MAT 145 : Quiz Solutions

Michael Williams

Last Updated: May 29, 2009

Quiz 1 Solutions

1. Let the set $X=\{a, b, c, d\}$ be given the topology $\mathcal{T}=\{\varnothing, X,\{c\},\{d\},\{c, d\},\{a, b, c\}\}$.

Let S be the subset $S=\{a, c, d\} \subset X$.
(a) List the elements of the subspace topology \mathcal{T}_{S} on S.

Solution: By definition of \mathcal{T}_{S}, we have $\mathcal{T}_{S}=\{O \cap S: O \in \mathcal{T}\}$. Therefore $\mathcal{T}_{S}=\{\varnothing, S,\{c\},\{d\},\{c, d\},\{a, c\}\}$.
(b) With respect to the topologies \mathcal{T} on X and \mathcal{T}_{S} on S, determine whether or not the function

$$
f: S \rightarrow X, f(a)=a, f(c)=d, f(d)=c
$$

is continuous. Justify your answer.

Solution: The function f is not continuous: for f to be continuous, the pre-image of any open set of X has to be an open set of S; in other words, $f^{-1}(O) \in \mathcal{T}_{S}$ whenever $O \in \mathcal{T}$. By considering the pre-image of each point in $\{a, b, c\}$, we see that

$$
f^{-1}(\{a, b, c\})=\{a, d\}
$$

Since $\{a, b, c\} \in \mathcal{T}$ while $f^{-1}(\{a, b, c\})=\{a, d\} \notin \mathcal{T}_{S}, f$ cannot be continuous.

Quiz 2 Solutions

1. Let X be a space. For any subset $A \subset X$, prove that

$$
\partial A=\varnothing \Longleftrightarrow A \text { is both open and closed in } X .
$$

Elementary Solution: Recall the definition of ∂A :

$$
\partial A=\{x \in X: \text { every neighborhood of } x \text { intersects } A \text { and } X-A\}
$$

Also recall that A is closed if and only if $X-A$ is open. Suppose that $\partial A=\varnothing$. Given $x \in X$, there exists a neighborhood O_{A} of x that does not intersect $X-A$ (hence $x \in O_{A} \subset A$), or there exists a neighborhood O_{X-A} of x that does not intersect A (hence $x \in O_{X-A} \subset X-A$). In particular, for every $x \in A$, there exists a neighborhood O_{A} of x such that $x \in O_{A} \subset A$, so A is open; similarly, for every $x \in X-A$, there exists a neighborhood O_{X-A} of x such that $x \in O_{X-A} \subset X-A$, so $X-A$ is open. This establishes that $\partial A=\varnothing$ implies that A is open and closed.

Now suppose that A is open and closed; hence A and $X-A$ are open. Let $x \in X$. We show that $x \notin \partial A$. If $x \in A$, then A itself is a neighborhood x that does not intersect $X-A$ (because A is open). If $x \in X-A$, then $X-A$ itself is a neighborhood of x that does not intersect A (because $X-A$ is open). In either case ($x \in A$ or $x \in X-A$), we have that $x \notin \partial A$. This establishes that if A is open and closed, then $\partial A=\varnothing$.

Nonelementary Solution: From class and Hatcher's notes, we may use the facts
(1) $\operatorname{int}(A) \cup \partial A=\bar{A}$.
(2) $\operatorname{int}(A) \subset A \subset \bar{A}$.
(3) A is open if and only if $\operatorname{int}(A)=A ; A$ is closed if and only if $A=\bar{A}$.

By (1), we immediately have $\partial A=\varnothing$ if and only if $\operatorname{int}(A)=\bar{A}$. By combining this with (2), we see that $\partial A=\varnothing$ if and only if $\operatorname{int}(A)=A=\bar{A}$. Therefore, by (3), $\partial A=\varnothing$ if and only if A is open $(\operatorname{int}(A)=A)$ and $\operatorname{closed}(A=\bar{A})$.
2. Let X be a Hausdorff space, and let A be a subspace of X. Prove that A is a Hausdorff space.

