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Abstract

Using the Gauss linking integral we define a new measure of entanglement for a collection of closed or open chains, the linking
matrix. For a system employing periodic boundary conditions (PBC) we use the periodic linking number and the periodic self-
linking number to define the periodic linking matrix. We discuss its properties with respect to the cell size used for the simulation
of a periodic system and we propose a method to extract from it information concerning the homogeneity of the entanglement. Our
numerical results on systems of equilateral random walks in PBC indicate that there is a cell size beyond which the dependence of
some properties of the periodic linking matrix on cell size vanishes and that the eigenvalues of the linking matrix can measure the
homogeneity of the entanglement of the constituent chains.
c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of K. Bajer, Y. Kimura, & H.K. Moffatt.
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1. Introduction

Polymer melts are complex fluids, exhibiting both liquid and solid like behaviour. The uncrossability of the polymer
chains that compose a melt gives rise to entanglement which is closely related to the viscoelastic properties of materials
[1, 2]. Under certain conditions, polymer chains can be seen as closed or open mathematical curves in space whose
topological and geometrical complexity can be measured [3, 4, 5, 6, 7]. Similarly, vortex lines in a fluid flow may be
seen as mathematical curves that are linked or knotted [8, 9, 10], properties that help characterize the system. Polymer
and vortex entanglement share some common features, especially when there is mutual interference, as in the case
of polymer solutions. The addition of small amounts of long chain polymers to flowing fluids produces large effects
on a wide range of phenomena such as the stability of laminar motion, transition to turbulence, vortex formation and
break-up, turbulent transport of heat, mass and momentum, and surface pressure fluctuations [11].

A classical measure of entanglement is the Gauss linking integral, a topological invariant in the case of closed
chains. The linking number is closely related to the helicity of the fluid flow, which is an invariant property of invis-
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cous liquids [8]. For open or mixed chains, the Gauss linking integral is a real number that is characteristic of a fixed
configuration and changes continuously under continuous deformations of the constituent chains [7]. In order to mea-
sure the global entanglement in systems composed by many chains, more complex invariants are needed. However,
the local entanglement characteristics of the systems may provide important information concerning viscoelasticity
or turbulence [6, 12]. In this paper we define the linking matrix, as a measure of the entanglement of a collection of
closed or open chains, and we use its eigenvalues to provide information about the homogeneity of the entanglement.

When modelling a physical system periodic boundary conditions (PBC) are applied in order to eliminate boundary
effects, as for example in the study of polymer melts, or in studies of turbulence. In a PBC model, the cubical
simulation box is replicated throughout space to form an infinite lattice. In the course of the simulation, when a
molecule moves in the central box, its periodic image in every one of the other boxes moves in exactly the same way.
Thus, as a molecule leaves the central box, one of its images will enter through the opposite face. In the case of a
periodic system a different measure of entanglement is needed in order to capture all the topological constraints and
the effect of the periodicity of the conformations [13, 14, 15]. In [16, 17] we defined the periodic linking number for
curves in PBC [17]. In this paper we use the periodic linking number and the periodic self-linking number to define a
periodic linking matrix. We study its eigenvalues and its dependence on the simulation cell size, which may be related
to finite size effects in simulations [17].

In Section 2 we give some basic definitions for systems employing PBC. In Section 3 we recall the definitions of
linking number and periodic linking number and we examine their relation to helicity. In Section 4 we define the
linking matrix and the periodic linking matrix and discuss their properties. In Section 5 we provide some numerical
results on equilateral random walks for various systems.

2. Systems employing PBC

In [16] we defined a cell to be a cube with n arcs embedded into it such that arcs may terminate only in the interior
of the cube or on a face, but not on an edge or corner, and those arcs which meet a face satisfy the PBC requirement
that opposite faces of the cell have exactly the same intersection structure. A cell generates a periodic system in
3-space by tiling 3-space with the cubes so that they fill space and only intersect on their faces. This allows an arc
in one cube to be continued across a face into an adjacent cube and so on. Without loss of generality, we choose a
cell of the periodic system that we call generating cell. Then any other cell in the periodic system is a translation
of the generating cell by a vector ~c = (cx,cy,cz),cx,cy,cz ∈ LCbZ, where LCb is the length of an edge of the cell. A
generating chain is the union of all the segments inside the cell the translations of which define a maximal connected
arc in the periodic system. For each arc of a generating chain we choose an orientation such that the translations of all
the arcs would define an oriented arc in the periodic system.

