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Abstract. The immersed boundary method is a numerical approach for simulating elastic
structures which interact with a fluid flow. In many physical systems thermal fluctuations become
significant at small scales and play a fundamental role. In this paper stochastic numerical methods
are developed which extend the immersed boundary approach to account for thermal fluctuations
by including appropriate stochastic forcing terms in the fluid equations. The stochastic numerical
methods developed in this paper differ in three significant ways from prior work: (i) The new nu-
merical methods allow for use of non-periodic non-uniform multilevel meshes, where prior methods
were only applicable to uniform periodic meshes and relied heavily on the Fourier Transform. (ii)
A new stochastic closure approximation is derived for the fast dynamics of the system to handle
stiff features of the stochastic equations. (iii) Methods for the generation of stochastic fields with
long-range covariance structure on multilevel meshes are developed having only linear computational
complexity in the number of mesh cells. These advances in addition to allowing for improved ac-
curacy and computational efficiency also allow for new physical phenomena to be studied with the
stochastic immersed boundary method. To show how the methods can be used in practice, results
for an interacting particle system and a polymer system are discussed which make particular use of
non-periodic boundary conditions to capture in the hydrodynamic interactions the effects of walls
and fixed inclusions in the fluid.
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1. Introduction. The immersed boundary method is a numerical approach for
handling immersed elastic structures which interact with a fluid flow [1]. In studying-
many physical systems at small length scales, such as interacting particles, polymers,
or membranes, thermal fluctuations often play a fundamental role in the dynam-
ics. In [?, ?] a general approach was discussed which extends the framework of the
immersed boundary method to incorporate thermal fluctuations by using fluctuation-
dissipation principles from statistical mechanics. To formulate stochastic numerical
methods consistent with fluctuation-dissipation principles analysis must be carrried
out for each type of discretization of the hydrodynamic equations to appropriately
handle the particular dissipative properties of the corresponding discrete operators.

Such an approach was taken for the special case of discretizations on a uniform
periodic mesh in [?]. To obtain an efficient time integration method the Fourier
Transform and Ito Calculus were used to derive analytic expressions to handle in-
herent stiffness in the stochastically forced equations [?]. For non-uniform multilevel
meshes with potentially non-periodic boundary conditions the Fourier Transform can
no longer be used directly.

In this paper we show how numerical methods can be formulated for non-periodic
multilevelmeshes. To obtain an efficient time integration method a new stochastic
closure approximation is derived for the fast dynamics of the fluid-structure system.
Stochastic numerical methods are then developed for the fluid-structure system which
achieve a linear computational complexity in the number of mesh cells per time step.
To acheive this complexity a method is developed which allows for the generation
of stochastic fields, having potentially long-range covariance structure, on multilevel
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meshes with linear computational complexity. The presented methods permit the
mesh to have selective resolution having more refined mesh cells on regions of interest,
while permitting coarser mesh cells on regions of less interest, for example areas
corresponding to the decay of large-scale hydrodynamic tails. The new methods also
allow for general boundary conditions to be incorporated on regions of the mesh.
To show how the methods can be used in practice simulation results for interacting
particle and polymer systems are discussed which make particular use of non-periodic
boundary conditions to capture in the hydrodynamic interactions the effect of walls
and fixed inclusions in the fluid.

2. Immersed Boundary Method for Time Dependent Stokes Flows. For
a fluid flow modeled by the time dependent Stokes equations the stochastic immersed
boundary method is given by:

ρ
∂u(x, t)

∂t
= µ∆u(x, t)−∇p(x, t) + fS(x, t) + fT (x, t)(2.1)

∇ · u(x, t) = 0(2.2)

dX[j]

dt
=

∫
δa(y −X[j])u(y, t)dy(2.3)

fS(x, t) = F[j]δa(x−X[j])(2.4)

The term p is the pressure, ρ is the fluid density, µ is the dynamic viscosity. The force
density fS accounts for momentum transferred to the fluid by elastic deformations of
immersed structures. The force density fT is a Gaussian random field δ-correlated
in time which accounts for the thermal fluctuations of the fluid-structure system.
Structures are modeled by M control points X[j] along with a force interaction law.
The force acting on the jth control point is denoted by F[j]({X[j′]}). The structure
dynamics are given by equation 2.3, which corresponds to advection of the control
points with the local fluid velocity. The term δa(x) approximates the Dirac δ-function.
In the immersed boundary method the δa functions are taken so that they integrate
to one and vanish outside a disk of radius a. This gives a brief formulation of the
equations of the immersed boundary method, for a more detailed discussion see [1].

3. Thermal Fluctuations. We now discuss the extension of the conventional
immersed boundary method to account for thermal fluctuations. In [?] it was shown
that in order for the model to be consistent with the principles of statistical mechanics
only the fluid degrees of freedom should be stochastically forced. To account for ther-
mal fluctuations of the system an appropriate choice must be made for the stochastic
forcing fT . It will be assumed throughout that the stochastic field fT is Gaussian
and δ-correlated in time. Consequently, the stochastic field is completely determined
by its spatial mean and covariance. To avoid an overly technical discussion and to
achieve our ultimate goal of formulating numerical methods, we shall discuss only the
case in which the stochastic differential equations have been spatially discretized by
finite differencing on a finite mesh. For this purpose, let L denote the finite difference
approximation of the Laplacian ∆. The spatial covariance structure of the equilibrium
fluctuations of the fluid can then be expressed in terms of the matrix C = 〈uuT 〉and
similarly the covariance of the stochastic forcing is given by G = 〈fT fTT 〉. In the no-
tation, the composite vector consisting of all values on the mesh for the fluid velocity
field and stochastic force field are denoted, respectively, by u and fT . The 〈·〉 denotes
averaging with respect to the equilibrium probability distribution.
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3.1. Fluctuation Dissipation Principle for Semi-Discretized Numerical
Methods. We now derive general expressions for the covariance structure of the
stochastic forcing which is required in order for the dynamics of a semi-discretized
system to achieve a given covariance structure for the equilibrium fluctuations. Let
Ct = 〈u(x, t)uT (y, t)〉 denote the covariance of the fluctuations of the field at time t
corresponding to the stochastic dynamicsof the semi-discretized system

du = Ludt+QdB(t)(3.1)

and let G = QQT . From Ito’s Lemma we have

dCt =
(
LCt + CtL

T +G
)
dt(3.2)

which for dCt = 0 at steady-state requires

G = −
(
LC + CLT

)
.(3.3)

This is referred to as the fluctuation-dissipation principle in statistical mechanics.
The expression yields a relation between the equilibrium fluctuations of the system
C, the dissipative mechanism of the dynamics L, and the stochastic forcing G. This
gives a general expression for how a semi-discretized system should be stochastically
forced to achieve a specified covariance for the equilibrium fluctuations.

