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ABSTRACT

The probability that a random walk or polygon in the 3-space or in the simple cubic
lattice contains a knot goes to one at the length goes to infinity. Here, we prove that
this is also true for slipknots consisting of unknotted portions, called the slipknot, that
contain a smaller knotted portion, called the ephemeral knot. As is the case with knots,
we prove that any topological knot type occurs as the ephemeral knotted portion of a
slipknot.
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1. Introduction

Self-avoiding random walks and polygons in 3-space or in the cubic lattice pro-
vide a popular model for linear polymers under certain physical conditions. With
increasing length, the probability that a random walk or polygon contains a knot
goes to one [10, 11, 32, 34] proving a conjecture of Frisch and Wasserman [14] and
of Delbruck [7]. In addition, this knotted portion can be of any desired topologi-
cal type. As a consequence, the influence of knotting in the statistical mechanical
and physical properties of polymers [13, 37], their occurrence in DNA [39] and in
proteins [24, 35, 38], and their impact upon the scaling of physical properties of
macromolecules [8,12,15,30,31] have inspired wide ranging research. In this paper,
we extend the knotting concept to encompass a more fragile knotted structure that
can be found in random walks and polygons and which has recently been found
in natural biological structures. An ephemeral knot in a random walk or polygon
is a knotted portion that is contained in a larger unknotted portion which we will
call a slipknot. Slipknots have been identified in proteins [23]. We conjecture that
they are also present in a wide range of other macromolecular structures. Slipknots
appear, however, to have avoided experimental or theoretical detection. One fact of
this is the difficulty in identifying the specific knotted portion of a complex polymer
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conformation. For polymers in the good solvent conditions, one expects knots to
be quite localized. They are less so, and less likely to occur, in theta conditions.
In poor solvent conditions, they occur much more rarely, if at all. Thus, although
there is some confirming data available, it continues to be a significant challenge
to acquire fully robust measures of the precise location and scale (or size) of knots
across this range of conditions [20, 25, 26, 30]. The identification of these knotted
portions of the random walk or polygonal chain have an impact upon the spatial
conformation of the chain and, as a consequence, their presence correlates with
the physical properties of the modeled polymers. We propose, therefore, that the
presence of slipknots will have an analogous influence upon the associated physical
properties of polymers.

We first describe knotting in 3-space and in the cubic lattice. Next, we review
several approaches to the identification and quantification of knotting in open chains
and describe the properties that recommend the MDS procedure [27, 28]. Using
these criteria, we then show how to extend the methods for knots to show that
the probability that a random walk or polygon contains a slipknot knot, and its
companion ephemeral knot, goes to one as the length goes to infinity.

2. Knots, Ephemeral Knots, and Slipknots

A closed polygon in 3-space is knotted if there is no ambient deformation of
Euclidean space taking the polygon to the standard planar circle. While the search
for computationally efficient and effective methods to determine the specific struc-
ture of knotting for polygons (topologically equivalent to a closed circle) in 3-space
is a continuing challenge for topology, the search for an appropriate formulation of
knotting of open polygons (topologically equivalent to a closed interval or arc) is
even more difficult. From a classical topological point of view, knotting of open poly-
gons is not possible because, if edge lengths are allowed to vary, each open polygon
is ambient isotopic to a standard interval in the “x”-axis in 3-space (This argument
is popularly called the “light-bulb” theorem) and, as a consequence, open polygons
are topologically unknotted. They may, however, be geometrically knotted when the
edge lengths are fixed. This is confirmed by the examples of Canteralla–Johnson
and others [1, 6, 36]. It is unknown, if one considers equilateral polygons, whether
or not there are configurations that cannot be deformed to a straight segment pre-
serving the edge lengths. The analogous problem for closed equilateral polygons
is also unknown, i.e. “Are there topologically unknotted equilateral polygon con-
figurations in 3-space that cannot be deformed to the standard planar equilateral
polygon?” These two questions give a sense of the degree of difficulty in describing
the knot theory of equilateral polygons in 3-space beyond those having 8 or fewer
edges. For these fundamental cases, one knows more about the nature and structure
on knotting [2–5].

