
Topological Aspects of DNA Function and Protein Folding 533

Identifying knots in proteins
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Abstract
Polypeptide chains form open knots in many proteins. How these knotted proteins fold and finding the
evolutionary advantage provided by these knots are among some of the key questions currently being
studied in the protein folding field. The detection and identification of protein knots are substantial
challenges. Different methods and many variations of them have been employed, but they can give different
results for the same protein. In the present article, we review the various knot identification algorithms and
compare their relative strengths when applied to the study of knots in proteins. We show that the statistical
approach based on the uniform closure method is advantageous in comparison with other methods used to
characterize protein knots.

Introduction
With the realization in the 1960s that many molecules consist
of long polymeric chains, proposals were put forward stating
that they would be knotted with probability increasing to
1 as their length increased to infinity [1,2]. At the same
time, linking and knotting were introduced into the statistical
mechanical models of polymers [3,4]. A bit later on, the
theory of reptation added to our understanding of polymeric
properties and the consequences of entanglement [5]. Initially,
the consideration of knots formed by proteins was limited
to those cases where disulfide bridges or covalently closed
metal atoms formed natural closed circuits determined by
these covalent bonds and the protein backbone [6,7]. More
recent interest has been concentrated on the open knots
formed entirely by the protein backbones. The critical issue
is how to mathematically identify and characterize knotting
in open chains using a topological formalism that can be
applied to these open protein knots. As a consequence, a
number of strategies have been considered. The first approach
used was the determination of a primitive path associated
to a polymer chain [8], whereby one keeps the ends of the
open polymer chain fixed and implements a procedure that
shortens the chain so as to concentrate the knotting and other
manifestations of entanglement without violating excluded
volume constraints. However, as the initial focus was on
interactions between distinct polymer chains, researchers did
not fully appreciate that, whereas chain shortening preserves
the knot type of closed chains, this is not necessarily the
case for open chains [9,10]. In 1994, Mansfield [11] reported
the first systematic studies of the approximately 400 known
protein structures deposited in the PDB. Mansfield used
a double stochastic closure method combined with direct
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observation to evaluate evidence of knotting. Noting that
the termini of these structures are preferentially located
near the surface of the protein structures, Mansfield later
employed a preferential closure method to provide evidence
of knotting in the proteins MAT [(S)-adenosylmethionine
synthetase] and CAB (carbonic anhydrase B) [12]. These
protein knots are shallow and a small displacement of an end
of the polypeptide chain could unknot them. In 2000, using
an enhanced primitive path method, Taylor [13] identified the
presence of a ‘deeply embedded’ knot in a protein structure,
thereby giving the first identification of a robustly knotted
protein structure. In the present article, we explore the
methods and variations that have been applied to the study
of knotting in proteins. With the addition of new structures,
researchers have discovered many more interesting examples
of knots and slipknots (knotted segments contained within
larger unknotted segments [14]). We use the protein DehI
(PDB code 3BJX), in which the Stevedore’s knot has been
identified [15], as it provides an excellent example of a
challenging open knot. It and its simplified knot structure
are shown in Figure 1.

Open chain knot identification strategies
Knot theorists define the knotting of an open chain in terms
of a pair consisting of the chain and a three-dimensional ball
containing the knotted chain in its interior and meeting its
boundary sphere in exactly the termini of the chain [16].
Unfortunately, there are infinitely many such a balls giving
different ‘knots’, so selecting the ‘right one’ is, in fact, the
critical challenge. Thus a useful way to pose this question is
‘how can one reasonably sample the space of formed knots
so as to find the most dominant one?’ One can look to
topological methods used to study polygonal ring models
of knots [17]. Reidemeister [17] describes their topological
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Figure 1 Protein DehI (PDB code 3BJX) with its associated

