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Figure 4.30 Flow lines r = ¢+ of the field H of

0.4 Example 4.49,

and, after integration, ¢ = —% In(—2t + C) + D, where D is another constant. Eliminating ¢, we get
8=-1lnr+D,

thatis, 8 = —Inr + D and Inr = —0 + D. It follows that the flow lines of H are the spirals repre-

sented (in polar coordinates) by r = e~#+2; see Figure 4.30.

» EXERCISES 4.5

1. Find the flow lines of the vector field F(x, ¥) = (x, 2y). Compare with the flow lines of the vector
fields F (x, y) = (3x, 6y) and Fa(x, y) = (—2x, —4y).

2. Show that the curve ¢(t) = (% cost + 2 sint)i+ (—2 sint + 2 cost)j is the flow line of the
vector field F(x, y) = yi/\/szy2 — xj/\/Jﬁy2 going through the point (4/5, —3/5).

3. Find the flow line of the vector field F(x, y)} = 2|v| ~'r (where r = xi + yj) going through the
point (3, 2).

4, Find the flow line of the constant vector field F(x, y} = 3i — 4j that goes through the point (-2, 1).
(Hint: There is no need to solve differential equations.)

5. Find the flow line of the constant vector field F(x, y) = ai + bj (a, b are real numbers, a # 0,
and/or b # 0) that goes through the origin. (Hirz: There is no need to solve differential equations.)
Exercises 6 to 10:  Sketch the vector field F and several of its flow lines.

6. Fix,y)=yi—2xj 7. Flx,y)=(x,x%)

8 Flx,y)=xi+] 9. Fix,y)=(-2x,y)

10. Fix,y)=i+xj

11. Find a vector field for which the curve e(¢) = (2, 2t, £), t € R is a flow line.

12, Show that the curve e(r) = (¢', 21In¢, t™1), t > 0 is a flow line of the vector field F(x, y, z) =
(x,2z, —7%).

13. Assume that ¢(r), t € [a, b], is a flow line of F. Show that y(t) =¢la+b — 1), 1 € [a, b], 15 a
flow line of —F. Interpret this fact geometrically.
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SOLUTION

In Example 2.40 in Section 2.4, it was shown that

GMm_

VVix,y,z)= Wr =—

where F is the gravitational {orce field. Therefore,
AV = div(VV) = —divF.

The fact that divF = 0 (see Example 4.52) completes the proof.

P> EXAMPLE 4.66 Laplace Operator Describes Diffusion

The concentration of a liquid changes (“diffuses”) when some chemical is dissolved in it. The heat of
a solid “diffuses,” “Howing™ from warmer regions toward cooler ones. Such processes of “transport”
{or “transfer”) are described by a flux density vector field F. In the casc of heat transfer, F = —kVT,
where T is the temperature (see Example 2.90). Heat transfer is a special case of Fick’s Law, which
states that the flux vector F is always parallel (and of the opposite direction) to the gradient of the
“species” concentration:

F(x,y,2) = —kV [f(x, ¥, 2);

see Figure 4.42. For example, f(x, ¥, z) could be the concentration of bacteria in air or the concentra-
tion of acid in a water solution. The symbol k (k > 0) denotes a constant, whose name (conductivity,
diffusiviry) depends on the process considered. The minus sign in Ficlk’s Law indicates that the direc-
tion of the flow is always away from regions of higher concentration.

Af=0 o Af<0

Figure 442 The Laplace operator describes a diffusion
vif process.

The divergence of F is
divF(x, y,z) = —kdiv(V f(x, y,2)) = —kAf(x, ¥, 2)-

We have seen (hat the divergence measures the net outflow of the “species” (i.e., “species that go
out”—"species that go in”). At a point where the Laplacian A is negative, the outflow is positive,
and the “species™ must “go away” from that point; that is, the concentration decreases. Similarly, if
Afix,y,z) = 0,thendivF < 0, and therefore, the inflow is larger than the outflow, and the concentra-
tion increases. (Itis assumed, of course, that there are no outside “sources™ or “sinks.”) The equilibrium
for a diffusion process is aftained when the concentration “evens out” or “averages out”—in that case,
the flow “stops” and the Laplacian of f is zero.

» EXERCISES 4.6

Exercises 1 to 6: Let f be a scalar function and let F and G be vector fields in B3, State whether
each expression is a scalar function, a vector field, or meaningless.

1. gradigrad f) 2. curl{grad f)—G
3. curl(F — G) x grad (divF) 4. div(divF)
5. div(eurl (grad [)) 6. grad f? x grad(F - G)
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Exercises 7 to 10:  Find an example of a vector field (write down a formula, or make a sketch) that
satisfies the following requirements.

7. curlF =0and divF =0 8. curlF £ 0and divF =0

9. curlF =0and divF #0 10. curlF £ 0and divF # 0

11.  Sketch a vector field in R* whose divergence is positive at all points.

12. Sketch a vector field in R* whose divergence is zero at all points.

Exercises 13 to 16: Find the curl and divergence of the vector field F.

13. F(x,y.z) = y*zi—xzj+ xyzk 14. F(x,y,z)=(nz+xyk

15, Flx,y,2) =+ +203i+j—k) 16. F(x,y,z) =i+ e%j+ ek

17. Let F(x, y) = (f(x),0), where f{x) is a differentiable function of cne variable. Show that
the total outflow from a rectangle R with sides Ax and Ay placed in the flow (as in Figure 4.31)
is given by O(Ar) = (f(x + Ax) — f(x))ArAy. Conclude that -1 29 ~ f'(x) = divF. Repeat
the calculation with the vector field F(x, y) = (0, g(y)} (g is a differentiable function of one variable)

and show that the total outflow is again approximately equal to divF,

18. 'What are the flow lines of the vector field F(x, y) = (—x, —y)? Determine geometrically the
sign of its divergence.

19.  Itcanbe easily checked that curir = 0, wherer = xi + yj + zk. Interpret this result physically,
by visualizing r as the velocity vector field of a fluid.

20. Consider the vector fields F = —yi+ xj, G = F/\/x? + y2, and H = F/(x* + y%). Compare
their divergences and curls. Show that circles centered at the origin are the flow lines for all three
vector fields. Describe their differences in physical terms.

Exercises 21 to 25: It will be shown in the next chapler that a vector field F defined on all of
R®? (or all of [R?) is conservative if and only if curiF = 0. Determine whether the vector field F is
conservative or not, If it is, find its potential function (i.e., find a real-valued function V such that
F = —gradV).

21. F(x,y,z) =cosyl+ sinxj—+ tanzk

22. Flx,y 2) = —yzi+ (3y%/2 — 2xy2)j — xv°k
23. Fix,y) =3x2yi+ (x* + v

25. Flx,y,z)=—yi—xj—-3k

24, F(x,y,2)=xi+y}j+zk

26. Check whether the vector field F(x, y) = i/(x Inxy) + j/(y Inxy) is conservative for x, y > 0,
and if so, find all functions f such that F = grad f.

27. Verify that curl (grad f) = 0 for the function f(x, y, z) = (x> + y> + 79,

28. Verify that J(curlFy/dx + HeurlF), /3y + HcuriF);/8z =0 for the vector field
Fix,y,2) = 3xy%i + yx2j — * 2k, where (curlF);, (curlF),, and (curl F); are the components
of curlF.

29. Is there a C? vector field F such that curd F = xy%i + yz2j 4+ zxk? Explain.

30. Isthere a C* vector field F such that curl F = 2i 4+ j + 3k? If so, find such a field.

31. A vector field F is irrotational if eurl F = 0. Show that any vector field of the form F(x, y, ) =
FOo)i+ g(v)j + h(z)k, where f, g, and h are differentiable real-valued functions of one variable, is
irrotational.

32, Avector field F is incompressible if div F = 0. Show that any vector field of the form F(x, y, z) =
fly. i+ glx, 20+ hlx, y)k, where f, g, and & are differentiable real-valued functions of two
variables, is incompressible.
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33. (For those familiar with complex numbers.) Show that the real and imaginary parts of the
complex-valued function z = (x — y)? (taken as the i and j components of a vector field whose k
component is equal to 0) define an incompressible and irrotational vector field.

34. TFind constants a, b, and ¢ so that the vector field F = (3x —y +azi+ (bx —2)j + (4x + cy)k
is irrotational. Find the scalar function f so that F = grad f.

35. Show that if the function f is harmonic (Le., Af = 0), then grad f is not only an irrotational
vector field but also an incompressible vector field.

36. Find the most general differentiable function f(||r||) defined on T2 such that the vector field
F(lx|yr is incompressible.

37. Show that the vector field F = (2x + 8xy*2)i + (3x3y — 3xy)j — (4y*z* + 2% 2)k is not in-
compressible but the vector field G = x yz°F is incompressible.

38. Prove that F x G is incompressible if the vector fields F and G are irrotational.

39. If f is a differentiable function of one variable, show that f(||r|])r is an irrotational vector field.
Exercises 40 to 48: Prove the following identities, assuming that the functions and vector fields
involved are differentiable as many times as needed. State those assumptions in each case. The vector
1 is the position vector r = xi + yj + zk.

40. div(fF)= fdivF+F-grad f 41. curl(fF) = f cwrlF + (grad f) % F
42, curlr =10 43, divr=3
44, grad|r| = Hr,ll 45. div(|ir|lr) = 4|r|
r
46. div(FxG)=G-curlF —F- curl G
47. div(grad f x gradg) =10 48. A|r|? = 12[r|

49. EBvaluate the expression div (F x 1) if curl F =0, and r = xi+ yj+zk
50. Evaluate the expression curl (f([jr])r), where f is a differentiable scalar function and r =
xi+ yj+ k.

» 4.7 IMPLICIT FUNCTION THEOREM

In this section, we state a general version of the Implicit Function Theorem. We have seen
the importance of its special case in Section 3.1, where we studied curves defined by the
equation F(x, y) = 0, fora C' function F: R? - R.

We start by giving a straightforward generalization (without proof) of Theorem 3.1
from Section 3.1 to functions of many variables. We will denote points in R (m = 1)

by (x,z), wherex € R™ andz € R.

THEOREM 4.14 Implicit Function Theorem, Special Case

Assume that a fupction F: R+ — Risof class C!, F(xg, zo) =0, and (8F / 32)(Xo, 20) #
0 at a point (xg, zo) in its domain. Then:

(a) Thereexistanopenball U € R™ containing Xo and an open interval V containing
2o such that there is a unique function z = g(x), defined on U/ with values in V,
satisfying

F(x, g(x)) =0

[ie., g(x) solves the equation F(x, z) = 0 locally near (Xg, 2o)]-
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» EXERCISES 5.1

Exercises 1 to 7: State whether it is possible for the map ¢ to be a reparametrization of a path.

1. ¢:[0,11 = [0,In2], ¢(¢) =In{t + 1) 2, ¢:[—1,1]1—= [0, 1], () = £*

3. =8, 1] = [-2,1], ¢(t) = 117 4. ¢:[1,2] = [0,3], p(t) = 1> — 1

5. ¢:00,1] > [Le], ¢(2) = €' 6. ¢:[—1,1] — [—m/4, w/4], $(t) = arctan ¢
7. ¢:[-2,1]1 — [0, 2], ¢p(r) = |£]

8. Lete(t)=(t—2,3—1—1t%,te[0,1]. Is the reparametrization ¢: [0, 3] — [0, 1], given by

¢(t) = 1 — /3, orientation-preserving or orientation-reversing?

9. Using the Mean Value Theorem, show that a differentiable function ¢: [, f] — [a, b] is one-to-
one if ¢'(1) > O forall f € («, B) (or ¢'(¢) < Oforallf € (a, B)).

10. Explain why a continuous and bijective function ¢: [«, 81 — [a, b] must map endpoints to
endpoints. Show that this statement is no longer true if ¢ is not continuous.

Exercises 11 to 16: Check whether the curve ¢(f) is simple or not, closed or not, simple closed or
not.

11. () = (sint, cost, (t — 2m)%), t € [—2, 67]
12, ¢ty = (sint, cost, (1 — 2m)%), t € [—27, 4]

13. e(t) = (tsint, tcost), t € [0, 2] 14. (1) = (sin2t, tcost), t € [0, m/2]
15. e()=(@t—rY e+, te(l,2] 16. e(t) =2 —t,3— 12 —1),t€[0,1]

17. Find a parametrization of the part of the curve y = +/x2 4 1 from (-1, V2to (1, 4/2).Is your
parametrization continuous? Differentiable? Piecewise C'? C'?

18. Find a parametrization of the curve x** + y*? = 1. Is your parametrization continuous? Dif-
ferentiable? Piecewise C!7 C1?

