Math 5B - Midterm - 8/23

Name: \qquad Perm: \qquad

- Read all directions carefully.
- Show all your work. Problems without work shown will receive no credit.
- No calculators.
- When you finish, staple your notecard to the back of your test.
- Good luck!

Problem 1 (12 points total))
(a) (6 pts) Compute the gradient of $f(x, y)=4 x^{2}-2 x y+y^{2}$ at the point $\mathbf{p}=(2,1)$.

The gradient of f is

$$
\nabla f(x, y)=(8 x-2 y,-2 x+2 y)
$$

so $\nabla f(2,1)=(8 \cdot 2-2 \cdot 1,-2 \cdot 2+2 \cdot 1)=(14,-2)$.
(b) (4 pts) Compute the directional derivative of f at $\mathbf{p}=(2,1)$ in the direction $\mathbf{v}=(-1,1)$.

Since \mathbf{v} is not a unit vector, we use

$$
\mathbf{u}=\mathbf{v} /\|\mathbf{v}\|=(-1 / \sqrt{2}, 1 / \sqrt{2})
$$

Then the directional derivative of f at \mathbf{p} in the direction \mathbf{u} is

$$
D_{\mathbf{u}} f(2,1)=(14,-2) \cdot(-1 / \sqrt{2}, 1 / \sqrt{2})=-\frac{16}{\sqrt{2}}
$$

(c) (2 pts) Describe in words in what direction the gradient of a function "points".

The gradient of a function always points "uphill," or in the direction of greatest increase.

Problem 2 (16 points total) Alfred the ant is walking on a table along the curve parametrized by the path $\mathbf{c}(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$, where t is measured in seconds and each component of \mathbf{c} is measured in centimeters.
(a) (6 pts) In what direction was Alfred traveling at $t=\frac{\pi}{2}$, and how fast was he going?

The direction Alfred was traveling is given by the velocity:

$$
\mathbf{c}^{\prime}(t)=e^{t}(\cos (t)-\sin (t), \sin (t)+\cos (t))
$$

so he was traveling in the direction $\mathbf{c}^{\prime}\left(\frac{\pi}{2}\right)=\left(-e^{\pi / 2}, e^{\pi / 2}\right)$. The speed of Alfred is given by the norm of the derivative:

$$
\left\|\mathbf{c}^{\prime}(t)\right\|=e^{t} \sqrt{(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}}=\sqrt{2} e^{t}
$$

so his speed was $\left\|\mathbf{c}^{\prime}\left(\frac{\pi}{2}\right)\right\|=\sqrt{2} e^{\pi / 2}$.
(b) (5 pts) How far did Alfred travel along his path in the first 2 seconds (i.e. from $t=0$ to $t=2)$?

The arclength of Alfred's path is

$$
\int_{0}^{2}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{0}^{2} \sqrt{2} e^{t} d t=\sqrt{2}\left(e^{2}-1\right)
$$

(c) (5 pts) Compute the curvature of Alfred's path at $t=1$.

The unit tangent vector is given by

$$
\mathbf{T}(t)=\frac{\mathbf{c}^{\prime}(t)}{\left\|\mathbf{c}^{\prime}(t)\right\|}=\frac{1}{\sqrt{2}}(\cos t-\sin t, \sin t+\cos t)
$$

In order to calculate the curvature, we need the norm of the derivative of \mathbf{T} :

$$
\left\|\mathbf{T}^{\prime}(t)\right\|=\left\|\frac{1}{\sqrt{2}}(-\sin t-\cos t, \cos t-\sin t)\right\|=1
$$

Then the curvature of Alfred's path is $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{c}^{\prime}(t)\right\|}=\frac{1}{\sqrt{2} e^{t}}$, so at $t=1$, his curvature was $\kappa(1)=\frac{1}{\sqrt{2 e}}$.

Problem 3 (16 points total)
(a) (5 pts) Compute the Laplacian Δu for $u(x, y)=e^{x} \sin (y)$. Is u harmonic?

$$
\Delta u(x, y)=u_{x x}+u_{y y}=e^{x} \sin y-e^{x} \sin y=0
$$

Since $\Delta u=0, u$ is harmonic.
(b) (5 pts) Compute the first order Taylor polynomial of u centered at the point $\mathrm{x}_{0}=\left(\ln (2), \frac{\pi}{2}\right)$.

$$
\begin{aligned}
T_{1}(x, y) & =u(\ln 2, \pi / 2)+\nabla u(\ln 2, \pi / 2) \cdot(x-\ln 2, y-\pi / 2) \\
& =e^{\ln 2} \sin (\pi / 2)+\left(e^{\ln 2} \sin (\pi / 2), e^{\ln 2} \cos (\pi / 2)\right) \cdot(x-\ln 2, y-\pi / 2) \\
& =2+2(x-\ln 2) .
\end{aligned}
$$