For open polygons, the search of an effective notion of knotting is a mat-
ter of continuing effort. In 1994, Mansfield [24] proposed the “reasonable-person”
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approach to the knotting of curves or polygonal arcs in discussing knots in proteins,
specifically: “A polygonal arc is knotted if any ‘reasonable-person’ would say it was
knotted.” In 2000, Taylor [35] turned this approach into an effective research method
with an algorithm to simplify the polygonal arc while holding its endpoints fixed.
The objective of this strategy is to make it easier for a “reasonable-person” to be
able to decide whether or not a knot was present in the arc and to identify its topo-
logical knot type. There is, however, an intrinsic uncertainty inherent to the Taylor
and analogous algorithms as the resulting terminal configuration is dependent upon
specific choices made in the course of the simplification algorithm. Examples [28]
show that one can reach different conclusions depending upon the specific sequence
of operations employed in implementations of the Taylor algorithm, see Fig. 1. Nev-
ertheless, this strategy continues to be the foundation of efforts to identify knotted
structure as it is argued that such problematic conformations as statistically rare,
e.g. [23, 41].

Another strategy that is commonly employed is to convert a polygonal configu-
ration into a closed circular configuration in some specified manner, [19,25,26,37,38]
and assign the knot type of the closed configuration to the open one from which
it originates. For closed polygonal configurations, the classical Reidemeister moves
allow one to simplify the configuration without changing its knot type. A sufficiently
simple polygonal configuration can then be analyzed via a wide range of knot invari-
ants such as the Alexander, Jones, HOMFLY, and Kauffman polynomial invariants.
Thus, the fundamental question is “How does one close an open polygon to cor-
rectly identify its appropriate knot type?” Perhaps the most basic method is to
simply connect the ends of the open polygon by an arc. While giving the “right”
answer [28] with sufficient frequency to serve as a viable statistical strategy, one
might argue that this strategy is not sufficiently reliable for the analysis of individ-
ual instances or when sample sizes are small. Another attractive closure method
is to randomly extend the terminal segments to “infinity” where they close the
polygon. In practice, this means that the rays from the terminal vertices intersect

Fig. 1. The unknot and trefoil are possible outcomes [28].
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a very large sphere, one containing the polygon under consideration, in two points
that are then joined by a great circle arc on the sphere (or are closed in an equiv-
alent manner) [19]. Another strategy is to connect the end vertices to “infinity”
with rays originating from the center of mass of the polygon [37, 38] and assign
to the configuration the topological knot type. Each of these methods suffers from
an inherent instability that, at least from a mathematical perspective, causes some
measure of concern about the reliance on a single closure whose character may
change in fundamental ways under small perturbations of the vertices that define
the polygon. Such measures can, thereby, fail to satisfy the “reasonable-person”
criterion.

In order to study the knotting of open off-lattice, or 3-space, polygons and being
concerned with certain features of existing methods, Millett, Dobay and Stasiak [27,
28] proposed a statistical method to identify and describe, quantitatively, the nature
of the knotting present in an open polygon. This method was evaluated in a study
of knotting in random walks and tested against the previously identified knotting
present in protein structures. The MDS Method can be described as follows: given
an open polygonal arc, consider the probability distribution, or knotting spectrum,
arising from connecting both endpoints of the polygon to a point on the sphere “at
infinity”, as the point on the sphere vary with respect to the uniform distribution.
For all practical purposes, this spectrum identifies a dominate knot type at the
0.50 level, meaning that a single knot type occurs in more than half the closures.
In a test of one thousand 300 step random walks in 3-space, the 0.50 level test was
successful 99.6% of the time [28]. As a consequence, we conclude that the MDS
approach provides a effective research method with which to analyze the knotting
of open chains.

