MAT 145 : Quiz Solutions

Michael Williams

Last Updated: May 29, 2009

Quiz 1 Solutions

- 1. Let the set $X = \{a, b, c, d\}$ be given the topology $\mathcal{T} = \{\emptyset, X, \{c\}, \{d\}, \{c, d\}, \{a, b, c\}\}$. Let S be the subset $S = \{a, c, d\} \subset X$.
 - (a) List the elements of the subspace topology \mathcal{T}_S on S.

Solution: By definition of \mathcal{T}_S , we have $\mathcal{T}_S = \{O \cap S : O \in \mathcal{T}\}$. Therefore $\mathcal{T}_S = \{\emptyset, S, \{c\}, \{d\}, \{c, d\}, \{a, c\}\}$.

(b) With respect to the topologies \mathcal{T} on X and \mathcal{T}_S on S, determine whether or not the function

$$f: S \to X$$
, $f(a) = a$, $f(c) = d$, $f(d) = c$

is continuous. Justify your answer.

<u>Solution</u>: The function f is not continuous: for f to be continuous, the pre-image of any open set of X has to be an open set of S; in other words, $f^{-1}(O) \in \mathcal{T}_S$ whenever $O \in \mathcal{T}$. By considering the pre-image of each point in $\{a, b, c\}$, we see that

$$f^{-1}(\{a, b, c\}) = \{a, d\}$$

Since $\{a, b, c\} \in \mathcal{T}$ while $f^{-1}(\{a, b, c\}) = \{a, d\} \notin \mathcal{T}_S$, f cannot be continuous.

Quiz 2 Solutions

1. Let X be a space. For any subset $A \subset X$, prove that

 $\partial A = \varnothing \iff A$ is both open and closed in X.

Elementary Solution: Recall the definition of ∂A :

$$\partial A = \{x \in X : \text{every neighborhood of } x \text{ intersects } A \text{ and } X - A\}$$
.

Also recall that A is closed if and only if X - A is open. Suppose that $\partial A = \emptyset$. Given $x \in X$, there exists a neighborhood O_A of x that does not intersect X - A (hence $x \in O_A \subset A$), or there exists a neighborhood O_{X-A} of x that does not intersect A (hence $x \in O_{X-A} \subset X - A$). In particular, for every $x \in A$, there exists a neighborhood O_A of x such that $x \in O_A \subset A$, so A is open; similarly, for every $x \in X - A$, there exists a neighborhood O_{X-A} of x such that $x \in O_A \subset A$, so A is open; similarly, for every $x \in X - A$, there exists a neighborhood O_{X-A} of x such that $x \in O_{X-A} \subset X - A$, so X - A is open. This establishes that $\partial A = \emptyset$ implies that A is open and closed.

Now suppose that A is open and closed; hence A and X - A are open. Let $x \in X$. We show that $x \notin \partial A$. If $x \in A$, then A *itself* is a neighborhood x that does not intersect X - A (because A is open). If $x \in X - A$, then X - A *itself* is a neighborhood of x that does not intersect A (because X - A is open). In either case ($x \in A$ or $x \in X - A$), we have that $x \notin \partial A$. This establishes that if A is open and closed, then $\partial A = \emptyset$.

Nonelementary Solution: From class and Hatcher's notes, we may use the facts

- (1) $\operatorname{int}(A) \cup \partial A = \overline{A}$.
- (2) $\operatorname{int}(A) \subset A \subset \overline{A}$.
- (3) A is open if and only if int(A) = A; A is closed if and only if $A = \overline{A}$.

By (1), we immediately have $\partial A = \emptyset$ if and only if $int(A) = \overline{A}$. By combining this with (2), we see that $\partial A = \emptyset$ if and only if $int(A) = A = \overline{A}$. Therefore, by (3), $\partial A = \emptyset$ if and only if A is open (int(A) = A) and closed $(A = \overline{A})$.

2. Let X be a Hausdorff space, and let A be a subspace of X. Prove that A is a Hausdorff space.

<u>Solution</u>: Let X be a Hausdorff space, and let A be a subspace of X. For clarity, we let \mathcal{T}_X denote the given topology on X, and let \mathcal{T}_A be the induced subspace topology on A. Let x_1 and x_2 be distinct points in A; we will show that there exists disjoint neighborhoods (from \mathcal{T}_A) of x_1 and x_2 . Since X is Hausdorff, there exists a neighborhood $O'_1 \in \mathcal{T}_X$ of x_1 and there exists a neighborhood $O'_2 \in \mathcal{T}_X$ of x_2 such that $O'_1 \cap O'_2 = \emptyset$. Define $O_1 = O'_1 \cap A \in \mathcal{T}_A$, and define $O_2 = O'_2 \cap A \in \mathcal{T}_A$. By definition of \mathcal{T}_A , we see that O_1 is a neighborhood of x_1 (open in A) and O_2 is a neighborhood of x_2 (open in

A). We also see that

$$O_1 \cap O_2 = (O'_1 \cap A) \cap (O'_2 \cap A) = (O'_1 \cap O'_2) \cap A = \emptyset$$
,

since $O'_1 \cap O'_2 = \emptyset$. This establishes that the subspace A is a Hausdorff space.

3. Let the set $X = \{a, b, c, d\}$ be given the topology

$$\mathcal{T} = \{ \varnothing, X, \{c\}, \{a, b, c\} \} .$$

(a) Prove or disprove: X is Hausdorff.