(c) (6 pts) Compute the second order Taylor polynomial of u centered at the point $\mathrm{x}_{0}=\left(\ln (2), \frac{\pi}{2}\right)$.

$$
\begin{aligned}
T_{2}(x, y) & =T_{1}(x, y)+\frac{1}{2}[H u(\ln 2, \pi / 2)(x-\ln 2, y-\pi / 2)] \cdot(x-\ln 2, y-\pi / 2) \\
& =T_{1}(x, y)+\frac{1}{2}\left[\left[\begin{array}{cc}
e^{\ln 2} \sin (\pi / 2) & e^{\ln 2} \cos (\pi / 2) \\
e^{\ln 2} \cos (\pi / 2) & -e^{\ln 2} \sin (\pi / 2)
\end{array}\right](x-\ln 2, y-\pi / 2)\right] \cdot(x-\ln 2, y-\pi / 2) \\
& =T_{1}(x, y)+\frac{1}{2}\left[\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right](x-\ln 2, y-\pi / 2)\right] \cdot(x-\ln 2, y-\pi / 2) \\
& =T_{1}(x, y)+(x-\ln 2,-y+\pi / 2) \cdot(x-\ln 2, y-\pi / 2) \\
& =T_{1}(x, y)+(x-\ln 2)^{2}-(y-\pi / 2)^{2} \\
& =2+2(x-\ln 2)+(x-\ln 2)^{2}-(y-\pi / 2)^{2} .
\end{aligned}
$$

Problem 4 (8 points total) Suppose that you are building a cylindrical silo with a hemispherical top. Denote the height of the cylindrical portion of the silo by h, and the radius of the silo by r (measured in meters). The bottom of the silo must also be covered.

Hint: The volume of a sphere is $\frac{4}{3} \pi r^{3}$, and the surface area of a sphere is $4 \pi r^{2}$.
(a) (2 pts) Express the volume $V(r, h)$ and surface area $S(r, h)$ in terms of r and h.

The volume and surface area of the silo are given by

$$
V(r, h)=\frac{2}{3} \pi r^{3}+\pi r^{2} h, \quad S(r, h)=3 \pi r^{2}+2 \pi r h .
$$

(b) (6 pts) You only have enough funds for $S=125 \pi \mathrm{~m}^{2}$ of material. Find r and h that maximizes the volume of the silo, i.e. maximize V subject to the constraint $S=125 \pi$.

Using the method of Lagrange multipliers, we find

$$
\nabla V(r, h)=\left(2 \pi r^{2}+2 \pi r h, \pi r^{2}\right), \quad \nabla S(r, h)=(6 \pi r+2 \pi h, 2 \pi r)
$$

and set $\nabla V=\lambda \nabla S$. Then

$$
2 \pi r^{2}+2 \pi r h=\lambda(6 \pi r+2 \pi h), \quad \pi r^{2}=2 \pi \lambda r .
$$

Solving for λ in the second equation gives $\lambda=\frac{r}{2}$ (we discount the possibility $r=0$). Substituting into the first equation gives

$$
2 \pi r^{2}+2 \pi r h=\frac{r}{2}(6 \pi r+2 \pi h) \quad \Rightarrow \quad 2 r^{2}+2 r h=3 r^{2}+r h \quad \Rightarrow \quad r=h .
$$

Subsituting $r=h$ into the constraint equation $S=125 \pi$ gives

$$
3 \pi r^{2}+2 \pi r \cdot r=125 \pi \quad \Rightarrow \quad 5 r^{2}=125 \quad \Rightarrow \quad r=5
$$

So, the volume is maximized when $r=5, h=5$.

Problem 5 (8 points total) Consider the following partial differential equation:

$$
u_{x} u_{y}=0,
$$

and the following change of variables:

$$
v=x+y, \quad w=x-y .
$$

(a) (4 pts) Write u_{x} and u_{y} in terms of u_{v} and u_{w}.
$u_{x}=\frac{\partial u}{\partial x}=u_{v} v_{x}+u_{w} w_{x}=u_{v}+u_{w}$
$u_{y}=\frac{\partial u}{\partial y}=u_{v} v_{y}+u_{w} w_{y}=u_{v}-u_{w}$
(b) (4 pts) Substitute your answers from part (a) into the original partial differential equation to verify that

$$
\begin{aligned}
& \left(u_{v}\right)^{2}=\left(u_{w}\right)^{2} \\
u_{x} u_{y}=0 \Rightarrow & \left(u_{v}+u_{w}\right)\left(u_{v}-u_{w}\right)=0 \\
\Rightarrow & u_{v}^{2}-u_{w}^{2}=0 \\
\Rightarrow & u_{v}^{2}=u_{w}^{2} .
\end{aligned}
$$