19. Consider the following parametrizations of the straight-line segment from (—1, 1) to (1, 1). State
which parametrizations are continuous, piecewise C' and C.

(@ efn)=@1),-1=<r=1

Sl = {(—:2, H if—-1<r=<0
2, 1) ifo<r<l1

(©) es()=("7 1), —l<r=1 d) ey =(2,1), —-1<r<1
(t, 1 if—1<t<0

(e)csm_{m_;,n f0<t<l

20. Consider the curve ¢ in R? given by c(t) = (¢, %), ¢ € [—1, 2]. State which of the following
maps ¢ are reparametrizations of ¢. Describe the curve ¢(¢(z)) for those ¢ that are reparametrizations:
(@) ¢:[—1,+/3] = [—1,2], ¢(t) = > — 1 (b) ¢:[=1/2,1] — [-1,2], ¢z} =2t

(© ¢:[—1,8] = [-1,2], p(1) = 117 (d) ¢:[-2/3,1/3]1 = [-1,2], (1) = —

21. Lete(s) = (#%,2 — 1), t € [1, 3]. Reparametrize ¢ so that its speed is constant.

22, Lete(t) = (cos2mt,sin2xt,1),0 <t =<1

(a) Reparametrize ¢ so that its speed equals 1.

(b) Reparametrize ¢ so that it takes 3 units of time to trace it.
(¢) Reparametrize ¢ so that it is traced in the opposite direction.
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23. Let ¢ be the circle x* + ¥* = 1, oriented clockwise. Find an orientation-preserving parametriza-
tion of ¢ of constant speed §. Find an orientation-reversing parametrization of ¢ of constant speed 1.

24. Assuming that the units are kilometers and hours, check that the speed of the path ¢(t) =
(5cost, 5sint, 12¢) is 13 ki/h. Reparametrize ¢ so that its speed is 13 mph.

P 5.2 PATH INTEGRALS OF REAL-VALUED FUNCTIONS

To motivate the definition of a path integral, let us first recall the construction of the definite
integral of a function of one variable.

Definite Integral of a Real-Valued Function of One Variable

Assume that y = f(x) is a continuous, positive function defined on an interval [a, b]. The
graph of f, the vertical lines x = @ and x = b, and the x-axis define a region R in the
xy-plane (called the region below f over [a, b]). We would like to find a way to compute
the area of R.

Subdivide the interval [a, b] into r subintervals [a = t1, f2], [f2, 13], - . -, [ty tay1 = B]
and construct rectangles Ry, ..., R, in the following way: the base of R;,i =1,...,n,is
the ith subinterval [#;, ;4] and its height is the value f(z) of f atsome point ¢ in [#, ;41 ];
see Figure 5.11.

The area of R; is f(t7)tiy1 — ) = FU)AL, where At =1 — ;. The rectangles
Ry, ..., R, approximate the region R, and the sum of their areas

i
An=D fENAL
i=1
approximates the area of R. It can be proven that the more rectangles we use, the better

approximation we get; consequently, as n — 00, the sequence A, of approximations of the
area of R will approach the area of R; that is,

area(R) = lim A, = lim >~ f(1)As;.
n—oo A—0Q )
We define the definite integral of f on [a, b] as
b i
f fx)dx = area(R) = lim Y f(:1) Az,
. H—>00 =
provided that the limit exists.

YA

R R

Fa)

fi#)

64t b=t x Figure5.11  Approximating rectangles for the
4 region R.
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Hence,
107
— 1 10z A/ 101 1 T
T = L+ 1t dt = — (1 + L% =14+ =.
1017 ft’) ( 10 ) 10 10]’1.’( + 20 ) + 2

bl

Tt is worth repeating that in order to compute |, o [ ds, it suffices to know the values of
the function at the points on the curve only [that is the f(c()) term in the path integral].
In light of this fact, we notice that Example 5.12 contains more data than needed—the
temperature function was defined at all points in R®.

Further applications of path integrals are discussed in Section 7.5.

A curve in B2 (or R?) can be defined in various ways. For example, it can be described
as the image of a map ¢: [, b] — R? (or R*), or as the graph of a function f: R — R.
Alternatively, we can use geometric terms, such as a “‘straight-line segment from A to B,” or
“circle of radius 4 centered at the origin,” or the “intersection of the paraboloid 7 = x* + 3y*
and the plane —2x — v + 3z = 1, etc.

Let ¢ be a curve described in any of the ways given above, or in some other way. Assume
that it is either a simple curve or a simple closed curve, endowed with an orientation (see
Definitions 5.4, 5.5, and 5.6 at the end of Section 5.1). We would like to define an integral
of a function along c.

In order to compute a path integral, we need a parametrization. But how do we decide
which one to use? The answer is—it does not matter! We define the integral of a real-valued
function f along ¢ as the path integral of f with respect to any smooth parametrization of
¢. Here is why it works: it can be proved that any two one-to-one, C'! maps (i.e., paths that
parametrize a curve as a simple or a simple closed curve) that have the same image (i.e.,
represent the same curve) are reparametrizations of each other. And according to Theorem
5.2, the path integral does not depend on the parametrization used. Example 5.10 serves as
an illustration of this fact.

A consequence of Theorem 5.2 states that when we integrate a scalar function along
a curve, the orientation does not play any role. This sounds reasonable: for example, the
average temperature of the wire should not depend on the way (i.e., on the direction in
which) we measure the temperature at the points of the wire. The analogous statement
does not hold for integrals of vector-valued functions, as we will witness in the next
section.

However, the path integral does depend on the path used, as shown in Example 5.9.
There is an important class of functions whose path integrals depend only on the endpoints,
and not on the curve that joins them. Section 5.4 is devoted to a study of such fune-
tions.

» EXERCISES 5.2

1. Level curves of a linear function f(x, y) are shown in Figure 5.15. Find the path integral of
f(x.y) along

(a) The line segment perpendicular to the level curves, from A to B

(b) The line segment that crosses all level curves at the angle of 7 /4, from C to D.
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Figure 515 Level curves of Exercise 1. Figure 516 Level curves of Exercise 2.

2. The level curves of a function f(x,y) are concentric circles centered at the origin; see
Figure 5.16. Compute the path integral of f(x, y) along

(a) The semicircle x> +y* =4,y >0

(b) Quarter-circle x> +y* =9, x <0, v < 0.

Exercises 3 to 11: Compute | f ds.

3, fr ) =2x—ye)=(+1,¢ —2),0<t <12

4. f(x,y,z)=xy,¢e(t)=(2cost,3sint, 52), 0 <t < m/2

5. fle,y, )=+ +20 Lel)=(tt,1), 1 <t < oo (Hint: Take 1 <t < b and then com-
pute the limit as & approaches cc.)

6. fx,v)=x%4 3, cisthe part of the curve x* + y*? = 1 in the first quadrant

7. fx.v.2)=y—zc)=ti+Intj+2tk, 1 <7 <4

8. f(x,y)=x>43y* — xy, cis the circular arc of radius 3 in the xy-plane, from (0, 3) to (=3, 0
9. f(x,y,2z) = xyz cis the helix given by () = (2sint, 4¢, 2cos¢), 0 <t < 67

10. fix,y,2) = (x +y+2)/(x* + y* + %), ¢ is the straight-line segment joining (1,1, 1) and
(a,a,a), where a £ 1

11.  f(x, y) = "™, ¢ is the line segment in R? from (0, 0) to (3, —4)

12. Compute [, f ds, where f(x, y, z) = x + 2y — z*, and ¢ consists of the parabolic path #i 4 ]
from (0, 0, 0) to (1, 1, 0), followed by the straight line to (1, —1, 1).

13. Comput-:—:fC f ds,where f(x, y,z) = x — 4y + z, and e consists of the straight line from (4, 2, 0)
to (0, 2, 0), followed by the circular path in the yz-plane (and above the xy-plane) with its center at
the origin, from (0, 2, 0) to (0, =2, 0).

14. Let f(x,y,z) = x — 3y* + z and let ¢ be the straight-line segment from the origin to the point
(1,1, 1). The four paths ¢i(f) = (£, £, £, t € [0, 1], () = (1 —t, 1 — 1,1 — 1), t € [0, 1], es(t) =
(e —1,¢t —1,& —1),t €[0,In2],and ¢4(t) = (Inz, Int, In¢t), ! € [1, e], parametrize the given line
segment,

(a) Describe their differences in terms of orientation and speed.

(b) Compute fc,- Ffds,i=1,...,4

» 5.3 PA
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15. Suppose that a continuous function f is integrated along two different paths joining the points
(1, 2)and (3, —3), and two different answers are obtained. Is that possible, or has an error been made

in the evaluation of integrals?
16. Compute the integral of f(x, y) =xy —x —¥ + 1 along the following curves connecting the
points (1, 0) and (0, 1):
(a) e: circular arc ¢;(t) = (cost, sint), 0 <t <m/2
(b) ¢z: straight-line segment at)=01-1,0,0=r1= 1
(¢) e3: from (1, 0) horizontally to the origin, then vertically to (0, 1)
(d) ¢ from (1, O} vertically to (1, 1), then horizontally to (0, 1)
() cs: circular arc ¢s(r) = (cosf, — gint), 0 <t < 3x/2.
17. Compute the area of the part of the cylinder x* + y? = 4 between the xy-plane and the plane
z=y+2.
18. Compute the area of the part of the surface y* = x defined by 0 <x <2,0 =<z < 2.
19. Compute the area of the part of the surface y = sinx, 0 < x < m/2, above the xy-plane and
below the surface z = sinx cosx.
70. Let ¢ be the straight-line segment joining (1, 0, 0y and (D, 2, 0). Use a geometric argument (ie.,
do not evaluate the integral) to find [ (x + 3y)ds.
21. Use a geometric argument to find fc e +° g, where ¢ is the circle centered at the origin of
radius 4.
22. Argue geometrically that f_ sin (x*)ds = 0, whereeisthe graphof y = tan x, —mfd<x <mn/4
23. Ts it possible that the average value of f(x,y) = sinx cosy along some curve ¢ is equal to 57
24. Write down the version of the statement of Theorem 5.2 in the case where ¢ is a piecewise C'
path and prove it.
25. Find the average value of the function [(x,y, z) = —+/x2 + z? along the curve ct) =
(3cost)j + Bsinnk, 0 <1 < 2w,
26. Find the average value f of the function f(x,y,2) = 2t = y* along the unit circle in the
xy-plane. Identify all points on ¢ where the value of f isequal to f.
27. Assume that e(t): [a, b] — R represents a metal wire and that its density at a point (x, y, z) is
given by the function p(x, y, 2). Explain how to use a path integral to compute the mass of the wire.
28. The density at a point (x, y) on a metal wire in the shape of a quarter-circle x* + > =1,
x,y > 0, is given by p(x,y) =3+ 2xy gfem (assume that the units along the coordinate axes are
centimeters). Compute the mass of the wire.
20, Assume thata path ¢ is given in polar coordinatesby r = r(6),0, < € < ;. Show that jc fds=
;12 Flrcosd,rsing) \/r? + (%)2 de.

30. Compute the path integral of the function f(x, y) = x% + y? along the curve r = sin¢, where
0<@g<m.

» 5.3 PATH INTEGRALS OF VECTOR FIELDS

In this section, we are going to introduce one of the most important and useful concepts
in vector calcnlus (and its applications), that of an integral of a vector field along a curve.
It will be defined as the limiting case of a summation, in much the same way as the path
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£

!

(0,0, 1)

A

0,1,

!

X X

/ ©.1,0) v

Figure 5.24 Filament of Figure 5.25 Piecewise C' curve.

Example 5.23.

Let us check, with an example, the physical fact that the magnetic circulation B vanishes along
any closed curve that does not enclose the current filament. Consider the piecewise C ! curve shown

in Figure 5.25.

