
ON THE PROPAGATION OF REGULARITIES IN SOLUTIONS
OF THE BENJAMIN-ONO EQUATION

PEDRO ISAZA, FELIPE LINARES, AND GUSTAVO PONCE

ABSTRACT. We shall deduce some special regularity properties of so-
lutions to the IVP associated to the Benjamin-Ono equation. Mainly, for
datum u0 ∈ H3/2(R) whose restriction belongs to Hm((b,∞)) for some
m ∈ Z+, m≥ 2, and b ∈ R we shall prove that the restriction of the cor-
responding solution u(·, t) belongs to Hm((β ,∞)) for any β ∈R and any
t > 0. Therefore, this type of regularity of the datum travels with infinite
speed to its left as time evolves.

1. INTRODUCTION

This work is mainly concerned with special properties of solutions to the
initial value problem (IVP) associated to the Benjamin-Ono (BO) equation{

∂tu−∂ 2
x Hu+u∂xu = 0, x, t ∈ R,

u(x,0) = u0(x),
(1.1) bo1

where H denotes the Hilbert transform,

H f (x) =
1
π

p.v.
(1

x
∗ f
)
(x)

=
1
π

lim
ε↓0

∫
|y|≥ε

f (x− y)
y

dy = (−isgn(ξ ) f̂ (ξ ))∨(x).
(1.2) hita

The BO equation was first deduced by Benjamin [4] and Ono [31] as a
model for long internal gravity waves in deep stratified fluids. Later, it was
also shown to be a completely integrable system (see [2], [9] and references
therein). Thus, solutions of the IVP (1.1) satisfy infinitely many conserva-
tion laws which provide an a priori estimate for the Hn/2-norm, n ∈ Z+, of
the solution u = u(x, t) for (1.1). Here we shall only consider real valued
solutions of the IVP (1.1).

Following the definition in [18] it is said that the IVP (1.1) is locally well-
posed (LWP) in the function space X if given any datum u0 ∈ X there exists
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T > 0 and a unique solution

u ∈C([−T,T ] : X)∩ ....
of the IVP (1.1) with the map data-solution, u0 7→ u, being continuous. If T
can be taken arbitrarily large, one says that the IVP (1.1) is globally well-
posed (GWP) in X .

The problem of finding the minimal regularity property, measured in the
Sobolev scale

Hs(R) =
(
1−∂

2
x
)−s/2

L2(R), s ∈ R,
required to guarantee that the IVP (1.1) is locally or globally well-posed
in Hs(R) has been extensively studied. Thus, one has the following list
of works [1], [15], [32], [24], [20], [33], [7] and [14] where GWP was
established in H0(R) = L2(R), (for further details and results regarding the
well-posedness of the IVP (1.1) in Hs(R) we refer to [27]). It should be
pointed out that a result found in [30] (see also [25]) implies that none well-
posedness in Hs(R) for any s ∈R for the IVP (1.1) can be established by a
solely contraction principle argument.

Well-posedness of the IVP (1.1) has also been studied in weighted Sobolev
spaces

Zs,r = Hs(R)∩L2(|x|2rdx), s, r ∈ R, (1.3) spaceZ

and

Żs,r = { f ∈ Hs(R)∩L2(|x|2rdx) : f̂ (0) = 0}, s, r ∈ R. (1.4) spaceZdot

Notice that the conservation law for solutions of (1.1)

I1(u0) =
∫

∞

−∞

u(x, t)dx =
∫

∞

−∞

u0(x)dx,

guarantees that the property û0(0) = 0 is preserved by the solution flow.
Motivated by the results in [15], [16] it was established in [11] that the

IVP (1.1) is :
LWP (resp. GWP) in Zs,r for s > 9/8 (resp. s≥ 3/2), s≥ r and r ∈ (0,5/2),
and
GWP in Żs,r with s≥ r and r ∈ [5/2,7/2).
Moreover, it was also shown in [11] that the above results are optimal (for
further details and results concerning the well-posedness of the IVP (1.1) in
weighted Sobolev spaces we refer to [12]).

Although we shall be mainly engaged with the IVP (1.1) our results be-
low will also apply to solutions of the IVP associated to the generalized
Benjamin-Ono (g-BO) equation{

∂tu−∂ 2
x Hu+uk ∂xu = 0, x, t ∈ R, k ∈ Z+,

u(x,0) = u0(x).
(1.5) bok
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In this case well-posedness of the IVP for k ≥ 2 has been considered in
[22], [28], [29], [23] where GWP for the IVP (1.5) with k = 2 was obtained
in Hs(R), s ≥ 1/2 and [34] where LWP of the IVP (1.5) was proven in
the critical Sobolev space Hsk(R) with sk = 1/2− 1/k for k ≥ 4 and with
s > 1/3 for k = 3. Addressing the well-posedness of the IVP (1.5) in the
weighted Sobolev spaces (1.3) and (1.4) one has that the positive results
stated before for the IVP (1.1) also applies. However, the optimality of
these results in the cases where the power k in (1.5) is an even integer has
not been established (for further details see [26] and references therein).

To state our main result we need to describe the space of solutions where
we shall be working on.

Theorem A. ([32]) If u0 ∈ Hs(R) with s ≥ 3/2, then there exists a uniquegwp
solution u = u(x, t) of the IVP (1.1) such that for any T > 0

(i) u ∈C(R : Hs(R))∩L∞(R : Hs(R)),

(ii) ∂xu ∈ L4([−T,T ] : L∞(R)), (Strichartz),

(iii)
T∫
−T

R∫
−R

(|∂xDxu|2 + |∂ 2
x u|2)(x, t)|2dxdt ≤ c0,

(iv)
T∫
−T

R∫
−R

|∂xDr−1/2
x u(x, t)|2dxdt ≤ c1, r ∈ [1,s],

(1.6) bo2

with c0 = c0(R,T,‖u0‖3/2,2) and c1 = c1(R,T,‖u0‖s,2).

Remark 1.1. From our previous comments it is clear that the results in
Theorem A still holds for the IVP (1.5) with k = 2 (see [20]) and locally in
time for k ≥ 3. Indeed, one can lower the requirement s ≥ 3/2 to a value
between [1,3/2], depending on the k considered, such that a well-posedness
including the estimate (1.6) (ii) still holds. However, we will not consider
this question here.

To state our main result we introduce the two parameter family (ε,b)
with ε > 0, b≥ 5ε of functions χε,b ∈C∞(R) such that χ ′

ε,b(x)≥ 0 with

χε,b(x) =

{
0, x≤ ε,

1, x≥ b,
(1.7) 1.1

satisfying (2.2)-(2.8) in section 2.

