Math 5B - HW3 (Written Portion)
 Due Aug 21, in my mailbox in SH 6623
 You must show your work to receive credit.

For problems 1-3, find all critical points (if any) of the given function $f(x, y)$, and determine whether they are local extreme points or saddle points.

1. $f(x, y)=x y+\frac{x+y}{x y}$.

Since $\nabla f(x, y)=\left(y-\frac{1}{x^{2}}, x-\frac{1}{y^{2}}\right)$, we have that

$$
\nabla f(x, y)=(0,0) \Rightarrow y-\frac{1}{x^{2}}=0 \quad x-\frac{1}{y^{2}}=0
$$

Solving for y in the first equation and substituting into the second gives $x-x^{4}=0 \Rightarrow x\left(1-x^{3}\right)=0 \Rightarrow x=0$ or $x=1$. $x=0$ is not possible by the first equation, so $x=1$. Then $y=1$, so the only critical point is $(1,1)$. To determine whether it is a extreme point or a saddle point:

$$
H f(x, y)=\left[\begin{array}{cc}
\frac{2}{x^{3}} & 1 \\
1 & \frac{2}{y^{3}}
\end{array}\right]
$$

Since $|H f(1,1)|=3$ and $f_{x x}(1,1)=2$, we see that the critical point is a local minimum.
2. $f(x, y)=x y e^{-x^{2}-y^{2}}$.

First, find the critical points:

$$
\nabla f(x, y)=e^{-x^{2}-y^{2}}\left(y-2 x^{2} y, x-2 x y^{2}\right)
$$

Setting $\nabla f(x, y)=(0,0)$ gives 5 critical points:

$$
(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

(See lecture notes from 8/20 to see how these were computed). The Hessian matrix:

$$
H f(x, y)=e^{-x^{2}-y^{2}}\left[\begin{array}{cc}
2 x y\left(2 x^{2}-3\right) & \left(2 x^{2}-1\right)\left(2 y^{2}-1\right) \\
\left(2 x^{2}-1\right)\left(2 y^{2}-1\right) & 2 x y\left(2 y^{2}-3\right)
\end{array}\right]
$$

Calculating determinants:

$$
\begin{array}{rlrl}
|H f(1 / \sqrt{2}, 1 / \sqrt{2})| & =4 e^{-2}, & |H f(1 / \sqrt{2},-1 / \sqrt{2})| & =4 e^{-2} \\
|H f(-1 / \sqrt{2}, 1 / \sqrt{2})| & =4 e^{-2}, & |H f(-1 / \sqrt{2},-1 / \sqrt{2})|=4 e^{-2} \\
|H f(0,0)| & =-1 . &
\end{array}
$$

We see that $(0,0)$ is a saddle point, and since

$$
\begin{aligned}
f_{x x}(1 / \sqrt{2}, 1 / \sqrt{2}) & =-2 e^{-1}, & f_{x x}(1 / \sqrt{2},-1 / \sqrt{2}) & =2 e^{-1} \\
f_{x x}(-1 / \sqrt{2}, 1 / \sqrt{2}) & =2 e^{-1}, & f_{x x}(-1 / \sqrt{2},-1 / \sqrt{2}) & =-2 e^{-1}
\end{aligned}
$$

we see that $(1 / \sqrt{2}, 1 / \sqrt{2}),(-1 / \sqrt{2},-1 / \sqrt{2})$ are local maximums, and that $(-1 / \sqrt{2}, 1 / \sqrt{2}),(1 / \sqrt{2},-1 / \sqrt{2})$ are local minimums.
3. $f(x, y)=x^{3}+y^{3}+3 x^{2} y-3 y$.

Calculating the critical points:

$$
\nabla f(x, y)=\left(3 x^{2}+6 x y, 3 y^{2}+3 x^{2}-3\right)
$$

Setting $\nabla f(x, y)=(0,0)$ gives $3 x(x+2 y)=0$, so either $x=0$ or $x=-2 y$. If $x=0$, then $3 y^{2}+3(0)^{2}-3=0 \Rightarrow y= \pm 1$, so $(0,1),(0,-1)$ are critical points. If $x=-2 y$, then $3 y^{2}+3(-2 y)^{2}-3=0 \Rightarrow y= \pm \frac{1}{\sqrt{5}}$. So there are 4 total critical points:

$$
(0,1), \quad(0,-1) \quad(-2 / \sqrt{5}, 1 / \sqrt{5}), \quad(2 / \sqrt{5},-1 / \sqrt{5})
$$

Calculating the Hessian matrix:

$$
H f(x, y)=6\left[\begin{array}{cc}
x+y & x \\
x & y
\end{array}\right]
$$

Computing determinants:

$$
\begin{aligned}
|H f(0,1)| & =36, & |H f(0,-1)| & =36, \\
|H f(-2 / \sqrt{5}, 1 / \sqrt{5})| & =-6, & |H f(2 / \sqrt{5},-1 / \sqrt{5})| & =-6 .
\end{aligned}
$$

We see that $(-2 / \sqrt{5}, 1 / \sqrt{5}),(2 / \sqrt{5},-1 / \sqrt{5})$ are both saddle points, and since

$$
f_{x x}(0,1)=6, \quad f_{x x}(0,-1)=-6
$$

we see that $(0,1)$ is local minimum, and that $(0,-1)$ is a local maximum.
For problems 4-6, find the extreme values (if any) of a function f subject to the given constraint.
4. $f(x, y)=3 x y, \quad x^{2}+y^{2}=4$.