For the stochastic immersed boundary method, the equilibrium fluctuations of
the fluid should have Gibbs-Boltzmann statistics with probability density Ψ(u) =
exp(−E[u]/kBT ). To make use of these relations an energy must be specified for the
discrete system. Taking for the energy of the system the kinetic energy integrated over
each mesh cell we have E[u] =

∑
m ρ|um|2∆xdm,where um is the fluid velocity and

∆xdm is the volume of the mesh cell with index m and where d is the spatial dimension
of the physical system. Under the Gibbs-Boltzmann statistics the covariance matrix
for the equilibrium fluctuations is given by

Cm,m = (kBT/ρ∆x3
m)I,(3.4)

where Cm,m denotes the d× d submatrix of C along the diagonal and I denotes the
identity matrix. From the Gibbs-Boltzmann statistics and the fluctuation-dissipation
principle the Gaussian random field fT is determined for any semi-discretization of
the fluid equations as 〈fT 〉 = 0 and 〈fT (x)fT (y)〉 = G = −

(
LC + CLT

)
.

4. Multilevel Meshes and Operators. The numerical methods will be formu-
lated by discretizing the spatial derivatives of the equations 2.1, 2.3 on a non-uniform
multilevel mesh. The MAC approach will be taken with values defined both at the
mesh cell centers and at the mesh cell faces. In Figure ?? a typical multilevel mesh
is depicted and in the zoomed in sub-figure the typical arrangement of the locations
of the cell and face centered values.

We refer to faces which comprise the adjoining cells where the mesh changes
from one resolution to another as the coarse-refined interface. On the coarse-refined
interface there are two types of face centered values. The values associated with the
refined mesh cells at the center of the refined cell faces and one value at the center of
the coarse cell face. Throughout we shall work with operations on the mesh where the
value at the center of the coarse cell is always taken to be the average of the values
at the center of the refined mesh cellfaces.

We shall index the mesh cells by m = (m1,m2,m3). The index of cell centered
values will be index as um. The index of face centered values will be given by indices
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of the form m′ = (m1 + d1,m2 + d2,m3 + d3), where di ∈ {0,− 1
2 ,

1
2} with only one

index of i having di 6= 0. For example, the mesh cell with index m with face centered
value in the direction of the negative x-axis has index given by (m1 − 1

2 ,m2,m3).
Following the MAC approach we shall define a gradient and divergence operator

on the mesh using a combination of cell centered and face centered values (cite).
On uniform regions of the mesh away from coarse-refined interfaces the divergence
operator and gradient operator are defined as

(Du)m =
∑
i∈I

u
(i)
m+hi

− u
(i)
m−hi

∆xm
(4.1)

(Gu)
(i)
m+hi

=
u

(i)
m+qi

− u
(i)
m−qi

∆xm
(4.2)

where hi has component i equal to 1
2 and all other components equal to zero, qi has

component i equal to 1 and all other components equal to zero. The set I consists of
the indices corresponding to faces in the positive x-axis, y-axis, and z-axis directions
only. At a coarse-refined interface the divergence operator is defined as above with
the understood convention that the face centered value of the coarse mesh cell will
be taken to be the average of the refined mesh cell face centered values. At a coarse-
refined interface the gradient must be defined carefully to attain at least first order
accuracy [?].

To avoid complications arising from all of the different cases, we shall only discuss
the case when the coarse-refined interface occurs as shown in Figure ??. In this case
the interface occurs for the coarse mesh cell along the face in the direction of the
positive x-axis. In this case, the gradient at the faces of the coarse-refined interface
is defined as

(Gu)
(1)
B =

u
(1)
A −

1
2

(
u

(1)
B + u

(1)
D

)
3
4∆xA

(4.3)

(Gu)
(1)
C =

u
(1)
A −

1
2

(
u

(1)
C + u

(1)
E

)
3
4∆xA

(4.4)

(Gu)
(1)
A =

1

4

(
(Gu)

(1)
B + (Gu)

(1)
C + (Gu)

(1)
D + (Gu)

(1)
E

)
(4.5)

with mesh cells D and E having respectively the same gradient values as B and C.
The cases for the other faces involved in coarse-refined interfaces is defined similarly,
see (cite).

These operators allow conveniently for a Laplacian to be defined for multilevel
meshes. Letting u denote the composite vector of all of the cell centered values we
shall use

Lu = DGu.(4.6)

which we refer to as the “MAC Laplacian.” For uniform three dimensinoal meshes this
can be shown to correspond to the discretization of the Laplacian with the standard
seven-point stencil. We remark that if only central differences of the cell centered
values were used to approximate the gradient and divergence on the mesh it can
be shown that the corresponding Laplacian can have a non-trivial null space even
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for non-periodic meshes, with each vector of the null space supported on a disjoint
sub-mesh.

For the non-periodic case boundary conditions will also be required on the mesh.
For the multilevel meshes the Dirichlet boundary conditions will be imposed by intro-
ducing boundary mesh cells which have a corresponding fixed cell centered value. For
Neumann boundary conditions the faces in the direction of the boundary condition
will have a corresponding fixed face centered value.

4.1. Multigrid Method on Multilevel Meshes. Central to the numerical
methods we shall discuss for multilevel meshes is the multigrid approach which can
be applied to solve linear systems of the form Av = b. The basic idea of the multigrid
approach is to formulate an iterative method by using a hierarchy of meshes and as-
sociated linear systems by coarsening the original mesh. The multigrid method then
uses standard iterative methods such as Gauss-Siedel iterations to relax toward a solu-
tion on each mesh in the hierarchy and combines the results to obtain an approximate
solution on the original mesh. On an intuitive level, the use of multiple meshes at dif-
ferent levels of refinement accelerates the overall rate of convergence of the iterative
method by allowing for information to be efficiently transmitted over large spatial
scales of the mesh in some sense. A more precise discussion of the multigrid method
can be found in (cite). We shall also discuss an interpretation of the multigrid method
from the variational perspective in Section 5.4.2. The specific variant of multigrid that
we shall use is referred to as “Fast Adaptive Composite Mesh Multigrid” which we
shall abbreviate as FAC-multigrid. This is summarized in Algorithm 1.