Th1 Theorem 1.2. Let u0 ∈ H3/2(R) and u = u(x, t) be the corresponding so-
lution of the IVP (1.1) provided by Theorem A. If for some x0 ∈ R and for
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some m ∈ Z+, m≥ 2,
∞∫

x0

(∂ m
x u0)

2(x)dx < ∞, (1.8) bo3

then for any v > 0, T > 0, ε > 0, b≥ 5ε

sup
0≤t≤T

∫
(∂ m

x u(x, t))2
χε,b(x− x0 + vt) dx

+

T∫
0

∫
(D1/2

x (∂ m
x u(x, t)ηε,β (x− x0 + vt)))2 dxdt < c = c(T,ε,b,v),

(1.9) bo4

where χ ′
ε,β = η2

ε,η .
If in addition to (1.8) there exists x0 ∈ R such that any ε > 0, b > 5ε

D1/2
x (∂ m

x u0 χ
ε,b(·− x0)) ∈ L2(R), (1.10) bo5

then

sup
0≤t≤T

∫
(D1/2

x (∂ m
x u(x, t)χ

ε,b(x− x0 + vt)))2 dx

+

T∫
0

∫
(∂ m+1

x u(x, t))2
χ
′
ε,b

χ
ε,b(x− x0 + vt)dxdt < c,

(1.11) bo6

with c = c(T,ε,b,v).

Th2 Theorem 1.3. With the same hypotheses the results in Theorem 1.2 apply
to solutions of the IVP (1.5) globally in time if k = 2, and locally in time if
k ≥ 3.

Remark 1.4.
(a) From our comments above and our proof of Theorem 1.2 it will be

clear that the requirement u0 ∈ H3/2(R) in Theorem 1.2 can be lowered
to u0 ∈ H9/8+(R) by considering the problem in a finite time interval (see
[20]).

(b) It will be clear from our proofs of Theorem 1.2 and Theorem 1.3 that
they still hold for solutions of the “defocussing” gBO equation

∂tu−H∂
2
x u−uk

∂xu = 0, x, t ∈ R, k ∈ Z+.

Therefore, our results apply to u(−x,−t) if u(x, t) is a solution of (1.5). In
other words, Theorem 1.2 and Theorem 1.3 resp. remain valid, backwards
in time, for datum satisfying the hypothesis (1.8) and (1.10) respectively on
the left hand side of the real line.
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(c) It can be deduced from our proof of Theorem 1.2 that the first estimate
in the inequality (1.9) can be made more precise, i.e. for any t ∈ (0,1) and
any j = 1, ..,m ∫

∞

−∞

1
〈x−〉2 j+δ

(∂ j
x u(x, t))2dx≤ c

t
,

with c = c(‖u0‖3/2,2;‖∂
j

x u0‖L2(x0,∞);x0;δ )> 0.

The following are direct outcomes of the above comment, the group prop-
erties, and Theorems 1.2 and 1.3. In order to simplify the exposition we
shall state them only for solutions of the IVP (1.1). First, as a direct conse-
quence of Theorem 1.2 and the time reversible character of the equation in
(1.1) one has :

cor.1 Corollary 1.5. Let u ∈ C(R : H3/2(R)) be a solution of the IVP (1.1) de-
scribed in Theorem A. If there exist m ∈ Z+, m≥ 2, t̂ ∈ R, a ∈ R such that

∂
m
x u(·, t̂) /∈ L2((a,∞)),

then for any t ∈ (−∞, t̂) and any β ∈ R

∂
m
x u(·, t) /∈ L2((β ,∞)).

cor.1a Corollary 1.6. Let u ∈ C(R : H3/2(R)) be a solution of the equation in
(1.1) described in Theorem A. If there exist m ∈ Z+, m≥ 2, t1, t2 ∈ R, with
t1 < t2 and a > 0 such that

∂
m
x u(·, t1) ∈ L2((a,∞)) and ∂

m
x u(·, t2) ∈ L2((−∞,−a)),

then u ∈C(R : Hm(R))

Next, one has that for appropriate class of data singularities of the corre-
sponding solutions travel with infinite speed to the left as time evolves.

cor.2 Corollary 1.7. Let u∈C(R : H3/2(R)) be a solution of the equation in (1.1)
described in Theorem A. If there exist k,m ∈ Z+ with k ≥ m and a, b ∈ R
with b < a such that∫

∞

a
|∂ k

x u0(x)|2dx < ∞ but ∂
m
x u0 /∈ L2((b,∞)), (1.12) A

then for any t ∈ (0,∞), v > 0 and ε > 0∫
∞

a+ε−vt
|∂ k

x u(x, t)|2dx < ∞,

and for any t ∈ (−∞,0) and α ∈ R∫
∞

α

|∂ m
x u(x, t)|2dx = ∞.
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Remark 1.8.
(a) If in Corollary 1.7 in addition to (1.12) one assumes that∫ b

−∞

|∂ k
x u0(x)|2dx < ∞,

then by combining the results in this corollary with the group properties it
follows that∫

β

−∞

|∂ m
x u(x, t)|2 dx = ∞, for any β ∈ R and t > 0.

This shows that the regularity in the left hand side does not propagate for-
ward in time. Also, one has that for all t 6= 0

u(·, t) ∈ Hm
loc(R).

Thus, the m-localized singularity at t = 0 in (a,b) can not reappear in the
future t > 0 or in the past t < 0.

(b) Notice that (1.9) implies: for any ε > 0, v > 0, T > 0

sup
0≤t≤T

∫
∞

x0+ε−vt
(∂ k

x u(x, t))2 dx≤ c = c(ε,v,T ). (1.13) bo7

This tells us that the local regularity of the initial datum u0 described in
(1.8) propagates with infinite speed to its left as time evolves.

(c) In [17] we proved the corresponding result concerning the IVP for the
k-generalized Korteweg-de Vries equation{

∂tu+∂ 3
x u+uk ∂xu = 0, x, t ∈ R, k ∈ Z+,

u(x,0) = u0(x).
(1.14) gkdv

More precisely, the following result was obtained in [17]:

Theorem B. If u0 ∈ H3/4+(R) and for some m ∈ Z+, m≥ 1 and x0 ∈ R

‖∂
m
x u0‖2

L2((x0,∞)) =
∫

∞

x0

|∂ m
x u0(x)|2dx < ∞, (1.15) notes-3

then the solution of the IVP (1.14) satisfies that for any v > 0 and ε > 0

sup
0≤t≤T

∫
∞

x0+ε−vt
(∂ j

x u)2(x, t)dx < c, (1.16) notes-4

for j = 0,1, . . . ,m with c = c(l,v,ε,T ).
Moreover, for any v≥ 0, ε > 0 and R > ε∫ T

0

∫ x0+R−vt

x0+ε−vt
(∂ j+1

x u)2(x, t)dxdt < c, (1.17) notes-5

with c = c(l,v,ε,R,T ).
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However, the proof for the BO equation considered here is quite more
involved. First, it includes a non-local operator, the Hilbert transform (1.2).
Second, in the case of the k-gKdV the local smoothing effect yields a gain of
one derivative which allows to pass to the next step in the inductive process.
However, in the case of the BO equation the gain of the local smoothing is
just 1/2-derivative so the iterative argument has to be carried out in two
steps, one for positive integers m and another one for m+ 1/2. Also the
explicit identity obtained in [18] describing the local smoothing effect in
solutions of the KdV equation is not available for the BO equation. In this
case, to establish the local smoothing one has to rely on several commutator
estimates. The main one is the extension of the Calderón first commutator
estimate for the Hilbert transform [8] given by Bajvsank and Coifman in [3]
(see Theorem 2.1 in section 2).

