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Abstract. We prove unique continuation principles for solutions of evolution

Schrödinger equations with time dependent potentials. These correspond to
uncertainly principles of Paley-Wiener type for the Fourier transform. Our

results extends to a large class of semi-linear Schrödinger equation.

Titre : Un théoreme de type Paley-Wiener pour les évolutions de Schrodinger.

Résumé : On prouve des principes de prolongement unique pour les so-

lutions d’équations d’évolution de Schrödinger avec potentiels dépendant du
temps. Ceux-ci correspondent á des principes d’incertitude de type Paley-

Wiener pour la transformée de Fourier. Nos résultats se généralisent á une

large classe d’équations de Schrödinger semi-linéaires.

1. Introduction

In this paper we study unique continuation properties of solutions of Schrödinger
equations of the form

(1.1) ∂tu = i(4u+ V (x, t)u), (x, t) ∈ Rn × [0, T ], T > 0.

The goal is to obtain sufficient conditions on the behavior of the solution u at two
different times and on the potential V which guarantee that u ≡ 0 in Rn × [0, T ].
Under appropriate assumptions this result will extend to the difference v = u1−u2

of two solutions u1, u2 of semi-linear Schrödinger equation

(1.2) ∂tu = i(4u+ F (u, u)),

from which one can conclude that u1 ≡ u2.

Defining the Fourier transform of a function f as

f̂(ξ) = (2π)−n/2
∫

Rn
e−iξ·xf(x)dx.
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one has

(1.3)

u(x, t) = eit∆u0(x) =
∫

Rn

ei|x−y|
2/4t

(4πit)n/2
u0(y) dy

=
ei|x|

2/4t

(4πit)n/2

∫
Rn
e−2ix·y/4tei|y|

2/4tu0(y) dy

=
ei|x|

2/4t

(2it)n/2
̂(ei|·|2/4tu0)

( x
2t

)
,

where eit∆u0(x) denotes the free solution of the Schrödinger equation with data u0

∂tu = i4u, u(x, 0) = u0(x), (x, t) ∈ Rn × R.

The identity (1.3) tells us that this kind of results for the free solution of the
Schrödinger equation are closely related to uncertainty principles for the Fourier
transform. In this regard, one has the well known result of G. H. Hardy [9]:

If f(x) = O(e−x
2/β2

), f̂(ξ) = O(e−4 ξ2/α2
) and αβ < 4, then f ≡ 0,

and if αβ = 4, then f(x) = c e−x
2/β2

.

Its extension to higher dimensions n ≥ 2 was obtained in [15]. The following
generalization in terms of the L2-norm was established in [3]:

If e
|x|2

β2 f(x), e
4|ξ|2

α2 f̂(ξ) ∈ L2(Rn), and αβ ≤ 4, then f ≡ 0.

In terms of the free solution of the Schrödinger equation the L2-version of Hardy
Uncertainty Principle says :

(1.4) If e
|x|2

β2 u0(x), e
|x|2

α2 eit∆ u0(x) ∈ L2(Rn), and αβ ≤ 4t, then u0 ≡ 0.

In [6] the following result was proven:

Theorem. ([6]) Given any solution u ∈ C([0, T ] : L2(Rn)) of

(1.5) ∂tu = i (4u+ V (x, t)u) , (x, t) ∈ Rn × [0, T ],

with V ∈ L∞(Rn × [0, T ]),

(1.6) lim
ρ→+∞

‖V ‖L1([0,T ]:L∞(Rn\Bρ)) = 0.

and

e
|x|2

β2 u0, e
|x|2

α2 eiT∆u0 ∈ L2(Rn),
with αβ < 4T , then u0 ≡ 0.

Notice that the above Theorem recovers the L2-version of the Hardy Uncertainty
Principle (1.4) for solutions of the IVP (1.5), except for the limiting case αβ = 4T
for which the corresponding result was proven to fail, see [6]. For further results in
this direction concerning other uncertainty principles we refer to [8] and references
therein.

Some previous results concerning uniqueness properties of solutions of the Schrödinger
equation were not directly motivated by the formula (1.3).
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For solutions u = u(x, t) of the 1-D cubic Schrödinger equation

(1.7) ∂tu = i(∂2
xu± |u|2u),

B. Y. Zhang [17] showed :

If u(x, t) = 0 for (x, t) ∈ (−∞, a) × {0, 1} (or (x, t) ∈ (a,∞) × {0, 1}) for some
a ∈ R, then u ≡ 0.

The proof is based on the inverse scattering method, which uses the fact that
the equation in (1.7) is a completely integrable model.

In [13], under general assumptions on F in (1.2), it was proven that :

If u1, u2 ∈ C([0, 1] : Hs(Rn)), with s > max{n/2; 2} are solutions of the
equation (1.2) with F as in (1.2) such that

u1(x, t) = u2(x, t), (x, t) ∈ Γcx0
× {0, 1},

where Γcx0
denotes the complement of a cone Γx0 with vertex x0 ∈ Rn and opening

< 1800, then u1 ≡ u2.
For further results in this direction see [12], [13], [10], [11], and references therein.

Note that in [8] a unified approach was given to both kinds of results, using Lemma
3 and Corollary 1 below.