A typical multigrid method consists of three components: a restriction operator
to coarsen data from a more refined mesh to a coarser mesh of the hierarchy, a
prolongation operator to interpolate data from a coarser mesh to a more refined mesh,
and a smoother operator which iteratively relaxes an approximation toward a solution
of the linear system on each mesh. We shall use for the prolongation operator in
three dimensions the tri-linear interpolation. This allows for values on the coarse
mesh at level r to be interpolated to a more refined mesh at level `. We denote the

prolongation by I`r . For the restriction operator we shall use Ir` =
(
I`r
)T

, which has
desirable variational properties as discussed in Section 5.4.2. For the smoother we
shall use Gauss-Siedel iterations on the mesh which is given by

v(new)
m =

bm −
∑

k>mAm,kv
(old)
k −

∑
k<mAm,kv

(new)
k

Am,m
.(4.7)

A multigrid iteration takes as input an initial guess for the solution v and right-
hand side b of the linear system formulated for the mesh. The iteration then smooths
the errors of the initial guess relative to the solution of the linear system by applying
a few iterations of Gauss-Siedel. Rather than continuing on the refined mesh which
usually slows down to a near stall after a few iterations, the residual r = Aṽ − b
is computed for the current approximate solution ṽ. The residual can be used to
reformulate the problem in terms of the correction e = v − ṽ for the approximation
ṽ relative to the exact solution v. The exact correction satifies the linear system
Ae = b − Av = r. It can be shown that for many problems when the refined
mesh iterations “stall” the correction is “smooth” on the fine mesh. The restriction
operator is then used to reformulate the problem on a coarser mesh by coarsening
the residual values to the next coarsest mesh of the hierarchy and formulating the
coarse mesh linear system A(`−1)q(`−1) = r(`−1), where A(`−1) = I`−1

` A(`)I``−1 and
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r(`−1) = I`−1
` r(`). The smoother on the coarse mesh is then applied for a few iterations

with initial guess q = 0 to obtain an approximate solution q̃ to the linear system.
The multigrid idea can then be recursively applied to obtain a further collection of
linear systems which correct solutions on the next coarsest mesh in the hierarchy. To
obtain a solution on the original mesh the approximate solutions on each mesh must
then somehow be combined.

This is accomplished for the most refined mesh using the approximate solution q̃
found for the correction problem on the next coarsest mesh. This is applied to correct
the solution on the refined mesh by interpolation to obtain ṽ ← ṽ + I``−1q̃. A few
applications of the smoother is then applied to the corrected solution ṽ and the result
returned. For the coarser meshes a similar correction procedure is used to transmit
results down the mesh hierarchy until the most refined level is reached. This gives
one iteration of the multigrid method.

For many problems this significantly accelerates convergence to the solution and
only a few multigrid iterations are often required to obtain a solution having a residual
comperable or smaller than the discretization error. An important feature of the
multigrid method is that if the matrix A is sparse with only a constant number of
non-zero entries per row, the the iterations can be carried out with a computational
complexity of order only M , where M is the number of mesh cells. For a more
precise summary of the multigrid method see Algorithms 1, 2, and 3. A more detailed
discussion of multigrid methods can be found in (cite).

Algorithm 1: v← FAC-Multigrid(v,b, ν, µ1, µ2).

Data: An initial guess v, the right-hand-side b, the number of smoother iterations
(ν, µ1, µ2).

Result: An approximate solution v of the linear system Aw = b.

Procedure:
1. Compute the residual of the initial guess r = Av − b.
2. Initialize the initial guess for the correction q← 0.
3. Perform a full sweep of the mesh cells on the multilevel mesh

q← Full-Sweep(q, r, ν, µ1, µ2).
4. Correct the solution v← v + q.

5. Numerical Methods for the Stochastic Immersed Boundary Method.
In the case of a uniform periodic mesh the stochastic immersed boundary method
the matrices associated with discretization of the equations 2.1 was diagonalized by
the Fourier transform and explicit analytic expressions were derived for the time
integration of the Fourier modes. This allowed for time steps in the method which
either directly or indirectly resolved contributions to the dynamics of the fluid and
immmersed structures over a wide range of time scales. For non-uniform or non-
periodic meshes the Fourier Transform can no longer be directly applied to obtain
such numerical methods. We show how a different approach can be taken to obtain
stochastic numerical methods for multilevel meshes which are applicable over a wide
range of time scales.

5.1. Summary of the Stochastic Numerical Methods. We shall consider
two distinct regimes. The first corresponds to the regime where time steps are small
relative to the time scales on which the fluid degrees of freedom relax. The second
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Algorithm 2: q(`) ← Full-Sweep(q(`), r(`), ν, µ1, µ2).

Data: An initial guess q(`), the right-hand-side r(`), the number of smoother
iterations (ν, µ1, µ2).

Result: An approximate solution q(`) of the linear system A(`)w = r(`).

Procedure:
1. If the current mesh is at the level of refinement common to all meshes in the

hierarchy then perform one V-Cycle on the mesh:
q(`) ← V-Cycle(q(`), r(`), µ1, µ2).

2. Otherwise, coarsen the residual to the next mesh level r(`−1) ← I`−1
` r(`).

3. Perform a full sweep of the cells of the multilevel mesh
q(`−1) ← Full-Sweep(q(`−1), r(`−1), ν, µ1, µ2).

4. Apply the correction to the solution on the current level: q(`) ← I``−1q
(`−1).

5. Apply the smoother with the initial guess q(`) for ν iterations for the linear
system A(`)w = r(`).

Algorithm 3: v(`) ← V-Cycle(v(`),b(`)).

Data: An initial guess v(`), the right-hand-side b(`), the number of smoother
iterations (µ1, µ2).

Result: An approximate solution v(`) of the linear system A(`)w = b(`).

Procedure:
1. Apply the smoother with the initial guess v(`) for µ1 iterations for the linear

system A(`)w = b(`).
2. If the current mesh is at the coarsest level of refinement in the hierarchy

then skip to step 5.
3. Otherwise, perform a V-Cycle on the next coarsest mesh in the hierarchy.

Let b(`−1) ← I`−1
`

(
b(`−1) −Av(`)

)
, v(`−1) ← 0, then compute

v(`−1) ← V-Cycle(v(`−1),b(`−1)).
4. Correct the solution on the current level v(`) ← v(`) + I`(`−1)v

(`−1).

5. Apply the smoother with the initial guess v(`) for µ2 iterations for the linear
system A(`)w = b(`).

corresponds to the regime where the time step is large relative to the the time scales
on which the fluid degrees of freedom relax, but small relative to the time scales
on which the immersed elastic structures move appreciably. For each of the regimes
distinct numerical methods will be formulated to approximate the stochastic immersed
boundary equations on multilevel meshes. The first numerical method allows for
the stochastic dynamics of both the fluid and immersed structures to be directly
resolved in simulations. Such methods may be of interest for problems involving
phenomena related to the relaxation of the fluid, such as the study of hydrodynamic
memory effects. Directly resolving these dynamical features of the fluid, however,
greatly restricts the time steps which can be taken. A second numerical method
will be derived which only resolves directly the stochastic dynamics of the immersed
structures, thereby allowing for much less restricted time steps. The method is based
on a stochastic closure approximation derived to account statistically for the rapid
fluctuations of the fluid over a time step. Each of the numerical methods are outlined
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Algorithm 4: Stochastic IB Method (Time Dependent Stokes Flow)

Data: Numerical and physical parameters.
Result: Stochastic dynamics of the fluid-structure system.