We observe that these different definitions of the knotting of open chains, as
well as the one employed by Sumners and Whittington [34] described next, may be
used and will result in the same theorems. In order to set the context for the proofs
of our theorems, we review their methods. Considering an open polygon as “frozen
in space-time,” Sumners–Whittington [34] employ a definition that uses a properly
embedded ball-knot pair. Precisely, if there is a ball in the simple cubic lattice or in
3-space that properly intersects the polygon (meaning that the boundary sphere of
the ball meets the polygon in precisely two points and the interior of the arc defined
by them lies in the interior of the ball) such that the ball-arc pair is knotted, one
says that the open polygon contains the knot type determined by the ball pair. This
definition “makes sense” because one cannot eliminate a knot by tying another knot
in another, distant, part of the polygon, i.e. knots do not have “inverses”. Using
this definition of knotting in open chains, they prove that the probability that a
random closed self-avoiding random walk or polygon in the simple cubic lattice is
knotted goes to one as its length goes to infinity. The key result is an estimate of
the growth in the number of self-avoiding open polygons in the simple cubic lattice
that contain knotted ball pairs.
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2.1. Knots, slipknots, and ephemeral knots in the simple

cubic lattice

As mentioned earlier, the goal of this paper is the extension of the following theorem:

Theorem 2.1 (Sumners and Whittington, Pippenger [32, 34]). All except
exponentially few sufficiently long self-avoiding polygons on the simple cubic lattice
contain a knot of any given topological type.

The proof is based upon the Kesten Pattern Lemma 2.2 [21] and the observation
that, for example, Diao’s smallest lattice trefoil knot [9], shown in Fig. 2, can be
modified to provide the “open” trefoil knot also shown in Fig. 2, which has the
necessary properties to use the pattern lemma. This “open” trefoil is an example
of a tight configuration. A tight configuration is one such that the lattice neigh-
borhood, the union of the Wigner–Seitz cells of the configuration is a topological
ball [34]. This insures that no other segments in a larger polygon can disrupt the
knotted portion. The relationship between the last two definitions of knotting in
open chains is complicated for several reasons. In the Sumners–Whittington defini-
tion, the embedding of the 3-ball can be spatially complex and exceedingly difficult
to recognize in a numerical study. In addition, if one attempts to restrict the class
of 3-balls to only the spherical ones, it is likely that many instances of “reasonable-
person” knotting will not be readily recognizable. It is this difficulty, in contrast
to its power to support a mathematical proof of knotting, that makes the MDS
method an attractive experimental tool despite the difficulty inherent in employing
it in the construction of mathematical proofs. Applying the MDS method to the
polygonal segment employed by Sumners and Whittington, shown in Fig. 2, we find
that the knotting spectrum, for a sample of size 10, 000, consists of 31.4% unknots
and 68.6% trefoil knots thereby demonstrating that the configuration is a trefoil
knot according to the MDS 50% standard.

Fig. 2. A closed 24 edge trefoil knot and the analogous Sumners–Whittington tight trefoil Kesten
pattern.
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Proof. Key to the proof of the theorem and the Kesten Pattern Lemma is the
growth of self-avoiding random walks and polygons. Let W (n) denote the set of self-
avoiding random walks in the simple cubic lattice starting at {0, 0, 0} and let P (n)
denote the set of oriented self-avoiding polygons in the simple cubic lattice based
at {0, 0, 0}. Define wn = ‖W (n)‖ and pn = ‖P (n)‖. Hammersley and Morton [17]
have shown that

0 < lim
n→∞ n−1log wn = inf

n>0
n−1log wn = κ < ∞.

Hammersley [16] also showed that

lim
n→∞ n−1log pn = lim

n→∞ n−1log wn = κ.

