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Introduction

In this paper we describe the fundamental combinatorial nature of one of the knot
and link invariants and an effective computational algorithm to determine it in a significant
range of mathematically interesting cases A brief introduction to the fundamental concepts
of classical knot theory, to issues concerning the representation of knots and links and to
the recursive approach to the calculation of the polynomial invariants, is provided in the first
section. In addition, various theoretical issues concerning the complexity of these calculations
are discussed The basic structures of several recursive algorithms are described and discussed
in the second section of the paper, including the recent algorithm of Robert | Tenkins, jr The
third section of the paper is devoted to an evaluation of the gbserved growth in complexity
assoctated to the algorithms and their implementations  This evaluation is of fundamental
importance since it is known that the calculation of these polynomial invariants is NP-hard,
[Fal, 2} and [Th2]. The fourth, and final, section gives a summary of our conciusions and
some remarks on outstanding questions.

The invariants discussed in this paper are Laurent polynomials associated to oriented
knots and links in Euclidian space. The first was developed by I'W Alexander [A] in about
1926 and further elaborated upon by Conway [Con] in the 1960’s, while the second wag
discovered in the spring of 1984 by VER. Jones [Jonl & 2] The first generalization, the
oriented polynomial, was discovered almost immediately following the announcement of
Jones discovery by four sets of authors (FYHLMO)] Subsequently, another distinctly different
generalization was discovered by Brandt, Lickorish, and Millett (BL.M] and Ho [Ho] This, in
turn, was immediately extended by Kauffman [Kau3ito give the definition of the semioriented
polynomial  Although we focus this paper on the oriented polynomial, the effective calculation
of both the criented and semioriented polynomials is one of the goals of our project. A fuiler
accountof the oriented polynomial and a description of the case of the semioriented polynomial
15 found in an article describin g our earlier efforts, [EM] The Tenkins algorithm is described
in {Je}

One of the principal vehicles to define these invariants is a recursive formula relating
the polynomial associated to one knot or link to those associated to simpler knots or links. The
recursive approach has exponential growth in the number of cases that have to be calculated
Significant effort is devoted to the search for alternative mathematical theories which would
provide a comprehensive conceptual approach to the invariants Despite the recent theoreticaf
advances via Yang-Baxter statistical mechanical state models derived from quantum mechan-
ics, [Jon3, Tul), or the functional integral formulation from quantum field theory described by
Ed Witten in 1988, [W1 & 2], these recursive methods remain the most effective calculational
method for general presentations of knots and links In addition, Witten described a family of
numerical invariants of closed 3-manifoids inspiring Reshetikhin and Turaev, [RT] to define
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another version of Witten’s 3-manifold invariants via the theory of quantum groups. An alter-
native approach has been developed by Lickorish [L.2,3] using a summation of variants of the
Jones polynomials associated to an explicit family of links constructed from a surgery descrip-
tion of the 3-manifold These links are cables on the subsels of the components of the link
on which the surgery is done to construct the 3-manifold Because the cabling construction
rapidly increases the number of crossings in a minimal presentation of the link, the ability to
do extremely rapid calulations for rather large numbers of crossings is required in order to do
nurnerical studies of the invariants associated to the 3-manifolds. Some general formulae are
known for the cases associated to some roots of unity in lerms of classical invariants, [KM],
but the general structure of these numerical invariants remains quite mysterious

1 A brief introduction to combinatorial knot theory

The purpose of this section is to provide a brief survey of the fundamental aspects of
the study of knots and links in three-space and the “oriented” spatial invariants associated
to them. Thus, we are concerned with the spatial analysis of disjoint simple closed curves,
whereby one allows these “strings” 10 move about from one position to another so long as no
portion passes through another Knots or links which can be moved one to the other, are said
to be equivalent or * to be the same kneot or link ™ Fuller accounts of the theory of knots and
links are found in the recent books of Burde and Zieschang, [BZ], and Kauffman [Kaul) as
well as those of Crowell and Fox, (CrF], and Rolfsen, [Rol], and the expository articies of
Kauffman [Kau3], Lickorish [L1], Lickorish and Miilett [LM2], Fox, [F], or Thistlethwaite
{Thl1}