For generating chains we shall use the symbols i, j, . . . . An unfolding of a generating chain is a connected arc in
the periodic system composed by exactly one translation of each arc of the generating chain. A generating chain is
said to be closed (resp. open) when its unfolding is a closed (resp. open) chain. The smallest union of the copies of
the cell needed for one complete unfolding of a generating chain shall be called the minimal unfolding. The collection
of all translations of the same generating chain i shall be called a free chain, denoted I. A free chain is identified with
the collection of its connected components. For free chains we will use the symbols I,J, . . . . An image of a free chain
is any arc in that collection that is the unfolding of one generating chain. For images of a free chain, say I, we will use
the symbols I1, I2, . . . . For example in Fig.(1(a)) and Fig.(1(b)), I1 is an image of the free chain I. A free chain whose
images in the periodic system get connected to form infinite arcs shall be called an infinite free chain. In case of an
infinite free chain, we will call I1,I2, . . . each infinite connected component formed by a collection of images of I.
For example in Fig.(1(b)) the infinite curve on which the image I1 lies is called I1.

Given a cell C we can create larger cells that generate the same system. For example, if C is a cell with one PBC,
then if we concatenate along a face of C which imposes PBC another copy of it, we form a larger cell that we denote
2C. Then we can glue copies of 2C in order to create the same periodic system. In the general case of a system that
imposes three PBC, we can form a new cell by concatenating the surrounding 26 translations of C, we denote again
as 2C. The cell mC in this case is the cell formed by (2m+1)3 copies of C. In [17] is proved that if the cell C has n
generating chains, then the cell C′ that results by gluing m copies of C respecting the PBC, has mn generating chains.
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Fig. 1. The central cell C and the periodic system it generates. (a) The case of closed or open free chains. The generating chain i (resp. j) is
composed by the blue (resp. red) arcs in C. The free chain I (resp. J) is the set of blue (resp. red) chains in the periodic system. Highlighted are the
minimal unfoldings of the images I1 and J1. (b) The case of infinite free chains. The free chain I (resp. J) is composed by all the blue (resp. red)
arcs in the periodic system. Now each connected component defines an infinite curve, say I (J resp.). The highlighted arc in blue is the image
I1 of I.

3. The periodic linking number

The Gauss linking number of two disjoint oriented curves l1 and l2, whose arc-length parametrization is γ1(t),γ2(s)
respectively, is defined as a double integral over l1 and l2:

lk(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s),γ1(t)− γ2(s))

|γ1(t)− γ2(s)|3
dtds (1)

where (γ̇1(t), γ̇2(s),γ1(t)− γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t)− γ2(s).
In the case of closed chains the Gauss linking number is a topological invariant. If it is equal to zero, the two chains

are said to be algebraically unlinked. For open chains the Gauss linking number is a continuous function in the space
of configurations and as the endpoints of the chains tend to coincide, it tends to the linking number of the resulting
closed chains. For open chains, lk may not be zero, even for chains whose convex hulls do not intersect. But as the
distance between them increases, lk tends to zero.

The Gauss linking number is related to the helicity of a fluid as follows [8]: Let ~u(~x, t) be the velocity field in an
inviscid incompressible fluid, and let ~ω(~x, t) = ∇×~u be the corresponding vorticity field, which is zero except in two
closed vortex filaments of strengths κ1,κ2, whose axes are C1,C2. Let S be any closed orientable surface moving with
the fluid on which~u ·~n = 0. Then the helicity is