colour-coded knot structure showing the presence of the

Stevedore’s knot

equivalence by using the existence of triangles meeting the
polygon in exactly one or two edges. These provide ways
to increase or decrease the number of edges that do not
change the knot type of the closed polygonal rings. This
observation leads to an elementary curve-shortening strategy
used to determine the primitive path by successive shortening
of the polygonal chain. One searches for adjacent edges in the
polygon such that the associated (solid) triangle is not pierced
by a distal portion of the protein backbone. The pair of edges
is then replaced by the third edge of the triangle, thereby
shortening the chain. For an open polygon, the initial and
terminal vertices are fixed in this method. For closed chains,
the knot type is preserved by these operations so they can be
used to reduce the complexity of the configuration [18]. Once
no further simplifications are possible, one is left with a much
simpler configuration whose structure can be determined
visually or by using one of the methods described below. For
example, when the end vertices are on the boundary of the
convex hull, one can close the chain using an arc lying outside
this convex hull so as to not introduce (or lose) knotting.

A variation of this method was used by Taylor [13] to
identify a deep figure-eight knot, 41, in acetohydroxy acid
isomeroreductase (PDB code 1YVE) in his study of the
approximately 3440 structures deposited in the PDB by
2000. In Taylor’s smoothing method [13], one begins at
the N-terminus and, sequentially, considers three successive
vertices, defines a new vertex as their average position, and
forms the two triangles determined by the first two vertices
and the new vertex and by the last two vertices and the
new vertex. If neither of these solid triangles has a distal
intersection with the structure, replace the middle vertex with
the new vertex and continue with the next sequence until the
end is reached, and then continue, repeating from the N-
terminus until the result stabilizes. This method may, as was
shown by a simple example [8,9], give different results if one
begins at the C-terminus.

Although strategies such as elementary curve shortening
and Taylor’s smoothing algorithm do ‘simplify’ chains

to something that might be easier to analyse, they do
not simplify every unknotted conformation to a segment
connecting the N- and C-termini as one might hope.
In addition, as was shown in [8,9], the order in which
the simplification of the chain occurs can affect the knot
type determined by the algorithm. One might wonder
to what extent the order of simplification affects knot
type determination in proteins specifically. We explored
this problem by carrying out successive elementary curve-
shortening moves at random edges of proteins until no
more curve-shortening moves were possible (we call this
the random elementary curve-shortening method). For the
deeply knotted 1YVE protein, the figure-eight knot was
identified each of the 50 times we applied the algorithm
(Table 1). Applying this method to 3BJX, we found 61 half
of the time and 01 half of the time. This shows that the knot
type identification in proteins also can be affected by the order
of the simplification moves, and suggests that simplification
is not as robust as one might imagine. If the termini lie on
the boundary of the convex hull of the conformation, both
methods do not change the knotting and therefore lead to the
same identification of the associated knot type. If, however,
one of the termini lies within the interior of the convex
hull, one is faced with the task of unambiguously determining
the closure. For example, one might wish to identify the
‘correct’ single closure that expresses the knotting of the
conformation.

There are several single closure strategies that we review
next. The first, and the simplest, is the direct closure method in
which one simply connects the termini by a straight segment.
As protein termini often lie close to the surface of the protein
structure, but not necessarily close to each other, the closure
segment frequently passes through the ‘centre’ of the protein.
In such a case, the closing segment can produce a knot from
an essentially unknotted protein structure (see the case of
protein 2A65 in Table 1). For 3BJX, however, one still finds
the 61 knot (Table 1).

Other members of this class of single closure methods
employ a specific algorithm to determine a closing edge or
sequence of edges beginning at the termini and ending on a
large sphere containing the structure (from which a standard
closure will give a well-defined result). For example, one can
select a random edge direction and take parallel edges starting
from the termini to an enclosing sphere. The closure can
be accomplished by using any arc on the sphere to connect
the new vertices; for example, one could take a great circle
closure [19]. Compared with the direct closure method, these
unbiased parallel edges are less likely to result in the added
edges passing through the centre of the protein when the two
termini are situated on opposite sides of the protein. Still,
in the random edge direction method, the added edges can
pass through portions of the centre of the protein and affect
the knotting structure. Furthermore, different choices of edge
directions are likely to result in different knot types.