One fundamental goal of this theory is to develop mathematical methods which allow
one to distinguish between different knots or links, as opposed to different presentations of
the same knot or link Thus one is lead to ry to associate numbers or algebraic structures to
presentations of knots or links which are to be unchanged when a spatial movement occurs
taking one configuralion to another equivalent one A traditional way in which to begin is to
consider regular projections of the knots or links onto a fixed plane and to study the allowable
changes of the presentation which are sufficient to describe all changes from one presentation
of a knot or link {o another presentation of the same knot or link. The projections are broken
50 as 1o indicate places where one strand crosses over another strand  Examples of two distinct
knots are shown in Figure 1 1, and non-generic behavior, such as shown in Figure 1.2, is not
permitted. The first case shows a point of tangency, not a crossing, of the segments

We have developed a notation for the presentation designed for the purposes of our
computational algorithms. We assume that all components are oriented.

Figure 1.1. The Conway and Kinoshito-Terasaka Knots
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An example of our coding scheme is shown in Figure I 3 Here one sees that each of
the crossings is assigned a specific number and at each of the crossings letters are assigned to

the directions occurring at the crossing according to the rule : the outward pointing direction
on the over crossing segment is assigned the letter 3"

AN AN
“ N

Figure 1.2. Degenerate projections

and the remaining directions are assigned the letters "b”, "c”, and "d", proceeding in
a clockwise direction from "a" Furthermore, each crossing is assigned a sign "+" or V-7,
following the convention shown in Figure 1 6. The
i

-

Figure 1.3. The coding of the figure 8 Knot

data associated to a given presentation consists of the ordered list, for each crossing,
of the sign of the crossing followed by the connection points of the "at™, "k, "¢, and "d"

directions of the crossing Thus, data for the example shown in Figure 1,3, are given in Table
14

-4b2c 2b3a
~3blc ib4a
+ 1d 2a 4d 4¢
+2d 1a 3d 3¢

Tabile 1.4, Figure 8 knot data

Ameng the principal benefits of our presentation are that it allows very rapid recog-
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of an equivalent knot or link because these can be understood as shadows of permissible
spatial movements [t can be shown that sequences of only three additional elementary local
alterations, called Reidemeister moves of types I, II and III, of the presentations are sufficient
to characterize the equivalence of any two presentations of the same knot or link

These Reidemeister moves are shown in Figure 1 5

A
B e
type 1

«J type 11
N A
/\ type LI ““\/\_

Figure 1.5. Reidemeister Moves

As mentioned in the introduction, the polynomials can be calculated by means of a
simple recursive process. Indeed, this process can be employed 1o define the polynomials
The fundamental {act that makes this work is that one may change a link to the unlink with the
same numbet of components by simply reversing some of the crossin gs in a given presentation.
The polynomials to be caleulated are Laurent polynomials with two variables and integer co-
efficients (Laurent polynomials allow both negative and positive powers of the variables). The
following theorem describes the fundamental properties of the oriented polynomial discovered
following the first announcement of the Jones polynomial which it generalizes.

Theorem 1.1.  The oriented polynomial, FPr{t,m), of an oriented knor or link, L, is the
unique invariant which satisfies the following Jundamental formulae -

(i) if U denotes the standard unknotted circle in the plane, then Py (f,my=1

(i) if Ly, L, and Ly are planar pictures of oriented links in each of which we have
identified a small circular region of the picture confaining either a single crossing or, in the
last case, no crossing at all, and such that outside these small cirenlar regions where they
behave as shown in Figure ] 6, the planar pictures are exactly the same, then

CPp (&,m) 4+ 07 P (£, m) + mPL(f,m) =0
@& g
Ly I_ Lo
Figure 1.6,
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To demonstrate the complexity of the calculations that ope encounters in the use of the
recursion formula in the determination of this polynomial invariant and to make more concrete
the general method that we shall describe in the next section, we shal] briefly review how one
may calculate the oriented polynomial associated to the right-handed trefoil. Consider the
configurations shown in Figure 1.7, Here we find that the trefoil i the case L, In the

an unknot. Indeed, J,_ s a trivial knot. Thig is seen by use of Reidemeister moves fand I,
each used once

3\ =, R,

in the greatest possible overall reduction of complexity

By definition, the polynomial associated to L_ isequal 1o | Next we must comptte
the polynomial assocjated to Ly For simple presentations it is possible tg develop a table
which associates the desired polynomjal with the presentation Indeed, this is exactly the

method that we employ for presentations having six or fewer crossings and which can ot be

further reduced by means of the Reidemeister moves In the present sttuation we show that
the recursion