(d) Without loss of generality from now on we shall assume that in Theo-
rem 1.2 x0 = 0.

(e) We recall that the above result still hold if one replaces x, t > 0 by
x, t < 0.

The rest of this paper is organized as follows: section 2 includes the de-
scription of the two parameter family of cut-off functions to be employed
in the proof of Theorem 1.2. Also section 2 has the statements and some
proofs of the commutator estimates and the interpolation inequalities needed
in the proof of Theorem 1.2. The proof of Theorem 1.2 will be given in sec-
tion 3.

2. PRELIMINARIES

For each ε > 0 and b ≥ 5ε we define a function χ
ε,b ∈ C∞(R) with

χ ′
ε,b
(x)≥ 0, and

χε,b(x) =

{
0, x≤ ε,

1, x≥ b,
(2.1) 2.1

which will be constructed as follows. Let ρ ∈C∞
0 (R), ρ(x)≥ 0, even, with

suppρ ⊆ (−1,1) and
∫

ρ(x)dx = 1. Define

ν
ε,b(x) =



0, x≤ 2ε,

1
b−3ε

x− 2ε

b−3ε
, x ∈ [2ε,b− ε],

1, x≥ b− ε,

(2.2) 2.2

and
χ

ε,b(x) = ρε ∗νε,b(x) (2.3) 2.3
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where ρε(x) = ε−1ρ(x/ε). Thus

supp χ
ε,b ⊆ [ε,∞),

supp χ
′
ε,b
(x)⊆ [ε,b].

(2.4) 2.4

If x ∈ (3ε,b−2ε), then

χ
′
ε,b
(x)≥ 1

b−3ε
. (2.5) 2.5

If x ∈ (3ε,∞), then

χ
ε,b(x)≥ χ

ε,b(3ε)≥ 1
2

ε

b−3ε
, (2.6) 2.6

and for any x ∈ R

χ
′
ε,b
(x)≤ 1

b−3ε
. (2.7) 2.7

Now we define η
ε,b by the identities

χ
′
ε,b
(x) = η

2
ε,b
, i.e. η

ε,b =
√

χ ′
ε,b
(x). (2.8) 2.8

CLAIM : For any ε > 0 and b ≥ 5ε ηε,b ∈ C∞
0 (R) with supp ηε,b =

supp χ ′
ε,b.

It suffices to show that if f ∈C∞
0 (R) with supp f = [0,1] and f (x) > 0,

x ∈ (0,1) then
√

f is smooth at x = 0 and x = 1. Without loss of generality
we only consider the case x = 0.

By hypothesis on f for every n ∈ Z+ there exist Mn ≥ 0 and δn > 0 such
that

| f (x)| ≤Mn |x|n, |x| ≤ δn. (2.9) ast1

Thus
d
dx

(√
f
)
(0) = lim

h→0

√
f (h)−0

h
= 0

by (2.9). Also

d2

dx2

(√
f
)
(0) = lim

h→0

√
f (h)−2

√
f (0)+

√
f (−h)

h
= 0

by (2.9). Following this argument of writing the derivatives of
√

f using
finite differences, from (2.9) one obtains the desired result, i.e.

dn

dxn

(√
f
)
(0) = 0 for any n,

so
√

f is smooth.
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We shall also use that given ε > 0, b≥ 5ε there exists c = cε,b > 0 such
that

χ
ε/5,ε (x) = 1, on supp χ

ε,b,

χ
′
ε,b
(x)≤ c χ

′
ε/3,b+2ε/3

(x)χ
ε/3,b+2ε/3(x),

χ
′
ε,b
(x)≤ c χ

ε/5,ε (x).

(2.10) CL

The following extension of the Calderón commutator theorem [8] estab-
lished by Bajvsank and Coifman in [3] will be a crucial ingredient in our
proof of Theorem 1.2.

Cal Theorem 2.1. Let H be the Hilbert transform. For any p ∈ (1,∞) and any
l,m ∈ Z+, l +m≥ 1 there exists c = c(p; l;m)> 0 such that

‖∂ l
x[H;ψ]∂ m

x f‖p ≤ c‖∂ m+l
x ψ‖∞‖ f‖p. (2.11) CE

For a different proof of this estimate see Lemma 3.1 in [10]. Also we
shall use the following commutator estimate:

Proposition 2.2.

‖[D1/2
x ;h]∂x f‖2 ≤ c‖∂̂xh‖1‖D

1/2
x f‖2. (2.12) CE2

Proof. Taking Fourier transform it follows that

̂[D1/2;h]∂x f (ξ ) = c
∫
(|ξ |1/2−|η |1/2)η ĥ(ξ −η) f̂ (η)dη . (2.13) 11

Using the mean value theorem it is easy to see that there exists c > 0 such
that for any ξ , η ∈ R

| |ξ |1/2−|η |1/2| |η | ≤ c |η |1/2 |ξ −η |. (2.14) 12

Therefore, inserting (2.14) into (2.13) and using Plancherel identity and
Young’s inequality we obtain the desired result (2.12).

�

Next, we collect some inequalities concerning the Leibniz rule for frac-
tional derivatives established in [19], [21], [13] to obtain :

Lemma 2.3. For α ∈ (0,1), p ∈ [1,∞)

‖Dα
x ( f g)‖p ≤ c

(
‖ f‖p1‖D

α
x g‖p2 +‖D

α
x f‖p3‖g‖p4

)
(2.15) FD

with
1
p
=

1
p1

+
1
p2

=
1
p3

+
1
p4

, p j ∈ (1,∞], j = 1,2,3,4.

Finally, we state some interpolation inequalities to be used in the proof
of Theorem 1.2.
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Lemma 2.4.

