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Quiz 1 Solutions

1. Let the set X = {a, b, c, d} be given the topology T = {∅, X, {c}, {d}, {c, d}, {a, b, c}}.
Let S be the subset S = {a, c, d} ⊂ X.

(a) List the elements of the subspace topology TS on S.

Solution: By definition of TS, we have TS = {O ∩ S : O ∈ T }. Therefore

TS = {∅, S, {c}, {d}, {c, d}, {a, c}} .

(b) With respect to the topologies T on X and TS on S, determine whether or not

the function

f : S → X , f(a) = a , f(c) = d , f(d) = c

is continuous. Justify your answer.

Solution: The function f is not continuous: for f to be continuous, the pre-image

of any open set of X has to be an open set of S; in other words, f−1(O) ∈ TS

whenever O ∈ T . By considering the pre-image of each point in {a, b, c}, we see

that

f−1({a, b, c}) = {a, d} .

Since {a, b, c} ∈ T while f−1({a, b, c}) = {a, d} /∈ TS, f cannot be continuous.

Quiz 2 Solutions

1. Let X be a space. For any subset A ⊂ X, prove that

∂A = ∅ ⇐⇒ A is both open and closed in X .
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Elementary Solution: Recall the definition of ∂A:

∂A = {x ∈ X : every neighborhood of x intersects A and X − A} .

Also recall that A is closed if and only if X −A is open. Suppose that ∂A = ∅. Given

x ∈ X, there exists a neighborhood OA of x that does not intersect X − A (hence

x ∈ OA ⊂ A), or there exists a neighborhood OX−A of x that does not intersect A

(hence x ∈ OX−A ⊂ X−A). In particular, for every x ∈ A, there exists a neighborhood

OA of x such that x ∈ OA ⊂ A, so A is open; similarly, for every x ∈ X − A, there

exists a neighborhood OX−A of x such that x ∈ OX−A ⊂ X − A, so X − A is open.

This establishes that ∂A = ∅ implies that A is open and closed.

Now suppose that A is open and closed; hence A and X −A are open. Let x ∈ X. We

show that x /∈ ∂A. If x ∈ A, then A itself is a neighborhood x that does not intersect

X−A (because A is open). If x ∈ X−A, then X−A itself is a neighborhood of x that

does not intersect A (because X −A is open). In either case (x ∈ A or x ∈ X −A), we

have that x /∈ ∂A. This establishes that if A is open and closed, then ∂A = ∅.

Nonelementary Solution: From class and Hatcher’s notes, we may use the facts

(1) int(A) ∪ ∂A = Ā.

(2) int(A) ⊂ A ⊂ Ā.

(3) A is open if and only if int(A) = A; A is closed if and only if A = Ā.

By (1), we immediately have ∂A = ∅ if and only if int(A) = Ā. By combining this

with (2), we see that ∂A = ∅ if and only if int(A) = A = Ā. Therefore, by (3), ∂A = ∅
if and only if A is open (int(A) = A) and closed (A = Ā).

2. Let X be a Hausdorff space, and let A be a subspace of X. Prove that A is a Hausdorff

space.

Solution: Let X be a Hausdorff space, and let A be a subspace of X. For clarity, we let

TX denote the given topology on X, and let TA be the induced subspace topology on

A. Let x1 and x2 be distinct points in A; we will show that there exists disjoint neigh-

borhoods (from TA) of x1 and x2. Since X is Hausdorff, there exists a neighborhood

O′
1 ∈ TX of x1 and there exists a neighborhood O′

2 ∈ TX of x2 such that O′
1 ∩ O′

2 = ∅.

Define O1 = O′
1 ∩ A ∈ TA, and define O2 = O′

2 ∩ A ∈ TA. By definition of TA, we see

that O1 is a neighborhood of x1 (open in A) and O2 is a neighborhood of x2 (open in
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A). We also see that

O1 ∩O2 = (O′
1 ∩ A) ∩ (O′

2 ∩ A) = (O′
1 ∩O′

2) ∩ A = ∅ ,

since O′
1 ∩O′

2 = ∅. This establishes that the subspace A is a Hausdorff space.

3. Let the set X = {a, b, c, d} be given the topology

T = {∅, X, {c}, {a, b, c}} .

(a) Prove or disprove: X is Hausdorff.

Solution: We prove that X is not Hausdorff. Observe that the only neighborhood

of d is the whole space X because d /∈ {c} and d /∈ {a, b, c}. Also observe that the

only neighborhoods of b are X and {a, b, c}. So d and b do not possess disjoint

neighborhoods. Therefore X is not Hausdorff.

(b) Prove directly that X is connected.

Solution: Suppose that X = A ∪ B were a separation of X (i.e. A and B are

disjoint nonempty open sets whose union is X); we derive a contradiction. Observe

that the only neighborhood of d is the whole space X. Since d lies in either A or

B, we deduce that either A = X or B = X; so, either B = ∅ or A = ∅. This

contradicts that X = A ∪B is a separation.

