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Abstract
We present two descriptions of the local scaling and shape of ideal rings,
primarily featuring subsegments. Our focus will be the squared radius of
gyration of subsegments and the squared internal end to end distance, defined
to be the average squared distance between vertices k edges apart. We calculate
the exact averages of these values over the space of all such ideal rings, not just
a calculation of the order of these averages, and compare these to the equivalent
values in open chains. This comparison will show that the structure of ideal
rings is similar to that of ideal chains for only exceedingly short lengths. These
results will be corroborated by numerical experiments. They will be used to
analyze the convergence of our generation method and the effect of knotting
on these characteristics of shape.

PACS number: 02.10.Kn

(Some figures may appear in colour only in the online journal)

1. Introduction

Long strings of connected molecules, called polymers, are central structures in life and physical
sciences, as well as engineering. Prominent examples are DNA, proteins, polystyrene and
silicone. With regard to DNA, Fiers and Sinsheimer first showed that the DNA of a specific
virus is a single-stranded ring [8]. Because of this closure condition, DNA, like other closed
polymers, can be knotted. In 1976, Liu et al discovered examples of knotted DNA, which was
followed by the discovery of topoisomerases, enzymes which knot and unknot DNA [2, 13].
These discoveries suggest that knotting plays an important role in the behavior and shape of
DNA and other polymers.

We will examine ideal rings, embedded equilateral polygons in R
3, which provide a model

for polymers under the θ -condition, where excluded volume can be ignored [3, 9, 22]. We
will compare ideal rings with ideal chains, random walks in R

3, to determine the effect of the
closure constraint as well as the effect of knotting.

These models will be used to analyze the relationship between shape, scale, knotting and
two physical characteristics specific to their local structure. We define the average squared

1751-8113/12/225001+17$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/22/225001
mailto:lzirbel@math.ucsb.edu
mailto:millett@math.ucsb.edu
http://stacks.iop.org/JPhysA/45/225001


J. Phys. A: Math. Theor. 45 (2012) 225001 L Zirbel and K Millett

radius of gyration of subsegments, calculated by averaging the standard squared radius of
gyration of each subsegment of length k, and the squared internal end to end distance, the
average distance between vertices k edges apart. Rather than finding approximations of these
averages, we will determine the exact theoretical averages for these descriptions of shape, as
well as discuss numerical simulations and show how these characteristics are affected by
knotting.

In numerical studies examining squared end to end distance, squared end to end distance
is referred to internal end to end distance or two point correlation [21, 24, 26]. These
characteristics are simplified in open chains because subsegments of length k in chains of
length 100 are identical to subsegments of length k in chains of length 100 000: the ambient
length has no effect on the behavior of subsegments. However, in the case of ideal rings,
subsegments of length k in a ring of length n do not behave the same as a subsegment of
length k in a ring of length m �= n. Thus, subsegment behavior relies on both k and n. It will
be shown that the structure of ideal rings is similar to that of ideal chains for only exceedingly
short lengths, which may correspond with the difference in θ -temperature between open chain
polymers and ring polymers [22]. Understanding in the case of closed chains may also allow
us to use these characteristics to identify and describe the knotted portions of open chains
[11, 21].

2. An introduction to ideal rings and their notation

Definition 1. An ideal ring, P, is an n-edged equilateral polygon embedded in R
3, with one

vertex at the origin. Let e1, . . . , en be unit vectors such that the kth vertex of P is vk = ∑k
i=1 ei.

Let each ei be called an edge vector of P. The fact that P is a polygon is equivalent to requiring
closure, that is, that vn = ∑n

i=1 ei = 0. Let Pn denote the space of all such polygons.

The careful reader may note that these ideal rings are more specific than usual. We require
these polygons to be based at the origin, and be oriented. This definition makes notation
concise, and does not affect the averages we will calculate, as they are independent of the base
point and orientation.

For each P ∈ Pn, the edge vectors ei are all identically distributed. Therefore, when i �= j,
(ei · e j) is a random variable that does not depend on i and j.

We will compare these with ideal chains, a similar population but without the closure
constraint.

