Math 5B - HW3 (Written Portion)
 Due Aug 21, in my mailbox in SH 6623
 You must show your work to receive credit.

For problems 1-3, find all critical points (if any) of the given function $f(x, y)$, and determine whether they are local extreme points or saddle points.

1. $f(x, y)=x y+\frac{x+y}{x y}$.
2. $f(x, y)=x y e^{-x^{2}-y^{2}}$.
3. $f(x, y)=x^{3}+y^{3}+3 x^{2} y-3 y$.

For problems 4-6, find the extreme values (if any) of a function f subject to the given constraint.
4. $f(x, y)=3 x y, \quad x^{2}+y^{2}=4$.
5. $f(x, y)=2 x^{2}-y^{2}, \quad x^{2}+y^{2}=1$.
6. $f(x, y, z)=x y z, \quad x^{2}+y^{2}+z^{2}=9$.
7. Using the method of Lagrange multipliers, find the minimum distance from the surface $x^{2}+y^{2}-z^{2}=4$ to the origin.
8. Consider the partial differential equation $u_{t}=c u_{x}$, where c is some constant. Verify that under the change of variables

$$
v=x+c t \quad w=t
$$

u satisfies $u_{w}=0$.