Returning to the uncertainty principle for the Fourier transform one has :

If f ∈ L1(Rn) is non-zero and has compact support, then f̂ cannot satisfy a
condition of the type f̂(y) = O(e−ε|y|) for any ε > 0.

This is due to the fact that f̂(y) = O(e−ε|y|) implies that f has an analytic
extension to the strip {z ∈ Cn : |Im(z)| < ε}.

In this regard the Paley-Wiener Theorem [14] gives a characterization of a func-
tion or distribution with compact support in term of the analyticity properties of
its Fourier transform.

Our main result in this work is the following:

Theorem 1. Let u ∈ C([0, 1] : L2(Rn)) be a strong solution of the equation

(1.8) ∂tu = i(∆u+ V (x, t)u), (x, t) ∈ Rn × [0, 1].

Assume that

(1.9) sup
0≤t≤1

∫
Rn
|u(x, t)|2dx ≤ A1,

(1.10)
∫

Rn
e2a1|x1| |u(x, 0)|2 dx = A2 <∞, for some a1 > 0,

(1.11) supp u(·, 1) ⊂ {x ∈ Rn : x1 ≤ a2}, for some a2 <∞,

with

(1.12) V ∈ L∞(Rn × [0, 1]), ‖V ‖L∞(Rn×[0,1]) = M0,

and

(1.13) lim
ρ→+∞

‖V ‖L1([0,1]:L∞(Rn\Bρ)) = 0.

Then u ≡ 0.
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Remarks: (a) Note that in order to prove Theorem 1, by translation in x1, we can
choose who a2 is. We will show that there exists m > 0 (small) with the property
that if (1.9), (1.10), (1.12), (1.13) hold and (1.11) holds with a2 = m, then

u(x, 1) = 0 for x ∈ Rn such that m/2 < x1 ≤ m.
This clearly yields the desired result. Without loss of generality we will assume
m < 1.

(b) By rescaling it is clear that the result in Theorem 1 applies to any time
interval [0, T ].

(c) We recall that in Theorem 1 there are no hypotheses on the size of the
potential V in the given class or on its regularity.

(d) A weaker version of Theorem 1 was announced in [8].

As a direct consequence of Theorem 1 we get the following result regarding the
uniqueness of solutions for non-linear equations of the form (1.2).

Theorem 2. Given

u1, u2 ∈ C([0, T ] : Hk(Rn)), 0 < T ≤ ∞,
strong solutions of (1.2) with k ∈ Z+, k > n/2, F : C2 → C, F ∈ Ck and
F (0) = ∂uF (0) = ∂ūF (0) = 0 such that

(1.14) supp (u1(·, 0)− u2(·, 0)) ⊂ {x ∈ Rn : x1 ≤ a2}, a2 <∞.
If for some t ∈ (0, T ) and for some ε > 0

(1.15) u1(·, t)− u2(·, t) ∈ L2(eε |x1| dx),

then u1 ≡ u2.

Remarks: (a) In particular, by taking u2 ≡ 0, Theorem 2 shows that if u1(·, 0)
has compact support, then for any t ∈ (0, T ) u1(·, t) cannot decay exponentially.

(b) In the case F (u, u) = |u|α−1u, with α > n/2 if α is not an odd integer, we
have that if ϕ is the unique non-negative, radially symmetric solution of

−∆ϕ+ ω ϕ = |ϕ|α−1ϕ, ω > 0,

then

(1.16) u1(x, t) = eiωtϕ(x)

is a solution (“standing wave”) of

(1.17) ∂tu = i(∆u+ |u|α−1u).

It was established in [16], [1] that there exist constants c0, c1 > 0 such that

(1.18) ϕ(x) ≤ c0 e−c1|x|.
Therefore, if we denote by u2(x, t) the solution of the equation (1.17) with α > n/2
and data u2(x, 0) = ϕ(x) + φ(x), φ ∈ Hs(Rn), s > n/2 having compact support it
follows from Theorem 2, (1.16) and (1.18) that for any t 6= 0

(1.19) u2(·, t) /∈ L2(eε|x|dx), for any ε > 0.

In general, the same result (1.19) applies (in the time interval [0, T ]) if one assumes
that u1 is a solution of (1.16) having exponential decay

|u1(x, t)| ≤ c0 e−c1|x|, c0, c1 > 0 (x, t) ∈ Rn × [0, T ],
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and u2 is the solution of (1.16) corresponding to an initial data

u2(x, 0) = u1(x, 0) + φ(x), φ ∈ Hs(Rn), s > n/2 with compact support.

The rest of this paper is organized as follows: section 2 contains all the prelim-
inary results to be used in the proof of Theorem 1. A version of them has been
proved in [7], [6], [8]. However, in some cases modifications are needed to apply
them in the setting considered here. Hence, some of their proofs will be sketched.
Section 3 contains the proof of Theorem 1.