Procedure:
1. Compute the forces acting on the immersed structures to obtain the force

field fS .
2. Generate the stochastic force field fT accounting for the thermal

fluctuations of the fluid using 3.4.
3. Perform the in-exact projection of u∗ using 5.4, which approximately

imposes incompressibility of the fluid.
4. Update the stochastic fluid flow u.
5. Update the configuration of the structures using the time integrated

stochastic fluid flow u.
6. Return to step 1. to compute the next time step of the dynamics of the

fluid and immersed structures.

Algorithm 5: Stochastic IB Method (Steady-State Stokes Flow)

Data: Numerical and physical parameters.
Result: Stochastic dynamics of the immersed structures.

Procedure:
1. Compute the forces acting on the immersed structures to obtain the force

field fS .
2. Compute UI the time integrated mean of the steady-state fluid flow.
3. Compute uII the time integrated thermal fluctuations of the fluid flow.
4. Perform the in-exact projection of U = UI + uII using 5.4, which

approximately imposes incompressibility of the fluid.
5. Update the configuration of the structures using the time integrated

stochastic fluid flow U.
6. Return to step 1. to compute the next time step of the dynamics of the

immersed structures.

in Algorithm 4 and 5. A more detailed discussion of their derivations is given in
Section 5.2 and 5.3.

5.2. Regime I: Stochastic Numerical Methods for the Case of Time
Dependent Stokes Flow. To integrate the stochastic dynamics of the fluid we
shall use the following variant of the Euler-Maruyama method

u∗,(n+1) = u∗,(n) + ρ−1Lu∗,(n)∆t+ ρ−1℘̃T f
(n)
S ∆t+ ρ−1g

√
∆t(5.1)

u(n+1) = ℘̃u∗,(n+1).(5.2)

In the notation u∗ refers to the fluid velocity field obtained without fully accounting for
the incompressibility of the fluid. The operator ℘̃ refers to an ”in-exact projection”
which corresponds to imposing approximately the incompressibility constraint. In
general, the approximate nature of the operator ℘̃ poses difficulties for stochastic
equations if we are interested in retaining in the numerical methods principles of
statistical mechanics, such as fluctuation-dissipation. For the stochastic immersed
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boundary method the scheme in equation 5.1 introduces the approximate projection
appropriately to retain these features. We remark that an important aspect of the
above method is that in constrast to other approaches cumulative errors from the
approximate projection are only accumulated from the term involving the force density
of the immersed structures. A further discussion motivating this method can be found
in Appendix ??.

We shall use the specific in-exact projection operator ℘̃ which is obtained by
approximately imposing the constraint that the discretized velocity field, when inter-
polated to the mesh cell faces, have zero divergence when a applying D the discretized
MAC divergence operator [?]. This is equivalent to solving the pressure equation

Lp = DIc→fu(5.3)

where Ic→f interpolates cell centered values to face centered values on the mesh and
D is the discrete MAC divergence operator and L is the MAC Laplacian.

The in-exact projection operator is then defined in terms of the solution p by

℘̃u := u− If→cGp =
(
I − If→cGL−1DIc→f

)
u(5.4)

where If→c interpolates face centered values to cell centered values and G is the
discrete MAC gradient operator. The projection is referred to as in-exact since the cell
centered field only satisfies approximately the condition DIc→fu = 0 to be divergence
free when u = ℘̃u∗. As already mentioned, in constrast to the projection method the
linear operator ℘̃ is not actually a true projection and in general ℘̃ 6= ℘̃2 may hold.
To compute the in-exact projection of ℘̃ in practice requires that we solve equation
5.3 each time step. We discussed in Section 4.1 how the multigrid method could be
used to solve on multilevel meshes such equations.

To account for the contributions of the thermal fluctuations of the fluid over the
time step the Gaussian random field g with mean zero and covariance G given in
equation 5.6 must be generated each time step. The computational cost of the time
step of the fluid will depend on the efficiency with which this field can be generated.
In general this poses a significant challenge since utilizing widely used methods such as
Cholesky factorization or Metropolis sampling to generate correlated random variables
may become prohibitive for stochastic fields on a mesh. For example, for a three
dimensional uniform mesh with M = N3 cells the Cholesky factorization scales as
O(M3) = O(N9). In Section 5.2.1, we discuss an alternative approach which allows
for the development of efficient methods to generate the stochastic fields on multilevel
meshes.

To integrate the stochastic dynamics of the immersed structures over a time step
we again use a variant of the Euler-Maruyama method

X[j],(n+1) = X[j],(n) +
∑
m

δa

(
ym −X[j],(n)

)
℘̃um(s)∆x3.(5.5)

We remark that the spatial average is performed using δa which is an approximation
of the Dirac δ-function, see Appendix A for one such choice. For a more general
discussion of δa functions see [1].

5.2.1. Method to Generate the Stochastic Fields on Multilevel Meshes.
To numerically simulate the fluid flows requires that the stochastic forcing fT be
efficiently generated to account for the thermal fluctuations of the fluid. This requires
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each time step generating a Gaussian random variable g on the mesh with mean 0 and
covariance G. In the case of a uniform periodic mesh G can be diagonalized using the
discrete Fourier transform. The stochastic forcing can then be obtained from explicit
analytic expressions for the random variables in Fourier space. The stochastic forces
is then generated by performing a Fast Inverse Fourier Transform. On non-uniform
non-periodic meshes this approach can no longer be applied.

A common approach to generate correlated Gaussian random variables is to com-
pute a factorization of the covariance matrix G of the form G = QQT , where Q is
typically an upper triangular matrix. Such a factorization can be shown to exist for
any symmetric positive semi-definite matrix. The random variable is then generated
from g = Qη, where η is the vector consisting of components which are indepedent
standard Gaussian random variables. The factor Q is typically determined using the
Cholesky factorization algorithm on G.

The efficiency of this approach depends crucially on two important issues: (i) The
computational effort required to obtain the factor Q. (ii) The sparsity structure of Q
which will determine the computational cost of the matrix-vector multiplications each
time step. For M = N3 mesh cells the cost of performing a Cholesky factorization is
O(M3) = O(N9). For a non-sparse full matrix factor Q the computational complexity
for generating a variate each time step is on the order of O(M2) = O(N6). These
costs are prohibitive for meshes even with a moderate number of mesh cells N in
each direction. All of this can of course be greatly improved if Q is sparse. For
instance, in the case that Q has only a constant number of non-zero entries per
row the complexity of matrix-vector multiplication per time step reduces to order
O(M) = O(N3). Therefore, an approach is sought by which the factors Q can be
determined efficiently for a multilevel mesh which are ideally as sparse as possible.

We remark that another issue is that when G is no longer positive definite, but
only semi-definite as in the case of periodic meshes, the Cholesky factorization algo-
rithm can no longer be directly applied. To avoid these issues, we shall take a different
approach and show how a sparse factor Q (not necessarily lower triangular) can be
obtained for the particular covariance matrix G given in equation 5.6.

