for any e > 0.

In general, the same result (1.19) applies (in the time interval [0, T]) if one assumes
that uy is a solution of (1.16) having exponential decay

lui(z,t)] < co efcll"”‘, co,c1 >0 (z,t) e R" x [0,T],
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and wug is the solution of (1.16) corresponding to an initial data
uz(x,0) = ui(z,0) + ¢(x), ¢ < H*(R"), s>n/2 with compact support.

The rest of this paper is organized as follows: section 2 contains all the prelim-
inary results to be used in the proof of Theorem 1. A version of them has been
proved in [7], [6], [8]. However, in some cases modifications are needed to apply
them in the setting considered here. Hence, some of their proofs will be sketched.
Section 3 contains the proof of Theorem 1.

2. PRELIMINARY ESTIMATES

In this section we describe the estimates to be used in the proof of Theorem 1.
First we recall a key step in the uniform exponential decay estimate established
in [13] :
Lemma 1. There exists €, > 0 such that if
(2.1) ViR x[0,1] = C,  with ||V|p1p < €,
and u € C([0,1] : L*>(R™)) is a strong solution of the IVP
59 ou=i(A+V(z,t))u+ G(z,1),
(22) u(z,0) = up(x),
with
(2.3) ug, uy = u(-,1) € L*(e*%dz), G e L*([0,1] : L*(e***dx)),
for some A € R™, then there exists ¢, independent of A such that
sup [|eMu( -, 1) 2
0<t<1
(2.4) 1
< ca(lle* uollagan + lle w2 +/ X G-, 1) |2 canydt ).
0

Notice that in Lemma 1 one assumes the existence of a reference L?- solution u
of the equation (2.2) and gets a control on the decay of the solution in the whole
time interval in terms of that at the end points and that of the “external force”. In
general, under appropriate assumptions on the potential V(x,t) in (1.1) one writes

Viz,t)u = x,V(z,t)u+ (1 — x,)V(z, t)u = V(z, t)u+ G(z, 1),
with x, € C§°, x,(z) =1, |z| < p, supported in |z| < 2p, and obtains the estimate

(2.4) by fixing p sufficiently large. Also under appropriate hypotheses on F' and u
a similar argument can be used for the semi-linear equation in (1.2).

Next, we recall the conformal or Appell transformation:

Lemma 2. If u(y, s) verifies

(2.5) Osu=1i(Au+V(y,s)u+F(y,s), (y,s8) €R" x[0,1],
and o and B are positive, then

~ o 3 B _(a=B)zI®
(2:6) ufw,t) = (r%) u (a&/:)wtv a(1ftt)+m> eTe=nTam,

verifies

(2.7) Ot = i (Aﬂ + V() + ﬁ(x,t)) . (z,t) e R x [0, 1],
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with
v _ ap Vap Bt
(2:8) Via,t) = (a(1-t)+Bt)? 4 (a(l—at)fﬂt’ a(l—t)+6t) )
and
~ 3+2 (a—B)|x|?
_ Vap 2 afx Bt Tia(d_t)1 80
(29) F(x,t) = (m) F (a(g+,8t’ Oé(lft)ﬁ»ﬁt) e di(a(1-t)+p5t) |

The following result is a modified version of the one in [4] (Lemma 3.1, page
1818). It will provide a needed lower bound of the L?-mnorm of the solution of
the equation (1.1) and its first order derivatives in the z;-variable in the domain
{r: R—1<z <R} x][0,1].

Lemma 3. Assume that R > 0 large enough and that ¢ : [0,1] — R is a smooth
function. Then, there exists ¢ = c(n;||¢'||co + [|¢”|lco) > 0 such that the inequality
3/2

o 1—®0,1 2 z1—20,1 2
2.10) T || el 2F2t +e )l < ‘ o e (9, 4 A ’
( ) re° L2(dzdt) = (@0 + A)g L2(dzdt)
holds when o > cR? and g € C§°(R"*1) is supported on the set
T — T
{($7t> = (xlv ..7(En,t) S Rn+1 : |% + (p(t)| 2 1}

