Math 5B - Midterm - 8/23

Name: _____

Perm: _____

- Read all directions carefully.
- Show all your work. Problems without work shown will receive no credit.
- No calculators.
- When you finish, staple your notecard to the back of your test.
- Good luck!

Problem 1 (12 points total))

(a) (6 pts) Compute the gradient of $f(x, y) = 4x^2 - 2xy + y^2$ at the point $\mathbf{p} = (2, 1)$.

The gradient of f is

 $\nabla f(x,y) = (8x - 2y, -2x + 2y),$

so $\nabla f(2,1) = (8 \cdot 2 - 2 \cdot 1, -2 \cdot 2 + 2 \cdot 1) = (14, -2).$

(b) (4 pts) Compute the directional derivative of f at $\mathbf{p} = (2, 1)$ in the direction $\mathbf{v} = (-1, 1)$.

Since \mathbf{v} is not a unit vector, we use

$$\mathbf{u} = \mathbf{v} / \|\mathbf{v}\| = (-1/\sqrt{2}, 1/\sqrt{2}).$$

Then the directional derivative of f at \mathbf{p} in the direction \mathbf{u} is

$$D_{\mathbf{u}}f(2,1) = (14,-2) \cdot (-1/\sqrt{2}, 1/\sqrt{2}) = -\frac{16}{\sqrt{2}}$$

(c) (2 pts) Describe in words in what direction the gradient of a function "points".

The gradient of a function always points "uphill," or in the direction of greatest increase.

Problem 2 (16 points total) Alfred the ant is walking on a table along the curve parametrized by the path $\mathbf{c}(t) = (e^t \cos(t), e^t \sin(t))$, where t is measured in seconds and each component of \mathbf{c} is measured in centimeters.

(a) (6 pts) In what direction was Alfred traveling at $t = \frac{\pi}{2}$, and how fast was he going?

The direction Alfred was traveling is given by the velocity:

$$\mathbf{c}'(t) = e^t(\cos(t) - \sin(t), \sin(t) + \cos(t))$$

so he was traveling in the direction $\mathbf{c}'(\frac{\pi}{2}) = (-e^{\pi/2}, e^{\pi/2})$. The speed of Alfred is given by the norm of the derivative:

$$\|\mathbf{c}'(t)\| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2} = \sqrt{2}e^t,$$

so his speed was $\|\mathbf{c}'(\frac{\pi}{2})\| = \sqrt{2}e^{\pi/2}$.

(b) (5 pts) How far did Alfred travel along his path in the first 2 seconds (i.e. from t = 0 to t = 2)?

The arclength of Alfred's path is

$$\int_0^2 \|\mathbf{c}'(t)\| dt = \int_0^2 \sqrt{2}e^t dt = \sqrt{2}(e^2 - 1).$$

(c) (5 pts) Compute the curvature of Alfred's path at t = 1.

The unit tangent vector is given by

$$\mathbf{T}(t) = \frac{\mathbf{c}'(t)}{\|\mathbf{c}'(t)\|} = \frac{1}{\sqrt{2}}(\cos t - \sin t, \sin t + \cos t).$$

In order to calculate the curvature, we need the norm of the *derivative* of **T**:

$$\|\mathbf{T}'(t)\| = \|\frac{1}{\sqrt{2}}(-\sin t - \cos t, \cos t - \sin t)\| = 1.$$

Then the curvature of Alfred's path is $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{c}'(t)\|} = \frac{1}{\sqrt{2}e^t}$, so at t = 1, his curvature was $\kappa(1) = \frac{1}{\sqrt{2}e}$.

Problem 3 (16 points total)

(a) (5 pts) Compute the Laplacian Δu for $u(x,y) = e^x \sin(y)$. Is u harmonic?

$$\Delta u(x,y) = u_{xx} + u_{yy} = e^x \sin y - e^x \sin y = 0.$$

Since $\Delta u = 0$, u is harmonic.