H =
∫

V
~u ·~ω dV = 2lk(C1,C2)κ1κ2 (2)

where V is the volume inside S. This is an invariant for inviscid incompressible fluids. The integral in the left hand
side is over the entire volume of the fluid or over any other volume whose boundary is a surface for which ~u ·~v = 0.
As we discussed in the previous paragraph, the linking integral can be computed even if the arcs C1,C2 are not closed
in V , but then this is a continuously varying measure. However the case where C1,C2 are not entirely contained in
V is of interest. In [18] it was shown that in some cases the linking of the open arcs in V of the vortex lines C1,C2,
is related to the difference in helicities of any two field configurations that differ only inside V , which is an invariant
quantity. Thus, the volume V ’s contribution to the overall helicity of a field has a well-defined relative measure. When
applied to smaller volumes than rather on the entire volume of the fluid, information is provided about the distribution
of helicity in a fluid and its relation to turbulence [18, 19].

In [17] we apply the Gauss linking number and its extension to open chains to the situation of chains defined in a
PBC model, thereby providing a measure of the large scale entanglement between two free chains:
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Fig. 2. The linking number between the two infinite lines I ,J is related to the periodic linking number as: LKP(I,J) = limT→∞
lk(IT ,J )

T , where
IT is the arc formed by T concatenated copies of I1.

Definition 1 (Periodic linking number) Let I and J denote two free chains in a periodic system. Suppose that I1 is an
image of the free chain I in the periodic system. The periodic linking number, LKP, between two free chains I and J is
defined as:

LKP(I,J) = ∑
u

lk(I1,Ju) (3)

where the sum is taken over all the images Ju of the free chain J in the periodic system.

As it turns out [17], LKP is symmetric. In the case of closed chains LKP is an integer topological invariant and it
is equal to the intersection number between the 2-chain and the 2-cycle formed by the arcs of the generating chains
in the 3-manifold defined by identifying the opposite faces of the cell with respect to the PBC [17]. For a system of
two line vortices C1,C2 of strengths κ1,κ2 in PBC, such that the corresponding two generating chains are closed, the
helicity in a volume bounded by a surface on which~u ·~n = 0, inside the corresponding 3-manifold defined by the cell,
would be related to the periodic linking number as follows:

H =
∫

V
~u ·~ω dV = 2LKP(C1,C2)κ1κ2 (4)

In the case of open chains, LKP is an infinite summation which converges [17]. Thus the periodic linking number
extends directly to both open and infinite chains, for which it is a real number, and it is a continuous function in the
space of configurations.

We notice that there is a connection between the periodic linking number of two infinite free chains and the Gauss
linking number of two infinite components of these free chains. Consider the example of two infinite free chains I,J
in a system with one PBC shown in Fig.(2). Let I ,J denote two infinite arcs formed by the images of I and J
respectively. Then we have the following:

lk(I ,J ) =
∞

∑
t=1

∞

∑
u=1

lk(It ,Ju) = lim
T→∞

T

∑
t=1

∞

∑
u=1

lk(It ,Ju) = lim
T→∞

T

∑
t=1

LKP(I,J) (5)

since LKP(I,J) is independent of the image of I (or J) used for its computation. Thus, in this example, the periodic
linking number between I and J is related to the linking number of I ,J as follows:

LKP(I,J) = lim
T→∞

lk(IT ,J )

T
(6)

where IT denotes the arc that is formed by taking T consecutive copies of I1 in I .
In the case of the trajectories of the phase flow of a divergence-free field, Arnol’d defined the asymptotic linking

number, Λ(x1,x2), of a pair of these trajectories, and showed that it converges and that the mean value of Λ(x1,x2) is
equal to the asymptotic Hopf invariant, the helicity [20]. The relation of the periodic linking number of infinite chains
with the Gauss linking number and the asymptotic linking number will be discussed in a sequel to this paper.

