
Math 5B - HW3 (Written Portion)
Due Aug 21, in my mailbox in SH 6623

You must show your work to receive credit.

For problems 1-3, find all critical points (if any) of the given function f(x, y), and
determine whether they are local extreme points or saddle points.

1. f(x, y) = xy + x+y
xy

.

Since ∇f(x, y) = (y − 1
x2 , x− 1

y2
), we have that

∇f(x, y) = (0, 0) ⇒ y − 1

x2
= 0 x− 1

y2
= 0.

Solving for y in the first equation and substituting into the second gives
x− x4 = 0⇒ x(1− x3) = 0⇒ x = 0 or x = 1. x = 0 is not possible by the
first equation, so x = 1. Then y = 1, so the only critical point is (1, 1). To
determine whether it is a extreme point or a saddle point:

Hf(x, y) =

[
2
x3 1
1 2

y3

]
.

Since |Hf(1, 1)| = 3 and fxx(1, 1) = 2, we see that the critical point is a
local minimum.

2. f(x, y) = xye−x
2−y2 .

First, find the critical points:

∇f(x, y) = e−x
2−y2(y − 2x2y, x− 2xy2).

Setting ∇f(x, y) = (0, 0) gives 5 critical points:

(0, 0),

(
1√
2
,

1√
2

)
,

(
1√
2
,− 1√

2

)
,

(
− 1√

2
,

1√
2

)
,

(
− 1√

2
,− 1√

2

)
(See lecture notes from 8/20 to see how these were computed). The Hessian
matrix:

Hf(x, y) = e−x
2−y2

[
2xy(2x2 − 3) (2x2 − 1)(2y2 − 1)

(2x2 − 1)(2y2 − 1) 2xy(2y2 − 3)

]
.

Calculating determinants:

|Hf(1/
√

2, 1/
√

2)| = 4e−2, |Hf(1/
√

2,−1/
√

2)| = 4e−2,

|Hf(−1/
√

2, 1/
√

2)| = 4e−2, |Hf(−1/
√

2,−1/
√

2)| = 4e−2,

|Hf(0, 0)| = −1.

We see that (0, 0) is a saddle point, and since

fxx(1/
√

2, 1/
√

2) = −2e−1, fxx(1/
√

2,−1/
√

2) = 2e−1,

fxx(−1/
√

2, 1/
√

2) = 2e−1, fxx(−1/
√

2,−1/
√

2) = −2e−1,

we see that (1/
√

2, 1/
√

2), (−1/
√

2,−1/
√

2) are local maximums, and that
(−1/

√
2, 1/
√

2), (1/
√

2,−1/
√

2) are local minimums.
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3. f(x, y) = x3 + y3 + 3x2y − 3y.

Calculating the critical points:

∇f(x, y) = (3x2 + 6xy, 3y2 + 3x2 − 3).

Setting ∇f(x, y) = (0, 0) gives 3x(x + 2y) = 0, so either x = 0 or x = −2y.
If x = 0, then 3y2 + 3(0)2 − 3 = 0 ⇒ y = ±1, so (0, 1), (0,−1) are critical
points. If x = −2y, then 3y2 + 3(−2y)2 − 3 = 0⇒ y = ± 1√

5
. So there are 4

total critical points:

(0, 1), (0,−1) (−2/
√

5, 1/
√

5), (2/
√

5,−1/
√

5).

Calculating the Hessian matrix:

Hf(x, y) = 6

[
x+ y x
x y

]
.

Computing determinants:

|Hf(0, 1)| = 36, |Hf(0,−1)| = 36,

|Hf(−2/
√

5, 1/
√

5)| = −6, |Hf(2/
√

5,−1/
√

5)| = −6.

We see that (−2/
√

5, 1/
√

5), (2/
√

5,−1/
√

5) are both saddle points, and
since

fxx(0, 1) = 6, fxx(0,−1) = −6,

we see that (0, 1) is local minimum, and that (0,−1) is a local maximum.

For problems 4-6, find the extreme values (if any) of a function f subject to the
given constraint.

4. f(x, y) = 3xy, x2 + y2 = 4.