Proof. As it was remarked above this result is a variation of the one given in detail
in [4], hence a sketch will suffice.
By translation, without loss of generality, we can assume xg; = 0. Let

fla,t) = el RO gz 1),

Then,
(2.11) el HHOF (39, + A)g = S, f — 40 A, f,
where
Sy =i0 + A+ 227|214 o2,
As= 5 (3% +0) 0oy + a1 + - (B +0)-
Thus,
(2.12) St =8, « A=—A,,

and integrating by parts (possible since g € C§°(R™1)) one sees that

el R+ (10, + A)g||2 = (Syf — 40 Ay f, Sy f — 4o Ay f)

> _40<(SUAU - AUSU)f7 f> = _40<[Saa Aa]fa f> .
A calculation shows that
2 i ’
[SU7AO'] = %851 - 4RL4|IT{1 + 90‘2 - %[(% =+ 30)410// + (4/7/)2] + 2;{0 am
From this it follows that
eI R 4" 60, + A)g13
1603 - 2,12 8o 9

(2.13) > R /\ﬁ+cp| | f] dxdt+ﬁ/|amf| dxdt

20 [(G+ 000"+ @Vl Pdodt -3 (O [ o0, fTaud)
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Now, when ¢ > cR? one has
o
ﬁ Z c o,
so by taking c large enough, depending on ||¢'[|s and ||¢”||oc, and using that
| % + (t)| > 1 on the supp(f) = supp(g), we can hide the third term on the right
hand side (r.h.s.) in the inequality (2.13) in the first term in the r.h.s. Also, since
8ot

2 [ 1110211 fldar]

8o 4o
< F1&le [ 1£102,71 < 40l [ 1fPdsdt+ T [ fon, fldoa,

the contribution of this term in (2.13) can be hidden by the first and second term
in the r.h.s. of (2.13) if ¢ is large. This concludes the proof. O

Note that the same proof works by taking ¢ a bit larger, if we only assume
|+ ¢(t)] = 1/2 on supp(g).

In the proof of Theorem 1 we shall need the following extension of Lemma 3.
Corollary 1. Assume g € L2(R"™1) with x1, t on supp(g) bounded,

T1 — To,1
L o)) 2 1)

and (i0; + A)g € L*(R™"1), then the inequality (2.10) holds.

supp(g) C {(z,t) = (1, ..,xpn,t) € R . |

Proof. We can again assume that 91 = 0. We introduce the notation z = (z1,2’) €
R x R*7L. Let 1 € C5°(R), m > 0, supp(n1) C {|x1] < 1} and ng € C (R 1),
12 2 0, supp(r2) C {[a'| < 1} with

/ m(z1)dey =1  and / ne(z')dz' = 1.
R Rn—1
For § > 0 small define
1
hs(@,t) = Wm(t/52)n1(1‘1/5)772(96'/5"‘1) and g5 =hs*g.
Let 0 € C°(R™71), 0(z') = 1, |2/| < 1, and supp(f) C {|2| < 2}. For [ large,
define
gs,(z,t) = 0(2'/1) g5 (,1).
Note that for § > 0 small,
supp(gs) C {(z,1) : |5 +o()]> > 1/2},
and the same holds for gs;. Moreover, g5, € CS°(R"T1).
We apply Lemma 3 to gs; to obtain:

53/2
@) ‘

o+

< C‘
L2 (dadt)

ol F e (3, + A)gé,l)

5,1 ‘ .
9 L2(dwdt)

Next, we fix > 0 small and see that
(10 + A)gsi = 0(2' /1)(i0; + A)gs

(2.15) I %V’@(I//l) - V'gs(z,t) + %Aﬁ(x’/l)ga(x,t).
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Therefore, by taking [ — oo the L?(dzdt)-norm of the the last two terms on the
r.hs. of (2.15) tend to zero. Hence, inserting this in (2.14) we obtain the same
estimate for gs. Next, we have that

(10 + A)gs = (10 + A)(hs * g) = hs * (i0; + A)g.