Parametrize the curve ¢ by e, (£) = (0, 1, 1) +#(0, —1,0) = (0,1 — £, 1), ¢ € [0, 1]. From (5.7),

it follows that [use [ 1/(x* 4 1)dx = arctan x]

ol (0 —1)
B.ds = —’ 0.—1,0)dt
f 2 S (17:) A+l ! )
1 1 ol 1
:ML —dr:ﬂamtan(r—l) =Mn7,u40_
s (=2 +1 2 0 2% 4 8
Parametrize €z by ¢3(t) = (0,0, 1) + (0,1, =1) = (0, ¢, 1 — ¢),t € [0, 1]. Then
I (0, —141¢,1 I -1
[B.ds:_“’“_ OB o7 o B =L
s 2 Sy (1412412 2 Jo 222+ 1
I —1 1 I
='U°Lf l—_——dr:—larctan(hfl) :—EO—E—
21 Jy 5((21—i)2+1) 2m - 2% 2
Parametrize ¢3 by ¢3(r) = (0, 1, 0) + (0,0, 1) = (0. 1, 1), ¢ € [0, 1]. Then
I 0,—t,1
[B-ds o f il G ) 0,0, Lydr
€3
I 1
=Eo—ff l_dr:“—o{arctanr :LIE*“U[.
27 Jo 1412 2 o  2m 4 8

Hence,

B:jB-derfB-ds—i-fB-ds:O.
€1 c3 c3

» EXERCISES 5.3

1. Consider the vector field F and the curves ¢, ¢z, and ¢3 in Figure 5.26.
(a) Explain why f, F.ds <0.

{(b) Assume that ¢; and ¢z have the same speed. Which of the path integrals fcz F -dsor jc3 F.dsis

larger? Why?

pul
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Exercises 5.3

A Y A
4 _____ ‘_
,I‘ | ; t j,ér
2
¢ |
0} X
Figure 526 Diagram for Exercise 1. Figure 5.27 Diagram for Exercise 2.

2. Figure 5.27 shows a constant vector field F.

(a) Compute Jc. F - ds along the closed path ¢;.

(b) Assuming that | F|| = 3/2, compute jcz F.ds

3. Let us compute the work W done by the force F = xi + j along the straight-line segment e(t) =
(t, ), 1 <t < 4, using Riemann sums W, defined in (5.1).

(a) Check that when the interval [1, 4] is divided into » subintervals of equal length, the subdivision
pointsaree(t) = (1 4+ 3G — 1)/n, 1),i=1,....,n+ 1.

(b) Show that W, =3 +9(n — 1)/(2n).

(¢) Conclude that W = 15/2. Check your answer by computing W using a path integral.

4, Using Riemann sums, as in Exercise 3, compute the work done by the force I = xi + j along

the straight-line segment ¢(f) = (¢, 1), 1 < ¢ < 2. Verify your answer by computing the work using a
path integral.

Exercises 5 to 12: Compute [ F - ds.
5. F(x,y) = v — x%j, c is the part of the parabola y = x* from (—1, 1) to (1, 1)

6. F(x,y)=x2yi+ (v — 1)}, ¢ is the triangle with vertices (0, 0), (2, 0), and (1, 1), oriented coun-
terclockwise

7. Fix,y) ="t — j, cis the boundary of the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1),
oriented clockwise

8. F(x.y, z)=(yz%, xyz, 2x’z), ¢ consists of straight-line segments from (—1,2,-2) to
{(—1, =2, —=2), then o (—1, —2, 0) and then to (0, =2, 0)

9. Fix, v, z)= (2 xy, 279, ¢t) = (sint,cosr, %), 0 <t < 7m/2

10. F(x, y) = i + "], ¢ is the triangle with vertices (0, 0), (0, 1), and (1, 0), oriented coun-
terclockwise

11 F(x, y) = 2xyi+e'], e(t) = 4% + 1%, 1 € [0, 1]

12. F(x,y,z) = (xy, vz, x2), ¢ consists of the straight-line segments from the origin to (1,0, 1),
and then to (1, 1, 0)

13. Letebe an oriented C' path. A vector field F of constant magnitude ||F|| = & is tangent to ¢ (at
all points of ¢) and points in the direction of c. Find [, F - ds.

14. LetF be a continuous vector field defined on all of 182, and let ¢4 be a C' path from a point P to
a point @ in R?, Define the piecewise C! path ¢; as follows: ¢, has the same image as ¢;; ¢; starts at
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P and stops at some point @ before it reaches Q; then it moves back and stops at a point P between
P and ©,. Finally, it moves from Py to Q. Explain why fcl Fds= [ Fds.

15. Compute the work done when the force F(x, y) = 131+ (x - y)j acts on a particle thal moves
from (0, 0) to (1, 72/4) along the curve ¢(t) = sin#i + %],

16.  Assume that F is a constant force field acting in R?. Show that F does zero work on a particle
that moves counterclockwise once around a circle in the xy-plane with constant speed.

17. Assume that the force F = C(xi + yj) (C is a constant) acts on a particle moving in R?2. Show
that F does zero work if the particle moves counterclockwise once around a circle with constant speed.
18. The force between two positive electric charges [one, of charge o, is placed at the origin, and
the other, of charge 1 C, is placed at (x, y)] is given by the formula F = pr/|r|*. How much work
is needed in order to move the 1-C charge along the straight line from (1, 0) to (=1, 2) if the other
charge remains at the origin?

19. Consider the force field F(x, ¥) = (v, 0). Compute the work done on a particle by the force F if
the particle moves from (0, 0} to (1, 1) in each of the following ways:

(a) Along the x-axis to (1, 0}, then vertically up to (1, 1)

(b) Along the parabolic path y = % (d) Along the straight line

(¢) Along the path y = xt {e) Along the path y = sin (wx/2)

(f) Along the y-axis to (0, 1), then horizontally to (L. 1)

Interpret your results,

20. Compute | 3(x + y)dx along the path ¢(r) = e +1,e-2,0=<r=<1.

21. Compute [.(ydx + xdy)/(x* + y?), where ¢ is the circle centered at the origin of radius 2,
oriented counterclockwise.

22. Compute fc xydx + ye'dy , where eis the rectangle with vertices (0, 0), (1, 0), (1, 1), and (0, 1),
oriented counterclockwise.

23. Consider fc, xydx + 2ydy , where ¢; is the straight-line segment joining the points (0, 0) and
(1, 1) parametrized in the following ways:
(@) eit) = (¢, 1), €[0,1]

(c) c3(t) = (cost, cost), t €0, 7/2]
Are all the results the same? Explain why or why not.

(b) e2(t) = (sint, sin?), ¢ € [0, /2]

24. Compute fc Mix, v, z)dx , where M is a continuous function and ¢ is any curve contained in a
plane parallel to the yz-plane.

25. Show that the assumption “c is a C' curve” in Theorem 5.3 can be replaced by “c is a piecewise
C' curve”

Exercises 26 to 29: In T2, the flux (flow) of a vector field F across a smooth closed curve ¢ is defined
as [ ¥ nds, where n denotes the outward unit normal vector field along ¢. The circulation of F is
given by jc F . ds. Compulte the flux and the circulation for the vector field F and the curve ¢.

26. F(x,y) = 4xi — 2y], ¢ is a circle of radius r, oriented clockwise

27. Fix,v) = xi+ yj, ¢is a circle of radius ., oriented counterclockwise

28. F(x,y) = x%i + y*j, cisthe semicircle of radius r from (7, 0) to (—r, 0), followed by the straight-
line segment back to (r, 0), oriented counterclockwise

29, F(x, y)=xi+ yj, ¢ is the curve from Exercise 28

30, Let F(x, y) = P(x, y)i + Q(x, ¥)j be a continuous vector field. Show that its outward flux is
givenby [ F-nds = [, P(x, y)dy — Olx, y)dx.

> 54 |

> EXAM
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Another way to solve parts (b) and (¢) would be to compute V from the system of differential |
equations

v " IV
— =Cx(1+y) and — = Cx%y \
ax dy

with the initial condition V' (0, 0) = 0. Integrating the first equation with respecttox, we get V(x, y) =
Cx*(1 + y%)/2 + D(y), where D(y) depends (possibly) on . Computing the derivative of V(x, y) |
with respect to y and combining with 9V /8y = Cx2y yield |
| xf dD(y)

C—2y+ —== = Cxy;
7+ P X%y

| hence, d D(y)/dy = 0 and D(y) = D (D is a real number). Therefore, V = Cx?(1 +y*)/2 + D.
: |
The condition V (0, 0) = 0 implies that D = 0, and thus, V = Cx%(1 + y)/2.

» EXERCISES 5.4

Exercises 1 to 10: State which of the following sets are connected, simply-connected, and/or star-

shaped:
f 1. 2, with the circle x2 + y* = 1 removed
‘h 2. The set {(x, y)|y < |x|} in R?
3. IR, with the circle x2 + y? = 1, z = I remaved |
4. Theset {(x,y, 2)x*+y* +2> < land z 1} in B3 \
” 5. R’ with the sphere x* + y2 + z% = | removed
6. R with the ball x? + y2 + 72 < 1 removed
” 7. IR?, with the helix ¢(t) = (cost,sint, £), ¢ € [0, ] removed

The set {(x, y)[x* +y?> < lorx®+ y? = 2}in R?

. The region inside the polygonal line joining the points (0, 5), (2, 0), (2, 3), (4, 3), (4, 5),and (0, 5) |
"'} (in that order)

! ‘ | 10. The set {(x, y)|x* — y* < 0} in R?
11.  Explain why the sphere {(x, y, z)|x* + y* + z = 1} and the sphere without the “North Pole”
{(x, y, D)x* + y* + 2% = 1 and z < 1} are simply-connected sets. |

| i 12. LetF = (F|. F>, F3) be a C' vector field defined on a star-shaped set U, such that curl F = 0. |
i Define the function f(x, y, z) as in the proof of Theorem 3.4.

M (@) Show that f(x, y, 2) = Jy (Fi(ex, ty, t2)x + Fo(tx, 1y, t2)y + Fa(tx, 1y, t2)2) dt. |
(b) Derive the formula df/dx = fol Adt, where
i ‘ A= Fi(tx, ty, t2)+ D1 F\(tx, ty, tz) tx + Dy Fi{tx, ty,tz)ty + DyF(tx, ty, tz) tz.

©

(c) Show that the integrand in (b) is equal to (4/t)(t Fi(ix, ty, 7)) and conclude that affdx = F. |

13. Compute [ F-ds, where F = y?cosxi+2ysinxj, and ¢ is any path starting at (1, 1) and |
ending at (1, 3). |
14. Compute the path integral f,F -ds, where F = (cos (xy) — xy sin (xy))i — x2 sin (x3)j, and
e(t) = (e'cost,e'sing), 0 <t <.

15. Check that the vector field F = (—y/(x? + y2), x/(x2 + y2), 1) satisfies curlF = 0 in R® —
{(0, 0, 0)}, but is not conservative in IR*. In order to show that F is not conservative, compute path
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integrals of F along the curves ¢;(f) = (cost, sinz, 0), 0 < ¢ < 7, and ¢5(1) = (cos?, —sin#,0),0 =<
t < m, joining (1, 0) and (—1, 0). Explain why this does not contradict Theorem 3.8.

16. LetF(x, y) = yi+ xj. :

(a) Compute L F - ds along the circular path from (1, 0) counterclockwise to (0, —1), then along the
y-axis from (0, —1) to (0, 2), and then along the straight line from (0, 2) to (1, 0).

(b) Show that F(x, y) is a gradient vector field and use this fact to check your answer in (a).
Exercises 17 to 21: Determine whether F is a gradient vector field, and if so, specify its domain U
and find all functions f such that F = V f.

17. F=@x?—4y? +x)i+ (Txy +Iny)j

18. F=03x*Inx +xi+x3y7j 19. F=2xlnyi+ 2y +x*/¥)j

20. F=(yz+e"sinz)i+ (xz+y* —e)j+ (xy+e coszk

21. F = ycos(xy)i+ (xcos(xy) — zsiny)j + cos vk

Exercises 22 to 24: Evaluate the following integrals:

B30
22. f (dxy — nyzzz) dx + (2x% — 2x2yz2) dy — 2x2y2zdz
(0,1,0)

(m,m/2,mf3)
23. f cos x tan zdx + dy + sin x sec* 7 dz
©.0.0)

@22
24, f x2dx +z7'dy + yz % dz
1,2,

25. Provide omitted detail in the proof of Theorem 5.7: parametrize the path € in Figure 5.36(b) to
obtain the formula (5.18). Then show that df/dx(x, y} = Fi(x, y).

26. Let F(x,y,z) = (x,y, 2)/{(x> + y* + z%)*%. Show that curlF = 0. Show that V(x* + y* +
z2)"1/2 = —F (see Example 2.40 in Section 2.4).

27. Consider the vector field F(x, y) = —(1 4+ x)ye’i — xe].

(a) Show that F(x, y) is conservative.

(b} Using the Fundamental Theorem of Calculus, find the potential energy V(x, 0) along the x-axis
if V(0,0) = 0.

{c) Using the Fundamental Theorem of Calculus, find the potential energy ¥ (0, v) along the y-axis
if V(0,0 =0.