Procedure can be used 1o reduce af| configurations to those involving a trivial knot or
link. Here, this is accomplished by using the set of configurations shown in Figure [ 8

We discover that Lg is a trivial knot, again by using the Reidemeister movel, [,_ is
the trivial link with two components which it is convenient to denote by U2 This is shown
by using the Reidemeister move 11 Thus, in order 1 complete the calculation, we need only

determine the polynomial associated 1o U2 For this we employ the set of configurations
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Figure 1.9,

Here we find that Ly = U? and that the other configurations are trivial knots As a
consequence of the fundamental formula (ii) of the Theorem, we have :

EPy{&,m) + £ Py (6, m) + mPy:(f,m) =0

so that

Py(6m) = —(£ 4 7 Hym™!

To compute the polynomial associated 1o the L depicted in Figure 1 8 we have :

EPL, (L,m) + T Pya(€,m) + mPy(l,m) = 0
sa that _
Prolom) =204+ Ym™t w4

Finally to complete the calculation of the polynomial associated to the right-handed trefoil,
T", we return to the set of configurations in Figure 1.7, from which we obtain, using the fact
that the Pr, (¢, m} just computed is the Pro(¢,m} in that situation :

EPr(6,m) + TPy (&, m) + m{™2 (L + £~ \ym~1 - 7 lm) =0

so that
Prtim) = 17 ~ 'm0+ 0 Y)mt = i)
= =207 g 22

This sample calculation contains many of the elementary aspects that are employed to
achieve a recursive calculation in the general case The first principle is that one can change a
crossing in a diagram in order to relate a given knot or link to a simpler one at the cost of having
to consider an additional knot or link The altered knot or Iink and the auxiliary one are, in
some measurable way, simpler than the initial case and the calculations of their polynomials
can be made completely independently so long as one remembers how (o reassemble the
results to calculate the polynomial of the desired knot or link . Many of the auxiliary knots
and links which arise in the course of the calculation are actually equivalent. To the extent
that one can easily recognize these equivalent cases and combine their calculations so as lo
reduce the number of redundant calculations, one can significantly improve the complexity

of the calculation of the invariant This is one of the underlying principles of the recursive
method that we have developed
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One can see that there may be many alternative computational strategies that may be
employed to calculate the invariant Specifically, the choice of which crossing is to be changed
initially could have significant impact upon the complexity of the resulting calculation. This
is a fundamental concern to be addressed in the next section where we describe the variacus
calculational algorithms and their underlying philosophical approaches

The problem of deciding whether or not the calculation of the Jones polynemiaf or
its generalizations is, in general, a feasibie calculation was answered by making connections
between them and various versions of the chromatic polynomials of graphs On one hand, the
Alexander polynomiat or the associated Conway polynomial, being computable as a "small”
one-variable determinant, has been determined to be ‘feasible’ in that it can be calculated in
polynomial time as a function of the number of crossings in its preseatation

The oriented and the semioriented polynomials have been shown to be NP-hard by
Jaeger, [Jal], and Thistlethwaite, [Th2]

Although it was considered possible that the Jones polynomial, being a specialization
of both the oriented and semioriented polynomials, could be computationally simpler Jaeger,
Vertigan and Welsh, {Ja2}, have shown that this is not the case by proving that, even for the
special class of alternating presentations, the calculation is P-hard. Moreover, except for
eight special values of the Jones polynomial which are either trivial or can be described in
terms of classical (potynomial time computable) knot and link invariants, the evaluation of the
Jones polynomial at any specific value of the variable is a P-hard problem {Ve] The class of
P -hard problems is a class of enumeration problems playing a role analogous 1o the NP-hard
class

2 The algorithms

The development of the load balanced algorithm which we shail describe later in this
section is based upon several fundamental premises : First, within the range of problems we
proposed to study, i.e presentations with no more than 150 crossings and no special structure
such as closed braid form, the space required to store their descriptions would not provide a
barrier to their calcuiation Second, the data structure should be designed so as 1o optimize the
speed of the fundamental elements of the algorithm such as the recognition of those elementary
configurations appearing within the presentation which we wish io exploit Third, the data
structure should provide for fast changes such as crossing switches and removals of the sort
appearing in the fundamental recursion relation : Fourth, the data structure should provide
for fast evaluation of the benefit associated with a variety of crossing change strategies. The
benefit is related to the use of elementary Reidemeister moves and suitable generalizations
of these moves These generalizations were developed and studied in an effort to produce an
effective method of calculation of the polynomials of links which arise in the course of other
research efforts