Definition 2. An open chain, W, also sometimes called an ideal chain or ideal open chain, is
an n-edged random walk in R

3, where each edge has unit length. Let e1, . . . , en be unit vectors
such that the kth vertex is given by vk = ∑k

i=1 ei. As with ideal rings, let ei be called an edge
vector. Let Wn denote the space of all such open chains.

Again, the careful reader will see that these are also based at the origin for ease of notation.

3. Rigorous calculation of theoretical averages for ideal rings and ideal chains

3.1. Squared end to end distance in ideal chains

For comparison, we will first calculate the squared end to end distance in ideal chains, as
in [6].
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Lemma 1. In Wn, the average squared end to end distance is n.

Proof. Let W ∈ Wn. Calculating the end to end distance of W :∣∣∣∣
∣∣∣∣

n∑
i=1

ei

∣∣∣∣
∣∣∣∣
2

=
(

n∑
i=1

ei ·
n∑

i=1

ei

)

=
n∑

i=1

(ei · ei) + 2

(
n−1∑
i=1

n∑
j=1

(ei · e j)

)
.

For random walks W ∈ Wn, the direction of each edge vector is completely uncorrelated with
the direction of the previous edge vector, and each edge vector ei is a uniformly distributed,
unit length, random vector. Thus, for i = j, (ei · e j) = 1, and for i �= j the average value
of (ei · e j), 〈ei · e j〉, is 0. Thus we have that the average end to end distance, taken over all
W ∈ Wn, is 〈∣∣∣∣

∣∣∣∣
n∑

i=1

ei

∣∣∣∣
∣∣∣∣
2〉

= n.

�

3.2. Average edge product in rings

Now we will consider ideal rings. As noted before, (ei · e j) is independent of i and j. Here,
we find an average value for (ei · e j), taken over all i, j for all P ∈ Pn.

Definition 3. Consider the space of ideal rings, Pn, for some n. Let rn denote the average of
the set Rn,

Rn = {(ei · e j) : ei, e j are edge vectors of some P ∈ Pn, i �= j}.
We will call rn the average edge product.

The following lemma is generally known, and is foundational to the following proofs [10].

Lemma 2. For all n ∈ N, the average edge product, over all ideal rings of length n, is given
by rn = −1

n−1 .

Proof. For all P ∈ Pn,
∑n

i=1 ei = 0. Then squaring both sides we have

(0 · 0) = 0 =
(

n∑
i=1

ei

)
·
(

n∑
i=1

ei

)

=
n∑

i=1

(ei · ei) + 2
∑

1�i< j�n

(ei · e j).

Taking the average over all P ∈ P , we replace (ei · e j) with 〈ei · e j〉 = rn:

0 = n + 2
n(n − 1)

2
rn.

Solving for rn we have

rn = −n

n(n − 1)
= −1

n − 1
.

�
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Figure 1. In the above image, we have end to end distances marked for k = 2, k = 3 and k = 4.
We would take the average of their squares to find the average squared end to end distance for
k = 2, 3 and 4.

3.3. Squared end to end distance

In open chains, the average squared end to end distance of a subsegments of length k in a chain
of length n is identical to the average squared end to end distance of chains of length k. That
is, the ambient chain has no effect on the shape of the subsegment. The same is not true in
ideal rings, where the closure constraint plays a pivotal role in local scale, as we will see.

Definition 4. For any P ∈ Pn, define

dP(k, j) =
∣∣∣∣
∣∣∣∣

j+k∑
i= j

ei

∣∣∣∣
∣∣∣∣
2

=
(

j+k∑
i= j

ei

)
·
(

j+k∑
i= j

ei

)
,

the squared distance between the jth and ( j + k)th vertex. We call dP(k, j) the squared
end-to-end distance of length k at j of P, as in figure 1. Define A(k, n) to be the average
value of

{dP(k, j) : 1 � j � n, P ∈ Pn}.
that is, let A(k, n) denote the average squared end to end distance of a subsegment of length
k in an ideal ring of length n. We will call A(k, n) the average end to end distance of length k.

Theorem 3. A(k, n) = k(n−k)

n−1 .