To reduce this degree of uncertainty, other methods have
been proposed. One of these is the radial method, given by
extending a ray, based at the centre of mass of the structure,
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Table 1 Results of different knot detection methods applied to selected proteins

The primitive path method reports the results of a single set of 50 applications of the elementary curve-shortening method; applications of the

random MDS method using ten different sets of 6400 randomly selected points on a sphere; applications of the uniform closure method using ten

random rotations of a set of 6400 uniformly distributed points on the sphere; the direct method joins the termini; and the radial method adds initial

and terminal edges to a sphere using the rays from the centre of mass passing through the termini.

PDB code Primitive path Random MDS Uniform closure Direct Radial

1XD3 31 84% 52 67.7 ± 0.3% 52 67.61 ± 0.00% 01 52

1DMX 01 80% 31 66.8 ± 0.3% 31 67.22 ± 0.00% 01 31

1FUG 31 50% 31 85.9 ± 0.2% 31 85.75 ± 0.00% 31 31

1YVE 41 100% 41 71.9 ± 0.4% 41 71.56 ± 0.01% 41 41

1KOP 01 100% 01 44.4 ± 0.5% 01 44.26 ± 0.01% 41 01

1ZTU 41 60% 41 81.7 ± 0.2% 41 81.74 ± 0.01% 41 41

2VEA 01 64% 41 92.5 ± 0.2% 41 92.45 ± 0.00% 41 41

3BJX 61 50% 61 64.1 ± 0.1% 61 63.99 ± 0.01% 61 61

2A65 01 58% 01 85.5 ± 0.4% 01 85.32 ± 0.01% 61 01

Figure 2 Two closure methods and an Eckert IV knot distribution representation

The double and single stochastic closure methods are illustrated on the left and in the middle. On the right, an Eckert IV

projection of the knot types resulting from 64 000 uniformly distributed single point closures of the protein structure (PDB

code 3BJX): 64% blue is 61, 27% red is the unknot, 6% dark green is 41, and 2.5% light green is 31 (compare with Table 1).

from each of the termini to an enclosing sphere [20–23].
When applied to 3BJX, the radial method identifies the
Stevedore’s knot (Table 1). In yet another method, protein
repulsion closure, one focuses on the specific nature of a
protein [14] and follows a backbone-smoothing procedure
(similar to curve shortening) and generates a sequence of
small segments from the termini as though they are repelled
by the protein to reach the exterior of the protein structure,
at which time one closes the chain in the complement of the
convex hull of the protein. Similarly [24], in the minimally
interfering closure method, one extends terminal segments to
the closest points on the boundary of the convex hull when
the termini are closer to this boundary than they are to each
other (otherwise one would use the direct closure). One can
imagine other variations that exploit specific knowledge of
the protein structure and which would appear attractive. A
common concern is that each depends on a specific structure
and may have unanticipated consequences when applied to
a large family of dissimilar structures. This is, indeed, a key
facet of the challenge of creating a method that will apply
equally well to each of the subchains as well as the entire
chain independent of their specific structure.

The double stochastic closure method [10,20] represents a
rather different strategy. It consists of adding an edge from
each of the termini to independent random points on a large
sphere containing the chain and then connecting these points,
on the sphere, by a segment of a great circle (Figure 2).
The knot type of the associated ring is then determined for
each closure. Applying this double stochastic closure method
to 3BJX, in a 1000-closure sample, we found 22 different
knot types. The Stevedore’s knot, 61, appeared at 47.5%, the
unknot at 35%, 41 at 6.2%, 31 at 4.1%, and the remainder
at much smaller proportions. Thus this method provides
weaker evidence of the demonstrated knotting [15] when
compared with the other methods discussed in the present
article (Table 1).