Briefly, at each stage of the process one generates a small collection (often arly two or
three) of associated subsidiary problems of the same type. The complexity of these subsidiary
problems is measurably simpler and their individual sofutions can therefore be calculated
more readily than for the original problem, [LM1& 2]. There are two basic ways in which we
measure this reduction of complexity The first is simply the total number of crossings in the
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presentation while the second involves the identification of a sequence of crossing changes
which would result in a significant change in the knot or link A fundamental quality typical
of these subsidiary problems is that, in addition 10 being structurally simpler than the original
problem, they can be solved completely independently of one another The solutions found
for these subproblems can then he combined to yield the desired result In maost cases this
reassembly is easy, with a few simple algebraic operations vielding the correct answer. The
actual implementation of the process requires a prior estimate of the size of the final answer
and traditional methods to insure that the calculation is accomplished efficiently
The critical issue is that the recursive applicaticn of this reduction process results in a
regular, exponential growth, compuiational tree with nodes representing individual instances
of the calculations, edges representing the reduction process, and the root node representing the
solution to the original problem Several recursive algorithms have been developed. We will
describe the general approaches and the specific implementations which we have developed
in this section of the paper. In the subsequent section we shall describe the special attributes
of the load balanced algorithm
First it is useful to consider one of the algorithms derived from the article of } H.
Conway and which played a fundamental role in one of the theoretical approaches o the
definition of the polynomial invariants This method is described implicitly in Conway [Con]
and Is exploited in the papers of Hoste [Hos) and Lickorish and Millett [LM1] The basic
concept is that of the “standard ascending position” Actually Hoste utilizes a standard
descending position, but this js an equivalent method  Consider a specific projection of a
given link into a plane, 1o be thought of as the floor of the room, and imagine taking a
length of 1ope (or several lengths, if one is looking at the projection of a link of several
companents) which is exactly long enough to cover the projeclion Beginning at any point
in the projection which is neither an over or under crossing, and proceeding in the direction
given by the orientation, cover the projection with the rope  When relurning (o the starting
point, join the two ends together  Proceed with any other component in exactly the same
fashion This physical process introduces under and over crossings which may differ from
those of the given presentation and thereby defines the standard ascending position One can
casily observe that the siandard ascending position always represents a trivial knot or link
The specific representation is, however, dependent upon the choice of starting
and their order, if there are several components
The standard ascender algorithm is described as foilows - Proceed in the direction
determined by the orientation from any starting point, chosen as in the definition of the
standard ascending position, change crossings as necessary to achieve the standard ascending
position Witl each crossing change, the new knots or links defined by 1emoving Crossings
are added to a list of cases 1o be resolved (to each case is attached the information needed to
calculate its specific contribution (o the final polynomial) and one proceeds to change crossings
until the standard ascending position is reached. At this point one updates a poiynomial table
and continues with the last unresojved case by means of the same procedure until there are
no further cases The recursion formulac have thereby provided the means 10 calculate the
polynomial by reducing a knot or link to the associated standard ascending position and
computing other terms, each of which involves knots or links having fewer crossings in their
presentations. The number of cases on the list need never be more th
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cossings. The polynomials of the standard ascender which can arise in the calculation depend
only on the number of components and the number of crossings in the presentation They are
determined and stored beforehand Showing that this process leads to a single polynomial,
independent of the choices made in its recursive definition is one of the fundamental tasks of
the theoretical development of the polynomial invariant theory.