Proof. First we have that

dP(k, j) =
∣∣∣∣
∣∣∣∣

j+k∑
i= j

ei

∣∣∣∣
∣∣∣∣
2

=
(

j+k∑
i= j

ei

)
·
(

j+k∑
i= j

ei

)

=
j+k∑
i= j

(ei · ei) + 2
∑

j � i<m � j+ k

(ei · em)

= k + 2
∑

j � i<m � j+ k

(ei · em).

We have shown that independent of P, k, i and j, the average value of (ei ·em) = −1
n−1 . Therefore

the average value of dP(k, j) is, independent of P, i and j, k + 2
∑

j�i<m� j+k rn. This average

4



J. Phys. A: Math. Theor. 45 (2012) 225001 L Zirbel and K Millett

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

A
ve

ra
ge

 S
qu

ar
ed

 E
nd

-t
o-

E
nd

 D
is

ta
nc

e
 fo

r 
S

ub
se

gm
en

ts
 o

f L
en

gt
h 

k

Length of Subsegment k

Open Chains
Closed Chains

Figure 2. Here we compare the theoretical average squared end to end distance of subsegments of
length k for open chains (blue) and ideal rings (red and dashed), both with total length n = 50.

is precisely A(k, n). We conclude that

A(k, n) = k + 2
∑

j � i<m � j+ k

rn

= k + 2
(k − 1)(k)

2

−1

n − 1

= k(n − k)

n − 1
.

Therefore the average value of ‖ vk ‖2 is A(k, n) = k(n−k)

n−1 . �
We can verify some key features of this identity immediately. At k = 1 and k = n − 1, we

have that the average squared end to end distance is 1. Vertices one edge apart must be distance
1 apart, as we would expect, so the theoretical average agrees with the physical reality. Also,
the function is symmetric about n

2 , as a segment of length k and its complement, a segment
of length n − k, should have the same end to end distance. Lastly, the function achieves its
maximum at n

2 , as after that point, on average, the end to end distance must decrease due to the
closure condition. Witz showed through a different argument that squared end to end distance
scales like k(n−k)

n , which is close to our value [25]. This is an approximation though, as for
k = 1, we have n−1

n �= 1, though it is close for large values of k and n.
As in [6] and lemma 1, for open chains, the average squared end to end distance for ideal

chains is n (or nb2 where b is the length of the segments.) The squared end to end distance
of subsegments of length k within an open chain of length n will be identical to the squared
end to end distance of an open chain of length k. Therefore, in the open case, the average
squared end to end distance of a subsegment of length k within a chain of length n is k. As we
can see in figure 2, the average squared end to end distance of subsegments of an open chain
and the average squared end to end distance subsegments of an ideal ring look very different
for subsegments of very short lengths when n = 50. We observe that for the average squared
end to end distance of segments of length k in open chains to be within 1

100 th of the average
squared end to end distance of segments of length k in ideal rings, we would need k ≈ n

100 or
smaller. For length 50, as in figure 2, k must be length 1, which is a very strong restraint.
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3.4. Average center of mass

For the following definition and lemma, it is helpful to recall that these ideal rings are based
at the origin,

∑n
i=1 ei = 0, as we stipulated originally.

Definition 5. Let n ∈ N. Let P ∈ Pn. Define cP, the center of mass of P, to be cP = 1
n

∑n
k=1 vk,

the average of the vertices.

Lemma 4. For any P ∈ Pn,

‖ cP ‖2= 1

n2

⎛
⎝ n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)(ei · e j)

⎞
⎠ .

Proof.

‖ cP ‖2=
(

1

n

n∑
k=1

vk · 1

n

n∑
k=1

vk

)

= 1

n2

(
n∑

k=1

k∑
i=1

ei ·
n∑

k=1

k∑
j=1

e j

)

= 1

n2

(
n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)(ei · e j)

)
.

�

Definition 6. As above, let us denote the average of the set {‖ cP ‖2: P ∈ Pn} as ‖ cn ‖2, the
average center of mass of Pn.

Lemma 5. ‖ cn ‖2= n+1
12 .

Proof. From lemma 4, we have that for any P ∈ Pn,

‖ cP ‖2= 1

n2

(
n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)(ei · e j)

)
.