Using the supremum in 6 (non-isotropic maximal function) and its boundedness,

together with the boundedness of the support in (z1,t) of g, so that
eUlll/l’?ﬂi‘L/P(t)l2 < o R,

by the dominated convergence theorem we can pass to the limit as § — 0 to obtain
the desired result. (]

3. PROOF OF THEOREM 1

We divide our argument into six steps:
Step 1: We claim that

(3.1) sup/ 2 |y (2, 1) [Pdr < As.
0<t<1 JRrn

Proof of Step 1 : Using (1.13) in Theorem 1 we choose p so large such that

||V X{|z|>p} HLl([O,l]:Lw(R")) < é€n,

with €, as in Lemma 1. From (1.9)-(1.11) we have
/ €217 y(z,0)|2dr < As,

and
/ 21 |y (2, 1)|2de < Ay + €2M™ < Ay + €2,
Rn,

We apply Lemma 1, with G(2,t) = —X{jz|<p} V (2, t)u(z, ), using that
1
/ || ealxlx.{mgp} Vu||2dt < e"PMyAq,
0

which gives step 1 with A3 = A3(A1; As;ar; Mo; p).
Step 2: Define 6 > 0 as

€

3.2 6= —"—

( ) My+1’
with My as in (1.12) and €, as in Lemma 1. Note that § < 1, and

1
(33 [ Ve nled < e
1-5

Let

(3.4) vz, t) = u(6Y %z, 0t +1 - 6).
We shall show that under the hypothesis of Theorem 1

(3.5) / lo(, 1)2da = / lu(z, 1)[2dz = 0

5517z <T1<31/3 G<wi<m

as desired.
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Defining
(3.6) Vs(z,t) =0V (02,6t +1 —0)
we see that v(z,t) satisfies the equation
v =i(Av+ Vsv),  (z,t) e R" x [0,1].
We notice, using (3.3), that

1
(3.7) Vsl Lo mn x[0,1]) < Mo 0 < €n, / Vs (-, t)]|cdt < €y,
0

and

[ o oPds =5 [ st e 1= 0Py < 515
with
supp(v( 1)) € {1 < m/5/2).
Thus, from (3.1)

) A
/ 62a1z151/2|’u(1‘,0)‘2d33 _ / €2a1m15 /2|u(51/2x7 1— 5)|2d$ < (5"7/32

We remark that ¢ was fixed in (3.2) (independent of m), and that we can still choose
m small.

Step 3: Using the Appell (conformal) transformation Lemma 2 we have that if
0sv = i(Av+ Vsv), (y,s) € R" x [0,1],
then for any o, 8 >0

3.8 ol t) = (—YaB 2 VaBax Bt 455%%
(3-8) v(a,t) = (sasorm ) v\ ad=n+pe an=omt ) © ’
verifies N
0 = i(AT+ VD), (x,t) € R" x [0,1],
with
V(a,t) = o vi( Vap pt )
T el =) 182 \a(l—t)+ 8t a(l—t) + pt)

(1
For A > 0 given we will choose o = (), §), 8= B(A, ). We recall that
<

ayz6'/? 2 AS
||€ 121 U(',O)HQ (5”/2,
and from the support hypothesis
2m)\/51/2A
Az 2 €
||e ! U('7 1)”2 = §n/2
We want v = (), §) such that
1/2
T157 _ (a/ﬁ)l/zx _ ayw 6?2 . A3
7 0(z, 0)[|2 = [|e” (@, 0)llz = Jle™ ™ (, 0)l2 < 557
and
Am/8'/? 41/2
€T177 o)/ 2g T €
715 (@, 1) |2 = [[e? /) (@, 1|2 = X0 (-, D] < §n/d '

Thus, we choose

(3:9) Ya/B)? =6"2ar,  y(B/a)'/? =),
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ie.
(3.10) y=\Y2a)2 B=X a=0"%a.
Next, using the change of variable
- 8 - af
= —— dt= ————_dt,
a(l—1t)+ gt (a(1 —t) + Bt)?

it follows that

An?mmuﬁ

_ [ af vapa st

_/0 I (a(l—t)+5t)2v5(a(1—t)+ﬁt’a(l—t)+ﬂt>|‘°°dt
1 ~ o~

— [ WDl <
0

using (3.7). So we can apply Lemma 1 again, this time with G = 0, to obtain that
1/2

A A2 12
YT17y(, < 3 1 Am/é )
b, 70 Bl < en(Gors + o ©
(3.11) 1/2
< C8,a1,41,45 eAm/é
< CeAm/5l/2

)

if A > 0 is large and A; # 0, (how large A is for this depends on m, Ay, Az and 6,
but this will not matter). Note that