The moedified standard ascender algorithm employs the Reidemeister moves of types I
and I and, in addition, their generalizations developed as part of the load balanced a gorithm to
be described later. They are employed o reduce the complexity of the knot or link presentation
under consideration and, thereby, reduce the overall complexity of the calculation. This
algorithm exploits two of the fundamental combinatorial aspects of the problem. First, one
searches the given presentation of a knot or link for instances of Reidemeister moves of types
I'or I or their generalizations and immediately reduces the presentation according to these
moves as soon as they are discovered. With our data structure, instances of these moves can be
identified and the presentation modified to represent the resuit of the move extremely rapidiy.
Since these moves reduce the number of crossings in the presentations of all subsequent links
appearing in the applications of the recursion, there are significant savings in the complexity
of the calculation. When there are no further moves of types I and If or their generalizations
in a given case, the standard ascender algorithm is applied to select a crossing to be changed.
The ancillary cases are added to the list and the process of seeking type I or If moves is begun
again

The fundamental issue with respect to standard ascender algorithms is the fact that
one subsidary example is created with each crossing change invoked in the algorithm  As a
consequence one expects roughly exponential growth in complexity proportional to 2% Thus
the effect of the reduction in the number of crossings has significant potential for reducing the
running time of the implementation if this can be accomplished rapidly

Before giving a technical description of the load balanced algorithm we shall first
describe the underlying reasons why this approach is expected to yield important reductions
in complexity of the typical calculation As in the modified standard ascender algorithm, the
first step is to search for applications of the first two Reidemeister moves. The next, and
crutial step, is the evaluation of each crossing change for potential simplication and pruning
of the computational tree through the reduction of the number of crossings Load balancing
across the two ancillary cases is used to minimize the exponential growth of the calculation
by selecting crossing changes which would yield the greatest weighted reduction in the total
complexity A simple example illustrates the nature of this evaluation and the potential for
reduction of complexity : Suppose that the complexity of a calculation is proportional to pa™,
whete n is the size of the data We believe this to be a reasonable assumption since, in the
oriented and semioriented knot polynomial calculation algorithms and their implementations,
the observed running time and number of evaluations are both complexity measures of this
type. This appears to be a consequence of the exponential growth of the calculation tree, even
when pruning is attempted

Suppose that a reduction is possible which reduces the resulting complexity to p while
giving an auxiliary calculation of complexity pa™ ! We shall say that this is a reduction
of type {n,1) Suppose that another choice of reduction provides a complexity of pa™~?
and gives an auxiliary case of the same complexity, thus having complexity type (2.2} If, for
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example, @ > 2, the second choice would be preferable to the first since

,OCZG + panwl = p(a+ az—n) a2 ~ 9 pan'«Z oo pan—2 +pan—2
The systematic evalvation and choice of crossing changes based upon this strategy is what we
mean by load balancing in this contexy

We next outline the structure of the Joad balancing algorithm for the case of the oriented
polynomial, assuming that the necessary initialization and loading of the oriented knot or lonk
has been compieted :

First, search for and immediately remove any Reidemeister type I and type II config-
urations until no further reductions of these types remain.

Next, search for an evaluate potential complexity type of triples : A triple is a configu-
ration whose projection has the motif indicated in Figure 2.1 Null triples of types 1,2, and 3
are immediately reduced by means of a generalized Reidemeister IT move and the reduction
process is immediately restarted by seeking instances of Reidemeister type I and II moves,
above When none of the remaining possibilities can be reduced in this elementary fashion,
their complexity types are evaluated for their potential benefit.

Next search for and evaluate potential complexity type of gammas : A gamma is a
configuration whose basic pattern is shows in Fi gure 2 2. Note thatin cases 1 and 3, a crossing
can be removed by a simple twist.

This gives a bigon configuration shown in the same figure. These twists are performed

immediately and the algorithm is restarted with the search fo Reidemeister moves of types
and If shown in Figure 1 5.

T £ 9 Tz
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Figure 2.1
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by changing relatively few crossings Furthermore, circuits will always occur and thereby
provide crossings changes of “ last resort”.

A circuitis either an entire component of the link which nevercrosses itself, as indicated
in Figure 2.3, or a generalizaticn of the gamma configuration described in Figure 2.2,