We will replace (ei · e j) with rn to find ‖ cn ‖2:

‖ cn ‖2= 1

n2

(
n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)rn

)
.

= 1

n2

(
n∑

k=1

(n − k + 1)2

)
+ 2

n2

n∑
j=2

j−1∑
i=1

(
(n − j + 1)(n − i + 1)

( −1

n − 1

))
.

Simplifying the first term, we have

1

n2

(
n∑

k=1

(n − k + 1)2

)
= 2n2 + 3n + 1

6n
.

Likewise the second term,

2

n2

n∑
j=2

j−1∑
i=1

(
(n − j + 1)(n − i + 1)

( −1

n − 1

))

6
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is simplified to

−1

n2(n − 1)

n∑
j=2

( j3 − (3n + 4) j2 + (2n2 + 7n + 5) j − (2n2 + 4n + 2)).

The fact that we are summing from j = 2 rather than j = 1 complicates this calculation. To
fix this, we change the sum so that it starts at j = 1, and at the end, we will subtract off the
j = 1 term:

1 − 3n − 4 + 2n2 + 7n + 5 − 2n2 − 4n − 2 = 0.

Because the j = 1 term is 0, we may change the summation to start at j = 1. This allows
further simplification, and the second term is finally

−
(3n4 + 2n3 − 3n2 − 2n

12n2(n − 1)

)
.

Combining these two terms, we have

‖ cP ‖2= 2n2 + 3n + 1

6n
− 3n4 + 2n3 − 3n2 − 2n

12n2(n − 1)

= (n + 1)

12
.

�

3.5. Squared radius of gyration

With the average center of mass defined, we may ask for the average squared difference
between the center of mass and the vertices. This average difference is precisely the average
squared radius of gyration.

Definition 7. Let P ∈ Pn with vertices v1, . . . , vn. With cP as above, define the squared radius
of gyration of P to be

R2
G(P) = 1

n

n∑
k=1

‖ vk − cP ‖2 .

Definition 8. We will define the average of the set {R2
G(P) : P ∈ Pn} to be R2

G,n, the average
squared radius of gyration of Pn.

Theorem 6. The average squared radius of gyration for all P ∈ Pn is R2
G,n = n+1

12 .

Proof. For any P ∈ Pn, we have that

R2
G(P) = 1

n

n∑
k=1

‖ vk − cP ‖2

= 1

n

n∑
k=1

(‖ vk ‖2 −2(vk · cP)+ ‖ cP ‖2)

= 1

n

n∑
k=1

‖ vk ‖2 −2

(
n∑

k=1

vk

n
· cP

)
+ 1

n
(n ‖ cP ‖2)

= 1

n

n∑
k=1

‖ vk ‖2 −2(cP · cP)+ ‖ cP ‖2

= 1

n

n∑
k=1

‖ vk ‖2 − ‖ cP ‖2 .

7
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From theorem 3 we have that the average value of ‖ vk ‖2 is k(n−k)

n−1 . From lemma 5 we have
that the average value of ‖ cP ‖2 is n+1

12 . Replacing these, we can find the average squared
radius of gyration over all P ∈ Pn, that is, R2

G,n (rather than R2
G(P) as above)

R2
G,n =

(
1

n

n∑
k=1

k(n − k)

n − 1

)
− n + 1

12

= n2 − 1

12(n − 1)
= n + 1

12
= n

12
+ 1

12
.

�
Therefore the average squared radius of gyration scales like n

12 , agreeing with Zimm and
Stockmayer’s estimate [27].

3.6. Average squared radius of gyration of subsegments of length k

The scaling of the average squared radius of gyration of ideal rings and chains is influenced by
the presence of knotting [16]. As a consequence, one expects that the average squared radius
of gyration of subsegments will also be affected by the presence or absence of knotting.

Determining a correlation between knotting and shape characteristics will be affected by
the nature of knotting. If the knotted sections of the rings are small, involving relatively few
edges, we may not see the influence of those edges in the squared radius of gyration, which can
be obscured by the behavior of the unknotted complement. In order to detect local behavior,
we study characteristics of shape that are local.