Our factorization will be based on decomposing the random variable into two
parts g = g1 + g2. This allows for the covariance matrix to be expressed as G =
G1 +G2 +2G(1,2), where Gk = 〈gkgT

k 〉, k ∈ {1, 2}, G(1,2) = 〈g1g
T
2 〉. We shall generate

g using two independent random sources. The first source g1, can be thought of as
corresponding to random fluxes at the cell faces. The second source g2 can be thought
of as corresponding to random fluxes at the cell centers. Furthermore, the random
variable g can be extended to the mesh consisting of both the cell centered values
and face centered values. The covariance matrix for the cell centers given in equation
5.6 can also be naturally embedded in the covariance matrix for this more extensive
field. In particular, rows and columns corresponding to face centered values are taken
to be zero. This description allows for the random sources to be described by one
composite standard random Gaussian vector η with independent components at the
cell centers and face centers. The algorithm to generate g can then be described in
terms of a factor Q as before.

We remark that if the two sources are taken to have mean zero and are indepen-
dent then G(1,2) = 0. As a consequence this allows for the factor Q to be decomposed
as Q = Q1 + Q2. This follows since from g1 = Q1η and g2 = Q2η we have as a
consequence of independence that 〈g1g

T
2 〉 = Q1Q

T
2 = 0 and Q2Q

T
1 = 0. This reduces

the problem to finding a decomposition of G = G1 +G2 for which there are two sparse
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matrices Q1, Q2 such that Q1Q
T
1 = G1 and Q2Q

T
2 = G2.

We now show how this decomposition can be used to obtain a sparse factor Q for
multilevel meshes when the covariance arises from the MAC Laplacian and equilibrium
fluctuations given in equation 5.4. To illustrate the approach we shall consider some
typical rows of the covariance matrix corresponding to mesh cells at the coarse-refined
interface, see Figure ??. In the figure the coarse mesh cell has label A and the more
refined neighboring mesh cells have labels B,C,D,E at the coarse-refined interface.

By the fluctuation-dissipation principle in Section 3.1 the covariance matrix cor-
responding to the MAC Laplacian is

G = −2LC.(5.6)

The field value at the center of cell A has covariance with the other field values on
the mesh given by the row entries GA,A = (8kBT/3∆x5) + (10kBT/∆x

5), GA,k =
−16kBT/3∆x5 k ∈ {B,C,D,E}, and for the remaining unlabeled neighbors at the
same level of refinement GA,k = −2kBT/∆x

5 k ∈ {coarse-neigh.}. Throughout we
shall take ∆x = ∆xA to be the mesh width of cell A. The field value at the center of
cell B has covariance with the other field values given by GB,B = (64kBT/3∆x5) +
(320kBT/∆x

5), GB,A = −16/3∆x5, GB,D = 64kBT/3∆x5 GB,k = −64kBT/∆x
5

k ∈ {refined-neigh}. The mesh cells C,D,E have similar entries.
We now show the covariance structures which can be attained by taking the

divergence of random fluxes J generated at each face. This gives at the cell center
with index m the value

g(m) = (DJ)(m) =
(J

(m)
N − J (m)

S ) + (J
(m)
U − J (m)

D ) + (J
(m)
W − J (m)

E )

∆x

where J
(m)
k denotes a random flux at face k ∈ {N,S, U,D,W,E} where the indices

correspond respectively to the north, south, up, down, west, and east directions. This
gives the covariance on the mesh

G̃m,m =

(
σ

(m)
N

)2

+
(
σ

(m)
S

)2

+
(
σ

(m)
U

)2

+
(
σ

(m)
D

)2

+
(
σ

(m)
W

)2

+
(
σ

(m)
E

)2

∆x2

G̃m,k =
−
(
σ

(m)
k

)2

∆x2
for k ∈ {neighbors}

where
〈
J

(m)
k

〉
= 0 and

〈(
J

(m)
k

)2
〉

=
(
σ

(m)
k

)2

.

We now discuss whethor such an approach is adequate to produce to covariance
G = −2LC. In the case of a uniform mesh, it can be shown this approach is suf-
ficient to completely generate the covariance matrix G. More specifically, one takes(
σ

(m)
k

)2

= 2kBT/∆x
3. In constrast, for non-uniform meshes the random fluxes are

not sufficient to generate the required covariance structure G as a consequence of
features of the coarse-refined interfaces. However, the covariance structure obtained
from such random fluxes can be used to generate partially the required covariances G.
Consider the case in which the random fluxes are generated only at faces not involved
in a coarse-refined interface. This then gives a covariance matrix G̃ with entries given
by equation 5.7, where zero variances are taken for the faces involved in the coarse-
refined interfaces. This leaves the remaining covariance contributions ∆G = G − G̃
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where ∆GA,A = 8kBT/3∆x5, ∆GA,k = −16kBT/3∆x5, k ∈ {B,C,D,E}, ∆GB,A =
−16kBT/3∆x5, k ∈ {B,C,D,E}, and ∆GB,D = 64kBT/3∆x5.

An important feature of ∆G is that each block of cells involved in a coarse-refined
interface is decoupled from all other cells of the mesh. This allows each decoupled
coarse-refined sub-system of mesh cells to be considered separetely. Factoring out
c = 8kBT/3∆x5 we can express ∆G = cM . For the sub-system shown in Figure ??,
this contributes the following terms to M ,

M̃ =


1 −2 −2 −2 −2
−2 8 0 8 0
−2 0 8 0 8
−2 8 0 8 0
−2 0 8 0 8

(5.7)

with row and column ordering A,B,C,D,E. The eigenvalues of the matrix are λ0 =
0, λ1 = 16, λ2 = 17, where λ0 has multiplicity two. This shows that the matrix
is positive semi-definite. Consequently, the additional covariance contributions to
∆G can be obtained by generating additional random variables independent of the
random fluxes and independent for each coarse-refined sub-system. This can be done
in practice by generating for each sub-system h =

√
λ1η1w1 +

√
λ2η2w2, where η1, η2

are any two independent Gaussian random variables which by convention are taken to
be the cell center sources of A andB. This uses the eigenvectors for the non-zero values
w1 = (1/2)[0,−1, 1,−1, 1]T and w2 = (1/

√
17)[−1, 2, 2, 2, 2]T . A similar approach can

be used to generate the contributions for the other cases of cell arrangements at the
coarse-refined interfaces.

Algorithm 6: Generator for the Stochastic Forcing of the Fluid

Data: G = −2LC covariance matrix for the stochastic force field.
Result: Stochastic random force field g with mean zero and covariance G.

Procedure:
1. Generate independent random fluxes J for all faces not involved in a

coarse-refined interface with variances determined by G1.
2. Compute g1 = DJ, by evaluating the MAC divergence of the random fluxes.
3. Determine on the mesh the covariance structure G2 for each decoupled

sub-system at the coarse-refined interfaces.
4. Generate the components of g2 by looping through each of the decoupled

sub-systems of the mesh.
5. Compute g = g1 + g2.