‖ f‖4 ≤ c‖D1/4
x f‖2 ≤ c‖D1/2

x f‖1/2
2 ‖ f‖1/2

2 ,

‖D1/2
x f‖4 ≤ c‖∂x f‖1/2

4 ‖ f‖1/2
4 ,

‖D1/2
x f‖4 ≤ c‖D3/4

x f‖2 ≤ c‖∂x f‖3/4
2 ‖ f‖1/4

2 .

(2.16) INT

For the proof of 2.16 we refer to [5].

3. PROOF OF THEOREM 1.2

We shall use induction in m ∈ Z+ with m≥ 2. First we consider the case
m = 2.

Case m = 2 in (1.8) : Taking second derivative in the equation (1.1) mul-
tiplying the result by ∂ 2

x u(x, t)χ
ε,b(x+ vt) and integrating in the x-variable

one gets the identity (omitting the indices ε,b on χ)

1
2

d
dt

∫
(∂ 2

x u)2
χ dx− v

∫
(∂ 2

x u)2
χ
′ dx︸ ︷︷ ︸

A1

−
∫

H∂
4
x u∂

2
x u χ dx︸ ︷︷ ︸

A2

+
∫

∂
2
x (u∂xu)∂

2
x u χ dx︸ ︷︷ ︸

A3

= 0.
(3.1) bo8

Since given T > 0, ε > 0, b > 5ε , v > 0, there exist c > 0 and R > 0 such
that

χ
′
ε,b
(x+ vt)≤ c1[−R,R](x) for all (x, t) ∈ R× [0,T ], (3.2) bo9

using (1.6) (iii) one has after integration in the time interval [0,T ] that

T∫
0

|A1(t)|dt

≤ c |v|
T∫
−T

R∫
−R

(∂ 2
x u)2(x, t)dxdt ≤ c = c(v,R,T,ε,b,‖u0‖3/2,2).

(3.3) bo10

To control the contribution of A2 in (3.1) we write after integration by
parts that

A2(t) =
∫

H∂
3
x u∂

3
x u χ dx+

∫
H∂

3
x u∂

2
x u χ

′ dx = A21(t)+A22(t). (3.4) bo11
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Now since the Hilbert transform is skew symmetric

A21 =−
∫

∂
3
x uH(∂ 3

x u χ)dx

=−
∫

∂
3
x uH∂

3
x u χ dx−

∫
∂

3
x u [H; χ]∂ 3

x udx

=−A21−
∫

∂
3
x u [H; χ]∂ 3

x udx.

(3.5) bo12

Therefore

A21 =−
1
2

∫
∂

3
x u [H; χ]∂ 3

x udx =
1
2

∫
u∂

3
x [H; χ]∂ 3

x udx. (3.6) bo13

Consequently using the commutator estimate (2.11) it follows that

sup
0≤t≤T

|A21(t)| ≤ c‖u(t)‖2
2 = c‖u0‖2

2. (3.7) bo14

Next using that η2 = χ ′ we rewrite A22 in (3.4) as

A22 =
∫

H∂
3
x uη ∂

2
x uη dx

=
∫

H(∂ 3
x uη)∂

2
x uη dx−

∫
[H;η ]∂ 3

x u∂
2
x uη dx

=
∫

H∂x(∂
2
x uη)∂

2
x uη dx−

∫
H(∂ 2

x uη
′)∂

2
x uη dx

−
∫
[H;η ]∂ 3

x u∂
2
x uη dx

=
∫

D1/2
x (∂ 2

x uη)D1/2
x (∂ 2

x uη)dx−
∫

H(∂ 2
x uη

′)∂
2
x uη dx

−
∫
[H;η ]∂ 3

x u∂
2
x uη dx = A221 +A222 +A223.

(3.8) bo15

To estimate A222 in (3.8) we write
T∫

0

|A222(t)|dt ≤
T∫

0

‖∂ 2
x uη

′‖2‖∂ 2
x uη‖2 dt

≤
T∫

0

∫
(∂ 2

x uη
′)2 dxdt +

T∫
0

∫
(∂ 2

x uη)2 dxdt

≤ c = c(v,R,T,ε,b,‖u0‖3/2,2),

(3.9) bo16

by (1.6) (iii).
Now, after integration by parts we have that

A223(t) =
∫

∂x[H;η ]∂ 3
x u∂xuηdx+

∫
[H;η ]∂ 3

x u∂xuη
′dx. (3.10) bo17a
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Using the commutator estimate (2.11), (1.6) (iii) and (3.2), after integrat-
ing in the time interval [0,T ] one finds that

T∫
0

|A223(t)|dt ≤ c
T∫

0

‖u(t)‖2(‖∂xuη‖2 +‖∂xuη
′‖2)dt

≤ cT sup
0≤t≤T

‖u(t)‖2
2 + c

T∫
0

∫
(|∂xuη |2 + |∂xuη

′|2)dxdt

≤ cT‖u0‖2
2 + c(v,R,T,ε,b,‖u0‖3/2,2).

(3.11) bo17

Next, we observe that A221(t) in (3.8) is positive and represents the smooth-
ing effect.

Finally we consider A3 in (3.1). One has that

A3(t) =
∫

u∂
3
x u∂

2
x u χ dx+3

∫
∂xu∂

2
x u∂

2
x u χ dx

=−1
2

∫
u∂

2
x u∂

2
x u χ

′ dx+
5
2

∫
∂xu∂

2
x u∂

2
x u χ dx

= A31(t)+A32(t).

(3.12) bo18

We have

|A31(t)| ≤ c‖u(t)‖∞

∫
(∂ 2

x u)2
χ
′ dx, (3.13) bo19

so after integration in the time interval [0,T ] a combination of the Sobolev
embedding, (1.6) (i) and (1.6) (iii) yields

T∫
0

|A31(t)|dt ≤ sup
0≤t≤T

‖u(t)‖1,2

T∫
0

∫
(∂ 2

x u)2
χ
′ dxdt

≤ c(v,R,T,ε,b,‖u0‖3/2,2).

(3.14) bo20

Also one gets that

|A32(t)| ≤ ‖∂xu(t)‖∞

∫
(∂ 2

x u)2(x, t)χ
ε,b(x+ vt)dx. (3.15) bo21

Inserting the above information in (3.1), using Gronwall’s inequality and
(1.6) (ii) we obtain (1.9) with m = 2 which is the desired result.

Case m = 2 in (1.10) : Assuming that (1.9) holds for m = 2 and that (1.10)
holds for any ε > 0 and b≥ 5ε with x0 = 0 and m = 2 we shall prove (1.11).
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From the previous step, m = 2, we know that the solution satisfies that
for any ε > 0, b > 5ε , v > 0 and T > 0

sup
0≤t≤T

∫
(∂ 2

x u(x, t))2
χ

ε,b(x+ vt)dx

+

T∫
0

∫
(D1/2

x (∂ 2
x u(x, t)η

ε,b(x+ vt))2 dxdt ≤ c = c(T,ε,b,v).
(3.16) bo22

where χ ′
ε,b
(x) = η2

ε,b
(x).