& 58 BB

QAMIRAS 2
g8 U
\ 7
twists i 3

Figure 2.2

type I circuit

Figure 2.3

This generalization is defined as a segment which crosses itself precisely once and near
its ends, which may cross the exterior of the segment in any arbitrary fashion. An example
of this is also shown in Figure 2.4 The process begins by following a strand as it leaves a
crossing and continues, listing the crossings encountered and their type, i.e. over or under
Either it returns to the initial crossing or encounters an earlier crossing on the list. In the later
case one does not have a circuit beginning at the initial crossing in that direction {a smaller
segment having been identified as a circuit)

type I circuit
Figure 2.4
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so that the analysis goes back to the initial crossing and considers another direction, or
the next crossing if none is available Each of the circuits is evaluated to determine its potential
contribution to the reduction processes Of special importance are cases where half or more of
crossings of the circuit occur with the same type,ie under orover, ina sequence as one travels
around the circuit  Such occurrences allow us to do a global movement of the presentation
and create a skinny circuit in the interior of which there are no further crossings A potential
skinny circuit is assigned a complexity based upon the number of potential immediate type
I reductions following its creation. This situation provides for particularly effective crossing
changes and associated reductions. An example of this type of modification is shown in Fi gure
2.5 In the first situation one has a sequence of undercrossings numbering half or more of the
total while in the second a global transformation, another "generalized Reidemeister type II
move"”, has been performed to achieve a skinny circuit configuration. These transformations
haye several essential properties. First, they never transform a skinny circuit that may already
exist in the presentation into one which is no longer skinny and, second, although these
t;ansf'ormaiions do nol always reduce the number of crossings they do create opportunitics
for advantageous reduction. If all the crossings were of the same type, i.e. under or over, this
allows for the removal of the entire circuit via a “generalized Reidemeister type Il move”
Any lime a skinny circuit is created we immediately restart the analysis by searching again
for instances of Reidemeister type | and II moves.

pet [P
m}

Figure 2.5
Next search for and evaluate the potential complexity type of bigons : A bigonis a
f:onﬁ guration whose projection has the pattern indicated in Figure 2.6. Bj gons occur frequently
in knot and link presentations and are created as a byproduct of the creation of skinny circuits

= SR =

bigons positive negative

—\: x

Figure 2.6
‘ Next, if the knot or link presentation has five or fewer crossings the associated polyno-
mial is read in a previously prepared table and is stored in anolher table which accumulates 1o
the final polynomial  If the knot or Iink has six or more crossings, the crossing change having
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the greatest potential advantage for reducing the level of complexity is performed thereby
giving a modified presentation and one auxiliary presentation These are added to the list
according to the number of crossings in the presentation The whole process is then restarted
with the last presentation and continued until there are no knots or links remaining in the list.

At this point the calculation of the polynomial is completed and the result is reported
to the user.

The finat algorithm which we shall discuss in this paper, the Jenkins algorithm, was
developed in the master of science dissertation, 'Knot Theory, Simple Weaves, and an Algo-
rithm for Computing the Homfly Polynomial’, submitted by Robert I. Jenkins Jr to Carnegie
Mellon University in June, 1989 The basic principle of the method is the creation of a steadily
growing region within the presentation of the knot of link within which the form of the pro-
Jection is to be one of a specific set of "solved’ possibilities The region wiil be a disk having
a certain number, k, of "inputs’ (and hence & "outputs’)

This determines a region for which the multilinearity of the Conway skein theory of
these polynomials can be appiied. For any configuration of boundary inputs and cutputs, an
inhabitant of the region or 'weave' in the Jenkins vocabulary is said to be simple if there
are no interior components, no strand within the region has a self crossing, and the inputs
and outputs can be numbered counterclockwise from O through 2k — 1 so that, when two
strands cross, the strand with the lowest numbered input is the overpass. In addition, if by
using Reidemeister moves interior to the region, the configuration can be moved to a simple
configuration then it is also called simple. By changing some set of crossings within a region,
one can achieve a simple configuration Indeed, if there are interior components, they can be
separated {rom the strands and absorbed into the coefficient by multiplying by the appropriate
factor, ie —(f7' 4+ £)m™! in the case of the oriented polynomial There are k! simple
configurations associated to the region As a consequence, one endeavors to keep the size of
k as small as possible in the course of the calculation of the polynomial.