As noted above, the Sumners–Whittington lattice trefoil shown in Fig. 2 is an
example of a pattern, T , to which the Kesten Pattern Lemma 2.2 applies:

Lemma 2.2 (Kesten Pattern Lemma). If there is a self-avoiding walk on which
a pattern, e.g. T, occurs three times, then the number wn(¬T ) of n-step self-avoiding
walks on which T does not appear satisfies

lim sup
n→∞

n−1log wn(¬T ) = λ(¬T ) < κ.

To complete the proof of Theorem 2.1 one, therefore, requires the extension of
the representation of a tight trefoil knot by a Kesten Pattern to any knot type.
This is provided by Lemma 2.3:

Lemma 2.3 (Soteros, Sumners, and Whittington 1992 [33]). Knots of any
topological type are represented by a Kesten Pattern in the simple cubic lattice which
forms a tight knot of that type.

Thus, if the number of self-avoiding walks not containing a knot of type K is
wn(¬K)

wn(¬K) ≤ wn(¬T ) ≤ eλ(¬T )n+o(n) < eκn+o(n).

Thus, the number of self-avoiding walks not containing a knot of type K is an
exponentially small fraction of the total number of self-avoiding walks.

This strategy also applies to the case of self-avoiding polygons because the
removal of the last edge of a polygon cannot create a pattern, implying that the
number of n-edge based oriented self-avoiding polygons not containing the knot of
type K is also an exponentially small fraction of the total number of self-avoiding
polygons.

Immediate consequences of Theorem 2.1 include the following:

Corollary 2.4. All but exponentially few sufficiently long self-avoiding walks or
polygons on the simple cubic lattice contain a knot of any selected topological type
with positive density.



May 20, 2010 14:38 WSPC/S0218-2165 134-JKTR
S0218216510008078

Knots, Slipknots, and Ephemeral Knots in Random Walks and Equilateral Polygons 607

Corollary 2.5. The probability that a self-avoiding walk or polygon on the simple
cubic lattice contains a knot (of any selected topological type) goes to one as the
length goes to infinity.

Proof. The probability that an n-step random walk in the simple cubic lattice
contains a knot of a given type, PK(n), is bounded below by the probability that
it contains the tight knot of that type forming a Kesten Pattern, T, showing that

1 ≥ PK(n) ≥ 1 − wn(¬T )
wn

≥ 1 − e(λ−κ)n+o(n)

and, therefore, that PK(n) → 1 as n → ∞.
As above, the strategy also applies to the case of the self-avoiding polygon

because the deletion of the last edge of the polygon cannot create a pattern, imply-
ing that the number of n-edge based oriented self-avoiding polygons not containing
the T configuration is not larger than the number of (n−1)-edge self-avoiding walks
not containing T . As a consequence, the probability that an n-edge random equi-
lateral polygon in the simple cubic lattice contains a knot of a given type, PK(n),
satisfies:

1 ≥ PK(n) ≥ 1 − wn−1(¬T )
pn

≥ 1 − e(λ−κ)n+o(n)

and, therefore, PK(n) → 1 as n → ∞.

Following the model provided by these arguments, we see that the key to the
proof of the Slipknot Theorem 2.7 is the application of the Kesten Pattern Lemma
to a slipknotted element, S, such as the one shown in Fig. 3. Observe that this con-
figuration cannot be “reknotted” for the same reason that the Sumners-Whittington
trefoil cannot be unknotted, it is impossible for any other portion of the walk or
polygon to penetrate the convex hull of the configuration. Thus, we have a tight
trefoil slipknot realized by a Kesten Pattern and can conclude that

lim sup
n→∞

n−1log wn(¬S) = λ(¬S) < κ.