28. LetF(x, v, z) = x*yi + z°k. Does there exist a function f such that F = V f?

29. Find fc F - ds, where F(x, y) = 2xye’i + x%e¥(1 4+ )j and ¢ is the straight-line segment from
(0,0) to (3, =2),

(a) Using a parametrization for c. (b) Using the fact that curlF = 0.

30. Check that F(x, y, 7) = 2xy%i + (2x%y + ¢)j + ye‘k is a conservative force field in R3. Find
the work done by F on an object that moves from (0, 2, —1) to (3, 2, 0).

31, Show that the vector field F(r) = ||r|*r is a gradient vector field (r = xi + yj + zk), and find a
function f such that Vf = F.

32. Show that the vector field F(r) = ||r||r is a gradient vector field (r = xi + yj + k), and find a
function f such that Vf =F.

33. Compute [, F - ds, where F = (In(x + %) +x/(x + ¥IPL 4 (2xy/(x + ¥*)j, and ¢ is the part
of the curve vy = x” from (1, 1) to (2, 8). Use the fact (check it!) that F is a gradient vector field.
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z=4e"

s the given
.30. Using

Figure 6.32 Solid W of Example 6.18. |

SOLUTION The surface 7 = 4e™ and the plane z = 1 intersect whende™ = 1, thatis, whenx = — In(1/4) =In4
(in words, they intersect along the line x = In4 in the plane z = 1). b

The region D of integration is the rectangle 0 < x <1In4, 1 < y <2, and the volume of W is

given by w(W) = ffD(4e“ — 1)dA, since, on D, 4e=* > 1. It follows that :"\

i

2 n4 "::1
V(W) :ff(ztefx - 1)dA:[ (f (de™ — l)dx) dy i |
) D 1 0 i

2 Ind 2 i)
d consider — f (ﬁ4ef —-x ) dy = j (B —-Ind)dy wy
below by 1 0 1 |

=3—Ind~ 1.61. il

Additional examples and some techniques for computing double integrals will be presented
in the following two sections.

» EXERCISES 6.2

Exercises 1 to 4: Identify the regions below as type 1, type 2, or type 3 [for a region of type 1, state

phs of explicitly the functions y = $(x) and y = 1+(x) and the values of @ and b; likewise, give all necessary
detail for a region of type 2].

= P&, 5 L. Disk D ={(x,y) | x> +y* <1}

olid under 2, y

elow by the |
32.
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4. The region D bounded by the curves y = | — x% and y = —3

5. Suppose that f(x, y) < Oforall (x, y) € D € R? What is a geometric meaning of [f,, f dA?Tf
f(x,y) > g(x, y) forall (x, y) € D, what geometric interpretation could be given to ff,(f — g)dA?
(Note that we do not assume that f and g are positive.)

6. Using Cavalieri’s principle, find the volume of the solid W in Figure 6.33.
7. Using Cavalieri’s principle, find the volume of a cone of radius r and height &.

8. Tind the volume of the solid obtained by rotating the graph of y =1Inx, 1 < x < 2, about the
‘ | x-axis. Now imagine that the same graph is rotated about the y-axis. Find the volume of the solid thus
[

obtained.

9. Using Cavalieri’s principle, find the volume of the solid W in Figure 6.34.

Z

(0,400 x

(],,O) (1,0)
Figure 6.33 Solid W of Exercise 6. Figure 6.34 Solid W of Exercise 9. ‘

10. Consider the double integral of Example 6.12. Show that, when D is viewed as a type-2 region,
[, e dA = flz (f) e¥trdx)dy + i (ﬁ/z ety dx) dy. Evaluate this integral, thus checking
the result of Example 6.12.

11. Consider the double integral of Example 6.13. Show that, when D is viewed as a type-1 region,
[p2ydA = f: ([j{;—? 2y dy) dx + ff ([)‘g 2y dy) dx. By evaluating this integral, check the result
of Example 6.13.

Exercises 12 to 17: Evaluate the following iterated integrals:

i
i 1 x 2 x+1
i 12. f (f cos(xz)a’y) ey 13. f (f (58" — 2y — 1)dy) ds |
“ | 0 0 0 2—-x |
{‘ | 1 Ix T cosd
1 14. f ( f et dy) dx 15. f ( f p*sin d,o) de
] -1 0 0 Q
5 |

1 yi2 /2 siny
| 16. ([ x\/szy2 dx) dy 17. f ([ X COS ydx) dy
I 0 0 0
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Exercises 6.2

Exercises 18 to 24: Evaluate [f,) f dA for the function f and the region D € R2,
18. f(x,y) =% D=[0,In2] x[0,n3]

19. flx, ) =xy ! —x%y? D=1[0,2] x [3,4]

20. f(x,y)=xye”,D=[-1,11x[0,1]

21 flx,y)=2xy -y, D={(x,»|0<y=<1l,—y=<x=1+y}

22. fix,y)=e,D={xy|0=x<3,x<y<2"

23, fix,y)=x"** D is the region in the first quadrant bounded by the parabolas y = x* and
y=4—x%

24, fix,y)=In(xy), D is the triangular region bounded by the lines y = 1, y = x,and x = 0
25.  Find an upper bound and a lower bound for [f, e dA, where D = [—1, 1] x [0, 2].

26. Tind an upper bound and a lower bound for the double integral (I, x*sin (x? — y)d A, where
D is the disk x* + y* < 1.

Exercises 27 to 30: Find the volume of the solid in R,

27. The solid under the plane x + y/2 + z = 6 and above the rectangle [—1, 1] % [0, 2]

28. The solid in the first octant bounded by the cylindrical sheet 7 = —y? + 9 and the plane x = 2
29. The solid between the planes x + y +z = 1 and x + y + 2z = 1 in the first octant

30. Thesolidbelow z = 9 — x — y? and above the triangle in the x y-plane with the vertices (0, 0, 0),
(1,0,0). and (0, 2, 0)

31. Let D C IR? be an elementary region and let f and g be continuous, real-valued functions on
D. Show that if IfD fdA= [, gdA then there exists a point (xg, yp) in D such that f(xq, yo) =
&(xo, Yo).

Exercises 32 to 36: Find the area of the region D € R

32. Boundedbyy =2x,y =5x,and x> + y> = |

33. The ellipse with the semiaxes a > 0 (in the x-direction) and » > 0 (in the y-direction)
34, Belowy=x"!, between x = a and x = b, where a, b > 0

35. Between y = x? and y = 4 — x?, to the right of the y-axis

36. Inside the disk x* + y? < 2 and outside the square [—1, 1] » [—1, 1]

37. Let f(x,y) = k(x* + y?) describe the temperature (k > 0isaconstant) at points on arectangular
metal plate R = [0, 1] x [0, 2]. Find all points (xg, yy) in R that satisfy the conclusion of the Mean
Value Theorem.

38. Find the point (xo, o) from the Mean Value Theorem if f(x, y) = x% and D is the triangle
defined by the coordinate axes and the line x + y = L.

39.  Assume that a function y = f(x) is continuous on an interval [a, b].
(a) Explain why there exist real numbers m and M such thatm < f(x) < M for all x in [a, b].

1 b
(b) By integrating the inequality in (a), prove that m < T j flx)dx < M.
—al,

1 b
(c) Explain why there exists a number xq in [a, b] satisfying f(xg) = = f Fx)dx.
—al,

(d) The expression on the right side of the equation in (c) is called the average value of f on [a, b].
Explain in words the meaning of the formula in (c).

393
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> EXAMPLE 6.28

Compute

| 1 N
j ([ ey dy) dx.
4] x y

SOLUTION The integral of cos y/y cannot be computed (exactly, as a compact formula), so we reverse the order
of integration. The region of integration, given by the inequalities 0 < x < land x <y <1, is the
triangle with sides y = x, y = 1, and the y-axis shown in Figure 6.41. It follows that

1 1 - 1 ¥ oA
](] ﬂdy)dxzf (f wsydx)dy
0 % X 0 o ¥
Llcosy |7 ) I
=[ ( ~Xx )dy:[ cosydy =siny
0 ¥ 0

x=0 0

=sin [.

YA
y=x
1
o "y
/I Lo Figure 6.41 Region of Example 6.28.

» EXERCISES 6.3
Exercises 1 to 4: Evaluate [[;, f dA for the function f and the region D < R2.
1. f(x,y) = ve*, D is the triangular region bounded by the lines y = 1, y = 2x, andx =0
2. flx,y) = y(x2 4+ yH¥, Dis the disk x> +y2 < 9
3. f(x,y)=y% D isthe triangular region bounded by the lines y = 2x,y=35x,andx =2
4. f(x,y = 2x —x1)"2, D is the triangular region bounded by the lines y = —x + 1, y =0,
and x =0
Exercises 5 to 9: Find the volume of the solid in R*.
5. The solid bounded by the cylinder y* + z* = 4 and the plane x + y = 2 in the first octant
6. The solid under the paraboloid z = x? + y* and above the region in the xy-plane bounded by the
parabola y = x” and the line y = x
7. The solid bounded by the planes y =3x,y =0,z =0, andx +y +z =4
8. The solid bounded by the cylinders x* + y2 = land x* +z* =1
9, The solid under the surface z = xy and above the triangle in the xy-plane with vertices (0, 1),
(1,1),and (1, 2)

10. Compute :/3 ( U”/E cos(x + y) dx) dy using cos (x 4+ y) = cosx cos y — sin x sin y and sep-

aration of variables. Check your result by direct evaluation.

P> 6.4 CHA
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,andx =0
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sin x sin y and sep-

6.4 Change of Variables in a Double Integral < 401

11. Compute fol (‘fﬂz(] —x—y4 xy)a'x) dy using separation of variables. Check your result by
direct evaluation.

Exercises 12 to 15: Sketch the region of integration and reverse the order of integration. Do not solve
the integrals.

sin 1 /4
12. f (/ x3y2 a'y) dx 13. f (/ (y? wx)dy) dx
#] arctan x
2 1
([ x2y? d))(lirf (/ xzyzdy)a’x
1 x/2
Y Inx
(j e dx) dy

Exercises 16 to 22: Evaluate the following integrals by reversing the order of integration.

1 arceos y
16. f( &' dx) 17. f(f xd.x)dy
0 0
3 "9
18. ( f e d\")dy 19. [ (j xCOS(ZJ‘Z)dy)dx
0 13 0 x2

20.

=

’1] 2 21 ¥
f ﬂdx)dH]( de)dy
I 1 y X
4 T
5(1} d}i—}—f (/ de)d
2 ¥/2
22, f(f )d})dx
0 0

23, Compute [, e " d A over the region bounded by y = x2, x = I, and y = 0.

21.

=

24. Compute the area of the region x> + y* < 9 that lies to the left of the line x = 1/5.

» 6.4 CHANGE OF VARIABLES IN A DOUBLE INTEGRAL

Sometimes, the evaluation of a double integral [, f d A is difficult because either the region
D is geometrically complicated, or the function f and/or D give rise to an integrand that
is hard to handle. One possible way to solve this problem is to use the change of variables
technique.

Let us recall how change of variables (also known as the substitution rule) works
for functions of one variable. Consider the definite integral f 12 e*dx. Let u = 5x, so that
x =u/5; this means that x is now viewed as a function of u, x(u) = /5. Then dx =
x'(u)ydu = (1/5)du and

9 10
[ edx = f e“%du,
1 5 )

where the limits of integration have been changed accordingly (when x = 1, u = 5; when
x =2, u = 10). One more example: consider the integral ff e *dx. Using u = —5x, so
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Exercises 6.4

y=x
dx
y=0

(b) Direct computation gives

ff (x +y)dxdy
D

1 X 1 y2
f(f (x+y)dy)dx:f (xy—‘——
0 \Jo 0 2

1 1
]xzdx=
0

Using the change of variables x = v and y = u/v, transform the integral ffD x%y? d A, where D is the
region in the first quadrant bounded by the parabolas y = x% and v = 2x? and the hyperbolas xy = 1
and xy = 2.

e 1
£

2| W
b

> EXAMPLE 6.40

SOLUTION The change of variables function 7' is defined by 7(u, v) = (v, u/v). First of all, we have to find the
region D* such that T(D*) = D.From y = x>, we getu/v = v> and v = u'/*, From y = 2x?, we get
ufv =2v2and v = (4/2)'”. Similarly, xy = 1 implies # = 1 and xy = 2 implies u = 2. It follows
that D* is the region of type 1 in the uv-plane, defined by 1 < u < 2 and (u/2)'* <v < u'; see
Figure 6.50.

y y=24"

0} %

=y

0} 1 2

Figure 650 The function T maps the region D* to D.