<u>Solution</u>: We prove that X is not Hausdorff. Observe that the only neighborhood of d is the whole space X because $d \notin \{c\}$ and $d \notin \{a, b, c\}$. Also observe that the only neighborhoods of b are X and $\{a, b, c\}$. So d and b do not possess disjoint neighborhoods. Therefore X is not Hausdorff.

(b) Prove directly that X is connected.

Solution: Suppose that $X = A \cup B$ were a separation of X (i.e. A and B are disjoint nonempty open sets whose union is X); we derive a contradiction. Observe that the only neighborhood of d is the whole space X. Since d lies in either A or B, we deduce that either A = X or B = X; so, either $B = \emptyset$ or $A = \emptyset$. This contradicts that $X = A \cup B$ is a separation.

(c) Show that the subspace $S = \{a, b\}$ is path connected by explicitly defining a path between a and b.

<u>Solution</u>: Define a function $f : [0,1] \to S$ by f(t) = a for all $0 \le t \le 1/2$, and f(t) = b for all $1/2 < t \le 1$. Note that the subspace topology on S is the indiscrete topology. It is easy to see that f is continuous (indeed, $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(S) = [0,1]$ are open in [0,1]). Therefore, f is a path in S from a to b.

(d) For each pair or points in X, explicitly define a path between these points. Deduce that X is actually path connected.

<u>Solution:</u> This is similar to the construction in part (c), but some care has to be taken when constructing paths involving the point c:

To construct a path from a to c, define a function $f : [0,1] \to X$ by f(t) = a for all $0 \le t \le 1/2$, and f(t) = c for all $1/2 < t \le 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset, f^{-1}(X) = [0,1], f^{-1}(\{c\}) = (1/2,1], \text{ and } f^{-1}(\{a,b,c\}) = [0,1]$ are all open in [0,1]. So f is a (continuous) path. To construct a path from b to c, define a function $f : [0,1] \to X$ by f(t) = b for all $0 \le t \le 1/2$, and f(t) = c for all $1/2 < t \le 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset, f^{-1}(X) = [0,1], f^{-1}(\{c\}) = (1/2,1], \text{ and } f^{-1}(\{a,b,c\}) = [0,1]$ are all open in [0,1]. So f is a (continuous) path.

To construct a path from d to c, define a function $f : [0,1] \to X$ by f(t) = d for all $0 \le t \le 1/2$, and f(t) = c for all $1/2 < t \le 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset, f^{-1}(X) = [0,1], f^{-1}(\{c\}) = (1/2,1], \text{ and } f^{-1}(\{a,b,c\}) = (1/2,1]$ are all open in [0,1]. So f is a (continuous) path.

To construct a path from d to a, define a function $f : [0,1] \to X$ by f(t) = d for all $0 \le t \le 1/2$, and f(t) = a for all $1/2 < t \le 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset, f^{-1}(X) = [0,1], f^{-1}(\{c\}) = \emptyset$, and $f^{-1}(\{a,b,c\}) = (1/2,1]$ are all open in [0,1]. So f is a (continuous) path.

A path from a to b was already constructed in part (c). We can use the same formula for f. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(X) = [0, 1]$, $f^{-1}(\{c\}) = \emptyset$, and $f^{-1}(\{a, b, c\}) = [0, 1]$ are all open in [0, 1]. So f is a (continuous) path.

Since we were able to construct all of the required paths in X, we deduce that X is path connected.

Quiz 3 Solutions

1. Give a self-contained proof of the following: Let X be a path connected space, and let Y be a space. Suppose that $f: X \to Y$ is a surjective continuous function. Show that Y is path connected.

<u>Solution</u>: Let $y_1, y_2 \in Y$; we show that there exists a path in Y from y_1 to y_2 . Since f is surjective, there exists $x_1, x_2 \in X$ for which $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is path connected, there exists a continuous function $g : [0,1] \to X$ for which $g(0) = x_1$ and $g(1) = x_2$. Since f and g are continuous, the composition $(f \circ g) : [0,1] \to Y$ is continuous. Furthermore, $(f \circ g)(0) = f(x_1) = y_1$ and $(f \circ g)(1) = f(x_2) = y_2$. Therefore, a path in Y from y_1 to y_2 exists. This establishes that Y is path connected.

2. Let X be a compact Hausdorff space, and let A be a closed subset of X. Suppose that $y \in X - A$. Prove that there exist open sets V and V' in X such that $y \in V$, $A \subset V'$, and $V \cap V' = \emptyset$.

Solution: Given $a \in A$, there exists disjoint neighborhoods V_a and V'_a of y and a respectively in X, since X is Hausdorff. We see that $\{V'_a \cap A\}_{a \in A}$ forms an open covering of A. Since A is closed in the compact space X, we have that A is compact. So there exists a finite subcovering $\{V'_{a_1} \cap A, \ldots, V'_{a_n} \cap A\}$ of A. Set $V = \bigcap_{i=1}^n V_{a_i}$ and $V' = \bigcup_{i=1}^n V'_{a_i}$. Since $y \in V_{a_i}$ for each $i = 1, \ldots, n$, we see that $y \in V$; since $V_{a_i} \cap V'_{a_i} = \emptyset$ for each $i = 1, \ldots, n$, we see that $V \cap V' = \emptyset$. Since V is the finite intersection of open sets in X, we see that V is open is X. Since V' is the union of open sets of X, we see that V' is open in X. Finally, we see that $A \subset \bigcup_{i=1}^n V'_{a_i} = V'$. Therefore, there exist open sets V and V' in X such that $y \in V$, $A \subset V'$, and $V \cap V' = \emptyset$.