Fig. 3. An trefoil slipknot with its trefoil ephemeral knot in the simple cubic lattice.
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Let SK denote the set of random walks in simple cubic lattice containing a
slipknot of type K. The argument would continue, as above, to show that all but
exponentially few sufficiently long self-avoiding walks on the simple cubic lattice
contain a slipknot of type K and, therefore, the probability that a random walk
contains an slipknot of type K, PSK (n) satisfies

1 ≥ PSK (n) ≥ 1 − wn(¬SK)
wn

≥ 1 − e(λ(¬SK)−κ)n+o(n)

proving that PSK (n) → 1 as n → ∞.
Thus, the generalization to slipknots and their associated ephemeral knots

is achieved by the creation of lattice instances of tight slipknots to which the
Lemma 2.2 also applies. This is the content of Lemma 2.6.

Lemma 2.6. Slipknots of any topological type, and their associated ephemeral
knots, can be realized in the simple cubic lattice by tight Kesten Patterns.

A trefoil slipknot in the simple cubic lattice, inspired by the trefoil knot in
Fig. 2, is shown in Fig. 3. Applying the MDS method to this trefoil slipknot, for a
sample of size 10, 000, one has a knotting spectrum consisting of 86.7% unknots and
13.3% trefoils. If one applies the MDS method to the ephemeral trefoil subsegment,
for a sample of size of 10, 000, one has a knotting spectrum consisting of 6.3%
unknots, 92.76% trefoil knots, 0.44% figure-eight knots and, 0.47% 51 knots, thereby
confirming its identification. While this example satisfies the requirements of the
Kesten Pattern Lemma 2.2, Lemma 2.6 is required to complete the proof of the
theorem in its full generality.

Theorem 2.7. All except exponentially few sufficiently long self-avoiding walks or
polygons on the simple cubic lattice contain ephemeral knots of any fixed topological
type and their associated slipknots.

Immediate consequences of the theorem include the following:

Corollary 2.8. All but exponentially few sufficiently long self-avoiding walks or
polygons on the simple cubic lattice contain an ephemeral knot and its associated
slipknot of any selected topological type with positive density.

Corollary 2.9. The probability that a self-avoiding walk or polygon on the simple
cubic lattice contains an ephemeral knot and its associated slipknot (of any selected
topological type) goes to one as the length goes to infinity.

Corollary 2.10 (Whittington). The probability that a knotted self-avoiding walk
or polygon in the simple cubic lattice contains a slipknot goes to one as the length
goes to infinity.
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The proof of Lemma 2.6 is inspired by Diao’s the proof of the off-lattice theorem
analogous to Theorem 2.1, Theorem 2.15, which we will also extend to slipknots in
the next section.

Proof of Lemma 2.6. A strategy that one can employ in 3-space, as well as in
the simple cubic lattice, is given by the knot doubling procedure that is illustrated
in Fig. 5. Here, we show the construction for the classic figure-eight knot. One
begins with the closure of a braid presentation of the figure-eight knot which is
then “doubled” by adding a parallel strand. This doubled conformation is then
modified by locally replacing a pair of corresponding parallel strands with the motif
shown in Fig. 6. Beginning at the end vertex and following the strand to the second
indicated vertex, one case traversed only the first half of the strand and has, in the
sense above, a figure-of-eight knot. By continuing and thereby adding the second
half of the strand to the first half, one “unties” the knot, in the informal sense of
the term, and has constructed a figure-eight slipknot and its associated ephemeral
knot.

We will employ an anologous construction in the simple cubic lattice. The first
step is the creation of tight “ribbon” knot segment, for a tight trefoil ribbon, see
Fig. 4, of any topological type that will play a role analogous to the doubled braid
described above. Their existence is guaranteed by the following lemma [18]:

Lemma 2.11 (van Rensburg, Orlandini, Sumners, Tesi, and Whitting-
ton). Tight oriented ribbons with center line realizing any topological knot type
can be realized in the simple cubic lattice by a Kesten Pattern.

Fig. 4. Creating a Kesten Pattern realizing a tight trefoil slipknot in the simple cubic lattice.
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The existence of a slip knot of this topological type follows the observation
that removal of a bounding edge at the end of the ribbon creates a slipknot whose
ephemeral knot it represented by following the ribbon “halfway” along the resulting
path, see Fig. 4.