2. Preliminary Estimates

In this section we describe the estimates to be used in the proof of Theorem 1.
First we recall a key step in the uniform exponential decay estimate established

in [13] :

Lemma 1. There exists εn > 0 such that if

(2.1) V : Rn × [0, 1]→ C, with ‖V‖L1
tL
∞
x
≤ εn,

and u ∈ C([0, 1] : L2(Rn)) is a strong solution of the IVP

(2.2)
{
∂tu = i(∆ + V(x, t))u+ G(x, t),
u(x, 0) = u0(x),

with

(2.3) u0, u1 ≡ u( · , 1) ∈ L2(e2λ·xdx), G ∈ L1([0, 1] : L2(e2λ·xdx)),

for some λ ∈ Rn, then there exists cn independent of λ such that

(2.4)

sup
0≤t≤1

‖eλ·xu( · , t)‖L2(Rn)

≤ cn
(
‖eλ·xu0‖L2(Rn) + ‖eλ·xu1‖L2(Rn) +

∫ 1

0

‖eλ·x G(·, t)‖L2(Rn)dt
)
.

Notice that in Lemma 1 one assumes the existence of a reference L2- solution u
of the equation (2.2) and gets a control on the decay of the solution in the whole
time interval in terms of that at the end points and that of the “external force”. In
general, under appropriate assumptions on the potential V (x, t) in (1.1) one writes

V (x, t)u = χρV (x, t)u+ (1− χρ)V (x, t)u = V(x, t)u+ G(x, t),

with χρ ∈ C∞0 , χρ(x) = 1, |x| < ρ, supported in |x| < 2ρ, and obtains the estimate
(2.4) by fixing ρ sufficiently large. Also under appropriate hypotheses on F and u
a similar argument can be used for the semi-linear equation in (1.2).

Next, we recall the conformal or Appell transformation:

Lemma 2. If u(y, s) verifies

(2.5) ∂su = i (4u+ V (y, s)u+ F (y, s)) , (y, s) ∈ Rn × [0, 1],

and α and β are positive, then

(2.6) ũ(x, t) =
( √

αβ
α(1−t)+βt

)n
2
u
( √

αβ x
α(1−t)+βt ,

βt
α(1−t)+βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) ,

verifies

(2.7) ∂tũ = i
(
4ũ+ Ṽ (x, t)ũ+ F̃ (x, t)

)
, (x, t) ∈ Rn × [0, 1],
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with

(2.8) Ṽ (x, t) = αβ
(α(1−t)+βt)2 V

( √
αβ x

α(1−t)+βt ,
βt

α(1−t)+βt

)
,

and

(2.9) F̃ (x, t) =
( √

αβ
α(1−t)+βt

)n
2 +2

F
( √

αβ x
α(1−t)+βt ,

βt
α(1−t)+βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) .

The following result is a modified version of the one in [4] (Lemma 3.1, page
1818). It will provide a needed lower bound of the L2-norm of the solution of
the equation (1.1) and its first order derivatives in the x1-variable in the domain
{x : R− 1 < x1 < R} × [0, 1].

Lemma 3. Assume that R > 0 large enough and that ϕ : [0, 1] → R is a smooth
function. Then, there exists c = c(n; ‖ϕ′‖∞ + ‖ϕ′′‖∞) > 0 such that the inequality

(2.10)
σ3/2

R2

∥∥∥ eσ| x1−x0,1R +ϕ(t)|2g
∥∥∥
L2(dxdt)

≤ c
∥∥∥ eσ| x1−x0,1R +ϕ(t)|2(i∂t + ∆)g

∥∥∥
L2(dxdt)

holds when σ ≥ cR2 and g ∈ C∞0 (Rn+1) is supported on the set

{(x, t) = (x1, .., xn, t) ∈ Rn+1 : |x1 − x0,1

R
+ ϕ(t)| ≥ 1}.

Proof. As it was remarked above this result is a variation of the one given in detail
in [4], hence a sketch will suffice.

By translation, without loss of generality, we can assume x0,1 = 0. Let

f(x, t) = eσ|
x1
R +ϕ(t)|2g(x, t).

Then,

(2.11) eσ|
x1
R +ϕ(t)|2(i∂t + ∆)g = Sσf − 4σAσf,

where

Sσ = i∂t + ∆ + 4σ2

R2 |x1
R + ϕ|2,

Aσ = 1
R

(
x1
R + ϕ

)
∂x1 + 1

2R2 + i ϕ′

2

(
x1
R + ϕ

)
.

Thus,

(2.12) S∗σ = Sσ, A∗σ = −Aσ,
and integrating by parts (possible since g ∈ C∞0 (Rn+1) ) one sees that

‖eσ|
x1
R +ϕ|2(i∂t + ∆)g‖22 = 〈Sσf − 4σAσf, Sσf − 4σAσf〉

≥ −4σ〈(SσAσ −AσSσ)f, f〉 = −4σ〈[Sσ, Aσ]f, f〉 .
A calculation shows that

[Sσ, Aσ] = 2
R2 ∂

2
x1
− 4σ2

R4 |x1
R + ϕ|2 − 1

2 [(x1
R + ϕ)ϕ′′ + (ϕ′)2] + 2iϕ′

R ∂x1 .