In many cases the local topological constraints are more important than the global linking of the chains [6, 19].
For this reason in [16] we defined the local periodic linking number, LK(I,J), where for an image I1 of I we take into
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consideration only the images of J that intersect its minimal unfolding. For example, in Fig.(1(a)) for the computation
of the local periodic linking number, LK(J, I), we have LK(J, I) = lk(J1, I1)+ lk(J1, I2)+ lk(J1, I3)+ lk(J1, I4). We
can see that lk(I1,J1) = lk(J1, I1), lk(I1,J2) = lk(J1, I4), lk(I1,J3) = lk(J1, I2) and lk(I1,J4) = lk(J1, I3), thus LK(I,J) =
LK(J, I). In [16] we used the local periodic linking number to study the effect of the CReTA (Contour Reduction
Topological Analysis) algorithm [6] on the entanglement of open polymer chains, a study that may be relevant to the
study of helicity obstruction in energy relaxation [21, 22]. Our numerical results in [16] showed that the normalized
probability distribution of LK for the original and reduced systems is the same. The definition of the local periodic
linking number can be adapted to the case of infinite free chains. For example, in Fig.(1(b)) LK(I,J) = lk(I1,J1)+
lk(I1,J2)+ lk(I1,J3).

In systems employing PBC, a chain may be entangled with its own periodic images. We propose the following
definition of self-linking in PBC:

Definition 2 (Periodic self-linking number) Let I denote a free chain in a periodic system and let I1 be an image of I,
then the periodic self-linking number of I is defined as:

SLP(I) = sl(I1)+ ∑
u6=1

lk(I1, Iu) (7)

where the index u runs over all the images of I, except I1, in the periodic system, and where sl denotes the classical
self-linking number [23, 24].

The periodic self-linking number can be applied to closed, open or infinite free chains. In the case of a closed free
chain, the periodic self-linking number is equal to the intersection number of the 2-chain and the 2-cycle formed by
its normal push-off in the identification space [17].

For a knotted vortex filament C1 whose strength is κ1 the helicity in a volume bounded by a surface on which
~u ·~n = 0, is: H = sl(C1)κ

2
1 [8, 9]. For a vortex filament in PBC, such that the corresponding generating chain is

closed, the helicity in a volume bounded by a surface on which~u ·~n = 0, inside the corresponding 3-manifold defined
by the cell, is related to the periodic self-linking number as H = SLP(C1)κ

2
1 .

4. The linking matrix

In [17] we used the linking number to define a measure of entanglement of the entire collection of chains that span
a physical system, namely:

Definition 3 The linking matrix , LM, of a collection of chains, say I,J, . . . ,W, is defined to be the matrix with elements
ai j = lk(I,J) if i 6= j and aii = sl(I).

Since the linking number is symmetric, this is a symmetric matrix. The linking matrix takes into consideration the
first order linking information of the system, and can be computed both for closed and open chains. An interpretation
of this matrix as an operator could be very helpful but this remains elusive, since the appropriate operation under
which the space of knots and links would be a vector space is still unknown. Nevertheless, LM is a real symmetric
matrix and its eigenvalues are real numbers. In the case of closed chains, they are integers invariant under continuous
deformations of the chains.

A linking matrix can be also created for a system of line vortices C1,C2, . . . ,Cn. Let us multiply the i j−th element
of the matrix, for i 6= j, by κiκ j, the strengths of the line vortices Ci and C j respectively, and multiply the i−th diagonal
element by κ2

i . Then the sum of all the elements of the linking matrix is equal to the helicity of the system.
For a cell C that generates a periodic system, we further defined in [17]:

Definition 4 The periodic linking matrix, LMC, for a cell C that generates a periodic system, is the matrix with elements
ai j = LKP(I,J) if i 6= j and aii = SLP(I).

For a system simulated by a cell with n generating chains, LMC is of size n×n. Thus the periodic linking number
enables us to reduce the study of the entanglement of an infinite collection of chains that compose the periodic system
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Fig. 3. (a) The cell C is composed by one generating closed chain, say i, to which it implies one PBC. There are two images of I, say I1, I2 that
intersect C. The size of the corresponding periodic linking matrix is 1×1. (b) The cell 2C contains two generating chains, i(1) (the blue arcs) and
i(2) (the red arcs) to which it imposes one PBC. The size of the corresponding periodic linking matrix is 2×2.

to the study of a finite dimensional matrix. In particular, for line vortices in PBC we can also compute the helicity
using the periodic linking matrix.