Proof of Theorem 2.7. The proof of Theorem 2.7 follows the argument of the
proof of Theorem 2.1 with tight knots replaced by tight slipknots, i.e. λ(¬T ) is
replaced in the proof by λ(¬S).

Proof of Corollary 2.10. We will outline the proof in the case of self-avoiding
walks in the simple cubic lattice, noting that the proof for polygons proceeds anal-
ogously. Recall that wn is the number of self-avoiding walks in the simple cubic
lattice starting at the origin {0, 0, 0}, let wK

n be the number of knotted walks, and
let wO

n be the number of unknotted walks. Let wn(¬S) be the number of walks not
containing a slipknot, let wK

n(¬S) be the number of knotted walks not containing
a slipknot, and let wO

n(¬S) be the number of unknotted walks not containing a
slipknot.

We recall that, wn = en κ+o(n), wK
n = en κ+o(n), and wO

n = en κ0+o(n), with
κ0 < κ. In addition, we know that

wn(¬S) = en λ(¬S)+o(n) with λ(¬S) < κ.

Since, wO
n(¬S) ≤ wO

n = en κ0+o(n) and wn(¬S) = wK
n(¬S) + wO

n(¬S)
we see that wK

n(¬S) = wn(¬S) − wO
n(¬S) ≤ wn(¬S) = en λ(¬S)+o(n). As a

consequence, we see that

lim sup
n→∞

n−1log wK
n(¬S) ≤ λ(¬S) < κ = lim sup

n→∞
n−1log wK

n.

Therefore, knotted walks not containing a slipknot are exponentially rare.

The prevous discussion of slipknots and their associated ephemeral knots sug-
gests an observation as well as raising a number of questions. First, just as is the
case with tight prime knots, one may form the connected sum of tight slipknots.
As both are “tight” and can be realized by Kesten Patterns, the probability that
a self-avoiding random walk or polygons in the simple cubic lattice contains this
connected sum goes to one as the length goes to infinity. We are not, however, able
to prove the following.

Conjecture 2.12. All but exponentially few sufficiently long unknotted self-
avoiding walks or polygons in the simple cubic lattice contain a slipknot of any
fixed topological type.

Let W (n, K) denote the set of self-avoiding walks in the simple cubic lattice
starting at {0, 0, 0} of knot type K and let wn(K) = ‖W (n, K)‖. Define pn(K) =
‖P (n, K)‖ analogously. Similarly, one may let W (n, S(K)) denote the set of self-
avoiding walks in the simple cubic lattice starting at {0, 0, 0} of slipknot type S(K)
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and let wn(S(K)) = ‖W (n, S(K))‖. Whittington [40] observed, that since all except
exponentially few self-avoiding walks (or polygons) contain other prime knot types,

lim sup
n→∞

n−1log wn(K) < κ.

It is an open question as to whether or not

lim
n→∞ n−1log wn(K) < κ.

exist for any specific knot type other than the unknot for which we know

lim
n→∞ n−1log wn(O) = κ0 < κ [32, 34].

Despite the uncertainty of limit, based upon preliminary simulations suggest-
ing that the difference between the average lengths of ephemeral knots and their
associated slipknots are bounded, the proportions suggest the conjecture that their
growth rates are different.

Conjecture 2.13. In the simple cubic lattice,

lim sup
n→∞

n−1log wn(S(K)) < lim sup
n→∞

n−1log wn(K).

2.2. Knots, slipknots, and ephemeral knots in the 3-space

Results paralleling those we have just described for the simple cubic lattice are
also true in 3-dimensional Euclidean space. The model for the proof is the following
theorem of Diao [10], itself a generalization of the Gaussian random knot proof [11]:

Theorem 2.14 (Diao [10]). All except exponentially few sufficiently long self-
avoiding random walks and polygons in 3-space contain knots of any fixed topological
type.