The function T is C' except at v = 0 (but that is irrelevant, since D* is away from the u-axis),
and its Jacobian is

8x,y) | 0 1 1

Au,v) |1y —upy?| v
W13

5 2 3 2
f[ xzysz:ff vZ(E) dA“‘=] (f f‘—dv)du.
D D* v 1 (/i v

Sometimes, it is more or less obvious what T, that is, what change of variables (change of
coordinates), to choose; such cases include polar coordinates (as in Example 6.38), or cylindrical and
spherical coordinates (see Section 6.5). In general, however, identifying a change of variables that
makes a given integration easier could be guite difficult.

Therefore,
1
v

» EXERCISES 6.4

Exercises 1 to 5: Evaluate the given double integral by converting to polar coordinates.

Lofy (jn 4 gt dy) dx
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Mo
0
[711 (jnm arctan (y /x) dy) dx

A ffn \/md/l, where D is the semicircle (x — 1> +3y? =1, v > 0

o JpV/2x2 + 29713 dA, where D is the disk x? + y2 < |

6. Convert the double integral f; ( N eta YR a’y) dx to polar coordinates. Do not eval-
uate it.

2 xydA, where D is the region in the first quadrant bounded by x> + y?> =4, y = x/+/2, and
y

L]

L1 I~

7. Find the volume of the solid under the paraboloid z = x2 + y2, inside the cylinder x2 + P =3,
and above the xy-plane.

8. Find the volume of the solid between the paraboloids z = 3x% + 3y? and 7 = 12 — 3x2 — 3%
9. Findthe volume of the solid inside the cylinder x? + y2 = 4, inside the ellipsoid 4x? + 4y? 47t =
64, and above the xy-plane.

10. Using a double integral, compute the volume of a sphere of radius a > 0.

11. Show that if T(u) = Au + b is an affine map, then det(A) is equal to the Jacobian of T.

12. Consider the map T(u) = Au+h, where A — {a“ au], b= [b'], and assume that
det(A) # 0. @i by

(a) Show that T is one-to-one. [Hinz: You will need the fact that if det(A) # 0, then the 2 x 2 system
apX +apY =0and @y X + a2:Y = 0 has a unigue solution X = ¥ = 0.]

(b) Compute the image of the line 1,(¢) = (w, + vy, Wy +1v2), t € R, under T. Next, compute the
image of the line L,(1) = (Wi + tvy, Wa +tvs), f € R, parallel to 1,(r). Conclude that parallel lines
map to parallel lines.

(¢} Consider two lines 1,(r) = (tv,, tv2), t € R, and la(f) = (twy, tws), t € R, that intersect at the
origin. The origin is mapped to (5,, by) under T. Compute the images of 1;(¢) and L(#) and find their
point of intersection.

(d) Show that S(x) = A~'x — A~'b is the inverse map of T, where A~! is the inverse matrix of A
li.e., show that S o T(x, v) = (u, v) and T o S(x, y) = (x, ).

(e) Using (d), prove statement (d) of Theorem 6.6.

13. Approximate the area of the image of a small rectangle with sides Au = 0.1 and Av = 0.05
and one vertex located at (2, 4), under the mapping 1" defined by T(u, v) = (+/u2 + v2, uv).

14.  Approximate the area of the image of a small rectangle with sides Au = 0.03 and Av = 0.1
and one vertex located at (—2, 1), under the mapping 7' defined by T'(u, v) = (usinv, ucosv).

15.  Describe in words the map T': B> — R2, T(u, v) = (au,v +b), wherea > | and » > 0. What
is the relation between the area of a region D and the area of its image 7(D)?

16. Consider the map T: R* — B2 given by T(u, v) = (u + v, v). Describe the region to which
T maps a square whose sides are parallel (o the coordinate axes. Compute the Jacobian of T and
interpret the result geometrically.

17. Evalvate [f,(5x 4 y? + x*)d A, where D is the part of the annulus 1 < x2 + ¥* < 4inthe upper
half-plane.

18. Using a double integral, find the area of the region enclosed by one loop of the curve r = cos 24.
[Hint: Sketch the curve.]

P 6.5 TRIPI
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19. Find the area of the region inside the cardioid » = 1 —sin8, 0 < 8 < 27,

20. Express the volume of the right circular cone of radius r and height / as a double integral in
polar coordinates.

21. Find the area of the region in the first quadrant bounded by the curves r = 8 and r = 28.

22. Compute the integral [f, (4x + 6y) d A, where D is the region bounded by the lines 4y = x — 3,
dy =x +2,2x + 3y = 6, and 2x + 3y = 17. [Hint: Use the change of variables x = 4u — 3v, y =
u+2v.]

23. Compute the integral ([ (x* — y*)d A, where D is the region bounded by the curves xy = 1,
y=2x—1,and y = x + 1, [Hint: Use the change of variables x = u +v, y = —u + v.]

24. Compute the integral [f (2x — y)dA, where D is the region bounded by the curves y = 2x,
x =2y, and x + y = 6. [Hint: Use the change of variables x = u — v, y = u +v.]

25. Compute the volume of the wedge cut from the cylinder x* + y? = 9 by the planes z = 0 and

26. Compute the volume of the solid below the plane z = y + 4 and above the disk x* 4+ y* < 1.

27. Compute the integral [f}, xy* dA, where D is the region in the first quadrant bounded by the
lines x = 1 and x = 2 and the hyperbolas xy = 1 and xy = 3. [Hint: Use the change of variables
x=v,y=u/v.]

28. Compute the integral [, 5dA, where D is the region inside the ellipse 4x? + 2y* = 1. [Hint:
Define a change of variables so that the region of integration becomes a circle.]

29. Evaluate ff,, 5(x + y)dA, where D is the region bounded by the lines 3x — 2y = 5,3x — 2y =
—2,x+y = —2,and x + y = I using a suitable change of variables.

30. Evaluate [f,, x* d A, where Distheregion0 < 1x* + y? < lusingasuitable change of variables.
31. Evaluate J'fn ¢" dA, where D istheregion definedbyx + y =0,x+y =2,y = x,and y = 2x.

32. Evaluate [f, (x* — y*)dA, where D is the region in the first quadrant bounded by the curves
¥ —y'=1,x"—y? =2,y =0,and y = x/2, using the change of variables x = wcoshv and y =
w sinhv.

33. Evaluate ff,, sin 2 dA, where D is the region bounded by the linesx — y = 1,x — y = 5, and
the coordinate axes.

P 6.5 TRIPLE INTEGRALS

The definition, properties, and methods of evaluation of triple integrals are analogous to
those of double integrals. Nevertheless, for the sake of completeness, we will briefly go
through the relevant concepts.

Assume that f = f(x, y, z) is a bounded function defined on a closed and bounded
solid W in R?. Recall that a function f: W — R is bounded if there exists M > 0 such
that | f(x, v, z)| < M forall (x, y, z) € W. The fact that W is closed means that it contains
the surface(s) that constitute(s) its boundary.

Enclose W into a big rectangular box (this is possible due to the assumption that W
is bounded) and divide it into n* subboxes Wik, 1, j. k=1, ..., n, with faces parallel to
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> EXAMPLE 7.15

Chapter 7. Integration Over Surfaces, Properties, Applications

It follows that the unit normal (whenever v #=0,m)

N —sinv r(u, v) —siny

NI = = simv] - ieGe, ] = siny] 00 = 7F)
points in the direction opposite to r(u, v) [since 0 < v < m, it follows that sinv > 0 and therefore
—sinv/| —sinv| = —sinv/sinv = —1; this explains the appearance of the minus sign in front of
r(u, v)]. Therefore, N/||N|| = —n; that is, the above parametrization is orientation-reversing.

On the other hand, the parametrization

r(u, v) = (cosvcosu, cosvsinu, sinv), 0<u <27, —nf2<v<m/2,

of & given in Examples 7.4 and 7.7 (with @ = 1) yields the unit normal vector (whenever v # —m/2,
7/2)

N _ cosvr(uyv) _ cosv £, v) = r(u, v).

[IN]| [lcosv r(u, v} | cosv|

This time, N/|IN|| has the same direction as r(u, v), since cosv > 0 for —z/2 < v < 7/2. So,
N/IIN|| = n, and it follows that this is an orientation-preserving parametrization.

DEFINITION 7.9 Orientation of the Graph of z = f(x, y)

The orientation of the graph S of a differentiable function z = f(x, y) is defined as follows:
the outside of S is the side away from which the unit normal vector

N EE—d

N ‘/(?)2+ (%) +1

points,

In other words, the positive orientation is determined by the choice of the normal with
k component equal to +1, and the negative orientation corresponds to the normal whose k
component is —1 (the normal was computed in Example 7.9).

The normal N to the graph S of the function f(x, y) = x?y — y* (shown in Figure 7.14) is given by
N = (-df/dx, —=8f/dy, 1) = (—2xy, —x* 4+ 3y%, 1); see (7.6). The corresponding unit normal field
isn = N/|IN|| = (—2xy, —x* 4+ 3y%, 1)/|INJ.

Thus, n (0, 0, 0) = (0, 0, 1) = k, and it follows that the outside of § is the side that we see when
we look at § from high up on the z-axis. [Note that, in order to determine the orientation (of an
orientable surface), we need to find the normal m at only one point on the surface.]

Note that we have used the word “surface” in different contexts: level surface, the gr. aph
of a function of two variables, and parametrized surface. In Exercise 6 in the chapter review
section (see Review Exercises and Problems), we show that these three concepts coincide.

» EXERCISES 7.1

1. Consider the parametric representations of the cylinder and the sphere given in Examples 7.2 and
7.4. Describe how r maps the boundary of the rectangle D in each case.
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2. Consider the parametrization r(u,v) = (acosu sinv, a sinu sinv, a cos v), 0<u<2m, 0<
v < 7 of the sphere of radius a. Give a geometric interpretation of the parameters « and v.

Exercises 3 to 12: Find a parametrization of each surface in R?.
Upper hemisphere x* + y? + 72 = a2,z > 0
Quarter-sphere x* + y? 4+ 22 =a%,z > 0,x = 0

Sphere of radius 2, centered at (—2, 3, 7)

3
4
5
6. The part of the upper hemisphere x> 4 y? + z* = a?, z > 0, cut out by the cone 2% = x2 + y2
7. The part of the plane z — 3y + x = 2 inside the cylinder x2 + y> = 4

8. The graphof x> + 32 — 72 = |

9. The part of the plane x + 2y + z = 6 in the first octant

10. The part of the cone x* + y? = 7% in the first octant

11. The part of the paraboloid z = x> 4 y? in the first octant

12. The surface obtained by rotating the circle (y — 3)? +z2 = 1, x = 0 about the z-axis
Exercises 13 te 20: For each parametrized surface r(u, v) in &3,

(a) Find the tangent vectors T, and T, and the normal N, and

(b) Find all points where r(x, v) is smooth.

13, r(u,v)= Qu,u> +v.v2, u,v = 0

14, v(u,v) = (u,e"sinv,e"cosv),0<v <2m,uc B

15. r(u,v) = (sinucosv,sinusiny,2cosu), 0 < u,v < 27

16. r(u,v) =@ +viu®> —v: 2uv),0<u,v <1

17. r(u,v) = (1 + cosv)cosu, (1 + cosv)sinu, sinv),0 < u,v < 27

18. r(u,v) = (u,cosv,sinv),0<u<1,0<v=<mw

19, v(e, v) = (u,v, 1 — @ +v)), u,v >0

20, v, v)=(ulul,v),-l<u<1,0<yp=<?2

21.  Find an equation of the plane tangent to r(u, v} = (e“, e, uv) at (1,1, 0).

22. Let § be the surface z = 10 — x? — 2y%. Compute the equation of the plane tangent to it at the
point (1, 2, 1) in three different ways:

(a) By using the parametrization r(u, v) = (u, v, 10 — u® — 2v?%)

(b) By viewing § as the graph of the function f(x, y) = 10 — x* — 2y?

(c) By viewing S as the level surface of f(x, y,z) = 7 4+ x2 + 2y2,

23. Find an equation of the plane tangent to the graph of y = x* + 2xz at (1, 3, 1).
24. Find an equation of the plane tangent to the graph of y = f(x, ) at (xo, Yo, 2o).

25, Show that the plane tangent to the cone z* = x% + y? (at any point where it exists) goes through
the origin.

26. Consider the following parametrizations:

(@) ri(u,v)=(u,v,1), -l <u,v=<l

(b) 2w, v) = (u,3v,1), -1/2<u<1/2,-1/3 <v < 1/3
© rau,v) =@, v 1), —-1<uv<l

(d) Tq(u, v) = (sinu, sinv, 1), 0 < u,v < 27
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Check that the images of 1y, .. ., ry represent the same set. State which parametrizations are contin-
uous, differentiable, C!. State which parametrizations are smooth at (0, 0, 1). Compute the tangent
plane at (0, 0, 1) for those parametrizations.