The Jenkins algorithm proceeds by creating an ever growing region within which the
inhabitant is simple or solved. Each time a new crossing is added to the region it may be
necessary to change that crossing or others to insure that the result is simple. Each time a
crossing is changed the recursion formula creates another configuration whose polynomial
must also be calculated by the same method. By keeping track of the simple configurations and
the associated exterior configurations one can identify duplications By adding the algebraic
expressions associated to dupiicate configurations, only one copy is retained To the extent
that one can thereby reduce the number of independent cases to be calculated the complexity
of the calculation is substantially diminished The calculation terminates when the solved
region has engulfed all the crossings and the exterior region has been reduced to a single
strand  This terminal situation is, therefore, a projection of a trivial knot or link

The compiexity of an analog of the Jenkins algorithm, whose implementation we shall
discuss later, is estimated by first estimating the size of the number of inputs by means of
the planar separator theorem of Lipton and Tarjan, [LT), which states that the vertices of any
planar graph on n vertices can be partitioned into three sets A,B,C such that no edge meeting
a vertex of A meets a vertex of B, neither A nor B contains more than 2r/3 vertices and
C' has no more that 2v/2,/n vertices C is called a separator of the graph. Jenkins reports
that 2+/2 was reduced to /6 by Djidjev. Jenkins states that he recursively partitions the
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regions of the lnk diagram into separators and regions until every crossing is in a separator
at some level of the recursion or is in a single vertex region. By the Lipton-Tarjan theorem,
this requires £n{n) /€n{3/2) as an upper bound on the depth of the separation tree, where n
is the number of crossings. One can achieve the computation by 'solving' the polynomials
associated to the irreducible regions and proceeding to the next hj gher level by ‘solving' the
polynomials associated to the regions gotten by adding the pairs of adjacent regions and their
separators. This one strategy 10 obtain a solved region engulfing all the crossings in a knot

in the binary tree of separations, there are a( most v/& (2/3)(=1/2 /7 vertices in a separator
between regions at that levei The number of edges connecting a pair of regions to their
common separator at level ¢ is bounded by 2v6(2/3)4-1/2 /7 From this one can deduce

that the number of inputs in 2 region is bounded above by 2v6(1/(1 V' 2/3)) (/) which
is O(yn) A more precise bound js given by

2VEVR(L~ [T/ Ty

During the engulfin g process one will join a strand at the boundary between two regions.
This could require 2vA-2 operations in order to express the resulting configuration in terms
of simple generating configurations, configurations of the region A case by case analysis
shows that each individual case is one of a small number of simple cases Thus it is possible
to estimate the theoretical complexity as O((./n) 12n(n)2v"=2) Jenkins employs a slightly
different method 10 estimate the theoretical complexity and gets a slightly larger estimate :
O((ym)in2vi-2)

In the actual implementation, provided to us by Jenkins, a different al gorithm is used to
choose the crossings which occur in the engulfing Jenkins "greedy’ method is to begin with
a randomly selected crossing and, at each stage, to select a crossing contiguous to the solved
region which has the most connections with it and, in case of 2 tie, that crossing which connects

unable to give a theoratical estimate of the calculation complexity. In his manuscript, Jenking
states that tests seem to indicate that his “greedy’ algorithm runs in On{(v/n))2vn-13
time. If correct, this estimate would compare poorly with, for example, a modified standard
ascender algorithm, cf Ewing-Millet [EM] In our paper we studied the relationship between
implementations of the load balanced algorithm, a modifield standard ascender algorithm and,
a standard a scender algorithm, and found that the load balanced algorithm wag significantly
faster than the others. In the next section we consider the resulis of similar tests with the
implementation provided us by Jenkins. These tests seem Lo suggest that, in some range, his
implementation is much faster than his assertion would indicate

3 Evaluation and comparison of the Jenkins and load balanced
algorithms

In this section we shall present data for the Jenkins algorithm and the load balanced
algorithms applied to a variaty of test cases ; all knots with up 1o 13 crossings, in the Thistleth-
waite enumeration, as wel] ag certain 23, 48 and 56 crossing test knots The goal is 1o discover
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the extent and origin of the reduction in complexity achieved by the load balanced and Jenk-
ing aigorithms for the oriented polynomial. We compare the number of recursions or knots
and links that are produced by the two algorithms, as a function of the number of crossings.
In addition we wish to compare speed, measured in average time, of the load balanced and
Tenkins algorithms.