Specificially, we will prove:

Theorem 2.15. All except exponentially few sufficiently long self-avoiding random
walks and polygons in 3-space contain slipknots of any fixed topological type and their
associated ephemeral knots.

One then has, as above, the following corollaries.

Corollary 2.16. All but exponentially few sufficiently long self-avoiding polygons
and random walks in 3-space contain an ephemeral knot of any fixed topological type
with positive density.

Corollary 2.17. The probability that self-avoiding polygon or random walk in
3-space contains an ephemeral knot of any fixed topological type and its associated
slipknot goes to one as the length goes to infinity.
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Corollary 2.18 (Whittington). The probability that a knotted self-avoiding walk
or polygon in the 3-space contains a slipknot goes to one as the length goes to
infinity.

One also has the following conjectures.

Conjecture 2.19. All but exponentially few sufficiently long unknotted self-
avoiding walks or polygons in 3-space contain a slipknot of any fixed topological
type.

Conjecture 2.20. In 3-space,

lim sup
n→∞

n−1log wn(S(K)) < lim sup
n→∞

n−1log wn(K).

We will briefly outline the proof of Diao’s Theorem 2.14 and the modifications
necessary to extend it to a proof of Theorem 2.15. First, every knot type, K, can
be represented as a braid of k strands and m crossings showing, Diao argues, that
it can be represented as an equilateral polygon of no more than n = k(2m +
4) edges. Similarly, its double, see Fig. 5 can be represented by a braid of 2k

strands and 4m crossings thereby implying that the double can be represented as
an equilateral polygon of no more than n = 2k(8m + 4) edges. To complete the
slipknot construction, we add an additional four edges, as shown in Fig. 6, for a
total of n = 2k(8m + 4) + 4 edges.

Second, following Diao, assume that one has a cylinder of radius r containing
our modified double of the knot K, we estimate the probability that an equilateral
conformation realizing this slipknot can be formed in the cylinder. Diao’s argument
shows that there is a constant, c′ > 0 so that if the vertices are perturbed by no
more than c′r, the type of the configuration is unchanged [29]. The probability
of this slipknot in the cylinder is at least cr2n−3 for some constant c > 0. The
remainder of the proof follows as in [10, 11].

Fig. 5. Doubling a braid representative of a knot.
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Fig. 6. Creating an equilateral double from a braid representation.

3. Conclusions

King et al. [23] report the identification of a slipknot deeply embedded in the
structure of Escherichia coli alkaline phosphatase (PDB code 1ALK [22]). They
find that the smallest segment of the protein that is knotted is between residues
51 and 371, forming a right-handed trefoil. Approximately 50 residues precede the
segment on the N-terminal side and, on the C-terminal end, residues 371 to 419 form
a loop that eventually “unknots” the trefoil. They found three other distinct protein
folds, with PDB codes 1P6X, 2NWL, and 2A65, having deeply embedded ephemeral
knots as well as an additional candidate, 2J85, which was not as deeply embedded
as the others. Inspired by the observation of these slipknots, we have proved that
such structures occur in random walks and random equilateral polygons, in both the
simple cubic lattice and in 3-space with asymptotic probability one. We have shown
that any ephemeral knot type can occur and, furthermore, that these structures
occur in knotted random walks and polygons with asymptotic probability one.
We conjecture that the exponential growth rate of slipknots in knotted random
walks and polygons is also the case for unknotted random walks and polygons. In
addition, while one suspects that there should be a measurable difference between
the growth rates for the occurrence of knots and of slipknots, we conjecture that
the exponential factors associated with the growth of each are, in fact, equal.

We know that the presence of knots in a macromolecule has measurable con-
sequences for its spatial and therefore physical and biological properties. What
influence does the presence of slipknots have on these properties? Surely, we argue,
the presence of the ephemeral knot that is reinforced by its becoming unknotted in
a larger portion of the macromolecule, the entire slipknot, must have an even great
consequence when they occur.
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