To summarize, this gives the following procedure for generating the stochastic
random field. Let Q1 be the factor which gives g1 = Q1η corresponding to taking the
divergence of the random fluxes generated at each face not involved in a coarse-refined
interface. Let Q2 be the factor which gives g2 = Q2η corresponding to generating the
random variable for each decoupled sub-system of the coarse-refined interfaces from
the cell centered random sources. The covariances obtained in each of these steps
corresponds to G1 = Q1Q

T
1 = G̃ and G2 = Q2Q

T
2 = ∆G. From independence of the

two types of random sources it follows that G1 + G2 = G. For G this gives a sparse
factor of the form Q = Q1 +Q2 which has only order one entries per row. The sparse
factor can then be used to generate the random variable g for the multilevel mesh
with optimal linear computational complexity O(M).
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5.3. Regime II: Stochastic Numerical Methods for the Case of Steady-
State Stokes Flow. We now discuss numerical methods for the case where the
dynamics of the immersed structures are slow relative to the correlation time scale
of the fluid velocity fluctuations. In this regime the stochastic equations of the fluid-
structure system are numerically stiff and applying the numerical methods of Section
5.2 require small time steps making it computationally expensive to resolve the long-
time dynamics of the immersed structures. We now discuss an approach for this
regime by which the separation in time scales can be used to obtain a more effective
method.

5.3.1. Stiffness of the Stochastic Differential Equations. In the stochastic
dynamics of the fluid-structure system the time scale on which immersed structures
diffuse a distance comperable to the length scale a appearing in δa is often much
larger than the time scale associated with the temporal correlation of the spatially
averaged fluid velocity determining the motion of the immersed structures. In the time
integrators discussed in Section 5.2 this places severe constraints on the time steps
which are permitted since the fluid fluctuations driven by the stochastic forcing must
be explicitly resolved. In this section we discuss how more efficient numerical methods
can be obtained by performing a temporal averaging of the stochastic fluctuations of
the fluid to approximately account for their statistical contributions to the immersed
structure dynamics over a time step.

While the spirit of our approach shares some similarities with the derivation of
the Stokesian-Brownian dynamics method, which reduces the system to a hydrody-
namic coupling tensor and stochastic forces acting only on the immersed particles,
our approach differs by retaining the fluctuations of fluid velocity field on the entire
mesh. While this may lead to a greater computation expense, one feature of this ap-
proach is that it potentially allows for a generalization to complex flows where only a
constituitive law for the fluid need be numerically defined on the mesh, as opposed to
computing in advance a hydrodynamic coupling matrix. For Newtonian fluids it can
be shown that the effective hydrodynamic coupling and stochastic driving of immersed
structures in the stochastic immersed boundary method yield the same dynamics as
Stokesian-Brownian dynamics for the far-field interactions (cite). An important is-
sue which allows for tractable numerical methods in our case are methods developed
to generate the stochastic fields on the multilevel meshes with linear computational
complexity in the mesh size O(M).

To obtain effective equations for the particle dynamics we consider a Taylor ex-
pansion of the δa-function in x to obtain:

X[j](t) = X[j](0) + IX,j(t)(1 + o(1))(5.8)

IX,j(t) :=

∫
δa(x−X[j](0))℘̃IV(x, t)dx(5.9)

IV(x, t) :=

∫ t

0

u(s)ds.(5.10)

To numerically integrate the particle dynamics we shall use:

X[j],n+1 = X[j],n +

∫
δa(x−X[j],n)℘̃IV(x,∆t)dx.(5.11)

To close the equations so that they depend only on X[j] and the instantaneous forces
acting on the system, the steady-state statistics of IV(x,∆t) will be determined.
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5.3.2. Stochastic Closure for the Fast Dynamics of the Fluid-Structure
System. We now show how the statistics of IV(t) can be computed to close the
equations. Since IV(t) is a Gaussian random field it is completely determined by its
mean µV (t) and covariance ΛV (t). These can be expressed as

〈IV(t)〉 := µV (t) =

∫ t

0

〈u(s)〉ds(5.12)

〈(IV(t)− µV (t)) (IV(t)− µV (t))
T 〉 := ΛV (t) =

∫ t

0

∫ t

0

〈u(r)u(s)T 〉drds(5.13)

− Ω(t)(5.14)

Ω(t) :=

∫ t

0

∫ t

0

〈IS(r)IS(s)T 〉drds.(5.15)

By integrating equation 2.1 the fluid velocity at time t can be expressed as:

u(t) = etLu(0) + IS + IT(5.16)

IS :=

∫ t

0

e(t−s)Lρ−1℘̃T fS(s)ds(5.17)

IT :=

∫ t

0

e(t−s)LQdB(s)(5.18)

where etL denotes the matrix exponential of the operator tL and G = QQT . It follows
from the fact that 〈u〉 = 0 and from equations 5.17 and 5.18 that 〈IS(t1)IT(t2)T 〉 = 0,
〈IS(t1)u(0)〉 = 0, and 〈IT(t1)u(0)〉 = 0. Furthermore, this shows that the mean of the
time integrated velocity field is

µV (t) =

∫ t

0

IS(s)ds.(5.19)

The covariance can then be expressed as

ΛV (t) =

∫ t

0

∫ t

0

erLCesL
T

drds+

∫ t

0

∫ t

0

〈IT(r)IT(s)T 〉drds.(5.20)

From Ito’s Isometry applied to (ref) and (ref) we have

Λ(t) = Λ1(t) + Λ2(t)(5.21)

Λ1(t) :=

∫ t

0

∫ t

0

erLCesL
T

drds(5.22)

Λ2(t) :=

∫ t

0

∫ t

0

∫ r∩s

0

e(r−w)LGe(s−w)LT

dwdrds.(5.23)

The first term can be integrated explicitly to obtain:

Λ1(t) = L−1
(
etL − I

)
CL−T

(
etL

T

− I
)
.(5.24)

The second term can be integrated by a more involved calculation to obtain, see
Appendix (ref),

Λ2(t) = −L−1GL−T
(
L−T

(
etL

T

− I
)
− tI

)
(5.25)
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− L−1
(
L−1

(
etL − I

)
− tI

)
GL−T(5.26)

+ Λ2,1(t)L−T + L−1Λ2,1(t)(5.27)

Λ2,1(t) :=

∫ t

0

(t− q)eqLGeqL
T

dq.(5.28)

The equations 5.19 and 5.20 give expressions for the mean µV (t) and covariance
ΛV (t) of IV(t). To use these expressions in practice requires they be numerically
evaluated or approximated effectively.

5.4. Approximating the Mean and Covariance of the Temporally Aver-
aged Fluctuations of the Fluid. The expressions above must be evaluated numer-
ically or approximated to obtain a method to generate the corresponding stochastic
fields. We now discuss how to approximate expressions for the mean and covariance
in the regime in which the time scale of the particle dynamics is separated from the
time scale of the fluid dynamics. This corresponds the regime in which τS � t� τF ,
where τF characterizes the relaxation time scale of the fluid modes on the length scale
of the particles and τS is the length scale on which the particle positions change on
the length scale of the particle size. In this regime we have that etL is small. Recall
that the dissipative operator L is negative semi-definite.