From this it follows that

(2.13)

‖eσ|
x1
R +ϕ|2(i∂t + ∆)g‖22

≥ 16σ3

R4

∫
|x1
R + ϕ|2|f |2dxdt+

8σ
R2

∫
|∂x1f |2dxdt

+ 2σ
∫

[(x1
R + ϕ)ϕ′′ + (ϕ′)2]|f |2dxdt−= (

8σi
R

∫
ϕ′ ∂x1ff̄dxdt) .
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Now, when σ ≥ cR2 one has
σ3

R4
≥ c2σ,

so by taking c large enough, depending on ‖ϕ′‖∞ and ‖ϕ′′‖∞, and using that
|x1
R + ϕ(t)| ≥ 1 on the supp(f) = supp(g), we can hide the third term on the right

hand side (r.h.s.) in the inequality (2.13) in the first term in the r.h.s. Also, since

|8σi
R

∫
|ϕ′| |∂x1f ||f̄ |dxdt|

≤ 8σ
R
‖ϕ′‖∞

∫
|f ||∂x1f | ≤ 4σ‖ϕ′‖2∞

∫
|f |2dxdt+

4σ
R2

∫
|∂x1f |2dxdt,

the contribution of this term in (2.13) can be hidden by the first and second term
in the r.h.s. of (2.13) if c is large. This concludes the proof. �

Note that the same proof works by taking c a bit larger, if we only assume
|x1
R + ϕ(t)| ≥ 1/2 on supp(g).

In the proof of Theorem 1 we shall need the following extension of Lemma 3.

Corollary 1. Assume g ∈ L2(Rn+1) with x1, t on supp(g) bounded,

supp(g) ⊂ {(x, t) = (x1, .., xn, t) ∈ Rn+1 : |x1 − x0,1

R
+ ϕ(t)| ≥ 1}

and (i∂t + ∆)g ∈ L2(Rn+1), then the inequality (2.10) holds.

Proof. We can again assume that x0,1 = 0. We introduce the notation x = (x1, x
′) ∈

R × Rn−1. Let η1 ∈ C∞0 (R), η1 ≥ 0, supp(η1) ⊂ {|x1| < 1} and η2 ∈ C∞0 (Rn−1),
η2 ≥ 0, supp(η2) ⊂ {|x′| < 1} with∫

R
η1(x1)dx1 = 1 and

∫
Rn−1

η2(x′)dx′ = 1.

For δ > 0 small define

hδ(x, t) =
1

δn+2
η1(t/δ2)η1(x1/δ)η2(x′/δn−1) and gδ = hδ ∗ g.

Let θ ∈ C∞0 (Rn−1), θ(x′) = 1, |x′| ≤ 1, and supp(θ) ⊂ {|x′| < 2}. For l large,
define

gδ,l(x, t) = θ(x′/l) gδ(x, t).

Note that for δ > 0 small,

supp(gδ) ⊂ {(x, t) : |x1
R + ϕ(t)|2 ≥ 1/2},

and the same holds for gδ,l. Moreover, gδ,l ∈ C∞0 (Rn+1).
We apply Lemma 3 to gδ,l to obtain:

(2.14)
σ3/2

R2

∥∥∥ eσ| x1R +ϕ(t)|2gδ,l

∥∥∥
L2(dxdt)

≤ c
∥∥∥ eσ| x1R +ϕ(t)|2(i∂t + ∆)gδ,l

∥∥∥
L2(dxdt)

.

Next, we fix δ > 0 small and see that

(2.15)
(i∂t + ∆)gδ,l = θ(x′/l)(i∂t + ∆)gδ

+
2
l
∇′θ(x′/l) · ∇′gδ(x, t) +

1
l2

∆θ(x′/l)gδ(x, t).
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Therefore, by taking l → ∞ the L2(dxdt)-norm of the the last two terms on the
r.h.s. of (2.15) tend to zero. Hence, inserting this in (2.14) we obtain the same
estimate for gδ. Next, we have that

(i∂t + ∆)gδ = (i∂t + ∆)(hδ ∗ g) = hδ ∗ (i∂t + ∆)g.

Using the supremum in δ (non-isotropic maximal function) and its boundedness,
together with the boundedness of the support in (x1, t) of g, so that

eσ|x1/R+ϕ(t)|2 ≤ cσ,R,
by the dominated convergence theorem we can pass to the limit as δ → 0 to obtain
the desired result. �

3. Proof of Theorem 1

We divide our argument into six steps:

Step 1: We claim that

(3.1) sup
0≤t≤1

∫
Rn

e2a1x1 |u(x, t)|2dx ≤ A3.

Proof of Step 1 : Using (1.13) in Theorem 1 we choose ρ so large such that

‖V χ{|x|≥ρ} ‖L1([0,1]:L∞(Rn)) ≤ εn,
with εn as in Lemma 1. From (1.9)-(1.11) we have∫

Rn
e2a1x1 |u(x, 0)|2dx ≤ A2,

and ∫
Rn

e2a1x1 |u(x, 1)|2dx ≤ A1 + e2a1m ≤ A1 + e2a1 .

We apply Lemma 1, with G(x, t) = −χ{|x|≤ρ} V (x, t)u(x, t), using that∫ 1

0

‖ ea1x1χ{|x|≤ρ} V u‖2dt ≤ ea1ρM0A1,

which gives step 1 with A3 = A3(A1;A2; a1;M0; ρ).

Step 2: Define δ > 0 as

(3.2) δ =
εn

M0 + 1
,

with M0 as in (1.12) and εn as in Lemma 1. Note that δ < 1, and

(3.3)
∫ 1

1−δ
‖V (·, t)‖∞dt ≤ εn.