From the equation (1.1) one gets that

∂t(∂
2
x u χ

ε,b)− v∂
2
x u χ

′
ε,b
−∂

2
x H∂

2
x u χ

ε,b +∂
2
x (u∂xu)χ

ε,b = 0. (3.17) bo23

Therefore applying D1/2
x to (3.17), multiplying the result by D1/2

x (∂ 2
x u χ

ε,b)
and integrating in the space variable it leads to the identity (omitting the in-
dices ε and b on χ)

1
2

d
dt

∫
(D1/2

x (∂ 2
x u χ))2 dx− v

∫
D1/2

x (∂ 2
x u χ

′)D1/2
x (∂ 2

x u χ)dx︸ ︷︷ ︸
A1

−
∫

D1/2
x (H∂

4
x u χ)D1/2

x (∂ 2
x u χ)dx︸ ︷︷ ︸

A2

+
∫

D1/2
x (∂ 2

x (u∂xu)χ)D1/2
x (∂ 2

x u χ)dx︸ ︷︷ ︸
A3

= 0.

(3.18) bo24

First we have

|A1(t)| ≤ |v|
∫
(D1/2

x (∂ 2
x u χ

′))2 dx+ |v|
∫
(D1/2

x (∂ 2
x u χ))2 dx

= A11(t)+A12(t).
(3.19) bo25

Using the previous step (3.16), (2.15), (2.16) and Young’s inequality (and
recalling the notation η2 = χ ′) we obtain

A11(t) = |v|‖D
1/2
x (∂ 2

x uη
2)‖2

2

≤ |v|‖D1/2
x (∂ 2

x uη)‖2
2‖η‖2

∞ + |v|‖∂ 2
x uη‖2

4‖D
1/2
x η‖2

4

≤ c |v|‖D1/2
x (∂ 2

x uη)‖2
2 + c |v|‖D1/2

x (∂ 2
x uη)‖2‖∂ 2

x uη‖2

≤ c |v|‖D1/2
x (∂ 2

x uη)‖2
2 + c |v|‖∂ 2

x uη‖2
2.

(3.20) bo26

So after integration in time interval the first term on the right hand side of
(3.20) is bounded. To estimate the second term on the right hand side of
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(3.20) we use that

η
2
ε,b

= χ
′
ε,b
≤ c χ

ε/5,ε .

Thus we have

sup
0≤t≤T

‖∂ 2
x uη‖2

2 ≤ sup
0≤t≤T

‖∂ 2
x u χ

ε/5,ε‖
2
2 ≤ c

by (3.16) with (ε,b) = (ε/5,ε).
We observe that A12(t) is a multiple of the quantity we are estimating in

(3.18).
Next we consider A2(t) in (3.18).

A2(t) =−
∫

Dx(H∂
4
x u χ)∂

2
x u χ dx

=−
∫

DxH(∂
4
x u χ)∂

2
x u χ,dx+

∫
Dx[H; χ]∂ 4

x u∂
2
x u χ dx

= A21(t)+A22(t).

(3.21) bo27

From the commutator estimate (2.11) and the previous step (3.16) it fol-
lows that

|A22(t)|=
∣∣∫ H∂x[H; χ]∂ 4

x u∂
2
x u χ dx

∣∣
≤ c‖χ(5)‖∞‖u(t)‖2 ‖∂ 2

x u(·, t)χ(·+ vt)‖2

≤ c‖u0‖2,

(3.22) bo28

with c = c(T,ε,b,v) and t ∈ [0,T ].
We turn our attention to A21(t) in (3.21).

A21(t) =
∫

∂x(∂
4
x u χ)∂

2
x u χ dx

=−
∫

∂
4
x u χ ∂

3
x u χ dx−

∫
∂

4
x u χ ∂

2
x u χ

′ dx

= 2
∫
(∂ 3

x u)2
χ χ
′ dx− 1

2

∫
(∂ 2

x u)2 (χ χ
′)′′ dx

= A211(t)+A212(t).

(3.23) bo29

From the previous step (3.16) with (ε,b) = (ε/10,ε/2) one has that
A212(t) is bounded and

A211(t)≥ 0 (3.24) 31

which will provide the smoothing effect after being integrated in time.
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So it remains to estimate A3 = A3(t) in (3.18),

A3(t) =
∫

D1/2
x (u∂

3
x u χ)D1/2

x (∂ 2
x u χ)dx

+3
∫

D1/2
x (∂xu∂

2
x u χ)D1/2

x (∂ 2
x u χ)dx

= A31(t)+A32(t).

(3.25) bo32

Thus using (2.10) and (2.15) we have

|A32(t)| ≤ c‖D1/2
x (∂xuχε/5,ε∂

2
x uχ)‖2‖D

1/2
x (∂ 2

x uχ)‖2

≤ c‖∂xu‖∞‖D1/2
x (∂ 2

x uχ)‖2
2

+ c‖D1/2
x (∂xuχε/5,ε)‖4‖∂ 2

x uχ‖4‖D
1/2
x (∂ 2

x uχ)‖2

= A321(t)+A322(t).

(3.26) bo33

The term A321(t) will be handled by Gronwall’s inequality and (1.6) (ii).
Now using (2.16) and Young’s inequality one gets

A322(t)≤ c‖∂x(∂xu χ
ε/5,ε )‖

3/4
2 ‖∂xu χ

ε/5,ε‖
1/4
2

×‖D1/2
x (∂ 2

x uχ)‖1/2
2 ‖∂

2
x uχ‖1/2

2 ‖D
1/2
x (∂ 2

x uχ)‖2

≤ c‖∂x(∂xu χ
ε/5,ε )‖

3
2‖∂xuχε/5,ε‖2‖∂ 2

x uχ‖2
2

+ c‖D1/2(∂ 2
x uχ)‖2

2,

(3.27) bo34

where the first term on the right hand side of (3.27) is bounded in time,
by our previous step (3.16), while the second term is the quantity to be
estimated.

Now we consider A31(t) in (3.25). Thus, by (2.10)

A31(t) =
∫

D1/2
x (u∂

3
x uχ)D1/2

x (∂ 2
x uχ)dx

= c
∫

uχ
ε/5,ε D1/2

x (∂x(∂
2
x uχ))D1/2

x (∂ 2
x uχ)dx

+ c
∫
[D1/2

x ;uχ
ε/5,ε ]∂x(∂

2
x uχ)D1/2

x (∂ 2
x uχ)dx

− c
∫

D1/2
x (u∂

2
x uχ

′)D1/2
x (∂ 2

x uχ)dx

= A311(t)+A312(t)+A313(t).