First we compute gradients:

∇f(x, y) = (3y, 3x), ∇g(x, y) = (2x, 2y).

Using Lagrange multipliers, we set ∇f = λ∇g to get

3y = 2λx, 3x = 2λy.

From the first equation we get that λ = 3y
2x

, and substituting this into the
second equation gives 3x2 = 3y2 ⇒ x = ±y. Using the constraint equation,
we find that there are four critical points:

(
√

2,
√

2), (−
√

2,
√

2), (
√

2,−
√

2), (−
√

2,−
√

2).

Plugging these points into f , we see that

f(
√

2,
√

2) = 6 f(−
√

2,
√

2) = −6

f(
√

2,−
√

2) = −6 f(−
√

2,−
√

2) = 6,

so the maximum of f(x, y) constrained to g(x, y) = 4 is 6, and the minimum
is −6.
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5. f(x, y) = 2x2 − y2, x2 + y2 = 1.

First, we calculate the gradients:

∇f(x, y) = (4x,−2y), ∇g(x, y) = (2x, 2y).

Setting ∇f = λ∇g gives

4x = 2λx, −2y = 2λy.

From the first equation, we see that either λ = 2 or x = 0. If x = 0, then by
the constraint equation y = ±1. If λ = 2, we substitute this into the second
equation to get y = 0; using the constraint equation gives x = ±1 in this
case. Thus there are 4 critical points:

(1, 0), (−1, 0), (0, 1), (0,−1).

Plugging these points into f :

f(1, 0) = 2, f(−1, 0) = 2, f(0, 1) = −1, f(0,−1) = −1,

we see that the maximum of f constrained to g(x, y) = 1 is 2, and the
minimum is −1.

6. f(x, y, z) = xyz, x2 + y2 + z2 = 9.

Computing gradients:

∇f(x, y, z) = (yz, xz, xy), ∇g(x, y, z) = (2x, 2y, 2z).

Setting ∇f = λ∇g gives

yz = 2λx, xz = 2λy, xy = 2λz.

The first equation says that λ = yz
2x

; substituting into the second equation
gives x2 = y2, and substituting into the third equation gives x2 = z2. Substi-
tuting these identities into the constraint equation gives x2 = 3⇒ x = ±

√
3.

Then this gives 8 (yeesh!) critical points:

(
√

3,
√

3,
√

3), (−
√

3,
√

3,
√

3), (
√

3,−
√

3,
√

3), (−
√

3,−
√

3,
√

3),

(
√

3,
√

3,−
√

3), (−
√

3,
√

3,−
√

3), (
√

3,−
√

3,−
√

3), (−
√

3,−
√

3,−
√

3).

Substituting all these points into f , we see that the maximum of f(x, y, z)
constrained to g(x, y, z) = 9 is 3

√
3, and the minimum is 3

√
3.

7. Using the method of Lagrange multipliers, find the minimum distance from the
surface x2 + y2 − z2 = 4 to the origin.

The distance from the origin function is d(x, y, z) =
√
x2 + y2 + z2. However,

minimized this function is equivalent to minimizing d2(x, y, z) = x2 + y2 + z2.
Computing some gradients:

∇d2(x, y, z) = (2x, 2y, 2z), ∇g(x, y, z) = (2x, 2y,−2z).
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Setting ∇d2 = λ∇g gives

2x = 2λx, 2y = 2λy, 2z = −2λz.

The third equation says 2z(1+λ) = 0, so either λ = −1, or z = 0. If λ = −1, then
the first two equations say that x = y = 0, which leaves the constraint equation
saying −z2 = 4, which is impossible, so it must be the case that z = 0. In this
case, we have that every point of the form (x, y) such that x2 + y2 = 4 is a critical
point. For each of these points, d2(x, y, z) = 4, so the minimum distance is 2.

8. Consider the partial differential equation ut = cux, where c is some constant.
Verify that under the change of variables

v = x+ ct w = t,

u satisfies uw = 0.

First, we write ut and ux in terms of uv and uw:

ut = uvvt + uwwt

= cuv + uw,

ux = uvvx + uwwx

= uv.

Substituting these into the differential equation gives

cuv + uw = c(uv) ⇒ uw = 0.
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