Let

(3.4) v(x, t) = u(δ1/2x, δt+ 1− δ).
We shall show that under the hypothesis of Theorem 1

(3.5)
∫

m
2δ1/2

<x1<
m
δ1/2

|v(x, 1)|2dx =
∫
m
2 <x1<m

|u(x, 1)|2dx = 0

as desired.
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Defining

(3.6) Vδ(x, t) = δ V (δ1/2x, δt+ 1− δ)
we see that v(x, t) satisfies the equation

∂tv = i(∆v + Vδv), (x, t) ∈ Rn × [0, 1].

We notice, using (3.3), that

(3.7) ‖Vδ‖L∞(Rn×[0,1]) ≤M0 δ ≤ εn,
∫ 1

0

‖Vδ(·, t)‖∞dt ≤ εn,

and ∫
Rn
|v(x, t)|2dx =

1
δn/2

∫
Rn
|u(y, δt+ 1− δ)|2dy ≤ A1

δn/2
,

with
supp(v(·, 1)) ⊂ {x1 ≤ m/δ1/2}.

Thus, from (3.1)∫
Rn
e2a1x1δ

1/2
|v(x, 0)|2dx =

∫
Rn
e2a1x1δ

1/2
|u(δ1/2x, 1− δ)|2dx ≤ A3

δn/2
.

We remark that δ was fixed in (3.2) (independent of m), and that we can still choose
m small.

Step 3: Using the Appell (conformal) transformation Lemma 2 we have that if

∂sv = i(∆v + Vδv), (y, s) ∈ Rn × [0, 1],

then for any α, β > 0

(3.8) ṽ(x, t) =
( √

αβ
α(1−t)+βt

)n
2
v
( √

αβ x
α(1−t)+βt ,

βt
α(1−t)+βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) ,

verifies
∂tṽ = i(∆ṽ + Ṽ ṽ), (x, t) ∈ Rn × [0, 1],

with

Ṽ (x, t) =
αβ

(α(1− t) + βt)2
Vδ

( √
αβx

α(1− t) + βt
,

βt

α(1− t) + βt

)
.

For λ > 0 given we will choose α = α(λ, δ), β = β(λ, δ). We recall that

‖ea1x1δ
1/2

v(·, 0)‖22 ≤
A3

δn/2
,

and from the support hypothesis

‖eλx1 v(·, 1)‖22 ≤
e2mλ/δ1/2A1

δn/2
.

We want γ = γ(λ, δ) such that

‖eγx1 ṽ(x, 0)‖2 = ‖eγ(α/β)1/2x1v(x, 0)‖2 = ‖ea1x1δ
1/2
v(·, 0)‖2 ≤

A
1/2
3

δn/4
,

and

‖eγx1 ṽ(x, 1)‖2 = ‖eγ(β/α)1/2x1v(x, 1)‖2 = ‖eλx1v(·, 1)‖2 ≤
eλm/δ

1/2
A

1/2
1

δn/4
.

Thus, we choose

(3.9) γ(α/β)1/2 = δ1/2a1, γ(β/α)1/2 = λ,
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i.e.

(3.10) γ = (λδ1/2a1)1/2, β = λ, α = δ1/2a1.

Next, using the change of variable

t̂ =
β

α(1− t) + βt
, dt̂ =

αβ

(α(1− t) + βt)2
dt,

it follows that∫ 1

0

‖ Ṽ (·, t)‖∞dt

=
∫ 1

0

‖ αβ

(α(1− t) + βt)2
Vδ(

√
αβx

α(1− t) + βt
,

βt

α(1− t) + βt
)‖∞dt

=
∫ 1

0

‖Vδ(·, t̂)‖∞dt̂ ≤ εn,

using (3.7). So we can apply Lemma 1 again, this time with G ≡ 0, to obtain that

(3.11)

sup
0≤t≤1

‖eγx1 ṽ(·, t)‖2 ≤ cn
(A1/2

3

δn/4
+
A

1/2
1

δn/4
eλm/δ

1/2
)

≤ cδ,a1,A1,A3 e
λm/δ1/2

≤ c eλm/δ
1/2
,

if λ > 0 is large and A1 6= 0, (how large λ is for this depends on m,A1, A3 and δ,
but this will not matter). Note that

(3.12) ‖ṽ(·, t)‖22 = ‖v(·, βt

α(1− t) + βt
)‖22 ≤

A1

δn/2
,

hence

(3.13) sup
0≤t≤1

‖ṽ(·, t)‖2 ≤
A

1/2
1

δn/4
.

Now, we denote by φ0(x1) ≥ 0 a C∞ convex function such that

(3.14) φ0(x1) =
{ 0, x1 ≤ 0,
x1 − 1/4, x1 ≥ 1/2,

and define
φ(x1) = (1 + (φ0(x1))2)1/2.

Since γ = (λδ1/2a1)1/2, from (3.11) and for large λ we have

(3.15) sup
0≤t≤1

‖eγφ(x1)ṽ(·, t)‖2 ≤ cδ,a1 e
λm/δ1/2 .

A computation shows that

φ′(x1) =
φ0(x1)φ′0(x1)

(1 + (φ0(x1))2)1/2
,

and

φ
′′
(x1) =

(φ′0(x1))2

(1 + (φ0(x1))2)3/2
+

φ0(x1)φ
′′

0 (x1)
(1 + (φ0(x1))2)3/2

.
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Thus, for x1 ≥ 1/2 one has that

(3.16) φ
′′
(x1) ≥ 1

4
1

(1 + x2
1)3/2

=
1
4

1
〈x1〉3

.