27. Find a parametrization of the ellipsoid x>/a® + y2/b? + z2/c? = 1.

28. Let S be the surface r(u, v) = (u?, 2uv, 0), —o0 < u, v < 0o. Find an orientation-reversing
parametrization of S.

29.  Find the points (if any) on the surface r(u, v) = (v, uv?, 1) where the tangent plane is parallel
to the plane z = x — y.

30.  Find all points (if any) (x, y, z) on the paraboloid z = 2 — x? — y? where the normal vector is
parallel to the vector joining the origin and the point (x, ¥.2).

31. Consider a differentiable parametrized surface r(u, v); D € R? — R3, and pick a point (u, Vo)
in the domain of r where T, (u4p, vo) % T, (itg, va) # 0.

(2) Recall that the derivative Dr(uq, vy) is a linear map from B2 to R, Find its matrix representation.
Show that the range of Dr(ug, vy) is the plane spanned by T, (i, vo) and T, (ug, vy).

(b) Show that the plane tangent to the image of r at r(ug, vy) can be represented as plu, v) =

H— U
r(ug, vo) + Dr(uy, vg) l: ﬂ]. Thus (as expected), the derivative Dr enters into the equation of
v —1

the tangent plane (thought of as the linear approximation).

P 7.2 WORLD OF SURFACES

In this section, we study various surfaces, to understand better how parametrizations work,
to provide more examples of implicitly defined surfaces and the Implicit Function Theorem,
to hint at some (of many) applications of surfaces, and because we will need these surfaces
in this chapter and also in Chapter 8. Differential geometry is one of several mathematical
disciplines that are dedicated to exploring geometric objects such as surfaces.

> EXAMPLE 7.16 Surface of Revolution

As the graph of a differentiable function y = f(x), x € [a, b]. is rotated about the X-axis, it generates
a surface of revolution S; see Figure 7.19. (Recall Example 6.7 in Section 6.2, where we studied solids
of revolution.)

l/J"(v)
P
¥ =f{v) cosft
fv) N
I : T apac
ol elz x=v b x X z=f{v) sinu

Figure 7.19  Surface of revolution obtained by rotating y = f(x) about the x-axis.
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The projection D; of § onto the xz-plane is the region bounded by x = 0, z = 0, and (substitute
y = Qinto the equation for §) z = 2 — x%/2. Since [n - j| = 1/+/4x? + 3, we get

| Jras= [, reronTy= [, i

where d A refers to integration with respect to x and z. Hence,

2 2—x2y2
i f fds= [ ( f dxz/dx2 + 5 a'z) dx
g 0 0

L The projection D; of § onto the yz-plane is the triangle bounded by y = 0, z = 0, and (substitute
x = O into the equation for §) y + 2z = 4. It follows that

i il
ffyde_fDQ j(x,y,z)m_i‘,

where d A refers to integration with respect to y and z, and |n - i| = |[2x/+/4x% + 3| = 2x/+/4x% + 5,
since x > (., Thus,

dA
] = 4 e————h = 2z c2 -
ffsde f\/pz xzzx/ e ffnz zvVax? +5dA

Since the integration is with respect to y and z, we have to eliminate x. From x% 4 y + 2z = 4, we
get x? = 4 — y — 2z, and therefore,

4 2—y/2
ffde:ff 2z4/21 — 4y — 8z dA:f (f 2z4/21 — 4y — 8z dz)dy.
§ D 0 \Jo

The projection D3 of S onto the xy-plane is the region bounded by x = 0, y = 0, and y =4 —x%

Since |m - k| = 2/+/4x2 + 5, it follows that
[]1‘3\ 4x2 a5

ffde*jmf(x)Z)

; where dA refers to integration with respect to x and y. Ehmmatmg z and setting up the limits of

integration, we get
2
ffde ff 2x(27i77),/4x2 5dA
Dy
| 4 4_x2
\ :f (f ¥4 — x> — y)4xt+5 dy)afx
‘ 0 0

» EXERCISES 7.3

1. Letr: D — IR be a differentiable parametrization of a surface in B?: in components, ¥(u, v) =
(x(u, v), y(ue, v), z(u, v)), for (u, v) € D € R2.

(a) Explain why x(# + Au, v) — x(u, v) & (dx/du)u, v) Au.

(b) Using similar approximations for the y and z components of r, show that r(u + Au, v)—r{u,v) =
(dr/du)(u, vy Au.

2. Consider the surface of revolution S obtained when the graph of a C! function y=f(x), xc
[a, b], is rotated about the x-axis (see Example 7.16 in Section 7.2).

(a) Show that the surface area is given by A(S) = 2= fub [T+ (N dx.




1d (substitute
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x/+/4x% 43,

|2z = 4, we

)a.
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v

the limits of

nts, r(u, v) =
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(b) Show that A(S) from (a) is equal to the path integral [t 2m| f(x)| ds, where ¢e(t) = (t, f(1)),
t € [a, b]. Explain in words how to compute the surface area of a surface of rotation using path
integrals.

3. Show that A(S)=2x ff lx|/1 4+ (f'(x))* dx gives the surface area of the surface of revo-
lution § obtained when the graph of a C! function y = f(x), x € [a, b], is rotated about the
y-axis.

4. The surface § in Example 7.32 is a triangle whose vertices lie on the coordinate axes, as shown
in Figure 7.50.

(a) Compute the area of S using Heron’s formula A = /s(s — a)(s — b)(s — ¢) for the area of the
triangle with sides @, b, and ¢, where s = (@ + b 4 ¢)/2.

(b) Compute the area of S using vector product.

Exercises 5 to 12: Compute [/, f d in each case.

5. f(x,v,2z) = xy, § is the part of the paraboloid z = x? + y* that lies inside the cylinder of radius
2 whose axis of rotation is the z-axis

6. f(x,v,z)=2z(x* + y?), S is the surface parametrized by r(u, v) = (cosu, sinu, v),0 < u < m,
D=<v=<2

7. f(x,y,z)=y+ x, §is the tetrahedron with vertices (0, 0, 0), (2, 0, 0), (0, 2, 0), and (0, 0, 2)
8. f(x,y,2)=x%+4 y2, Sis the part of the cone 7> = x> + y? betweenz = 1 and z = 4

9. f(x,y,2)=2y —x, S is the part of the cone x* = y* + z%, x < 1, in the first octant

10.  f(x,y,z) =8y, § is the parabolic sheet 7 =1 — 3%, 0<x <2,0<y <1

1. fix,y.z) = (4x* +4y> + )72, § is the part of the paraboloid z = 4 — x? — y? above the
xy-plane

12. fix,y.z) =+/x*+ y?, § is the helicoidal surface r(x,v) = (ucosv,usinv,v), 0 <u <1,
0<v <4r

13. Compute the surface area of the part of the surface r(u, v) = (2Qucosv, 2usinv, v), where 0 <
u<20<v<m.

14. Compute the surface area of the part of the cylinder x? +z% = 1, z = 0, between the planes
y=0andz=y+ 1.

15. Compute the surface area of a cone of radius r and height %, using surface integrals.

16. Find the area of the triangle with vertices (1,2, 0), (3,0,7), and (—1, 0, 0) using a surface
integral. Check your answer using the cross product.

17. LetSbethespherex? + y? 4 z* = a®.Find [, x dS, [, x* dS,and ff, x’ d.§ without evaluating
surface integrals using a parametrization.

18. Compute the surface area of the part of the plane z = O defined by -1 <x <1, -1<y <1
using the following parametrizations:

(@ r(u,v)=(u,v,0,-1<uv=<l ) (e, vy =@, v,0), -1l <u,v<l1

() r(u,v) = @' v 0), -1<u,v =<l

(d) r(u,v) = (sinu,sinv,0),0 <u,v < 2w

The results in (a), (b), and (¢) are the same. Why is the result in (d} different?

19. Tet S be the rectangle in the plane z = my, m > 0, lying directly above the rectangle R =

[0, a] x [0, ], @, b > 0, in the xy-plane. Show that (area of §) = ~/m? + 1 - (area of R). Let o be
the angle between k and the upward normal to S. Conclude that (area of S} = seca - (area of R).
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20. Consider the integral [f. o f(x,y,2)dS, where S is a surface symmetric with respect to the xz-
plane. I f(x, —y,z) = — f{x, y, z), what is the value of [f; f d§? Using your result, recompute the
surface integral in Example 7.33.

21. Evaluate [f, f dS, where f{x, y,z) = 4xy and § is the parabolic sheet z = 1 — ¥? in the first
octant, bounded by the plane x = 2.

22. Using the Area Cosine Principle, find the formula for the area of an ellipse with semi-axes a
and b.

23. Compute (J ydS, where S is the part of the surface x + y* + z = 4 in the first octant, using a
projection of § onto one of the coordinate planes.

24. Let S be the part of the plane x + y + 2z = 4 in the first octant, oriented by the upward-pointing
normal. Compute [Ji(xy* 4+ z*)dS

(a) Using a parametrization of S,

(b) By viewing S as the graph of the function z = 2 — x/2 — y/2 and using the formula of Example
7.30, and

(c) By using any of the three projections of S onto the coordinate planes.

25. Find the area of the hemisphere § defined by x% 4 y* + 22 = a*,a > 0,y > 0, using a projection
of § onto a coordinate plane.

26. Find the surface area of the strip on the sphere x? + y? +z? = a® (a > 0), defined by the
angles ¢, and ¢, where ¢ < ¢ (¢ and ¢, are defined in the same way as the angle ¢ in spherical
coordinates).

» 7.4 SURFACE INTEGRALS OF VECTOR FIELDS

The aim of this section is to give a generalization of integrals of scalar functions to integrals
of vector functions over surfaces in R*. An important application of this concept is the flux
of a vector field.

DEFINITION 7.12 Surface Integral of a Vector Field

Let S be a smooth surface in R? parametrized by a C! map r = r(u, v): D — R (where
D is an elementary region in R?) and let F: § € R* — R’ be a continuous vector field on
S. The surface integral [[F - dS of F over § is defined by

ffF-dS:ff F(r(x, v)) - N(u, v)dA,
S D

where N(u, v) = T, (u, v) x T, (u, v).

The surface integral of a vector field depends only on the values of the vector field at
points on the surface. According to the definition, it is reduced to a double integral of the
real-valued function F(r(u, v)) - N(u, v) over an elementary region D. (Note the analogy
with the path integrals of vector fields that we studied in Section 5.3.)

Insight: assume that F represents the velocity of a fluid (and that it is constant, which
implies that ||F|| = C). Take a surface S to be a subset of the xy-plane (thus, its normal is
N = k), as shown in Figure 7.54.

> EXAMPL

SOLUTION
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Figure 756 Surface of the cube oriented by outward-pointing normals.

Finally, parametrize the front and back sides of S by rs(u, v) = (1, #, v), and rg(u, v) = (0, u, v),
0<u,v <1.Thenns = i and ng = —i, and

f[ F-dS=j[F-n5dS=ff i+vk)-idA=1

Ss Ss 10, 1]x[0,1]

f[ F-dS:ffF-m,dS:f[ (k) - (—i) dA = 0.
S S [0.11x[0, 1]

Therefore, .[fSF dS=04+1+04+0-+1+ 0 = 2 is the flux out across S.

and

» EXERCISES 7.4

1. The surface S is defined by x> +y?> =1, 1 <z <?2; assume that it is oriented by the
outward-pointing normal vector. Among the vector fields Fy(x, v, z) =1, Fa(x, ¥, 2) = xi + yj, and
Fi(x, v, z) = k, identify those whose (outward) flux is zero.
| 2. Consider the graph of the function g(x,y)=1—x%—y%, —1 <x,y <1, oriented by the
I upward-pointing normal. Determine the sign of the cutward flux of the following fields: F(x, y, z) =
Ik, Fa(x, v, z) = xi+ yj, and Fa(x, y, z) = —xi — yJ.

Exercises 3 to 6: Compute the flux of the vector field F =i — 2j + 4k across the given region
(assumed subset of a plane), with the indicated orientation.




L) = (0, u,v),

oriented by the
y = xi+ yj, and

oriented by the
ds: Fy(x,y,2) =

the given region

)
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ellipse

‘—-_’/\_(o, 3,0
(1,0, 0 e 2

Y

Exercises 7 to 14: Compute [ F - dS.