We notice now that the linking matrix depends on the size of the cell used for the simulation of a system. Let us,
for example, consider a cell C with one PBC composed by n generating chains, and let LMC denote the corresponding
periodic linking matrix of dimension n× n. Next, let C′ = mC denote the cell that is created by gluing m copies of
C respecting the PBC. It follows that the corresponding periodic linking matrix, LMC′ is of dimension mn×mn (see
Fig.(3) for an illustrative example). Indeed, the cells C and C′ describe different topological objects. Namely, if we
identify the opposite faces of the cell, then we will get an n−component link in a 3−manifold in the first case and
a mn−component link in the same 3−manifold in the second case. So, we notice that the linking matrices LMC and
LMC′ are different, but the periodic system that the cells generate and whose entanglement we wish to measure is the
same. We will discuss the dependence of the periodic linking matrix on the cell size and also quantities that remain
invariant of the cell size. The following is proved in [17]:

Proposition 5 Consider n free chains in the periodic system formed by a cell C with three PBC. Then for the periodic
linking matrix LMmC of the cell mC made from (2m+1)3 copies of C, we have

LMmC =

[
LMC D

0 E

]
(8)

where D is of dimension n×
(
(2m+1)3−1

)
n and E is of dimension

(
(2m+1)3−1

)
n×
(
(2m+1)3−1

)
n.

Notice that, from this result, it follows that the eigenvalues of LMC are among the eigenvalues of LMmC for all m,
indicating that they capture a property of the periodic system that is independent of cell size.

We propose to use the eigenvalues of the linking matrix as a measure of the homogeneity of the entanglement in
a physical system . For this purpose, we employ methods and ideas from graph theory. A weighted undirected graph
G = (V,E) (possibly with loops) has associated with it a weight function w : V ×V → R satisfying w(u,v) = w(v,u)
and w(u,u)≥ 0. We note that if {u,b} 6∈ E, then w(u,v) = 0. We represent a system of chains by a weighted graph as
follows: We represent each chain by a vertex. Then two vertices are connected with an edge if their absolute linking
number is greater than zero. Also, there is an edge of a vertex to itself if the chain has absolute self-linking number
greater than zero. Each edge of this graph has an associated weight function that is defined as w(u,v) = |lk(u,v)| and
w(u,u) = |sl(u)|. In the case of a periodic system, each vertex represents a generating chain, and the weight function
is defined as w(u,v) = |LKP(u,v)| and w(u,u) = |SLP(u)|.

As we shall see, the homogeneity of the entanglement in a physical system can be related to the connectivity of
the corresponding weighted graph. In the case of polymer melts, the effects of inhomogeneity in the entanglement
have been reported in shear stress experiments [25]. In the study of turbulent flow the helicity integral can be applied
to some part of a region of vortical flow in order to analyze the motion of limited lengths of vortex tubes where they
interact with other vortices [18, 19]. The linking matrix of the corresponding vortices or polymer chains can detect
inhomogeneities of the entanglement in such systems. The Cheeger constant and the eigenvalues of the Laplacian of
the corresponding graph can measure the extent to which this property is present and, thus, they provide information
about the homogeneity of the entanglement.
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Fig. 4. Data concerning the systems: A: N = 100, 3 PBC, ρ = 0.84, B: N = 100, 3 PBC, ρ = 0.5, C: N = 200, 3 PBC, ρ = 0.84, D: N = 100, 1
PBC, 2 layers 0% overlap, E: N = 100, 1 PBC, 2 layers 50% overlap. Analysis with respect to cell size, where k denotes the number of generating
chains in a cell. (a) The average absolute total sum of the elements of the matrix, |Total(LMC)|. Data fitted to function of the form a∗ k+b, where
aB < aD < aE < aA < aC . (b) The average absolute maximum eigenvalue, λmax. For k ≥ 6, (λmax)B < (λmax)D < (λmax)E < (λmax)A < (λmax)C .