We now follow an argument similar to that in [7] section 2. Let

f(x, t) = eγφ(x1) ṽ(x, t).

Then f verifies

(3.17) ∂tf = Sf + Af + i eγφF, in Rn × [0, 1],

with symmetric and skew-symmetric operators S and A

(3.18)
S =− iγ

(
2∂x1φ∂x1 + ∂2

x1
φ
)
,

A =i
(
4+ γ2|∂x1φ|2

)
.

and

F = Ṽ ṽ.

A calculation shows that,

(3.19) St + [S,A] = −γ
[
4∂x1 φ

′′
∂x1 − 4γ2φ

′′
(φ′)2 + φ(4)

]
.

By Lemma 2 in [7]

(3.20)
∂2
tH ≡ ∂2

t (f, f) =2∂tRe (∂tf − Sf −Af, f) + 2 (Stf + [S,A] f, f)

+ ‖∂tf −Af + Sf‖2 − ‖∂tf −Af − Sf‖2,

so

(3.21)
∂2
tH ≥ 2∂tRe (∂tf − Sf −Af, f)

+ 2 (Stf + [S,A] f, f)− ‖∂tf −Af − Sf‖2.

Multiplying (3.21) by t(1− t) and integrating in t we obtain

(3.22)
2
∫ 1

0

t(1− t) (Stf + [S,A] f, f) dt

≤ cn sup
[0,1]

‖eγ φ ṽ(t)‖22 + cn sup
[0,1]

‖eγ φF (t)||2.

This computation can be justified by parabolic regularization using the fact that
we already know the decay estimate for ṽ, see [5]. Note that for λ sufficiently large

(3.23) ‖Ṽ ‖∞ ≤
(β
α

)
‖Vδ‖∞ ≤

λ

δ1/2a1
δM0 =

λδ1/2M0

a1
.
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Hence, combining (3.11), (3.19), and (3.23) it follows that

(3.24)

8 γ
∫ 1

0

∫
t(1− t)φ

′′
(x1) |∂x1f |2dxdt

+ 8 γ3

∫ 1

0

∫
t(1− t)φ

′′
(x1) (φ′(x1))2 |f |2dxdt

≤ cn γ sup
[0,1]

‖f(·, t)‖22 + cδ,M0,a1,n λ sup
[0,1]

‖f(·, t)‖22 + cn sup
[0,1]

‖f(·, t)‖22

≤ cδ,M0,a1,n λ e
2λm/δ1/2 .

We recall that
∂x1f = eγφ(x1) ∂x1 ṽ + γ eγφ(x1) φ′(x1) ṽ,

thus
γ|∂x1f |2 = γe2γφ(x1)|∂x1 ṽ + γφ′(x1)ṽ|2

= e2γφ(x1)(γ|∂x1 ṽ|2 + 2γ2φ′(x1)ṽ ∂x1 ṽ + γ3(φ′(x1))2|ṽ|2),
with

|2γ2φ′(x1)ṽ ∂x1 ṽ| ≤
1
2
γ|∂x1 ṽ|2 + 2γ3(φ′(x1))2|ṽ|2.

Inserting these estimates in (3.24) for λ large one gets

4γ
∫ 1

0

∫
t(1− t)φ

′′
(x1) e2γφ(x1) |∂x1 ṽ|2dxdt ≤ cδ,M0,a1,n λ e

2λm/δ1/2 .

Hence, for x1 > 1/2 from (3.16) one has that

γ

∫ 1

0

∫
t(1− t) 1

〈x1〉3
e2γφ(x1) |∂x1 ṽ|2dxdt ≤ cδ,M0,a1,n λ e

2λm/δ1/2 ,

for λ large. Collecting the above information, (3.11), and (3.24) we conclude that

(3.25)
sup

0≤t≤1
‖eγφ(x1)ṽ(·, t)‖22 + γ

∫ 1

0

∫
x1>

1
2

t(1− t) 1
〈x1〉3

e2γφ(x1) |∂x1 ṽ|2dxdt

≤ cδ,M0,a1,n λ e
2λm/δ1/2 .

Step 4 : We will give lower bounds for

Φ =
∫

2≤x1≤R/2

∫ 5/8

3/8

|ṽ(x, t)|2dtdx,

for R large to be chosen.
First, we recall that

Φ =
∫

2≤x1≤R/2

∫ 5/8

3/8

∣∣∣ ( √
αβ

α(1−t)+βt

)n
2
v
( √

αβ x
α(1−t)+βt ,

βt
α(1−t)+βt

) ∣∣∣2dxdt.
Next, for t ∈ [3/8, 5/8] we see that

s(t) =
β t

α(1− t) + βt
,
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satisfies that

dt =
(α(1− t) + βt)2

αβ
ds ∼=

β2

αβ
ds =

β

α
ds,

(where A ∼= B means : ∃C ∈ (0, 1) s.t. CA ≤ B ≤ C−1A) with

s(3/8) =
3β

5α+ 3β
∈ (1/2, 1),

and

s(5/8) =
5β

3α+ 5β
∈ (1/2, 1).