In 2005, concerned with the dependence of the Taylor
method on the specific shortening sequence, we proposed a
single stochastic method: the MDS (Millett–Dobay–Stasiak)
method [8,9]. In the MDS method, one again employs
a large ball containing the protein (or other open chain
structure). The boundary sphere approximates the ‘sphere
at infinity’ (Figure 2). At a random set of points on the
sphere, ones whose connection edges with the termini defines
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a non-singular polygon, we used the HOMFLY (Hoste–
Ocneanu–Millett–Fryed–Lickorish–Yetter) knot polynomial
[25] to identify the associated knot type. This knot type is
defined except on a compact one-dimensional set of measure
zero, is locally constant and takes on only finitely many
values. As a consequence, one can define rigorously the
proportion of the closures that gives a specific knot type,
thereby defining the knotting spectrum of the configuration
as shown in a histogram of the distribution of knot types
[8,9]. If a knot type occurred more than 50% of the time,
we proposed that the protein has that knot type in the
MDS method [8,9]. Currently, however, we select
the knot type occurring most often as the knot type of the
configuration. In the case of 3BJX, our simulations show that
61 occurs approximately 64.1 ± 0.1% of the time, thereby
providing confirming evidence of the known knotting [15].

To estimate the proportion of closures that give a specific
knot type using the MDS method, we employed a Monte
Carlo method that randomly selects closure points on the
sphere, in some cases as many as 10 000, in order to give
accurate estimates [9]. A more effective strategy, often used in
numerical analysis, is to employ a carefully constructed finite
set of points that are close to being uniformly distributed
on the sphere, giving the uniform closure method. How
many such points are necessary to give an accurate estimate?
In Figure 2, we show the Eckert IV projection of the
spherical distribution of knot types (there are 12 distinct
ones) for 64 000 uniformly distributed points [26]. For
comparison, the uniformly and randomly generated datasets
of 49, 100, 169, 400 and 6400 points give proportions of
61s: 64.7 ± 2.2%, 63.8 ± 0.9%, 64.7 ± 0.7%, 64.1 ± 0.5%
and 64.1 ± 0.1% and 59.6 ± 4.2%, 64 ± 1.9%, 62.4 ± 3.1%,
65.1 ± 1.4% and 64.0 ± 0.0% respectively. Although there is
some expected difference between the uniform and random
results (as there would be between successive random
estimates), the data demonstrate the stability of the MDS
method in providing a consistent identification.

Discussion
With more than 75 000 structures currently deposited in the
PDB, a number that is rapidly increasing, and the interest in
the possible function of protein knots (both global knots and
substructures such as slipknots), the ability to unambiguously
assess the presence of knotting is of increasing importance.
The occurrence of protein knots raises many evolutional and
functional questions for which compelling data are necessary.
As experimental techniques are still unable to determine the
knotting mechanism [27,28], computer simulations can still
shed new light on the folding landscape [29–33] and the
dynamic of optimization of chain structures [30] to guide
efficient knotting. To do so one requires accurate and efficient
methods to detect and identify knotted and slipknotted
structures.

The present review of the various strategies commonly
employed in this analysis of protein structures, their strengths
and uncertain aspects, as well as a comparison of their relative

effectiveness has led us to prefer the version of the stochastic
method in which one uses a set of uniformly distributed
points on the sphere to estimate the knotting distribution,
as is shown in Figure 2. Although our analysis may lead one
to conclude that, for all practical purposes, it may be possible
to give an adequate estimation with fewer points, it seems
prudent to use as many as 100 uniform closure points to give
a measure of numerical confidence.

Another facet, in addition to the precision of the method, is
that of computational effectiveness. In undertaking a detailed
analysis of the local knotting structure of a given protein,
one must analyse all subchains of the structure [27,28].
This is a formidable computational task when applied to
all of the protein structures available. The uniform closure
method is computationally attractive. In another article in
this issue of Biochemical Society Transactions [28], we review
the implementation of the uniform closure method to study
the knotting found within the complete subchain array, the
presentation of the resulting knotting data and what one can
learn from the analysis of this ‘knotting fingerprint’ associated
with the protein structure.
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