(c) Show that the subspace S = {a, b} is path connected by explicitly defining a path

between a and b.

Solution: Define a function f : [0, 1] → S by f(t) = a for all 0 ≤ t ≤ 1/2,

and f(t) = b for all 1/2 < t ≤ 1. Note that the subspace topology on S is the

indiscrete topology. It is easy to see that f is continuous (indeed, f−1(∅) = ∅
and f−1(S) = [0, 1] are open in [0, 1]). Therefore, f is a path in S from a to b.

(d) For each pair or points in X, explicitly define a path between these points. Deduce

that X is actually path connected.

Solution: This is similar to the the construction in part (c), but some care has to

be taken when constructing paths involving the point c :

To construct a path from a to c, define a function f : [0, 1] → X by f(t) = a for

all 0 ≤ t ≤ 1/2, and f(t) = c for all 1/2 < t ≤ 1. All the relevant pre-images

f−1(∅) = ∅, f−1(X) = [0, 1], f−1({c}) = (1/2, 1], and f−1({a, b, c}) = [0, 1] are

all open in [0, 1]. So f is a (continuous) path.
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To construct a path from b to c, define a function f : [0, 1] → X by f(t) = b for

all 0 ≤ t ≤ 1/2, and f(t) = c for all 1/2 < t ≤ 1. All the relevant pre-images

f−1(∅) = ∅, f−1(X) = [0, 1], f−1({c}) = (1/2, 1], and f−1({a, b, c}) = [0, 1] are

all open in [0, 1]. So f is a (continuous) path.

To construct a path from d to c, define a function f : [0, 1] → X by f(t) = d for

all 0 ≤ t ≤ 1/2, and f(t) = c for all 1/2 < t ≤ 1. All the relevant pre-images

f−1(∅) = ∅, f−1(X) = [0, 1], f−1({c}) = (1/2, 1], and f−1({a, b, c}) = (1/2, 1] are

all open in [0, 1]. So f is a (continuous) path.

To construct a path from d to a, define a function f : [0, 1] → X by f(t) = d for

all 0 ≤ t ≤ 1/2, and f(t) = a for all 1/2 < t ≤ 1. All the relevant pre-images

f−1(∅) = ∅, f−1(X) = [0, 1], f−1({c}) = ∅, and f−1({a, b, c}) = (1/2, 1] are all

open in [0, 1]. So f is a (continuous) path.

A path from a to b was already constructed in part (c). We can use the same for-

mula for f . All the relevant pre-images f−1(∅) = ∅, f−1(X) = [0, 1], f−1({c}) =

∅, and f−1({a, b, c}) = [0, 1] are all open in [0, 1]. So f is a (continuous) path.

Since we were able to construct all of the required paths in X, we deduce that X

is path connected.

Quiz 3 Solutions

1. Give a self-contained proof of the following: Let X be a path connected space, and let

Y be a space. Suppose that f : X → Y is a surjective continuous function. Show that

Y is path connected.

Solution: Let y1, y2 ∈ Y ; we show that there exists a path in Y from y1 to y2. Since f

is surjective, there exists x1, x2 ∈ X for which f(x1) = y1 and f(x2) = y2. Since X is

path connected, there exists a continuous function g : [0, 1] → X for which g(0) = x1

and g(1) = x2. Since f and g are continuous, the composition (f ◦ g) : [0, 1] → Y

is continuous. Furthermore, (f ◦ g)(0) = f(x1) = y1 and (f ◦ g)(1) = f(x2) = y2.

Therefore, a path in Y from y1 to y2 exists. This establishes that Y is path connected.

2. Let X be a compact Hausdorff space, and let A be a closed subset of X. Suppose that

y ∈ X − A. Prove that there exist open sets V and V ′ in X such that y ∈ V , A ⊂ V ′,

and V ∩ V ′ = ∅.
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Solution: Given a ∈ A, there exists disjoint neighborhoods Va and V ′
a of y and a

respectively in X, since X is Hausdorff. We see that {V ′
a ∩ A}a∈A forms an open

covering of A. Since A is closed in the compact space X, we have that A is compact.

So there exists a finite subcovering {V ′
a1
∩ A, . . . , V ′

an
∩ A} of A. Set V =

⋂n
i=1 Vai and

V ′ =
⋃n

i=1 V ′
ai

. Since y ∈ Vai for each i = 1, . . . , n , we see that y ∈ V ; since Vai∩V ′
ai

= ∅
for each i = 1, . . . , n , we see that V ∩V ′ = ∅. Since V is the finite intersection of open

sets in X, we see that V is open is X. Since V ′ is the union of open sets of X, we see

that V ′ is open in X. Finally, we see that A ⊂
⋃n

i=1 V ′
ai

= V ′. Therefore, there exist

open sets V and V ′ in X such that y ∈ V , A ⊂ V ′, and V ∩ V ′ = ∅.
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