(3.12) 701 = ot =l < ot
hence
_ A
(3.13) sup 170, 0)ll2 < g
Now, we denote by ¢g(z1) > 0 a C*° convex function such that
0, z1 <0,
(3.14) o ={ s o

and define
d(1) = (1 + (¢o(z1))*)"/2.
Since v = (A6%/2a1)'/?, from (3.11) and for large A we have
(3.15) sup “67¢($1)5('7t)||2 < Csa, Am/?
0<t<1

A computation shows that

/ _ po(w1) dp(z1)
¥ = T G
and
SR C/ (C2Y) o(1) ¢y (1)

(L+ (bo(21))?)*2 (1 + (do(x1))?)*/2
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Thus, for 1 > 1/2 one has that

" 1 1 1

1
(3.16) ¢ (z1) 2 1 T 22)3/2 4 (z1)3

We now follow an argument similar to that in [7] section 2. Let
f(z,t) = @) (. t).
Then f verifies
(3.17) Of=8f+Af+ie’F, in R™x|[0,1],
with symmetric and skew-symmetric operators & and A

8 =—iy (200,00, + 02 0),

(3.18) A=i (D410, 0)
and
F=VW.
A calculation shows that,
(3.19) Si+[8,4] = — [40,, 67 0s, — 49707 (¢)% + 69|

By Lemma 2 in [7]

O7H = 0} (f, f) =201Re (D, f — 8f — Af, f) +2(8:f + [8, Al £, f)

(3.20) . ,
F10uf = Af +SFI7 = [10ef — Af = SFII%,
SO
2 J— J—

+2(8ef +[S, Al f, f) — |0uf — Af — Sf]>.

Multiplying (3.21) by ¢(1 — ¢) and integrating in ¢ we obtain

1
2 / (1 — ) (Sof + [8, 4] f. f) dt
0

S%ﬁmw@¢ﬂﬂﬁ+cnwwkaUMz
1

) s

(3.22)

This computation can be justified by parabolic regularization using the fact that
we already know the decay estimate for U, see [5]. Note that for A sufficiently large

1/2
A MQ—M Mo

~ ﬂ
(3.23) 1Vlleo < (a) Vsl 01/2a4 aj
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Hence, combining (3.11), (3.19), and (3.23) it follows that

87/ / t(1—1)¢ (1) |0y, f|2dadt

c597 [ [ 61— 06" (@) (@ (e)? | Pdudt
Y

< ey sup | F( 0113 + ¢5,00,a1,0 A sup [ F (013 + o sup [ £ 1)]13
0,1] [0,1] [0,1]

2xm /512
< C5,My,a1,n Ae / .

We recall that
Op, f = eYo(z1) Du, U + ,yewﬁ(ﬂn) ¢’($1) 7,
thus
YN0z, fI? = 721?10, T + ¢ (x1)0]?

= 212 (4|0, 07 + 29029/ (21)0 00, T + ¥ (¢ (21))?[0]%),
with )
12929 (1)1 8,, 7| < 57\3xﬁ|2 +29% (¢ (1))?] 0]

Inserting these estimates in (3.24) for X large one gets

1
47/ / t(l _ t) ¢// (.’L‘l) 627¢7(-’E1) |aw15|2d$dt S C§,Mo,a1,n )\€2Am/61/2.
0

Hence, for 1 > 1/2 from (3.16) one has that

1
1 ~
¥ t(1 —t)—— 2@ 19, T2dadt < csap ann )\62’\’”/51/27
0 <$1>3 1 yMo,ar,

for X large. Collecting the above information, (3.11), and (3.24) we conclude that

1
sup ||e"®@I(,1)]2 + ’y/ / t(1—1) 2@ |9, B2 dadt
(3.25)  o0<t<1 >3 (21)3

2Am /512
< €5, Mo,ar,n A€ / .