5. Numerical results

In this section we analyze numerical data concerning the following systems:
(A) Equilateral random walks of length N = 100 in a cell with three PBC, at density ρ = 0.84. (where the density is
defined as N/V , where N is the total number of vertices and V the volume of the cell), (B) Equilateral random walks
of length N = 100 in a cell with three PBC, at density ρ = 0.5, (C) Equilateral random walks of length N = 200 in a
cell with three PBC, at density ρ = 0.84, (D) Equilateral random walks of length N = 100 in a cell with one PBC, at
density ρ = 0.84, separated in two layers that do not overlap, (E) Equilateral random walks of length N = 100 in a
cell with one PBC, at density ρ = 0.84, separated in two layers that overlap by 50% and (F) Polyethylene (PE) melts,
that consist of PE chains of length N = 1000 in a cell with three PBC, at density ρ = 0.78g/cm3 (PE data generated
by C. Tzoumanekas).

For these systems, we compute the periodic linking matrices for the corresponding end-to-end closed chains. Our
numerical results in [17] suggest that the total torsion of a chain is much larger than the absolute value of its linking
number with other images. For this reason, in order to make the linking distribution in the system more evident, we
will ignore the self-linking number of the chains and use only the linking with periodic self-images for the diagonal
elements of the matrix.

For the systems (A)-(E), we generate samples at different cell size and study their periodic linking matrices. For
each one of these systems we start with a sample of cells Ci, i = 1, . . .100, such that there are two generating chains
in Ci for all i. Next, for each system we generate a new sample of cells C′i , i = 1, . . . ,100 each of which contains 4
generating chains. Similarly, the k1−th sample consists of cells with k = 2k1 generating chains. The PE data (system
(F)) concerns 80 cells with k = 8 generating chains each.

First we study the scaling of the average absolute value of the sum of all the elements of the linking matrix
over all conformations with respect to the cell size (Fig.(4(a))). We denote it |Total(LMC)|. In [17] it is proved
that this quantity scales linearly with cell size. Indeed, our numerical data confirm that. For each system the data
is fitted to a curve of the form a ∗ k + b, with (A): a = 0.612484, b = 3.23239, (B): a = 0.446629, b = 2.4189,
(C): a = 0.739565, b = 6.18445, (D): a = 0.52917, b = 1.98174, (E): a = 0.540258, b = 3.00181, for each system
respectively. We observe that aB < aD < aE < aA < aC. This suggests that |Total(LMC)| dependents on the density,
the number of chains and the length of the chains. The corresponding value for the PE frames is |Total(LMC)PE |= 19.
This corresponds to the point with coordinates (8,19), which shows that |Total(LMC)PE | is larger than the values of
|Total(LMC)| of the other systems at k = 8. This is expected, since the PE data concern much longer chains. We
note that a similar quantity has been studied in [12] for chains in 3-space and numerical studies therein showed that it
grows with respect to the density and the number of chains.
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Fig. 5. Data concerning the systems: A: N = 100, 3 PBC, ρ = 0.84, B: N = 100, 3 PBC, ρ = 0.5, C: N = 200, 3 PBC, ρ = 0.84, D: N = 100, 1
PBC, 2 layers 0% overlap, E: N = 100, 1 PBC, 2 layers 50% overlap. Analysis with respect to cell size, where k denotes the number of generating
chains in a cell. (a) The average asphericity of the eigenvalues of the periodic linking matrix. The average asphericity of the system D is larger than
the rest. (b) The average Cheeger constant, 0 = (hG)D < (hG)E < (hG)B < (hG)A < (hG)C at all cell sizes.

Next, we compute the average value of the largest absolute eigenvalue of the periodic linking matrix over all con-
formations (Fig.(4(b))) at each cell size. We notice that by Proposition 5, we expect that some of the eigenvalues of the
periodic linking matrix are independent of cell size, but we do not know which ones. We see that the largest eigenvalue
increases in all cases and we notice a similar scaling for all systems. For k ≥ 6 the values of the average maximum
eigenvalue for each system are related as (λmax)B < (λmax)D < (λmax)E < (λmax)A < (λmax)C, which coincides with
the ordering of the systems with respect to |Total(LMC)|. Thus the largest eigenvalue depends on the density, the
number of chains and the length of the chains. The corresponding value for the PE frames is (λmax)PE = 8.0756,
which is larger than the other systems at k = 8. This is expected since the PE chains are longer.