In open chains, the average squared radius of gyration of subsegments of length k inside
of larger chains of length n is identical to the average squared radius of gyration of segments
of length k. That is, the ambient chain has no effect of the shape of the subsegment. This is not
true for ideal rings, where we will see that the closure constraint plays a pivotal role in local
shape. However, these characteristics may play a pivotal role in identifying and characterizing
the knotted portions of open chains.

Definition 9. Let P ∈ Pn. Define Pi,k to be the translated subsegment of P of length k beginning
with the ith edge vector, ei. That is, Pi,k is a segment starting at the origin, where the jth vertex
is given by

∑i+ j
m=i em. For ease of notation, we will relabel the position and edge vectors so

that the jth vertex is given by v′
j = ∑ j

m=1 e′
m.

So Pi,k is isomorphic to a subsegment of P, though we’ve done some relabeling. Now we
would like to find the center of mass and the squared radius of gyration of Pi,k.

Definition 10. Let cPi,k = 1
k

∑k
j=1 v′

j , the translated center of mass of Pi,k. Then we define the
squared radius of gyration of Pi,k to be

R2
G(Pi,k) = 1

k

k∑
j=1

‖ v′
j − cPi,k ‖2 .

For P ∈ P and k < n, define the average squared radius of gyration of subsegments of length
k as

R2
G,k(P) = 1

n

n∑
j=1

R2
G(Pi,k).

Now, we have the analogous definitions when we take the averages of cPi,k and R2
G,k(P)

over all P ∈ Pn.

8
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Definition 11. Let ck,n be average center of mass of a translated subsegment of length k, the
average of {cPi,k : i � n and P ∈ Pn}. For some n, let R2

G,n,k be the average squared radius of
gyration of subsegment of length k to be the average of {R2

G,k(P) : P ∈ Pn}.
As in the last section, in order to compute R2

G,n,k, we must first find ck,n.

Lemma 7. ‖ ck,n ‖2= (2k2+3k+1)2n−3k(k+1)2

12k(n−1)
.

Proof. Let us begin with some ‖ cPm,k ‖2 .

‖ cPm,k ‖2= 1

k2

(
k∑

j=1

v′
j ·

k∑
j=1

v′
j

)

= 1

k2

(
k∑

j=1

j∑
i=1

e′
i ·

k∑
j=1

j∑
i=1

e′
i

)

= 1

k2

(
k∑

i=1

(k − i + 1)2 + 2
k∑

j=2

j−1∑
i=1

(k − j + 1)(k − i + 1)(e′
i · e′

j)

)
.

Because (e′
i · e′

j) = (e′
i+m · e′

j+m), the product is still independent of i and j, and we can replace
(e′

i · e′
j) with rn = −1

n−1 . This will let us take the average over all such Pm,k to obtain ‖ ck,n ‖2:

‖ ck,n ‖2= 1

k2

(
k∑

i=1

(k − i + 1)2 + 2
k∑

j=2

j−1∑
i=1

(k − j + 1)(k − i + 1)

( −1

n − 1

))
.

There are two sums to evaluate. The first is straightforward:
∑k

i=1(k − i + 1)2 = k(k+1)(2k+1)

6

The second sum is S = 2
∑k

j=2

∑ j−1
i=1 (k − j + 1)(k − i + 1)

( −1
n−1

)
.

S = −2

n − 1

k∑
j=2

j−1∑
i=1

(k − j + 1)(k − i + 1)

= −1

n − 1

k∑
j=2

( j3 − (3k + 4) j2 + (2k2 + 7k + 5) j − 2(k + 1)2).

Evaluating j3 − (3k + 4) j2 + (2k2 + 7k + 5) j − 2(k + 1)2 at j = 1 we have 1 − 3k + 4 +
2k2 + 7k + 5 − 2k2 − 4k − 2 = 0. Thus we can replace the lower bound of our sum, j = 2
with j = 1 with no penalty.

S = −1

n − 1

k∑
j=1

( j3 − (3k + 4) j2 + (2k2 + 7k + 5) j − 2(k + 1)2)

= 2k + 3k2 − 2k3 − 3k4

12(n − 1)
.