Assuming the force changes on a time scale slower than or equal to τS we have
from equation 5.17 the approximation:

IS(t) = −ρ−1L−1
[
I − etL

]
℘̃T fS(0) + · · · .(5.29)

This yields an approximation of the mean of IV(t). The covariance matrix Λ(t)
of the time integrated fluctuations of the fluid velocity can also be approximated in
this regime. From (ref) it follows that, see Appendix (ref),

Λ2,1(t) = tC + · · ·(5.30)

Substitution into (ref) gives the leading order term

Λ(t) = −t
(
L−1C + CL−T

)
+ · · ·(5.31)

In the case when L is the ”MAC Laplacian” and C is the equilibrium covariance
given in 3.4 the matrix product is symmetric, L−1C = (L−1C)T . This reduces the
covariance to

Λ(t) = −2tL−1C + · · ·(5.32)

Using the expressions above for the mean and covariance of the temporally aver-
aged fluctuations of the fluid the numerical method to update the immersed structures
can be expressed as

X[j],(n+1) = X[j],(n) +
∑
m

δa(ym −X[j],(n))℘̃I
(n)
V,m∆x3.(5.33)

From equations (ref) and (ref) we see that the stochastic field for the contributions
of the thermal fluctuations to the immersed structure dynamics over the time step can
be naturally decomposed into a drift field and a fluctuating field. In particular, we
can express this as Iv = uI +uII where uI = −ρ−1L−1℘̃T fS∆t is a deterministic field
over each time step obtained from equation (ref) and uII is a Gaussian random field
with mean zero and covariance G = −2∆tL−1C obtained from equation (ref). To
obtain a method which is useful in practice requires that each of the fields uI and uII

be generated without too much computational expense. We now discuss how these
fields can be efficiently computed for the stochastic immersed boundary method.
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5.4.1. Computing uI : Solver for Steady-State Stokes Flow . The velocity
field uI corresponds to the steady-state Stokes flow which is obtained when the force
density fS acts on the fluid. To obtain this field the linear system LuI = ρ−1℘̃T fS is
solved for uI by using the multigrid method described in Section 4.1. Carrying this
out by using multigrid methods for the mesh has linear computational complexity of
order O(M), where M is the number of mesh cells.

5.4.2. Computing uII : Methods for Stochastic Fields for the Time In-
tegrated Fluctuations of the Fluid. To numerically account for the contributions
of the thermal fluctuations of the fluid in the dynamics of the immersed structures
requires generation of a stochastic field each time step. For the time step spanning

[0,∆t] the field is given by uII =
∫∆t

0
fT (s)ds, which has mean and covariance given

in equation 5.19 and 5.20. We showed in Section 5.4 that this can be approximated
by a Gaussian random field g with mean zero and covariance G = −2∆tL−1C.

In the case of uniform periodic meshes the Fourier transform can be used to di-
agonalize G and the field g can be obtained by performing a Fast Inverse Fourier
Transform on random variates generated in Fourier space. The computational com-
plexity of this approach was of order O(M log(M)), where M = N3 was the number
of mesh sites. For non-uniform or non-periodic meshes the Fourier transform is no
longer directly applicable. We now show how a different approach can be taken to
generate samples of the stochastic field g on multilevel meshes, while still attaining a
comperable computational efficiency as the approach used for uniform meshes.

Our approach will be based on modifying the multigrid method to produce ran-
dom samples. To help motivate the methods it will be convenient to interpret the
multigrid method from a variational perspective. A multigrid iteration for a sym-
metric positive definite matrix A corresponding to the linear system Av = b can
be interpreted as a minimization procedure for the energy E(v) = 1

2vTAv − vTb.
Using Gauss-Siedel as the smoother the update sweeps on the mesh are given by
equations 4.7. where the indices m are taken in some ordering. For each index m the
Gauss-Siedel update can be easily shown to correspond to solving for the vm which
minimizes the energy E(v) holding all other component values of v fixed. The sweep
on the mesh then corresponds to a sequence of these site-wise constrained minimiza-
tions performed for the energy E. One interpretation the multigrid method is that
the convergence to the minimizer can be accelerated by performing updates on col-
lective degrees of freedom of the mesh instead of values at only one mesh site. These
collective degrees of freedom in the multigrid method are obtained by considering the
mesh sites at different levels of refinement and their influence through interpolation
on collective sites of the finest mesh of the system.

Let Ir` be the prolongation operator which interpolates mesh values at refinement
level ` to level r. Let the restriction operator which coarsens data from refinement
level r to level ` be taken to be I`r = (Ir` )

T
. Let `∗ denote the the most refined level,

which corresponds to the uncoarsened mesh. We can interpret values at individual
mesh sites on the coarsened meshes as corresponding to collective degrees of freedom
on the most refined mesh. These site values can be thought of as collective degrees of
freedom in the sense that if we were to change a site value at refinement level ` this
would influence multiple values on the uncoarsened mesh through the interpolation
performed by the prolongation operator I`∗` .

The energy can be expressed in terms of the collective degrees of freedom obtained
from the mesh at level ` by substituting the corresponding interpolation into the en-

ergy for the uncoarsened mesh. This gives E(v(`)) := E(I`∗` v(`)) =
(
v(`)

)T
A(`)

(
v(`)

)
−
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v(`)

)T
b(`), where A(`) :=

(
I`∗`
)T
A
(
I`∗`
)

and b(`) :=
(
I`∗`
)T

b. The Gauss-Siedel up-

dates on level ` then correspond to minimizing the energy E with respect to v
(`)
m while

holding the other components of v(`) fixed. The multigrid iteration from the varia-
tional perspective then corresponds to approaching the minimizer of E by performing
a sequence of constrained minimizations at different levels of refinement of the mesh.
For a further discussion of multigrid methods, see (cite).

We now discuss how this perspective can be used to derive a Gibb’s sampler for
correlated random variables. The random variable g with mean b and covariance G
has the probability density ρ(g) = 1

Z exp
(
− 1

2gTG−1g + gTG−1b
)
, where Z is the

normalization factor so that the density integrates to one. This can be related to the
energy E above by letting A = G−1, in which case ρ(g) = 1

Z exp (−E(g)).

A common approach to sampling a random variable with a distribution ρ(g)
is to construct a Markov-Chain that has ρ(g) as the invariant distribution. The
efficiency of the method in generating indepedent random variates is then determined
by two factors. The first is the expense in computing each iteration of the Markov-
Chain. The second is the number of samples which need to be generated to obtain
variants having a correlation below some threshold. The latter is often characterized
by the autocorrelation function of the sequence. To obtain a random sampler from
the multigrid method we shall modify the Gauss-Siedel update by adding a random
term as follows

v(new)
m =

bm −
∑

k>mAm,kv
(old)
k −

∑
k<mAm,kv

(new)
k

Am,m
+

(
1√
Am,m

)
ηm(5.34)

where ηm is a standard Gaussian random variable generated indepedently for each
update.