The asphericity of the eigenvalues of a matrix of size n×n is defined as [27, 28]:

An =
1

n−1
∑

n
i> j < (λ 2

i −λ 2
j )

2 >

< (∑i λ 2
i )

2 >
(9)

where λi are the eigenvalues of the matrix and it can be used as a measure of the relative variance of the eigenvalues
of the matrix. Fig.(5(a)) shows the scaling of the average asphericity over all configurations with respect to cell size.
We notice that the asphericity of all the systems decreases with cell size and tends to an asymptotic value, which, for
k ≥ 6, is different for each system. The asphericity of system D is larger than the asphericity of all the other systems
at all cell sizes. Recall that system D is composed of two non-intersecting layers of chains. This suggests that the
asphericity can distinguish between the homogeneous and non-homogeneous systems. The corresponding value for
the PE frames is 0.028539, which is smaller than all the other systems at the corresponding cell size, indicating a
larger homogeneity for longer chains.

Next, we compute the average value of the Cheeger constant [26] of the periodic linking matrix over all configu-
rations for each system at each cell size. For k ≥ 6, the values of the different systems do not overlap. The results
for the systems A,B,C,E are shown in Fig.(5(b)). The system D is not shown in the figure, since we know that
(hG)D = 0 at all cell sizes, because it consists of two layers of chains that do not overlap, thus the corresponding
weighted graphs have two components. Due to the computational cost of the Cheeger constant, the maximum cell
size is k = 14. In Fig.(5(b)) we notice a similar scaling for all systems, decreasing with cell size. Also, we notice that
0 = (hG)D < (hG)E < (hG)B < (hG)A < (hG)C at all cell sizes. System E concerns two layers of chains that overlap
only by 50% and its value is smaller than the rest, which shows that the Cheeger constant can detect the inhomogene-
ity in the structure. We observe also a difference for the other systems which have no restriction on homogeneity by
construction, but differ on the length of the chains. This demonstrates that the entanglement in systems with longer
chains is more homogeneous.
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Fig. 6. Data concerning the systems: A: N = 100, 3 PBC, ρ = 0.84, C: N = 200, 3 PBC, ρ = 0.84, D: N = 100, 1 PBC, 2 layers 0% overlap,
E: N = 100, 1 PBC, 2 layers 50% overlap. Analysis with respect to cell size, where k denotes the number of generating chains in a cell. (a)
The average second smallest eigenvalue, (µmin)2, of the Laplacian of the graph that corresponds to the periodic linking matrix. For k ≥ 6,
(µ2)D < (µ2)E < (µ2)A < (µ2)C . (b) The average largest eigenvalue, µmax, of the Laplacian of the graph of the periodic linking matrix. For
k ≥ 6, (µmax)C < (µmax)A < (µmax)E < (µmax)D.

As the computation of the Cheeger constant is computationally difficult, one may prefer to use the Laplacian of
the weighted graph corresponding to the periodic linking matrix, to obtain information about the homogeneity of the
entanglement. For example, the second smallest eigenvalue of the Laplacian of the graph, µ2, is related to the Cheeger

constant by the Cheeger inequality: 2hG ≥ µ2 ≥
h2

G
2 [26]. Fig.(6(a)) shows the average value of the second smallest

eigenvalue of the Laplacian matrix of the graph that corresponds to the periodic linking matrix over all configurations
for the systems A,C,D,E. We observe that the average value of µ2 decreases for all systems with respect to cell size,
approaching an asymptotic value. For k ≥ 6 the values of the different systems are different at all cell sizes, with
(µ2)D < (µ2)E < (µ2)A < (µ2)C. This ordering is similar to that obtained for the Cheeger constant in the previous
paragraph. For k ≥ 14, (µ2)D ≈ 0, as expected, since (hG)D = 0. For the PE data, (µ2)PE = 0.98628, which is larger
than the rest of the data at k = 8. Thus the Cheeger constant and the second smallest eigenvalue of the system can
measure the homogeneity of a system, and our data suggest that the entanglement in systems with longer chains is
more homogeneous.

