Math 5B - HW4 (Written Portion)
 Due Aug 31

You must show your work to receive credit.
4.5.2 Show that the curve $\mathbf{c}(t)=\left(\frac{3}{5} \cos t+\frac{4}{5} \sin t,-\frac{3}{5} \sin t+\frac{4}{5} \cos t\right)$ is a flow line of the vector field $\mathbf{F}(x, y)=\left(\frac{y}{\sqrt{x^{2}+y^{2}}},-\frac{x}{\sqrt{x^{2}+y^{2}}}\right)$ going through the point $\left(\frac{4}{5},-\frac{3}{5}\right)$.
4.5.5 Find the flow line of the constant vector field $\mathbf{F}(x, y)=(a, b)(a$ and b are real numbers with $a \neq 0$ and/or $b \neq 0$) that goes through the origin.
4.5.12 Show that the curve $\mathbf{c}(t)=\left(e^{t}, 2 \ln t, t^{-1}\right), t>0$ is a flow line of the vector field $\mathbf{F}(x, y, z)=\left(x, 2 z,-z^{2}\right)$.
4.6.13 Find the curl and divergence of the vector field $\mathbf{F}(x, y, z)=\left(y^{2} z,-x z, x y z\right)$.
4.6.14 Find the curl and divergence of the vector field $\mathbf{F}(x, y, z)=(0,0, \ln z+x y)$.
4.6.25 Consider $\mathbf{F}(x, y, z)=(-y,-x,-3)$. Is \mathbf{F} a conservative vector field? If so, find a real-valued function V such that $\mathbf{F}=-\nabla V$.