Combining these terms, we have

‖ ck,n ‖2= 1

k2

(
k(k + 1)(2k + 1)

6
+ 2k + 3k2 − 2k3 − 3k4

12(n − 1)

)

= (2k2 + 3k + 1)2n − 3k(k + 1)2

12k(n − 1)
.

�
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We note that when k = n, we have

‖ cn,n ‖2= (2n2 + 3n + 1)2n − 3n(n + 1)2

12n(n − 1)

= n3 − n

12n(n − 1)
= n + 1

12

which agrees with lemma 5.

Theorem 8. The average squared radius of gyration of a subsegment of length k, taken over
all such subsegments in all P ∈ Pn is R2

G,n,k = (k2−1)(2n−k)

12k(n−1)
.

Proof. For some Pi,k we have

R2
G(Pi,k) = 1

k

k∑
j=1

‖ v′
j − cPi,k ‖2

= 1

k

k∑
j=1

‖ v′
j ‖ −2

(
1

k

k∑
j=1

v′
j · cPi,k

)
+ 1

k

k∑
j=1

‖ cPi,k ‖2

= 1

k

k∑
j=1

‖ v′
j ‖ −2(cPi,k · cPi,k ) + 1

k
k ‖ cPi,k ‖2

= 1

k

k∑
j=1

‖ v′
j ‖ − ‖ cPi,k ‖2 .

From lemma 7, ‖ cPi,k ‖2 is, on average, ‖ ck,n ‖2= (2k2+3k+1)2n−3k(k+1)2

12k(n−1)
.

Likewise, average value of ‖ v′
j ‖2, the end to end distance of the segment Pi,k, is given in

theorem 3. By replacing ‖ cPi,k ‖2 and ‖ v′
j ‖2 with the averages for these values, we can find

R2
G,n,k:

R2
G,n,k = 1

k

k∑
j=1

j(n − j)

n − 1
− (2k2 + 3k + 1)2n − 3k(k + 1)2

12k(n − 1)

= (k2 − 1)(2n − k)

12k(n − 1)
.

�

We note that when k = n, we have

R2
G,n,n = (n2 − 1)(n)

12n(n − 1)

= n + 1

12

which agrees with theorem 8.
Now for a fixed n, we have a function that returns the average squared radius gyration of

a subsegment of length k.

10
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3.7. Comparison between ideal rings and open ideal chains

For comparison, consider ideal chains. From lemma 4, which also holds for ideal chains, we
know that for any W ∈ Wn, the squared center of mass is given by

‖ cW ‖2= 1

n2

(
n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)(ei · e j)

)
.

When the average is taken over all ideal chains W ∈ Wn, define the average cWn . Likewise,
let the squared radius of gyration of the ideal chain W be R2

G(W ), and let the average over all
such ideal chains be R2

G,Wn
.

Lemma 9. R2
G,Wn

= n2−1
6n .

Proof. First, we find ‖ cWn ‖2, which is simplified by that fact that in Wn, the average value
of (ei · e j) is 0 for i �= j.

‖ cn ‖2= 1

n2

(
n∑

k=1

(n − k + 1)2 + 2
∑

1�i< j�n

(n − j + 1)(n − i + 1)(ei · e j)

)

= 1

n2

(
n∑

k=1

(n − k + 1)2

)

= 2n2 + 3n + 1

6n
.

As in the first part of theorem 8, the squared radius of gyration of some open chain, R2
G(W ),

is

R2
G(W ) = 1

n

n∑
k=1

‖ vk ‖2 − ‖ cW ‖2 .

Replacing ‖ cW ‖2 with the average ‖ cWn ‖2 and ‖ vk ‖2 with its average value, k, from
lemma 1, we can find the average radius of gyration for open chains, R2

G,Wn
:

R2
G,Wn

= 1

n

n∑
k=1

k− ‖ cWn ‖2

= 1

n

(
n(n + 1)

2

)
− 2n2 + 3n + 1

6n

= n2 − 1

6n
.