Therefore

s(5/8)− s(3/8) =
2αβ

(5α+ 3β)(3α+ 5β)
∼=
α

β
,

for large λ, and
s(5/8) > s(3/8) ↑ 1 as λ ↑ ∞.

In the x-variable we have

y =
√
αβ

α(1− t) + β
x,

so for t ∈ [3/8, 5/8] and 2 < x1 < R/2 one basically has that

y1 ∈ [2
√

α
β ,

R
2

√
α
β ] ≡ A.

Thus,

(3.26) Φ ≥ cn
β

α

∫
A

∫
Iλ

|v(y, s)|2dsdy,

with
Iλ = [s(3/8), s(5/8)], |Iλ| ∼=

α

β
for λ >> 1,

and
s(3/8)→ 1 as λ ↑ ∞.

We choose

(3.27) R =
2Mλ1/2m

(δ1/2a1)1/2cn
,

with

(3.28)
2
cn
M ≥ 1

δ1/2
,

to be fixed latter. Since

2
√
α

β
= 2

δ1/4a
1/2
1

λ1/2
→ 0 as λ ↑ ∞,

and
R

2

√
α

β
=

2Mm

cn
≥ m

cnδ1/2
.

Hence, from (3.26) we can conclude

(3.29) lim inf
λ↑∞

Φ ≥ cn
∫

0<y1<
m
δ1/2

|v(y, 1)|2dy.
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Step 5 : Upper bounds for

Ξ(R) ≡
∫

1
2<x1<R

∫ 31/32

1/32

(|ṽ(x, t)|2 + |∂x1 ṽ(x, t)|2)dtdx.

For the square of the L2-norm of ṽ we have the bound A1/δ
n/2, see (3.12). For

the square of the L2-norm of ∂x1 ṽ using the conclusion of Step 3 (3.25) we get the
upper bound

cδ,M0,a1,n (1 +R3)λ e2λm/δ1/2 .

Step 6 : Carleman estimate [2] and conclusion of the proof.

We assume that for m > 0 to be chosen

(3.30) b ≡
∫

m
2δ1/2

<y1<
m
δ1/2

|v(y, 1)|2dy > 0.

We recall that
supp(v(·, 1)) ⊂ {y1 < m/δ1/2}.

From step 4 we have that for λ sufficiently large

(3.31)
∫

2≤x1≤R/2

∫ 5/8

3/8

|ṽ(x, t)|2dtdx ≥ b

2
.

Next, we shall use Corollary 1. Let

x0,1 = R/2,

and ϕ : [0, 1]→ R be a smooth function such that 0 ≤ ϕ(t) ≤ 3/2− 1/R,

(3.32) ϕ(t) =
{ 3/2− 1/R, t ∈ [3/8, 5/8],

0, t ∈ [0, 1/4] ∪ [3/4, 1],

with ϕ, ϕ′, ϕ
′′

uniformly bounded in R for R large. We fix

σ = cR2,

with c denoting a universal constant whose value may change from line to line.
Choose θR ∈ C∞(R), with 0 ≤ θ(x1) ≤ 1 and

(3.33) θR(x1) =
{ 1, 1 < x1 < R− 1,

0, x1 < 1/2 or x1 > R.

Let ζ ∈ C∞(R) satisfy 0 ≤ ζ(x1) ≤ 1 and

(3.34) ζ(x1) =
{ 0, x1 < 1,

1, x1 > 1 + 1/(2R).

Define

(3.35) g(x, t) ≡ θR(x1) ζ
(x1 −R/2

R
+ ϕ(t)

)
ṽ(x, t).

Let us see that g(x, t) verifies the hypotheses of Corollary 1 so we can apply the
inequality (2.10). First, it is clear that it is supported on the set

1/2 < x1 < R, 1/32 < t < 31/32,
∣∣∣x1 −R/2

R
+ ϕ(t)

∣∣∣ ≥ 1.

Below we shall see that
(i∂t + ∆)g ∈ L2(dxdt).
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Note that

(3.36) if 3/2 ≤ x1 ≤ R− 1 and 3/8 ≤ t ≤ 5/8, then g(x, t) = ṽ(x, t).

In this domain, θR(x1) ≡ 1, and

x1 −R/2
R

+ ϕ(t) =
x1

R
+ 1− 1

R
≥ 1 +

1
2R

,

which gives (3.36).
Also if x1 > 2 one has x1/R+ 1−1/R ≥ 1 + 1/R, so that we have a lower bound

Γ for the left hand side of (2.10) squared with

(3.37) Γ ≡ σ3

R4
e2σ(1+1/R)2

∫
2<x1<R−1

∫ 5/8

3/8

|ṽ(x, t)|2dtdx ≥ b

2
c3R2 e2σ(1+1/R)2 ,

for R large from (3.31). The equation for g is

(3.38)

(i∂t + ∆)g = θR(x1)ζ
(x1 −R/2

R
+ ϕ(t)

)
Ṽ (x, t) ṽ

+
[
ζ
(x1 −R/2

R
+ ϕ(t)

)
(2θ′R(x1)∂x1 ṽ + ṽ θ

′′

R(x1))
]

+
[
(iζ ′(·)ϕ′(t) + ζ

′′
(·) 1
R2

)θR(x1)ṽ +
2
R
ζ ′(·)θR(x1)∂x1 ṽ

]
≡ E1 + E2 + E3.