The following table gives the average data for the 2176 12 crossing knots. The Jenkins
algorithm requires 6.29 times as many cases and takes 1.49 times as long to complete the
calculation of the average 12 crossing knot.

load balanced Jenkins ratio
average recursions 10 4163 65.4982 629
average time 0.03097 5 004617 149

Table 3.1. Orented polynomial : 12 crossing knots
The following table gives the average data for the 9988 13 crossing knots. The Jenking
algorithm requires 5 39 times as many cases and takes 1 44 times as long to complete the
calculation of the average 13 crossing knot. Thus, we see

load balanced Jenkins ratio
average recursions 14 2815 76 9757 539
average time 003242 5 004672 1.44

Table 3.2. Oriented polynomial @ 12 crossing knots
some slight evidence that the Jenkins implementation could bmprove in speed relative
to the load halanced implementation with increasing number of crossings,
The real purpose of our effort is the calculation of significantly larger lopologically
interesting examples. In this direction, the following data concerns the calculation of the
oriented polynomial of a certain 25 crossing test knot.

load balanced Jenkins ratio
recarsions 951 1644 173
time 158 s 1.40 (.89

Table 3.3. A 25 crossing example
We next consider the calculation of the oriented polyromial of a certain 48 crossing
knot The advantage of Jenkins suggested by smaller knots is supported by this case.

load balanced Jenkins  ratio
recursions 7247038 84765 0.611
time 11965.56 & 127635 Q012

Table 3.4. A 48 crossing example
The following data concerns a certain 56 crossing knot, the untwisted double of the knot
135714 in the Thistlethwaite enumeration. The relative advantage of the Jenkins algorithm
is significantly less in this case and, therefore, is very much dependent upon the specific knot
under consideration
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load balanced Jenkins ratio
recursions 66738 30137 0452

time 18513 ¢ 3383s 0183

Table 3.5. A 56 crossing example : The untwisted double of 136714
One can get some impression of the relationship between the algorithms and the number

of crossings in the knot presentation by consideration of the graph of the data reflecting the
average time of calculation for knots of less than 14 crossings.

ons
0304 -0 Jenkins
-+~ {oad Balanced

003 4
002+
501 4
oon t T T T 3

Z 4 ) k] 10 2 14

crossings
Graph. 3.6. Average time for knots of less than 14 crossings

The 25 crossing knot was designed as a challenging test case for the load balanced
algorithm. The fact that the Jenkins algorithm requires slightly less time for this knot and
that its symmetric configuration would seem to imply that it would be a relatively typical
"worst case’ for the Jenkins algorithm leads us to conclude that for knots of roughiy 25 or
more crossings, the Jenkins implementation would be faster Unfortunately there is not yet an
enumeration of knots of 14 or more crossings (o fill out the trends indicated in the graph and,
thereby, provide more substantial evidence of the conjecture Some evidence is provided by
the examples of the 48 and 56 crossing knots. This question is the object of ongoing research.

Another indication of the relative efficiency of the Jenkins approach is found in the
consideration of the case where the load balanced algorithm is least efficient, the (2, k)-torus
knot For the (2,25)-torus knot the Jenkins implementation required 76 recursions and took
only 005 seconds while the toad balanced implementation required 17710 recursions and
took 16 88 seconds. There is, however, a significant problem which arises in the Jenking
implementation that is avoided in the load balanced implementation. The problem is the
growth of the space required to accomplish the calculation As an easy test of this, and {o
determine relative speed, we attempted 10 caleulate the oriented polynomial of the untwisted
double of the untwisted double of the trefoil knot. This a knot with 90 crossings The
load balanced implementation required 101165604 recursions and 23507500 seconds, ie
roughiy 2.7 cpu days, to calculate its polynomial But, because of the space use constraints,
such calculations are not presently possible with the Jenkins implementation

4 Conclusion
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4 Conclusion

The load balanced algorithm and the Jenkins algorithm, which provide recursive calcu-
tations of the oriented polynomial associated to classical knots and links, have been described.
The load balancing algorithm provides a substantial extension of the effective range of knot
and link presentation complexity where computations are feasible. The Jenkins greedy al-
gorithm appears to effectively exploit the reduction in complexity associated to successful
identification of relations between skein generators, especially for a middle range of knots
and links, in terms of the number of crossings in their presentation. Unfortunately the Jenkins
algorithm requires significantly more space, compared to the load balanced algorithm, as the
size of the knot increases. Although each implementation is quite fast for middie range knots
and links, it secems likely that a merging of the two methodologies could yield substantial
increases in speed thereby significantly increasing the effective calculational range
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