7. F=4yi+ (3x — 1)j 4 2k, § is the part of the plane 3x 4+ y — z = 1 (with the upward normal)
inside the vertical cylinder of radius 2 whose axis of symmetry is the z-axis

8. F =xi+ yj, §isthe part of the cone z = \/x? + y? (oriented with the inward normal) inside the
vertical cylinder x? 4+ y> =9

9. F = x"i+2zk, § is the hemisphere x> + y? 4+ 22 = 9, 7 > 0, oriented with an outward normal
10. F=yi—xj+k, § is the surface parametrized by r(u, v) = (wcosv, usinv,v), 0 <u < 1,
0 < v < 4, and oriented with an upward-pointing normal

11. F =zk, S is the paraboloid z = x% + y? (oriented with the normal pointing away from it)
between the planes z = l and z = 2

12. F =2i— xyj, S is the graph of the function z = f{x,y) = x>y — 1, where 0 < x, y < 1,
oriented by the upward-pointing normal

13. F =xi+ yj+ zk, § is the surface parametrized by r(u, v) = (¢" cosv, e sinv, v), 0 < u <
In2, 0 < v < x, and oriented with an upward-pointing normal

14. F = x*yi — (y + x)j — z%xk, § is the part of the plane x + 2y + 8z = 8 in the first octant with
the normal vector pointing upward

15. Let T(x, y, z) = x* + ¥ + 3z® be the temperature at a point (x, ¥, z) in R*. Compute the heat
flux outward across the surface x> +y* =1, -1 <z < 1.

16. LetT(x,y,z) = e "= be the temperature at a point (x, v, z) in R*. Compute the heat flux
outward across the sphere x2 + y* + 7% = 1.
17. Consider the vector field F = ck, where ¢ is a constant.

(a) Compute the flux [f(F-ndS, where S is the hemisphere x* 4+ y* + 2> = a?, z > 0, with the
outward-pointing normal.

(b) Compute the flux of F across the disk x*> + y* < a” in the xy-plane, with the upward-pointing
normal.

(c) Why are the answers in (a) and (b) the same?
Exercises 18 to 23: Find the flux of F across the surface S.

18. F = xi+ yj+k, out of the closed region bounded by the paraboloid z = 2x? + 2y? and the
plane z = 4

19. F = xi, out of the closed region bounded by the paraboloids z = x? + y*and z = 12 — x? — y?

20. F = xi, out of the closed region bounded by the spheres x* + y*> + 22 = g and 22 + y? + 2 =
b a>bh




484 » Chapter 7. Integration Over Surfaces, Properties, Applications

|
\
\
' 21. F = y*(j — k), across the part of the plane 2x + y + z = 16 in the first octant in the direction
‘ away from the origin

22. F =i+ xyj, across the closed cylinder (and in the direction away from it) x* + y* = 1, with
the top disk at z = 2 and the bottom disk in the xy-plane

23. F = x*vi+ xy’j + 2xyzk, upward across the surface z = 2x?y, 0 <x < 1,0 <y <2

24. Compute the flux through the surface of the plane z = 2,0 < x, y < a (¢ > 0) ol the constant
unit vector field F that makes an angle of & rad (0 < o < 7/2) with respect to the plane.

25. Let F = F,e, + Fyep + Fye, be the representation of the vector field F in spherical coor-
dinates. Show that the flux of F out of the sphere x* + y* 4 2> =%, a > 0, satisfies [[(F -8 =
@ [ ([T E, singdg) do.

26. Let S be the (closed) surface consisting of the part of the cone z* = x? ++ ¥, 1 < z < 2 together

with the top and bottom disks (in the planes z =2 and z = 1). Show that the vector fields F; =
xi+2yj+3zk and Fy = (3% 4 2)i + (6y + x)j have the same outward flux.

27. LetF = (x 4+ )i +j + zk and assume that § is the part of the plane x + 2y + 8z = 8 in the
first octant, oriented by the downward-pointing normal. Compute the surface integral [f F - dS using
a projection of S onto a coordinate plane.

28. Let S be the part of the plane z = 2 defined by 0 < x, y < a,a > 0. Let ¢ be a positive constant.
(a) Compute the flux of a vertical field F = ck across §.

(b) Compute the flux of F = czk across §.

(¢) Compute the flux of F = ¢z°k across S.

(d) Compute the flux of F = ¢(j +k)/ /2 across S.

(e) Compute the flux of F = f(x, y, 2)i + g(x, y, z)j across §.

(f) Interpret the results of (a)—(e).

29. Compute ([ F-dS, where I' and § are as in Exercise 9, using the projection of § onto the
xy-plane.

by Definition 7.9. Show that, for a continuous vector field = (Fy, I3, F3), fjiTF-a'Sz

30. Let S be the graph of a C! function z= f{x,y), (x,y) € D, oriented as required
‘ My (CF(3f}dx) — Fo(df [ dy) + F3) dA.

» 7.5 INTEGRALS: PROPERTIES AND APPLICATIONS

Although we have defined all kinds of integrals in the last three chapters, we have to admit
that we were in a way repeating the same things over and over again (such as, for example,
the construction of Riemann sums). As a conclusion, we will present a unified view of the
integrations we have discussed, list their properties, and show several applications.

Notation
Throughout this section, we will use M to denote either of the following:

(a) A curve ¢ (that will be viewed in applications as an approximation of a thin wire);
(b) A plane region D (that will represent a thin flat plate in R?);

(c) A surface § (that will represent a thin sheet (possibly curved) in R3); or

(d) A solid W (that will represent a three-dimensional solid in R?).
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| Alternatively (the Laplacian is computed tobe Af =2+2 =4),

» EXERCISES 8.1

1. Consider a constant vector field F(x, y) = ai 4+ bj in B2 (a,b € R), and let ¢ be any simple

closed curve in R?.

(a) Without using Green’s Theorem, find the circulation fc F - ds of F around c.

(b) Use Green’s Theorem to confirm your answer (o (a).

| 2. Let F be a C! vector field in R? whose scalar curl at (3, —2) is equal to 7. Approximate the
| counterclockwise circulation jc F . ds of F around the circle ¢ of radius 0.02 centered at (3, —2).

Exercises 3 to 7: Compute fc F - ds using Green’s Theorem.

3. F=—2yi+xj, ¢(t) = (2cost,sint), t € [0, 2x]

4, F = (x* 4+ 1)7!j, cis the boundary of the rectangle [0, 2] x [0, 3], oriented counterclockwise

5. F = e"*¥j — ¢ 71, cis the boundary of the triangle defined by the lines y = 0, x = 1,and y = x,
oriented counterclockwise

6. F=2— y)i+ (y+x>+2)j. cis the circle of radius 5 centered at the origin and oriented
counterclockwise

7. F = 2x%y% — xj, cconsists of the curve y = 2x° from (0, 0) to (1, 2) followed by the straight-line
i segment from (1, 2) back to (0, 0), oriented counterclockwise

8. Let Dbeatype-2region givenbyec <y < d and ¢(v) < x < v (y), letcbeits positively oriented
A P! Y
il boundary, and let Fo(x, y) = (0, O(x, ¥)).
: ‘mn (a) Show that the integral of F along the line segments y = ¢ and y = d is zero.
| (b) Prove that [, F, - ds = [ QW (y), ) — Q(@(y), y)dy.
| (c) Show that Q¥ (»), ») — Q). ¥) = [} (9O(x, yyox) dx.
(d) Conclude that [, F, - ds = [[,(80/dx) dA.

|
i‘ Exercises 9 to 13: Compute fc F - ds directly, or using Green's Theorem.
\
|

9, F = x%y% + y"j, e is the curve x* + y? = 1, oriented counterclockwise
10. F = (2x +3y+ 2)i— (x — 4y + 3)j, ¢ is the ellipse x> + 4y? = 4, oriented clockwise

I 11. F = cosh yi + x sinh yj, ¢ is the boundary of the triangle defined by the lines y = 4x, y = 2x,
and x = 1, oriented counterclockwise [recall that coshy = (¢” +¢7¥)/2and sinh y = (¢” — e7)/2]

12. F = e*(i +j), cis the boundary of the triangle with vertices (0, 0), (1, 2), and (0, 2), oriented
counterclockwise

13. T = arctan (y/x)i + arctan (x/y)j, ¢ is the circle x? + ¥* = 2, oriented counterclockwise

14. Assume that the curves involved are oriented counterclockwise.

xdy — ydx

(a) Compute ] e
c _‘{2 + ):2

xdy — ydx

, where c is the circle x? +? = 1.

(b) Computef , where cisthe circle (x — 12 4+ (y — 1) = 1.

e xP4y?
15, Using a path integral, compute the area of the region I bounded by the curves y = 2x* and
y=4x.

» 8.2 THI
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16. Using a path integral, compute the area of the region D bounded by the curves x = yhox =2,
and x = 3.

17. Using a path integral, compute the area of the region D in the first quadrant bounded by the
astroid ¥ 4 y¥* = 1.

18. Using a path integral, compute the area of the region bounded by the x-axis and the cycloid
e(t) = (t —sint, 1 —cost), where 0 <t < 2m.

19. Compute the work of the force F = xi 4 (x* +3 v%)j done on a particle that moves along the
straight-line segments from (0, 0) to (3, 0), then from (3, 0) to (1, 2), and then from (1, 2) back to
(0, 0).

20. Let D be a region that satisfies Assumption 8.1, with a positively oriented boundary 9D = ¢.
Assume that D is of constant density p. Express its mass m and moments M, and M, (with respect
to the y-axis and x-axis) in terms of path integrals.

21. Let D be a region that satisfies Assumption 8.1, with a positively oriented boundary 8D = ¢.
Assume that D is of constant density p. Express its moments of inertia about the x-axis and y-axis
in terms of path integrals.

23, Let D be the disk x2 + y* < 1, let ¢ be its positively oriented boundary, and let f(x, y) =
x2 4+ 3y”. By computing both sides, check that [, Af dA = [, Dnfds, where n is the outward
normal to ¢ and D, f is the directional derivative in the direction of the normal. Af denotes the
Laplacian of f, defined by Af = fix + S

23, Check that (see Exercise 22 for the notation) ff, Af dA = [. Dy f ds for the function f(x, y) =
¢* cos y, where D is the rectangle [0, 1] x [0, 2] and ¢ is its positively oriented boundary.

24. Check that (see Exercise 22 for the notation) [f,, Af dA = [, Du fds for the function f(x, y) =
e, where D) is the rectangle [0, 1] x [0, 1] and ¢ s its positively oriented boundary.

» 8.2 THE DIVERGENCE THEOREM

The Divergence Theorem (or Gauss’ Divergence Theorem) is similar to Green’s Theorem:
it relates an integral over a closed geometric object (a closed surface) to an integral over the
region (in this case, a three-dimensional solid region) enclosed by it.

Elementary regions in R? are regions in R? bounded by surfaces that are graphs of
real-valued functions of two variables. Depending on which of the variables are involved,
the regions are called type 1, type 2, or type 3. A region is of type 1 if its “bottom” and
“top” sides are graphs of continuous functions «; (x, y) and ica(x, y). A region is of type 2 if
its “back” and “front” sides are graphs of continuous functions (v, z) and k2(y, z), and of
type 3 if its “left” and “right” sides are graphs of continuous functions k(x, z) and k2(x, z)
[of course, the names “top,” “hottom,” “left,” etc., for sides depend on the point from which
we look at the x yz-coordinate system; see Section 6.5 for precise definitions; here, we drop
the notation (3D) since the context will clearly distinguish between two-dimensional and
three-dimensional elementary regions].

A region is of type 4 if it is of type 1, type 2, and type 3. For example, a rectangular box
whose sides are parallel to coordinate axes is of type 4. The ball {(x, , Dxr+yr+2 <)
and upper halt-ball {(x, y, DIx? + y* + 2 <1,z =0} areof type 4.

Before giving the statement of the theorem, we describe the regions that will be
involved.
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» EXERCISES 8.2

1. Consider the vector field F = r/||r||*, where r # 0.

(a) Show that divF = 0.

(b) Find [, F-dS, where S, is the sphere of radius 1 centered at the origin, oriented by the outward
normal. Can the Divergence Theorem be used to compute this integral?

{¢) If possible, use the Divergence Theorem to compute ffs F - d8, where S; is the sphere of radius
I centered at the point (0, 0, 2), oriented by the outward normal.

2. LetF be the velocity vector of a fluid, and assume that the only information known about it is that
divF(3,0, —1) = 4. Approximate the flux out of a sphere of radius 0.1 centered aL (3, 0, —1). Give a
reason why your answer is an approximation and not the actual value of the Aux.