(3.28) bo35

Integration by parts yields

|A311(t)|=
∣∣− 1

2

∫
∂x(uχ

ε/5,ε )(D
1/2
x (∂ 2

x uχ))2 dx
∣∣

≤ c(‖∂xu‖∞ +‖u‖∞)
∫
(D1/2

x (∂ 2
x u χ))2 dx.

(3.29) bo36
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After applying the Sobolev inequality this term will be handled by the Gron-
wall’s inequality and (1.6) (ii).

From the commutator estimate (2.12) and the Sobolev inequality one gets

|A312(t)| ≤ ‖ ̂∂x(u χ
ε/5,ε )‖1‖D

1/2
x (∂ 2

x u χ)‖2
2

≤ ‖∂x(u χ
ε/5,ε )‖1,2‖D

1/2
x (∂ 2

x u χ)‖2
2

≤
(
‖∂x(u χ

ε/5,ε )‖2 +‖∂ 2
x u χ

ε/5,ε‖2

+‖∂xu χ
′
ε/5,ε
‖2 +‖u χ

′′
ε/5,ε
‖2
)
‖D1/2

x (∂ 2
x u χ)‖2

2

= B(t)‖D1/2
x (∂ 2

x u χ)‖2
2.

(3.30) bo39

Since by (1.6) (i) and (3.16) B(t) is bounded in the time interval [0,T ] and
‖D1/2

x (∂ 2
x u χ)‖2

2 is the quantity we are estimating, Gronwall’s inequality
provides the bound for |A312(t)|.

Finally, we consider A313(t) in (3.28). Using (2.10) and (2.12) yields

|A313(t)| ≤ c‖D1/2
x (u χ

ε/5,ε ∂
2
x u χ

′)‖2‖D
1/2
x (∂ 2

x u χ)‖2

≤ c‖u‖∞‖D1/2
x (∂ 2

x u χ
′)‖2‖D

1/2
x (∂ 2

x u χ)‖2

+‖D1/2
x (u χ

ε/5,ε )‖4‖∂ 2
x u χ

′‖4‖D
1/2
x (∂ 2

x u χ)‖2

= A3131(t)+A3132(t).

(3.31) 39b

From an argument similar to the one applied in (3.27) and (2.10) it fol-
lows that

A3132(t)≤ c‖∂x(u χ
ε/5,ε )‖

3/4
2 ‖u χ

ε/5,ε‖
1/4
2

×‖D1/2
x (∂ 2

x u χ
′)‖1/2

2 ‖∂
2
x u χ

′‖1/2
2 ‖D

1/2
x (∂ 2

x u χ)‖2

≤ c‖∂x(u χ
ε/5,ε )‖

3
2‖u χ

ε/5,ε‖2‖∂ 2
x u χ

ε/5,ε‖
2
2

+‖D1/2
x (∂ 2

x u χ
′)‖2

2 +‖D
1/2
x (∂ 2

x u χ)‖2
2.

(3.32) 39c

The first term in the last inequality is bounded in time by (3.16) with
(ε,b) = (ε/5,ε). The last term is the quantity we want to estimate. It will
be handled using Gronwall’s inequality. The second term can be estimated
employing (2.15), (2.16) and Young’s inequality, that is,

‖D1/2
x (∂ 2

x u χ
′)‖2

2 = ‖D
1/2
x (∂ 2

x uη η)‖2
2

≤ c‖η‖2
∞‖D

1/2
x (∂ 2

x uη)‖2
2 + c‖D1/2

x η‖2
4‖∂ 2

x uη‖2
4

≤ c‖D1/2
x (∂ 2

x uη)‖2
2 + c‖∂ 2

x uη‖2‖D
1/2
x (∂ 2

x uη)‖2

≤ c‖D1/2
x (∂ 2

x uη)‖2
2 + c‖∂ 2

x uη‖2
2.

(3.33) bo38
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From (3.16) with (ε/5,ε) instead of (ε,b) the last term is bounded in time
t ∈ [0,T ] and the previous one is bounded after integrating in time (see
(3.16)).

Next we deal with the term A3131(t). Young’s inequality gives

A3131(t)≤ c‖u‖2
∞‖D

1/2
x (∂ 2

x u χ)‖2
2 +‖D

1/2
x (∂ 2

x u χ
′)‖2

2. (3.34) bo39d

The first term on the right hand side of (3.34) can be handled using Gron-
wall’s inequality and (1.6) (i). The last term can be estimated using the
argument in (3.33).

Collecting these results we obtain the desired estimate (1.11) with m = 2.

Following the induction argument we shall assume that (1.9) holds for
m≤ j ∈ Z+, j ≥ 2, and prove that if (1.8) with x0 = 0 and m = j+1 holds,
then:

(a) (1.10) and (1.11) hold with x0 = 0 and m = j,
and
(b) (1.9) holds with x0 = 0 for m = j+1.

Part (a) : From the hypothesis (1.8) with m = j+1 and since u0 ∈H3/2(R)
one gets (1.10) with m = j by interpolation.

Next, a familiar argument provides the identity

1
2

d
dt

∫
(D1/2

x (∂ j
x u χ))2 dx− v

∫
D1/2

x (∂ j
x u χ

′)D1/2
x (∂ j

x u χ)dx︸ ︷︷ ︸
A1

−
∫

D1/2
x (H∂

2+ j
x u χ)D1/2

x (∂ j
x u χ)dx︸ ︷︷ ︸

A2

+
∫

D1/2
x (∂ j

x (u∂xu)χ)D1/2
x (∂ j

x u χ)dx︸ ︷︷ ︸
A3

= 0.

(3.35) bo41

First we observe that

|A1(t)| ≤ |v|
(∫

(D1/2
x (∂ j

x u χ))2 dx+
∫
(D1/2

x (∂ j
x u χ

′))2 dx
)

= A11(t)+A12(t),
(3.36) bo42
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where A11(t) is multiple of the quantity we are estimating in (3.35) and from
(2.15)–(2.16) we deduce

A12(t) = |v|‖D
1/2
x (∂ j

x uη η)‖2
2

≤ |v|
(
‖η‖2

∞‖D
1/2
x (∂ j

x uη)‖2
2 +‖D

1/2
x η‖2

4‖∂ j
x uη‖2

4

)
≤ c‖D1/2

x (∂ j
x uη)‖2

2 + c‖D1/2
x (∂ j

x uη)‖2‖∂ j
x uη‖2

≤ c‖D1/2
x (∂ j

x uη)‖2
2 + c‖∂ j

x uη‖2
2.