Solution: Let X be a Hausdorff space, and let A be a subspace of X. For clarity, we let \mathcal{T}_{X} denote the given topology on X, and let \mathcal{T}_{A} be the induced subspace topology on A. Let x_{1} and x_{2} be distinct points in A; we will show that there exists disjoint neighborhoods (from \mathcal{T}_{A}) of x_{1} and x_{2}. Since X is Hausdorff, there exists a neighborhood $O_{1}^{\prime} \in \mathcal{T}_{X}$ of x_{1} and there exists a neighborhood $O_{2}^{\prime} \in \mathcal{T}_{X}$ of x_{2} such that $O_{1}^{\prime} \cap O_{2}^{\prime}=\varnothing$. Define $O_{1}=O_{1}^{\prime} \cap A \in \mathcal{T}_{A}$, and define $O_{2}=O_{2}^{\prime} \cap A \in \mathcal{T}_{A}$. By definition of \mathcal{T}_{A}, we see that O_{1} is a neighborhood of x_{1} (open in A) and O_{2} is a neighborhood of x_{2} (open in
A). We also see that

$$
O_{1} \cap O_{2}=\left(O_{1}^{\prime} \cap A\right) \cap\left(O_{2}^{\prime} \cap A\right)=\left(O_{1}^{\prime} \cap O_{2}^{\prime}\right) \cap A=\varnothing
$$

since $O_{1}^{\prime} \cap O_{2}^{\prime}=\varnothing$. This establishes that the subspace A is a Hausdorff space.
3. Let the set $X=\{a, b, c, d\}$ be given the topology

$$
\mathcal{T}=\{\varnothing, X,\{c\},\{a, b, c\}\}
$$

(a) Prove or disprove: X is Hausdorff.

Solution: We prove that X is not Hausdorff. Observe that the only neighborhood of d is the whole space X because $d \notin\{c\}$ and $d \notin\{a, b, c\}$. Also observe that the only neighborhoods of b are X and $\{a, b, c\}$. So d and b do not possess disjoint neighborhoods. Therefore X is not Hausdorff.
(b) Prove directly that X is connected.

Solution: Suppose that $X=A \cup B$ were a separation of X (i.e. A and B are disjoint nonempty open sets whose union is X); we derive a contradiction. Observe that the only neighborhood of d is the whole space X. Since d lies in either A or B, we deduce that either $A=X$ or $B=X$; so, either $B=\varnothing$ or $A=\varnothing$. This contradicts that $X=A \cup B$ is a separation.
(c) Show that the subspace $S=\{a, b\}$ is path connected by explicitly defining a path between a and b.

Solution: Define a function $f:[0,1] \rightarrow S$ by $f(t)=a$ for all $0 \leq t \leq 1 / 2$, and $f(t)=b$ for all $1 / 2<t \leq 1$. Note that the subspace topology on S is the indiscrete topology. It is easy to see that f is continuous (indeed, $f^{-1}(\varnothing)=\varnothing$ and $f^{-1}(S)=[0,1]$ are open in $\left.[0,1]\right)$. Therefore, f is a path in S from a to b.
(d) For each pair or points in X, explicitly define a path between these points. Deduce that X is actually path connected.

Solution: This is similar to the the construction in part (c), but some care has to be taken when constructing paths involving the point c :
To construct a path from a to c, define a function $f:[0,1] \rightarrow X$ by $f(t)=a$ for all $0 \leq t \leq 1 / 2$, and $f(t)=c$ for all $1 / 2<t \leq 1$. All the relevant pre-images $f^{-1}(\varnothing)=\varnothing, f^{-1}(X)=[0,1], f^{-1}(\{c\})=(1 / 2,1]$, and $f^{-1}(\{a, b, c\})=[0,1]$ are all open in $[0,1]$. So f is a (continuous) path.

To construct a path from b to c, define a function $f:[0,1] \rightarrow X$ by $f(t)=b$ for all $0 \leq t \leq 1 / 2$, and $f(t)=c$ for all $1 / 2<t \leq 1$. All the relevant pre-images $f^{-1}(\varnothing)=\varnothing, f^{-1}(X)=[0,1], f^{-1}(\{c\})=(1 / 2,1]$, and $f^{-1}(\{a, b, c\})=[0,1]$ are all open in $[0,1]$. So f is a (continuous) path.