First we compute gradients:

$$
\nabla f(x, y)=(3 y, 3 x), \quad \nabla g(x, y)=(2 x, 2 y)
$$

Using Lagrange multipliers, we set $\nabla f=\lambda \nabla g$ to get

$$
3 y=2 \lambda x, \quad 3 x=2 \lambda y
$$

From the first equation we get that $\lambda=\frac{3 y}{2 x}$, and substituting this into the second equation gives $3 x^{2}=3 y^{2} \Rightarrow x= \pm y$. Using the constraint equation, we find that there are four critical points:

$$
(\sqrt{2}, \sqrt{2}),(-\sqrt{2}, \sqrt{2}),(\sqrt{2},-\sqrt{2}),(-\sqrt{2},-\sqrt{2})
$$

Plugging these points into f, we see that

$$
\begin{array}{rlrl}
f(\sqrt{2}, \sqrt{2}) & =6 & f(-\sqrt{2}, \sqrt{2}) & =-6 \\
f(\sqrt{2},-\sqrt{2}) & =-6 & f(-\sqrt{2},-\sqrt{2}) & =6
\end{array}
$$

so the maximum of $f(x, y)$ constrained to $g(x, y)=4$ is 6 , and the minimum is -6 .
5. $f(x, y)=2 x^{2}-y^{2}, \quad x^{2}+y^{2}=1$.

First, we calculate the gradients:

$$
\nabla f(x, y)=(4 x,-2 y), \quad \nabla g(x, y)=(2 x, 2 y)
$$

Setting $\nabla f=\lambda \nabla g$ gives

$$
4 x=2 \lambda x, \quad-2 y=2 \lambda y .
$$

From the first equation, we see that either $\lambda=2$ or $x=0$. If $x=0$, then by the constraint equation $y= \pm 1$. If $\lambda=2$, we substitute this into the second equation to get $y=0$; using the constraint equation gives $x= \pm 1$ in this case. Thus there are 4 critical points:

$$
(1,0),(-1,0),(0,1),(0,-1)
$$

Plugging these points into f :

$$
f(1,0)=2, \quad f(-1,0)=2, \quad f(0,1)=-1, \quad f(0,-1)=-1,
$$

we see that the maximum of f constrained to $g(x, y)=1$ is 2 , and the minimum is -1 .
6. $f(x, y, z)=x y z, \quad x^{2}+y^{2}+z^{2}=9$.

Computing gradients:

$$
\nabla f(x, y, z)=(y z, x z, x y), \quad \nabla g(x, y, z)=(2 x, 2 y, 2 z) .
$$

Setting $\nabla f=\lambda \nabla g$ gives

$$
y z=2 \lambda x, \quad x z=2 \lambda y, \quad x y=2 \lambda z .
$$

The first equation says that $\lambda=\frac{y z}{2 x}$; substituting into the second equation gives $x^{2}=y^{2}$, and substituting into the third equation gives $x^{2}=z^{2}$. Substituting these identities into the constraint equation gives $x^{2}=3 \Rightarrow x= \pm \sqrt{3}$. Then this gives 8 (yeesh!) critical points:

$$
\begin{array}{r}
(\sqrt{3}, \sqrt{3}, \sqrt{3}),(-\sqrt{3}, \sqrt{3}, \sqrt{3}),(\sqrt{3},-\sqrt{3}, \sqrt{3}),(-\sqrt{3},-\sqrt{3}, \sqrt{3}) \\
(\sqrt{3}, \sqrt{3},-\sqrt{3}),(-\sqrt{3}, \sqrt{3},-\sqrt{3}),(\sqrt{3},-\sqrt{3},-\sqrt{3}),(-\sqrt{3},-\sqrt{3},-\sqrt{3}) .
\end{array}
$$

Substituting all these points into f, we see that the maximum of $f(x, y, z)$ constrained to $g(x, y, z)=9$ is $3 \sqrt{3}$, and the minimum is $3 \sqrt{3}$.
7. Using the method of Lagrange multipliers, find the minimum distance from the surface $x^{2}+y^{2}-z^{2}=4$ to the origin.

The distance from the origin function is $d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. However, minimized this function is equivalent to minimizing $d^{2}(x, y, z)=x^{2}+y^{2}+z^{2}$. Computing some gradients:

$$
\nabla d^{2}(x, y, z)=(2 x, 2 y, 2 z), \quad \nabla g(x, y, z)=(2 x, 2 y,-2 z)
$$

Setting $\nabla d^{2}=\lambda \nabla g$ gives

$$
2 x=2 \lambda x, \quad 2 y=2 \lambda y, \quad 2 z=-2 \lambda z .
$$

The third equation says $2 z(1+\lambda)=0$, so either $\lambda=-1$, or $z=0$. If $\lambda=-1$, then the first two equations say that $x=y=0$, which leaves the constraint equation saying $-z^{2}=4$, which is impossible, so it must be the case that $z=0$. In this case, we have that every point of the form (x, y) such that $x^{2}+y^{2}=4$ is a critical point. For each of these points, $d^{2}(x, y, z)=4$, so the minimum distance is 2 .
8. Consider the partial differential equation $u_{t}=c u_{x}$, where c is some constant. Verify that under the change of variables

$$
v=x+c t \quad w=t
$$

u satisfies $u_{w}=0$.
First, we write u_{t} and u_{x} in terms of u_{v} and u_{w} :

$$
\begin{aligned}
u_{t} & =u_{v} v_{t}+u_{w} w_{t} \\
& =c u_{v}+u_{w}, \\
u_{x} & =u_{v} v_{x}+u_{w} w_{x} \\
& =u_{v} .
\end{aligned}
$$

Substituting these into the differential equation gives

$$
c u_{v}+u_{w}=c\left(u_{v}\right) \quad \Rightarrow \quad u_{w}=0 .
$$