(3.37) bo43

By (1.9) with m = j (induction hypothesis) the second term on the right
hand side of (3.37) is bounded, while the first term is bounded after integra-
tion in time.

Next we turn our attention to A2(t) in (3.35)

A2(t) =−
∫

Dx(H∂
j+2

x u χ)∂
j

x u χ dx

=−
∫

DxH(∂
j+2

x u χ)∂ j
x u χ dx+

∫
Dx[H; χ]∂ j+2

x u∂
j

x u χ dx

= A21(t)+A22(t).

(3.38) bo48

From (2.11) and the conservation of the L2-norm

|A22(t)| ≤ |
∫

H∂x[H; χ]∂ j+2
x u∂

j
x u χ dx|

≤ c‖χ( j+3)‖∞‖u(t)‖2‖∂ j
x u χ‖2

≤ c‖u0‖2
2 + c

∫
(∂ j

x u)2
χ

ε,b(x+ vt)dx≤ c

(3.39) bo49

where we used that 0≤ χ ≤ 1 and the induction hypothesis (1.9) with m= j.
Now

A21(t) =
∫

∂x(∂
j+2

x u χ)∂
j

x uχ dx

=−
∫

∂
j+2

x u χ ∂
j+1

x u χ−
∫

∂
j+2

x u χ∂
j

x u χ
′ dx

= 2
∫
(∂ j+1

x u)2
χ χ
′ dx+

∫
∂

j+1
x u∂

j
x u(χ χ

′)′ dx

= 2
∫
(∂ j+1

x u)2
χ χ
′ dx− 1

2

∫
(∂ j

x u)2 (χ χ
′)′′ dx

= A211(t)+A212(t).

(3.40) bo50

From the previous step (hypothesis of induction) m = j with (ε/4,ε)
instead of (ε,b) one has that A212(t) is bounded and

A211(t)≥ 0, (3.41) bo52
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which yields the smoothing effect after being integrated in time. So it re-
mains only to consider A3 in (3.35).

A3(t) =
∫

D1/2
x (u∂

j+1
x u χ

ε,b)D1/2
x (∂ j

x u χ
ε,b)dx

+( j+1)
∫

D1/2
x (∂xu∂

j
x u χ

ε,b)D
1/2
x (∂ j

x u χ
ε,b)dx

+
j−1

∑
l=2

cl

∫
D1/2

x (∂ l
x u∂

j+1−l
x u χ

ε,b)D
1/2
x (∂ j

x u χ
ε,b)dx

= A31(t)+A32(t)+
j−1

∑
l=2

A3(l+1)(t).

(3.42) bo53

The estimates for A31 and A32 are similar to those described in (3.25)–
(3.30) in the case j = 2. So we restrict ourselves to consider {A3l} j−1

l=2 .

We consider first the case j = 3 where the sum in (3.42) reduces to the
term A33(t).

|A33(t)|= c |
∫

D1/2
x (∂ 2

x u∂
2
x u χ

ε,b)D
1/2
x (∂ 3

x u χ
ε,b)dx|

≤ c‖D1/2
x (∂ 2

x u χ
ε/5,ε ∂

2
x u χ

ε,b)‖
2
2 +‖D

1/2
x (∂ 3

x u χ
ε,b)‖

2
2.

(3.43) bo54

The last term above is the quantity to be estimated so we just need to con-
centrate in the first term on the right hand side of (3.43). Thus by (2.15) and
(2.16) we deduce that

‖D1/2
x (∂ 2

x uχ
ε/5,ε ∂

2
x uχ

ε,b)‖
2
2

≤ c‖D1/2
x (∂ 2

x uχ
ε/5,ε )‖4‖∂ 2

x uχ
ε,b‖4

+ c‖∂ 2
x uχ

ε/5,ε‖4‖D
1/2
x (∂ 2

x uχ
ε,b)‖4

≤ c‖∂x(∂
2
x uχ

ε/5,ε )‖
3/4
2 ‖∂

2
x u χ

ε/5,ε‖
1/4
2

×‖D1/2
x (∂ 2

x uχ
ε,b)‖

1/2
2 ‖∂

2
x uχ

ε,b‖
1/2
2

+ c‖D1/2
x (∂ 2

x uχ
ε/5,ε )‖

1/2
2 ‖∂

2
x uχ

ε/5,ε‖
1/2
2

×‖∂x(∂
2
x uχ

ε,b)‖
3/4
2 ‖∂

2
x uχ

ε,b‖
1/4
2

≡ A331,

(3.44) bo55

where all the terms in A331(t) involve at most derivatives of order three
which are bounded in t ∈ [0,T ] by hypothesis of induction (and the fact that
0≤ χ ≤ 1).
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It is clear from the argument given in (3.43)–(3.44) for the case j = 3 that
the general case j ≥ 4 follows by using the same method which combines
the inequalities (2.15), (2.16), Sobolev embedding theorem and induction
hypothesis.

Inserting all the estimates above in (3.35) one gets that (1.11) holds for
m = j.

This completes the proof of the first step, part (a), of our inductive argu-
ment.

Now we consider the next step in our induction argument:

Part (b) : We assume that (1.8) holds with m = j+1, our induction hypoth-
esis, i.e., for k = 2, ..., j

sup
0≤t≤T

∫
(∂ k

x u)2
χ

ε,b(x+ vt)dx

+

T∫
0

∫
(D1/2

x (∂ k
x uη

ε,b))
2 dxdt < c,

(3.45) bo55b

and recall that in part (a) of our argument we have proven (1.11) with m= j.
A familiar argument yields the identity

1
2

d
dt

∫
(∂ j+1

x u)2
χ

ε,b(x+ vt)dx− v
∫
(∂ j+1

x u)2
χ
′
ε,b
(x+ vt)dx︸ ︷︷ ︸

A1

−
∫

H∂
j+1

x ∂
2
x u∂

j+1
x u χ

ε,b(x+ vt)dx︸ ︷︷ ︸
A2

+
∫

∂
j+1

x (u∂xu)∂
j+1

x u χ
ε,b(x+ vt)dxdx︸ ︷︷ ︸

A3

= 0.