�
For open chains, the squared radius of gyration of a subsegment of length k is the same

as for a chain of length k. So we may compare R2
G,n,k = (k2−1)(2n−k)

12k(n−1)
and R2

G,Wn
= k2−1

6k , as in
figure 3.

As with squared end to end distance, we can see that the average squared radius of
gyration of subsegments in an ideal ring is radically different from the average squared radius
of gyration of subsegments in an open ideal chain. For ideal rings and chains of length n, in
order to have the averages squared radius of gyration of a subsegment of length k for ideal
rings to be within 1

100 of the squared radius of gyration of a subsegment of length k in an ideal
chain, we must have each other, we must have that the length of the subsegment considered,
k, is less than n

50 . So for n = 1000, k must be 20 or less.

11
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Figure 3. Here we compare the average squared radius of gyration of subsegments of length k for
open chains (blue) and ideal rings (red and dashed).

Recall, with squared end to end distance, for the averages to be within 1% of each other,
the segments had to be less than 1

100 th of the length, so k had to be length 10 or shorter if
n = 1000. This suggests that the squared end to end distance characterization is more sensitive
than squared radius of gyration of subsegments, as it is more affected by the closure condition.
Once again, we observe that the local scale of an ideal ring differs significantly from that of a
ideal chain at all but the smallest length scales.

4. Experimental methods

Generating a random sample from Pn is much trickier than generating a random walk. With
the latter, we can uniformly sample points edge vectors on the unit sphere. The complication
in Pn is the closure constraint: we cannot just generate random walks and hope that they close.

In order to randomly sample Pn we have two step process called the hedgehog method [1].
First, we find a starting point, then we use crankshaft rotations to sample the space. After some
number of moves, our sample is independent of the starting point, and is a random element
of Pn.

4.1. Hedgehog method

The hedgehog method begins with selecting n points uniformly on the unit sphere, and label
them e1, . . . , en. Then, we add to that list each eis negative, −ei. Thus we have 2n edge vectors,
e1,−e1, e2,−e2, . . . , en,−en, as in figure 4.

We randomly permute these, getting a list of edge vectors e′
1, e′

2, . . . , e′
2n. Adding in each

edge vector’s negative ensures the all important closure condition is met.

4.1.1. Crankshaft rotations. This is a good starting point, but for each edge vector, its exact
opposite is also an edge vector, which is undesirable.

We finish the hedgehog method by performing crankshaft rotations. We begin a crankshaft
rotation by randomly selecting two non-parallel edge vectors e j and ek. These are rotated about

12
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Figure 4. The edge vectors e1, −e1, e2,−e2, . . . , en, −en are plotted above, hence this is called
the hedgehog method.

the axis determined by e j + ek, by a random angle θ . The form of these rotations is given by
the following:

e j 	−→ e j + ek

2
+ e j − ek

2
cos(θ ) + e j × ek

‖ e j + ek ‖ sin(θ )

e j 	−→ ek + e j

2
+ ek − e j

2
cos(θ ) + ek × e j

‖ ek + e j ‖ sin(θ ).

Because the sum e j + ek is conserved, the modified sequence of edge vectors and vertices still
satisfies the closure condition.

Because any equilateral polygon can be deformed by a finite sequence of crankshaft
rotations to the regular polygon, a finite series of crankshaft rotations will take us from one
polygon to another random polygon [1]. We performed 6n crankshaft rotations on each sample
polygon.

5. Experimental results

We use the above methods to randomly generate ideal rings. Numerically, we will have two
primary foci: how quickly does the average for an ensemble converge to these theoretical
values, and how will knotting affect these characteristics?

5.1. Convergence

For various population sizes, 101, 102, 103, 104 and 105, we generated that many 50 edged
polygons with 150 crankshaft rotations. For each polygon, we found the squared radius of
gyration, and took the average over the population. For each population size, we did this ten
times. We then compared these averages to the theoretical average. We define E(n) to be
the difference between the experimental average and the theoretical average with n samples.
Figure 5 shows the convergence result.

13
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Figure 5. For population sizes 101, 102, 103, 104 and 105 we computed the average radius of
gyration, and plotted it against the theoretical value for the same length. Note that this is a log scale
plot of the data.