This random update corresponds to generating vm according to the conditional
probability distribution of ρ(g) obtained when conditioning on the other components
of v. As a consequence, if the random variable v has distribtion ρ(g) before the update
the new random variable v′ obtained by the update also has distribution ρ(g). This
ensures that ρ(g) is the invariant distribution of the Markov-Chain and transforms
the multigrid iterator into a Gibb’s sampler [?].

This approach was first proposed by Goodman and Sokal to generate variates
for lattice gauge theories [?]. The efficiency with which nearly independent Gaussian
random variates can be obtained is characterized by the autocovariance of the sequence
of variates generated by the multigrid sampler. To obtain the autocovariance we can
express the stochastic multigrid iteration as

v(n+1) =Mv(n) +Qη(n)

where η(n) is a vector with components consisting of independent standard Gaussians
generated independently each iteration, M are matrices corresponding to the deter-
ministic multigrid iterations, and Q is the matrix corresponding to the stochastic
terms which modified the Gauss-Siedel updates.

Starting the iterations from statistical equilibrium with 〈v(0)〉 = A−1b and
cov

(
v(0),v(0)

)
= A−1, the autocovariance of the generated sequence of samples is

given by

cov
(
v(n0+∆n),v(n0)

)
=M∆nA−1.
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From this it follows that the decay in ∆n of the autocovariance is governed by the
spectral radius of M [?, ?]. This is the same factor which governs the decay of the
error when the deterministic multigrid iterations are used to solve linear systems.
Consequently, after only relatively few multigrid iterations the samples can be made
to be correlated negligably. For a more detailed discuss see [?, ?].

The efficiency of the algorithm also depends crucially on the expense with which
iterations can be performed. An important issue is that the multigrid sampler per-
forms iterations using the inverse of the covariance matrixA = G−1. For the stochastic
immersed boundary method the stochastic field has covariance G = −2∆tL−1C with
inverse G−1 = −1

2∆tC
−1L which is sparse with a constant number of non-zero entries

per row. Consequently, the sampler based on the multigrid method produces nearly
independent variates of the stochastic field g on multilevel meshes with a computa-
tional complexity of only order O(M).

Algorithm 7: Generator for Time Integrated Thermal Fluctuations of the Fluid

Data: G = −2∆tL−1C covariance matrix for the stochastic force field.
Result: Stochastic random force field g with mean zero and covariance G.

Procedure:
1. Perform stochastic multigrid iterations on the mesh.

6. Applications.

6.1. Boltzmann Statistics of an Elastic Dimer.

6.2. Hydrodynamic Interactions of Two Interacting Particles. Show the
effective hydro-dynamic interaction matrix and autocovariances acheived in fluctua-
tions of two interacting particles (at fixed locations on the mesh).

6.3. Diffusivity of Particles in the Presence of Walls and Fixed Inclu-
sions.

6.4. Fluctuations of a Wormlike Chain Polymer.

7. Conclusions.
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Appendix A. The Representation Function δa for Immersed Particles.
In the immersed boundary method, it is required that a function δa be specified to
represent the elementary particles. The representation of this function is often derived
from the following function φ which is known to have desirable numerical properties
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[1]:

φ(r) =



0 , if r ≤ −2

1
8

(
5 + 2r −

√
−7− 12r − 4r2

)
, if −2 ≤ r ≤ −1

1
8

(
3 + 2r +

√
1− 4r − 4r2

)
, if −1 ≤ r ≤ 0

1
8

(
3− 2r +

√
1 + 4r − 4r2

)
, if 0 ≤ r ≤ 1

1
8

(
5− 2r −

√
−7 + 12r − 4r2

)
, if 1 ≤ r ≤ 2

0 , if 2 ≤ r.

(A.1)

For three dimensional systems the function δa representing elementary particles
of size a is

δa(r) =
1

a3
φ

(
r(1)

a

)
φ

(
r(2)

a

)
φ

(
r(3)

a

)
,(A.2)

where the superscript indicates the index of the vector component.
To maintain good numerical properties, the particles are restricted to sizes a =

n∆x, where n is a positive integer. For a derivation and a detailed discussion of the
properties of these functions see [1].

Appendix B. Periodic Meshes: Adjustments for Singular Mesh Opera-
tors. For periodic meshes the discrete Laplacian is singular with a null space spanned
by the vector v with identical components, vi = 1 for all i. In the multigrid iterations
this can cause problems both in the deterministic and stochastic case. In particular,
the iterations exhibit drift which eventually degrades the computed solution through
round-off errors or overflow. To obtain a non-singular matrix a rank-one matrix can
be added to the discrete Laplacian to obtain L̃ = L−qqT . This introduces the eigen-
value λ = ‖q‖2 for L̃. In order for L̃ to be well-conditioned this eigenvalue should be
comperable in magnitude to the eigenvalues of L. We take

qi = − 2π

`
√
N

(B.1)

where ` is the length of the mesh box size, and N is the total number of mesh
points. This gives an eigenvalue λ = −4π/`2 which is comperable in magnitude to
the eigenvalue associated with a uniform mesh and the Fourier mode with wavenumber
k = (1, 0, 0). For non-uniform meshes this eigenvalue is also comperable in magnitude
to those of L. The special form of the rank-one matrices can be used so that the
added computational cost in the iterations is not great and the overall cost remains
proportional to the total number of mesh points.

Appendix C. Approximate Projection of Stochastic Equations. (PJA:
rewrite exposition of this section)

We shall now discuss a few issue related to the approximate projection of the
stochastic equations of the immersed boundary method. In the schemes careful at-
tention was paid to control discretization errors to preserve statistical mechanical fea-
tures of the discrete dynamical system approximating the continuum system. Naively
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applying approximate projection methods may disrupt these features of the numerical
scheme. In this section we discuss an approach which introduces the approximate pro-
jection operations in a manner which preserves many of the statistical features of the
unprojected scheme. In particular, we show that for the time dependent Stokes equa-
tions the projection can be introduced so that energy is preserved in the fluid-particle
coupling. For the steady-state Stokes equations we show that the projection can be
introduced so that detailed balance is preserved for the Gibbs-Boltzmann distribution.

Force density is modified to use instead

f̃ = C̃℘T C̃−1f .

This ensures that the hydrodynamic coupling and stochastic forcing of the system
satisfy Detailed Balance for the Boltzmann distribution. This condition was found
from analysis of whethor this condition holds for the system. One could also in
principle also try using ℘ in place of ℘T since this is expected to approx. as the mesh
is refined the same continuum projection operator. The Detailed Balance condition
would then hold approximately.

Appendix D. Figures.
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Fig. D.1. 3D Mesh