(3.46) bo55c

From our previous step, part (a), (1.11) holds with m = j. Therefore we
have that for ε ′ > 0 and b > 5ε ′

T∫
0

∫
(∂ j+1

x u)2
χ
′
ε ′,b

χ
ε ′,b(x+ vt)dxdt < c. (3.47) 56

Using (2.10) after integrating in the time interval [0,T ] we have that

T∫
0

|A1(t)|dt ≤ c = c(ε,b,v,T ). (3.48) bo57
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Next we consider A2(t) in (3.46). We have

A2 =
∫

H∂
j+2

x u∂
j+2

x u χ dx+
∫

H∂
j+2

x u∂
j+1

x uχ
′ dx

= A21 +A22,
(3.49) bo58

where

A21 =−
∫

∂
j+2

x uH(∂ j+2
x u χ)dx

=−
∫

∂
j+2

x uH∂
j+2

x u χ dx−
∫

∂
j+2

x u [H; χ]∂ j+2
x u

=−A21 +(−1) j+3
∫

u∂
j+2

x [H; χ]∂ j+2
x udx.

(3.50) bo59

Thus

A21(t) =
1
2
(−1) j+3

∫
u∂

j+2
x [H; χ]∂ j+2

x udx. (3.51) bo60

So by the commutator estimate (2.11) and the conservation law

|A21(t)| ≤ c‖χ2 j+4‖∞‖u(t)‖2
2 ≤ c j ‖u0‖2

2. (3.52) bo61

To estimate A22, recalling that η2 = χ ′, we write

A22 =
∫

H∂
j+2

x u∂
j+1

x uη
2(x+ vt)dx

=
∫

H(∂ j+2
x uη)∂

j+1
x uη dx−

∫
[H;η ]∂ j+2

x u∂
j+1

x uη dx

= A221 +A222.

(3.53) bo62

Now

A221 =
∫

H∂x(∂
j+1

x uη)∂
j+1

x uη dx−
∫

H(∂ j+1
x uη

′)∂ j+1
x uη dx

=
∫

D1/2
x (∂ j+1

x uη)D1/2
x (∂ j+1

x uη)

−
∫

H(∂ j+1
x uη

′)∂ j+1
x uη dx.

(3.54) bo63

Notice that the first term on the right hand side of (3.54) is positive (and
will provide the smoothing effect) and the second one can be bounded by

‖∂ j+1
x uη

′‖2
2 +‖∂ j+1

x uη‖2
2 (3.55) bo64

which after integration in time is bounded using part (a) in our argument,
i.e. (1.11) with m = j, and the claim following (2.8) together with (2.5) and
the estimates (2.10).

Similarly, A222 can be estimated with the aid of (2.11).
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So it remains only to consider A3. Now

A3 =
∫

u∂
j+2

x u∂
j+1

x u χ dx+( j+2)
∫

∂xu(∂ j+1
x u)2

χ dx

+
j

∑
k=2

ck

∫
∂

k
x u∂

j+2−k
x (∂ j+1

x u)χ dx ( j ≥ 2)

= A30 +A31 +
j

∑
k=2

A3k.

(3.56) bo65

Thus

A30 =−
1
2

∫
∂xu∂

j+1
x u∂

j+1
x u χ dx−

∫
u∂

j+1
x u∂

j+1
x u χ

′ dx

= A301 +A302

(3.57) bo66

with

|A301(t)| ≤ ‖∂xu(t)‖∞

∫
(∂ j+1

x u)2
χ dx (3.58) bo67

where the last term is the quantity to be estimated which will be handled in
Gronwall’s inequality using (1.6) (ii) and

|A302(t)| ≤ ‖u(t)‖∞

∫
(∂ j+1

x u)2
χ
′ dx (3.59) bo68

which after integration in time is bounded using part (a) of our argument,
i.e. (1.11) with m = j and (2.10).

The estimate for A31(t) is similar to that one described in (3.58) for
A301(t).

Next, we consider the case j = 2 where in (3.56) the term A32 appears,
i.e.

|A32(t)| ≤ |c2

∫
∂

2
x u∂

2
x u(∂ 3

x u)χ dx|

= |− c2

3

∫
∂

2
x u∂

2
x u∂

2
x u χ

′ dx|

= |− c2

3

∫
∂

2
x uη(∂ 2

x u)2
η dx|

≤ c‖∂ 2
x uη‖∞

∫
(∂ 2

x u)2
η dx.

(3.60) bo69

Since for the case j = 2 we have that∫
(∂ 2

x u)2
η

ε,b(x+ vt)dx≤
∫
(∂ 2

x u)2
χ

ε/5,ε (x+ vt)dx (3.61) bo70
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which is bounded in the time interval [0,T ]. Now

‖∂ 2
x uη‖∞ ≤ c‖∂x(∂

2
x uη)‖1/2

2 ‖∂
2
x uη‖1/2

2

≤ c
(
‖∂ 3

x uη‖1/2
2 +‖∂ 2

x uη
′‖1/2

2
)
‖∂ 2

x uη‖1/2
2 .

(3.62) bo71

From the previous step we have that

sup
0≤t≤T

(
‖∂ 2

x uη‖2 +‖∂ 2
x uη

′‖2
)
≤ c.

So
‖∂ 2

x uη‖∞ ≤ c+‖∂ 3
x uη

′‖2
2 (3.63) bo72

which is bounded after integrating in time from the part (a), (1.11) with
m = j (in this case j = 3), in our argument.

If j ≥ 2 the new terms in (3.56) can be handled in a similar manner
combining Sobolev theorem, the induction hypothesis and Gronwall’s in-
equality. This completes the induction argument.

To justify the above formal computations we shall follow the following
standard argument.

Consider data uτ
0 = ρτ ∗ u0 with ρ ∈ C∞

0 (R), suppρ ∈ (−1,1), ρ ≥ 0,∫
ρ(x)dx = 1 and

ρτ(x) =
1
τ

ρ
( x

τ

)
, τ > 0.

For τ > 0 consider the solutions uτ of the IVP (1.1) with data uτ
0 where

(uτ)τ>0 ⊆C([0,T ] : H∞(R)).
Using the continuous dependence of the solution upon the data we have

that
sup

t∈[0,T ]
‖uτ(t)−u(t)‖3/2,2 ↓ 0 as τ ↓ 0. (3.64) 123

Applying our argument to the smooth solutions uτ(·, t) one gets that

sup
[0,T ]

∫
(∂ m

x uτ)2
χε,b(x+ vt)dx≤ c0 (3.65) 124

for any ε > 0, b ≥ 5ε , v > 0, c0 = c0(ε;b;v)> 0 but independent of τ > 0
since for 0 < τ < ε

(∂xuτ
0)

2
χε,b(x) = (∂x(ρτ ∗u0))

2
χε,b(x) = (ρτ ∗∂xu01[0,∞))

2
χε,b(x).

Combining (3.64) and (3.65) and a weak compactness argument one gets
that

sup
[0,T ]

∫
(∂xu)2

χε,b(x+ vt)dx≤ c0 (3.66) 125

which is the desired result. A similar argument provides the estimate for
the second term in the left hand side of (1.9).
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This completes the proof of Theorem 1.2.
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