Note that (i∂t + ∆)g ∈ L2(dxdt) by Step 5.
On the domain 1/2 < x1 < R, 1/32 < t < 31/32 (which contains the support of

g) one has (see (3.10))

‖Ṽ ‖∞ ≤
α

β
M0 for λ >> 1.

Thus, since
σ3

R4
= c3R2,

for R sufficiently large we can absorb the contribution of the term containing E1 in
the right hand side of (2.10) in the left hand side of (2.10). So we have

b

2
c3R2e2σ(1+1/R)2 ≤ c

∫ ∫
|E2|2 e2σ| x1−R/2R +ϕ(t)|2dxdt

+ c

∫ ∫
|E3|2 e2σ| x1−R/2R +ϕ(t)|2dxdt.

Next, we analyze the contribution of E2. In this case, each term contains a factor
equal to a derivative of θR, so the possible contribution are from the sets :
1/2 < x1 < 1 and R− 1 < x1 < R. If 1/2 < x1 < 1, then

x1 −R/2
R

+ ϕ(t) ≤ 1
R
− 1

2
+

3
2
− 1
R

= 1,

so in this domain

ζ
(x1 −R/2

R
+ ϕ(t)

)
≡ 0.

In the region R− 1 < x1 < R we have

x1 −R/2
R

+ ϕ(t) ≤ 1− 1
2

+
3
2
− 1
R

= 2− 1
R
,
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so the contribution of the term involving E2 is bounded above by∫ 31/32

1/32

∫
R−1<x1<R

(|ṽ|2 + |∂x1 ṽ|2) e2σ(1−1/R)2dxdt

= e2σ(2−1/R)2
∫ 31/32

1/32

∫
R−1<x1<R

(|ṽ|2 + |∂x1 ṽ|2)dxdt

= Ξ(R) e2σ(2−1/R)2 .

Next, we consider the term involving E3. In this case, each term contains a
factor equal to a derivative of ζ so its support is restricted to

1 ≤ x1 −R/2
R

+ ϕ(t) ≤ 1 + 1/2R,

with 1/2 < x1 < R (support of θR) and t ∈ (1/32, 31/32). Hence, its contribution
is bounded by (see (3.12))

cR4

∫ 31/32

1/32

∫
1
2<x1<R

|ṽ(x, t)|2e2σ(1+1/(2R))2dxdt

≤ cR4 e2σ(1+1/(2R))2
∫ 31/32

1/32

∫
1
2<x1<R

|ṽ(x, t)|2dxdt

≤ c e2σ(1+1/(2R))2 A1

δn/2
R4.

Collecting this information and using that R is large we get

(3.39)
b

2
c3R2e2σ(1+1/R)2 ≤ cΞ(R)e2σ(2−1/R)2 + cA1,δe

2σ(1+1/2R)2R4.

Since R is large the second term on the right hand side (3.39) can be hidden on the
left to get that

(3.40)
b

4
c3R2e2σ(1+1/R)2 ≤ cΞ(R)e2σ(2−1/R)2 .

Now, since σ = cR2 one has that

2σ(1 + 1
R )2 − 2σ(2− 1

R )2 = −6cR2 + 12cR ≥ −10cR2,

for R large. Thus, from (3.40) it follows that

(3.41)
b

4
c3R2e−10cR2

≤ cΞ(R).

But using (3.25)

(3.42)

Ξ(R) =
∫
R−1<x1<R

∫ 31/32

1/32

(|ṽ|2 + |∂x1 ṽ|2)(x, t)dtdx

=
∫
R−1<x1<R

∫ 31/32

1/32

e2γφ(x1) e−2γ φ(x1)(|ṽ|2 + |∂x1 ṽ|2)(x, t)dtdx

≤ ce−γRR3λ e2λm/δ1/2 ≤ cR3e−γRe2λm/δ1/2 ,

for λ >> 1 and x1 > R >> 1 one has that
1
2
x1 ≤ φ(x1) ≤ x1.
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Thus, inserting (3.42) into (3.41) it follows that

(3.43) b ≤ c e10cR2−γR+3λm/δ1/2 ,

where

R =
2Mλ1/2m

(δ1/2a1)1/2c
, γ = (λδ1/2a1)1/2, and

2
cn
M ≥ 1/δ1/2.

So we have, changing cn into c,

10cR2 − γR+ 3λm/δ1/2

=
40cM2m2λ

c2δ1/2a1
− (λδ1/2a1)1/2 2Mλ1/2m

(δ1/2a1)1/2c
+ 3

λm

δ1/2

= λ
(40cM2m2

c2δ1/2a1
− 2Mm

c
+

3m
δ1/2

)
.

We need the expression in parenthesis to be negative, i.e.

40cM2m2

c2δ1/2a1
+

3m
δ1/2

<
2Mm

c
.

Divide by Mm , we need
40cMm

c2δ1/2a1
+

3
Mδ1/2

<
2
c
.

First, we choose M so large such that 2M/c ≥ 1/δ1/2 and
3

Mδ1/2
≤ 1
c
.

So now we just need
40cMm

c2δ1/2a1
<

1
c
.

This can be done by taking m > 0 small. Therefore, we have proved that b = 0,
which yields the desired result.
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