Step 4 : We will give lower bounds for

5/8
o — / / 9(, ) 2dtd,
2<z,<R/2 J3/8

for R large to be chosen.
First, we recall that

5/8 n 2
0 [ [ ) ) [
s<or<ny2 J3 a(l—t)+ 5t a(l—t)+6t’ a(l—t)+Bt

/8
Next, for t € [3/8,5/8] we see that
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satisfies that

(-t +pt)?, B B
(where A = B means : 3C € (0,1) s.t. CA< B < C~!A) with
3

S(3/8) = -2 € (1/2,1)
and 59

s(5/8) = 30158 € (1/2,1).
Therefore

5(5/8) — 5(3/8) = 203 ~ @

(5a+36)(3a+53) B’
for large A, and
s(5/8) >s(3/8) 11 as A7 oo.
In the z-variable we have
y=—YB__,
a(l—t)+6"
so for t € [3/8,5/8] and 2 < x; < R/2 one basically has that

Y1 € [2\/%,§\/%] = A
Thus,
(3.26) ®>c, s / lv(y, s)|2dsdy,
a JaJr,
with o
Iy =1[s(3/8),s(5/8)], |\ = 3 for A>>1,

and

s(3/8) =1 as AT 0.
We choose

2MAY/2m
with
2 1

(3.28) ;M > VER

to be fixed latter. Since

and

R [ 2Mm m
=22
2\ B Cn  cpdl/2

Hence, from (3.26) we can conclude

(3.29) liminf @ > c, / [o(y, 1)|?dy.
0o 0 m

<v1<j3i/z

13
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Step 5 : Upper bounds for

31/32
E(R / / ([5(, 1) + |02, 0(2, t)|*)dtda.
<r1<R /32

For the square of the L?-norm of ¥ we have the bound A;/6™/2, see (3.12). For
the square of the L2-norm of 9,,v using the conclusion of Step 3 (3.25) we get the
upper bound

5. Mo.ay.m (1 + RS) )\eQAm/gl/z-

Step 6 : Carleman estimate [2] and conclusion of the proof.
We assume that for m > 0 to be chosen
(3.30) b= [ lv(y, 1)|>dy > 0.
25172 <V1<31/7
We recall that
supp(v(-,1)) C {y1 <m/6'/?}.
From step 4 we have that for A\ sufficiently large

5/8 b
(3.31) / / [o(x, t)[*dtdr > .
2<a1<R/2 J3/8 2
Next, we shall use Corollary 1. Let
£C071 = R/Q,
and ¢ : [0,1] — R be a smooth function such that 0 < ¢(t) < 3/2 — 1/R,
3/2 —1/R, t €[3/8,5/8],
(3.32) o(t) =
0, te0,1/4] U[3/4,1],

with ¢, ¢/, <p// uniformly bounded in R for R large. We fix
o =cR?,

with ¢ denoting a universal constant whose value may change from line to line.
Choose 0 € C*(R), with 0 < f(x1) <1 and

1, 1<x<R-1,
(3.33) On(x1) = {O, x1 <1/2 or =z > R.
Let ¢ € C*(R) satisfy 0 < {(x1) <1 and
0, x1<1,
(3.34) C(21) = { 1, = >1+1/(2R).
Define
(3.35) g(@,t) = Op(x1) C(LR}W + (1)) B, ).

Let us see that g(z,t) verifies the hypotheses of Corollary 1 so we can apply the
inequality (2.10). First, it is clear that it is supported on the set

1/2 < z1 < R, 1/32 <t < 31/32,

Below we shall see that
(0 + A)g € L*(dzdt).
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Note that
(3.36) if 3/2<xz3<R-1 and 3/8<t<5/8, then g(x,t)="1v(x,t).
In this domain, 6g(x1) = 1, and

x1— R/2
R

X1 1
+<p(t)—R+1 R21+2R,
which gives (3.36).
Also if z; > 2 one has z1/R+1—1/R > 1+ 1/R, so that we have a lower bound
I" for the left hand side of (2.10) squared with

— LB 20(1+1/R)? o8 ~ 2 9 3p2 20(1+1/R)?
(3.37) I'= ke [0(x, t)|*dtde > 5¢ R7e )
3

2<z<R—1 J3/8
for R large from (3.31). The equation for g is
(100 + A)g = (o) (T2 4 o) V()
san L o) @a(e0)0 T + 507
600000+ ¢ 7)) + ()00, 7]
= E1 + E2 + Eg.