To construct a path from d to c, define a function $f:[0,1] \rightarrow X$ by $f(t)=d$ for all $0 \leq t \leq 1 / 2$, and $f(t)=c$ for all $1 / 2<t \leq 1$. All the relevant pre-images $f^{-1}(\varnothing)=\varnothing, f^{-1}(X)=[0,1], f^{-1}(\{c\})=(1 / 2,1]$, and $f^{-1}(\{a, b, c\})=(1 / 2,1]$ are all open in $[0,1]$. So f is a (continuous) path.

To construct a path from d to a, define a function $f:[0,1] \rightarrow X$ by $f(t)=d$ for all $0 \leq t \leq 1 / 2$, and $f(t)=a$ for all $1 / 2<t \leq 1$. All the relevant pre-images $f^{-1}(\varnothing)=\varnothing, f^{-1}(X)=[0,1], f^{-1}(\{c\})=\varnothing$, and $f^{-1}(\{a, b, c\})=(1 / 2,1]$ are all open in $[0,1]$. So f is a (continuous) path.

A path from a to b was already constructed in part (c). We can use the same formula for f. All the relevant pre-images $f^{-1}(\varnothing)=\varnothing, f^{-1}(X)=[0,1], f^{-1}(\{c\})=$ \varnothing, and $f^{-1}(\{a, b, c\})=[0,1]$ are all open in $[0,1]$. So f is a (continuous) path.

Since we were able to construct all of the required paths in X, we deduce that X is path connected.

Quiz 3 Solutions

1. Give a self-contained proof of the following: Let X be a path connected space, and let Y be a space. Suppose that $f: X \rightarrow Y$ is a surjective continuous function. Show that Y is path connected.

Solution: Let $y_{1}, y_{2} \in Y$; we show that there exists a path in Y from y_{1} to y_{2}. Since f is surjective, there exists $x_{1}, x_{2} \in X$ for which $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X is path connected, there exists a continuous function $g:[0,1] \rightarrow X$ for which $g(0)=x_{1}$ and $g(1)=x_{2}$. Since f and g are continuous, the composition $(f \circ g):[0,1] \rightarrow Y$ is continuous. Furthermore, $(f \circ g)(0)=f\left(x_{1}\right)=y_{1}$ and $(f \circ g)(1)=f\left(x_{2}\right)=y_{2}$. Therefore, a path in Y from y_{1} to y_{2} exists. This establishes that Y is path connected.
2. Let X be a compact Hausdorff space, and let A be a closed subset of X. Suppose that $y \in X-A$. Prove that there exist open sets V and V^{\prime} in X such that $y \in V, A \subset V^{\prime}$, and $V \cap V^{\prime}=\varnothing$.

Solution: Given $a \in A$, there exists disjoint neighborhoods V_{a} and V_{a}^{\prime} of y and a respectively in X, since X is Hausdorff. We see that $\left\{V_{a}^{\prime} \cap A\right\}_{a \in A}$ forms an open covering of A. Since A is closed in the compact space X, we have that A is compact. So there exists a finite subcovering $\left\{V_{a_{1}}^{\prime} \cap A, \ldots, V_{a_{n}}^{\prime} \cap A\right\}$ of A. Set $V=\bigcap_{i=1}^{n} V_{a_{i}}$ and $V^{\prime}=\bigcup_{i=1}^{n} V_{a_{i}}^{\prime}$. Since $y \in V_{a_{i}}$ for each $i=1, \ldots, n$, we see that $y \in V$; since $V_{a_{i}} \cap V_{a_{i}}^{\prime}=\varnothing$ for each $i=1, \ldots, n$, we see that $V \cap V^{\prime}=\varnothing$. Since V is the finite intersection of open sets in X, we see that V is open is X. Since V^{\prime} is the union of open sets of X, we see that V^{\prime} is open in X. Finally, we see that $A \subset \bigcup_{i=1}^{n} V_{a_{i}}^{\prime}=V^{\prime}$. Therefore, there exist open sets V and V^{\prime} in X such that $y \in V, A \subset V^{\prime}$, and $V \cap V^{\prime}=\varnothing$.