For population sizes of 10 000 and larger, we have excellent convergence to the theoretical
average. Using linear regression, we can estimate that E(n) ∼ Cn−1.559, providing for excellent
convergence for large n.

5.2. Knotting

Knotted ideal rings, specifically trefoils, were generated by first constructing ideal rings of
length 50, then calculating their knot type, and saving those of the given knot type.

By the length of a knot in a ring we mean the length of the shortest subchain that contains
the knot. The knot length is determined by examining subsegments of progressively longer
length, starting at all possible locations. Each open segment is situated inside of a large
sphere. A random collection of points on the surface of the sphere is selected. The ends of the
segment are closed to each point, and the knot type of each of these closures is then calculated.
This yields a spectrum of knot types, as in [14, 15, 18, 19, 23]. A segment is considered to
be a trefoil if the closure is a trefoil with some tolerance (greater than 50%). The knotted
portion is identified as the shortest segment which is a trefoil, for which the complement is
unknotted.

In figure 6 we compare the average squared end to end distance for a phantom population
of ideal rings and a population of randomly sampled trefoils. We can see that for length 50,
the average for the trefoils is smaller than the average for the whole space. This suggests that
for length 50, knotting compresses the polygon, making vertices closer together.

Looking at the maximum squared end to end distance, we may ask what length curve has
the same maximum, 10.2291. Solving, we have that a curve of 39.89, approximately 40, has
the given maximum. That suggests that the average shortening caused by knotting is about
10 edges of length, and that on average a trefoil of length 50 has an effective length of 40.
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Figure 6. Here we compare the average squared end to end distance for a phantom population of
ideal rings (blue) and a population of randomly sampled trefoils (red and dashed).

Figure 7. A hypothetical average knotted section with knot length 16 edges and end to end distance
(red and dashed) of 6.

The average length of the knotted portion of these trefoils is 16.4. We predict that the
difference between the length 10 reduction we saw above and the average trefoil length, 16.4,
can be accounted for by examining the end to end distance of the knotted portion. As in
figure 7, the difference could be explained by an average knotted portion of 16 to 17 edges
with an average end to end distance around 6.

As with squared end to end distance, in figure 8 we see that the average for the trefoils is
smaller than the average for the whole space. Again, this suggests that for length 50, knotting
compresses the polygon, making vertices closer together. We know that ideal trefoils, and
indeed any collection of some fixed knot type, will for some small number of edges have mean
squared radius of gyration less than the mean for the total population, and for larger number
of edges, they will have a greater average squared radius of gyration [5]. For example, the
average squared radius of gyration of trefoils is smaller than the average squared radius of
gyration of the whole population for lengths less than 175, and the opposite is true for lengths
greater than 200 [5]. We expect similar behavior for squared end to end distance.

We can set the average squared radius of gyration of the population of trefoils, 3.5768
equal to our function for squared radius of gyration, n+1

12 . Solving for n we have n = 41.9216,
suggesting that the average shortening caused by knotting is about 8 edges of length. We can
compare this with the average shortening prediction from squared end to end distance, 10.
These differ by 4% of the total length, 50.
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Figure 8. Here we compare the average squared radius of gyration of subsegments of a phantom
population of ideal rings (blue) and of a population of randomly sampled trefoils (red and dashed).

6. Conclusion

These theoretical averages have many potential applications. Primarily, they can be used as a
criterion to determine effectiveness of sampling methods. By comparing the squared radius of
gyration of subsegments or the squared internal end to end distance of polygons generated a
given sampling method and the theoretical average, we can determine the effectiveness of the
generation scheme and corroborate numerical simulations. Further, in the above generation
method, we can use this convergence to determine how many crankshaft rotations are needed
to sample the space of polygons uniformly, as in [1].

As the previous section highlights, squared end to end distance and squared radius
of gyration of subsegments may be used to predict knot length, which is computationally
expensive to calculate. This will allow us to examine the growth of the knot length as n → ∞,
to determine if average knot length is bounded, or grows proportionally with n1/2 or n, allowing
us to ascertain if knotting is strongly local, local or global on average [4, 7, 12, 14, 15, 17, 20].
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