Note that (i9; + A)g € L?(dxdt) by Step 5.
On the domain 1/2 < z; < R, 1/32 <t < 31/32 (which contains the support of
g) one has (see (3.10))

1V loo < %MO for A >> 1.

Thus, since

o3

_ 3p2
ﬁ =cC R 5
for R sufficiently large we can absorb the contribution of the term containing F; in
the right hand side of (2.10) in the left hand side of (2.10). So we have

gchQGQU(Hl/R)? < c// | Ey|? 620|m17n3/2+¢(t)\2dxdt

- C// | E5)? e LR 2O gy,

Next, we analyze the contribution of F5. In this case, each term contains a factor
equal to a derivative of 6y, so the possible contribution are from the sets :
1/2<zy<land R—1<x; <R. If1/2 <z <1, then

x1— R/2 1 1 3 1

< = — — - — ==

so in this domain y
xr1 — R/2 _
((HZ o) =0

In the region R — 1 < x; < R we have

T — R/2 1 3
—_ H)<1l—=-+-=
7 + ) < 2+2
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so the contribution of the term involving Fs is bounded above by

31/32 )
v+ 0,07 e Y dxdt
/ / (‘~|2 ‘a 1~|2) 20(1-1/R) dad
1/32 JR—1<zi<R

31/32
— (o2 1/ 1) / (1612 + (0,52 dadt
1/32 JR—1<z,<R

_ E(R) 62”(2_1/R)2.

Next, we consider the term involving F3. In this case, each term contains a
factor equal to a derivative of { so its support is restricted to
1< T, — R/2
- R
with 1/2 < 21 < R (support of 6g) and ¢ € (1/32,31/32). Hence, its contribution
is bounded by (see (3.12))

31/32 )
CR4/ / |o(x, t)|2e2"(1+1/(2R)) dxdt
1/32 3<z1<R

+o(t) <1+4+1/2R,

, [31/32
< ¢ R* 20(1+1/(2R) / [o(x, t)|*dxdt
1/32 3<z1<R

20(141/(2R))? Ar
<ce 5072 R".

Collecting this information and using that R is large we get

(3.39) gc3R2e2"(1+1/R)2 < cE(R)eQU(Q_l/R)Q + CA1,5€20(1+1/2R)2.R4.

Since R is large the second term on the right hand side (3.39) can be hidden on the
left to get that

(3.40) ZC3R2620(1+1/R)2 < CE(R)€20(271/R)2.

Now, since o = cR? one has that

20(1+ %)% —20(2 — £)? = —6¢R? + 12cR > —10cR?,

R R
for R large. Thus, from (3.40) it follows that
b -
(3.41) 103R26*10632 < cZ(R).

But using (3.25)

31/32
Z(R) = / / (192 + |02, 0)?) (, t)dtda
R—1<z1<R J1/32

31/32
(3.42) _ / / 278(1) =278 (312 + |0, 02 (2, t)dtda
R—1<z1<R J1/32

_ 1/2 _ 1/2
<ce 'yRRS)\eQ)\m/(S < cR3e ’yR€2/\m/6 ,
for A >> 1 and 1 > R >> 1 one has that

1
571 < o(z1) < 21



UNIQUE CONTINUATION 17

Thus, inserting (3.42) into (3.41) it follows that
(343) h< CelOCR2 —~yR+3Am/§'/?

where

2M A\ 2m . 9
= — /2, \1/2 “ 1/2
R (012a,)1/2¢’ v =(A6a1) "7, and CnM >1/07/=.
So we have, changing c¢,, into c,

10cR? — yR + 3\m /§'/?

2,2 1/2
_ A0cMm2A — (A8Y/20)1/2 2MAY2m +3)\7m
261/2a, (01/2a1)1/2¢ 51/2
1\ 40cM?*m? 2Mm 3m
o (0251/2(11 e 51/2)

We need the expression in parenthesis to be negative, i.e.
40cM?*m? 3m 2Mm
c261/2q, 51/2 .
Divide by Mm , we need
40cMm n 3 < 2
2512q; M2 T ¢

First, we choose M so large such that 2M/c > 1/6%/? and

3 1
_T <.
MY/ ~ ¢
So now we just need
40cMm 1

2512q; ¢
This can be done by taking m > 0 small. Therefore, we have proved that b = 0,
which yields the desired result.
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