The largest eigenvalue of the Laplacian of the graph that corresponds to the periodic linking matrix can also
provide information about the homogeneity of the entanglement. Namely, for a graph of n vertices without isolated
vertices µmax ≥ n

n−1 and if µmax = 2 then G is bipartite [26]. Fig.(6(b)) shows the average largest eigenvalue of the
Laplacian matrix over all conformations, with respect to the size of the cell. We observe that for all systems the
average value of µmax is greater than 1.5, which means that there are no isolated vertices in the graphs, that is, on
average, there are no chains that have no linking with any other chain in the melt. Indeed, this is not something that
we expect to happen for these systems. The value of µmax increases for all systems until it reaches an asymptotic
value. For all k ≥ 6, the values of µmax are different at each cell size and (µmax)C < (µmax)A < (µmax)E < (µmax)D.
For k ≥ 14, (µmax)D ≈ 0 which indicates that system D exists a connected component that is bipartite. Indeed, this
system corresponds to two layers of chains which do not overlap. As the cell size increases, chains appear that are
too distant to have non-zero linking, giving rise to a bipartite graph. Thus µmax can measure the homogeneity of the
systems, indicating that the entanglement in systems that are composed by longer chains is more homogeneous. For
the PE frames (µmax)PE = 1.0264, which is smaller than the corresponding values of the other systems at k = 8.

6. Conclusions

The linking matrix can be used for the study of the entanglement in a system of closed, open or mixed chains, as in
the cases of polymer chains in a melt or vortex filaments in a fluid flow. In the case of a system employing PBC, the
periodic linking matrix can be used to reduce the study of the entanglement of the infinite periodic system to the study



Author / Procedia IUTAM 00 (2012) 000-000

of a finite dimensional matrix. The periodic linking matrix can be applied to open, closed, mixed or infinite chains in
PBC. We discussed the dependence of the periodic linking matrix on cell size, and our numerical results on systems
of random walks in PBC showed that there is a cell size after which the characteristic values of the periodic linking
matrix converge to an asymptotic value. We suggested a method to extract information from the linking or the periodic
linking matrix about the homogeneity of the entanglement in a physical system using graphs. Our numerical results
showed that the asphericity of the eigenvalues of the periodic linking matrix, the Cheeger constant and the Laplacian
matrix of the corresponding graphs can provide measures of the homogeneity of the entanglement of a collection of
chains. Our numerical results also suggest that the homogeneity of the entanglement depends on chain length.
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[25] Bastide J, Boué F, Mendes E, Zielinski F, Buzier M, Lartigue C et al. Is the distribution of entanglements homogeneous in polymer melts?

Progr. Coll. Pol. Sc. vol. 91. 1993. p. 105-108.
[26] Brouwer AE and Haemers WH. Spectra of Graphs Springer XIII; 2012.
[27] Theodorou DN and Suter UW. Shape of unperturbed Linear Polymers: Polypropylene Macromolecules vol. 18. 1985. p. 1206-14.
[28] Rawdon EJ, Kern JC, Piatek M, Plunkett P, Stasiak A and Millett KC. Effect of knotting on the shape of polymers Macromolecules vol. 41.

2008. p. 8281-87.



Subject index

asphericity, 8

Cheeger constant, 8

helicity, 1, 3
homogeneity, 6

linking matrix, 5

periodic boundary conditions, 2, 3
periodic linking matrix, 5
polymer melts, 1

11



Author index

Arnold, V.I., 4

Berger, M.A., 3

Lambropoulou, S., 1

Millett, K.C., 1, 8
Moffatt, H.K., 1, 3

Panagiotou, E., 1

Theodorou, D.N., 5, 8
Tzoumanekas, C., 5

12


	Introduction
	Systems employing PBC
	The periodic linking number
	The linking matrix
	Numerical results
	Conclusions