(b) (5 pts) Compute the first order Taylor polynomial of u centered at the point $\mathbf{x}_0 = (\ln(2), \frac{\pi}{2}).$

$$T_1(x,y) = u(\ln 2, \pi/2) + \nabla u(\ln 2, \pi/2) \cdot (x - \ln 2, y - \pi/2)$$

= $e^{\ln 2} \sin(\pi/2) + (e^{\ln 2} \sin(\pi/2), e^{\ln 2} \cos(\pi/2)) \cdot (x - \ln 2, y - \pi/2)$
= $2 + 2(x - \ln 2).$

(c) (6 pts) Compute the second order Taylor polynomial of u centered at the point $\mathbf{x}_0 = (\ln(2), \frac{\pi}{2}).$

$$T_{2}(x,y) = T_{1}(x,y) + \frac{1}{2} \left[Hu(\ln 2, \pi/2)(x - \ln 2, y - \pi/2) \right] \cdot (x - \ln 2, y - \pi/2) = T_{1}(x,y) + \frac{1}{2} \left[\begin{bmatrix} e^{\ln 2} \sin(\pi/2) & e^{\ln 2} \cos(\pi/2) \\ e^{\ln 2} \cos(\pi/2) & -e^{\ln 2} \sin(\pi/2) \end{bmatrix} (x - \ln 2, y - \pi/2) \right] \cdot (x - \ln 2, y - \pi/2) = T_{1}(x,y) + \frac{1}{2} \left[\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} (x - \ln 2, y - \pi/2) \right] \cdot (x - \ln 2, y - \pi/2) = T_{1}(x,y) + (x - \ln 2, -y + \pi/2) \cdot (x - \ln 2, y - \pi/2) = T_{1}(x,y) + (x - \ln 2)^{2} - (y - \pi/2)^{2} = 2 + 2(x - \ln 2) + (x - \ln 2)^{2} - (y - \pi/2)^{2}.$$

Problem 4 (8 points total) Suppose that you are building a cylindrical silo with a hemispherical top. Denote the height of the cylindrical portion of the silo by h, and the radius of the silo by r (measured in meters). The bottom of the silo must also be covered.

Hint: The volume of a sphere is $\frac{4}{3}\pi r^3$, and the surface area of a sphere is $4\pi r^2$.

(a) (2 pts) Express the volume V(r, h) and surface area S(r, h) in terms of r and h.

The volume and surface area of the silo are given by

$$V(r,h) = \frac{2}{3}\pi r^3 + \pi r^2 h, \qquad S(r,h) = 3\pi r^2 + 2\pi r h.$$

(b) (6 pts) You only have enough funds for $S = 125\pi$ m² of material. Find r and h that maximizes the volume of the silo, i.e. maximize V subject to the constraint $S = 125\pi$.

Using the method of Lagrange multipliers, we find

$$\nabla V(r,h) = (2\pi r^2 + 2\pi r h, \pi r^2), \qquad \nabla S(r,h) = (6\pi r + 2\pi h, 2\pi r),$$

and set $\nabla V = \lambda \nabla S$. Then

$$2\pi r^2 + 2\pi rh = \lambda(6\pi r + 2\pi h), \qquad \pi r^2 = 2\pi\lambda r.$$

Solving for λ in the second equation gives $\lambda = \frac{r}{2}$ (we discount the possibility r = 0). Substituting into the first equation gives

$$2\pi r^2 + 2\pi rh = \frac{r}{2}(6\pi r + 2\pi h) \implies 2r^2 + 2rh = 3r^2 + rh \implies r = h.$$

Substituting r = h into the constraint equation $S = 125\pi$ gives

$$3\pi r^2 + 2\pi r \cdot r = 125\pi \quad \Rightarrow \quad 5r^2 = 125 \quad \Rightarrow \quad r = 5$$

So, the volume is maximized when r = 5, h = 5.

Problem 5 (8 points total) Consider the following partial differential equation:

$$u_x u_y = 0,$$

and the following change of variables:

$$v = x + y,$$
 $w = x - y.$

(a) (4 pts) Write u_x and u_y in terms of u_v and u_w .

 $u_x = \frac{\partial u}{\partial x} = u_v v_x + u_w w_x = u_v + u_w$ $u_y = \frac{\partial u}{\partial y} = u_v v_y + u_w w_y = u_v - u_w$

(b) $(4 \ pts)$ Substitute your answers from part (a) into the original partial differential equation to verify that

$$(u_v)^2 = (u_w)^2.$$

$$u_x u_y = 0 \Rightarrow (u_v + u_w)(u_v - u_w) = 0$$

$$\Rightarrow u_v^2 - u_w^2 = 0$$

$$\Rightarrow u_v^2 = u_w^2.$$