3. Assume that F is a vector field such that div F(x, y, z) = 3 forall (x, v, z) € ®?. Find the flux of
F out of the parallelepiped with sides 3, 2, and 5.

4. Find the flux of the vector field F = ¢ x r, where ¢ is a constant vector and r = xi + vi + zk,
out of any sphere of radius 1.

Exercises 5 to 13: Evaluate the surface integral jL I - dS, where S is a closed surface oriented by
an outward normal.

5. Fix,y,z) = +sing)i+ (e 4235 + (xy +Inx)k, § is the surface of the cube 0 < x,
yv,z=<1

6. F(x,y,z) ="+ 2)i+ (> +z9k, § is the surface of the parallelepiped 0 < x,y < 2,
0<z<4

7. F(x,y,2) = (x + y* + Di+ (y + x2)j, S consists of the part of the cone z2 = x? + y? bounded
bythedisks 0 < x? +3y* <1, z=1,and0 < x>+ <4,z =2

8. Flx,y, 2)=(2x+3yi—(4y + 3z2)j +4zk, S consists of the paraboloid 7 = x? + y.0=<z<1,
andthedisk 0 < x> +y? < 1,z=1

9. F(x,y,z) = —e*cosyi+ e sinyj+k, S is the surface of the sphere x2 + v2 + 72 =1
10. Fix,y,2)=x"'i 4z 1j—yz 'k, S is the surface of the parallelepiped | <x <2,2 <y, z <4

11, F(x,y,z) = x% + xyj + xzk, S consists of the upper hemisphere x2 + y? + 72 = 1,z > 0, and
the disk 0 < x% + y* < 1 in the xy-plane

12. F(x,y,z) = 2xi+ xy*j + xyzk, S is the boundary of the three-dimensional solid inside x® +
¥ =2, outside x* + y* = 1, and between the planes z = 0 and z = 4

13. F(x, y,z) = yefi + yzk, § is the surface of the tetrahedron in the first octant, bounded by the
plane x +2y +z =4

14. Letr = xi+ yj+ zk. Prove that [{, 1 - dS = 3v(W), where v(W) is the volume of the three-
dimensional region W, bounded by S (i.e., dW = S).

15. Let W be a solid three-dimensional region that satisfies Assumption 8.2, and denote by § its
positively oriented boundary. Prove that [{f,, Ir|2dV = [[, [|Ir|7r - d8.

16. Use the Divergence Theorem to compute ffs(x + ¥)dS, where § consists of the upper hemi-
sphere x* 4 y? +z> = 1, z = 0 (oriented positively), and the disk 0 < x2 + y? < | in the xy-plane.
17.  Use the Divergence Theorem to compute the surface integral Mf; xyzdS, where § is the sphere
x% 4 y* +z* = 1, oriented by the outward-pointing normal.

18. Compute [[.(x* + y*)dS, where S consists of the part of the paraboloid z = 2(x% 4 y?) between
z = 0and z = 4, together with the top disk 0 < x* + y* < 2, z = 4, oriented by the cutward normal.
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19. Let W be a solid three-dimensional region that satisfies Assumption 8.2, bounded by a
closed, positively oriented surface S. Show that, for C* functions f and g, [f, fVgdS =
[w(fAg+Vf-Vg)dv.

20. Compute [f; ¢ - dS, if ¢ is a constant vector field and § is a closed surface.
21. Let W be a solid three-dimensional region that satisfies Assumption 8.2, bounded by a closed,

positively oriented surface S. Show that f; Dy f dS = [, Af dV, where f is of class C* and D, f
denotes the directional derivative of f in the direction of the outward unit normal to 5.

22. LetFbeaC' vector field in R?. Assume that f, F - nds = 0 for any closed curve ¢ in &2 (with
the outward normal m). What (if anything) can be said about the divergence of F?

23. Let F = yi/(x? + ¥*) — xj/(x* + y?). Compute the outward flux J.F-nds of F across the
rectangle R =[—1,1] x [-1,2].

Exercises 24 to 28: TFind the outward flux [, F - n s and the counterclockwise circulation J.F-ds
of the vector field F along the curve c.

24, F(x,y) = (2x — 1+ )i — (x — 3y)j, cis the square with the vertices (—1, —1), (1, —1), (1, 1),
and (—1, 1)

25. F(x,y) = (x* + yHi — xyj, eis the triangle defined by y = x, y = 2x, and x = 1

26. F(x, y) = 2xyi + 3y%j, ¢ is the boundary of the region in the first quadrant defined by y = x*
and y =1

27. F(x,y) = e*e’i+ 2¢’], ¢ is the boundary of the rectangle R = [0, 3] x [0, 4] oriented counter-
clockwise

28. F(x,y)=e¢ cosyi+ (xy+ e siny)j, ¢ is the boundary of the region defined by the curves
y=Inx,y=0,andx =e

29. Consider the vector field F(x, y, z) = e"‘zk, and let W be the cube [0, 1] x [0, 1] x [0, 1]. The
boundary ¢W = § consists of six squares.

(a) Try to evaluate ff, s F - dS directly, that is, by computing surface integrals,

(b) Use the Divergence Theorem to compute jf.; F -ds.

» 8.3 STOKES' THEOREM

Stokes” Theorem is similar in spirit to Green’s Theorem: it relates the path integral of a
vector field around a closed curve ¢ in R? to an integral over a surface § whose boundary is
¢. As usual, we have to make precise the assumptions on the curves and surfaces involved,
We will do it in two stages: first for a surface that is the graph of a function z = f(x, y) and
then for a general parametrized surface.

Let § be a surface defined as the graph of a function z = f(x, y), where (x, y) €
D. Assume that the domain D € R? is a region to which Green’s Theorem applies (see
Assumption 8.1 in Section 8.1). The boundary 4D of D is a simple closed curve (ie., a
closed curve that does not intersect itself), or several such curves, oriented positively (as we
walk along the boundary, the region D is on our left). Parametrize S by (for convenience,
we depart from using the standard parameters u and v and use x and y instead)

rix, y) =(x,y, flx, ), (x,)e D,
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Combining the above, we get

dex + QOdy = ]f (g — E)MYA,
< D dx 3}‘

and that is the statement of Green’s Theorem; see formula (8.4).

When talking about gradient vector fields in Section 5.4, we stated the fact that
ch -ds = 0 for any oriented, simple closed curve ¢ is equivalent to curlF = 0 if the
domain U of F is simply-connected [read Theorem 5.8, following the equivalences
(b) & (a) < (d)]. However, we gave the proof only in the case where U/ is a star-shaped
set. We will now outline the proof in a general case.

Let F be a vector field that is defined and is C' on a simply-connected set U € R?,
and assume that cur/ F = 0. Find a surface S that does not go through the points where F
is not defined or not C'! and whose boundary is a closed curve ¢ (this can always be done;
however, the proof is beyond the scope of this book). By Stokes” Theorem,

fF-dSzf/cun’F-dS =0,
c S

and we are done.

8.3

1. LetF(x, y,z) = —yi+ xj. Use Stokes’ Theorem to {ind the path integral JC F . ds, where:

(a) ¢1is the boundary of the square with vertices (1,0, 1), (1, 1, 1), (0, L, 1), and (0, 0, 1), oriented
counterclockwise, as seen from above.

(b) ¢ is the boundary of the square with vertices (1, 1,0), (0,1,0), (0,1, 1), and (1, 1, 1), oriented
by the normal n = j.

2. Take a closed surface § oriented by the outward normal, and break it into two parts S; and 5,
that share a boundary curve ¢. Assume that S, and S, are oriented by the same normal as S, and that
they satisfy the assumptions of Stokes’ Theorem. Show that [, g curl F-dS = — [fs, curl ¥ - d8, for

a C' vector field F defined on S. Conclude that [, curl F - dS = 0.

3. Compute fLF -ds directly, and then use Stokes’ Theorem: let F = (x + 1)%i — x?k, and let ¢ be
the intersection of the cylinder x? + 2x + ¥? = 3 and the plane z = x, oriented counterclockwise, as
seen from above.

Exercises 4 to 10: Find the circulation fl F - ds of the vector field F along the curve ¢ in the given
direction.

4. F(x,y,z) = v¥i—xj+ 2%k, cis the ellipse x> + 4y? =4, z = 0, oriented counterclockwise

5 F(x,y,2)=02x+ y)i—(3x —y— 2k, cis the boundary of the triangle cut out from the plane
x + 4y -+ 3z = 1 by the first octant, oriented clockwise as seen from the origin

6. F(x,y,z)=x%+ %+ 2%k, ¢ is the boundary of the circle x> + y* = 4 in the plane z = 4,
oriented counterclockwise as seen from the erigin

7. Flx,y,z) = (x> 4+ z9i + y?z%, ¢ is the boundary of the rectangle cut out from the plane y = z
by the planes x = 1, x = 2, y = 0, and y = 4, oriented counterclockwise as seen from above

8. F(x,v,z)=—2vi+ zj — zk, ¢ is the intersection of the cylinder 72+ x% =1 and the plane
vy = x + 1, oriented counterclockwise as seen from the origin
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9. Fix,y,z) = yXi+j+k), cis the circle on the sphere x* 4+ y* +z* = 1 defined by z = 1/2,
oriented clockwise as seen from the origin
10. F(x,y,z) = 2xi+ y?k, ¢is the boundary of the paraboloid z = 4 — x% — y? in the first octant,
oriented clockwise as seen from the origin

11. Let F be a constant vector field. A surface S in R? and its boundary curve e are assumed to
satisfy the assumptions of Stokes’ Theorem. Show that [f F.dS = 1 [(F xr)-ds, where r =
xi+ i+ zk.

12. Compute [ (2i+ xj + y°k) - ds, where ¢ is the circle x24y* =1, z = 1, oriented counter-
clockwise (as seen from above), by using the fact that ¢ is the boundary of the cone 2 =x4+y%
z=1.

13. Consider the vector field F = —2yi/(x? + y¥) 4+ 2xj/(x? + »*). Compute the counterclockwise
circulation of F along the circle x? + y* = 1, z = 0, directly. Can you compute [ curlF - dS, over
the disk S in the xy-plane enclosed by ¢? Explain why your answers do not violate Stokes” Theorem.
Exercises 14 to 21: Compute the circulation [, F - ds of the vector field ¥ along the curve ¢ by direct
computation, using the Fundamental Theorem of Calculus or using Stokes’ Theorem.

14. F(x, y) = 3xe 71, ¢ consists of the path y =2 2 from (0, 0) to (2, 4), followed by the straight
line from (2, 4) back to (0, 0)

15. F(x,y) = 2xi/(x* + ) +j/{x* + v), cis the boundary of the rectangle [1, 2] % [0, 1], oriented
counterclockwise

16. F(x, y) = xsinyi+ ysinxj, ¢ is the boundary of the triangle defined by the lines y = x, y =
y = mx/2, and x = 1, oriented counterclockwise

17. F(x,y.z) = yi+2zj + 3xk, c is the intersection of the cylinder x* + y* = 1 and the plane
z = y, oriented counterclockwise as seen from above

18. F(x, y)=Qxyi+ j)e‘z, ¢ consists of the straight-line segments from (0, 0) to (1, 1), then from
(1, 1) to (0, 2), and then from (0, 2) back to (0, 0)

19. F(x,y,2) = xi— yzj + k, ¢ is the intersection of the paraboloid z = x? + y* and the plane
z = 2y, oriented counterclockwise as seen from above

20. F(x,y,z) = 5i+2j+ zk, cis the ellipse y* + 42> = 4 in the plane x = 2, oriented clockwise
as seen from the origin

21. Fix,v,2) = 2x + y)i+ (2y — x)j, ¢is the helix e(t) = (cost,sint, 1), t € [0, 3], followed
by the line segment from (—1, 0, 37) back to (1, 0, 0)

22. Show that if the curve ¢ = 45 and the surface S satisfy the assumptions of Stokes” Theorem,
then f, fVg-ds = [[((Vf x Vg)-dS.

23. Show that if the curve ¢ = 45 and the surface § satisfy the assumptions of Stokes™ Theorem,
then [ fVf-ds =0

24, Set up the integral for the counterclockwise circulation of the vector field F = e¥i/(x? + 1)
around the unit circle in the xy-plane, Then evaluate it using Stokes’ Theorem.

» 8.4 DIFFERENTIAL FORMS AND CLASSICAL INTEGRATION THEOREMS

There are several reasons why we introduce and study differential forms. They provide a
useful way of formalizing certain concepts, and also, they appear often in applications of
vector calculus (see, for instance, Section 8.5). Moreover, we will be able to show that the

» EXAMPLE |




