MAT 145 : Odds and Ends

Michael Williams

Last Updated: June 1, 2009

Example 5.8 in Crossley's Book

This example establishes a particular homeomorphism between the closed unit disk D^2 and the square $[-1, 1]^2$, both considered as subspaces of \mathbb{R}^2 . Recall the definitions

$$D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
$$[-1, 1]^2 = \{(x, y) \in \mathbb{R}^2 : -1 \le x, y \le 1\}$$

The functions f and g are well-defined

One begins by defining a function $f: D^2 \to [-1,1]^2$ by f(0,0) = (0,0), and

$$f(x,y) = \left(\frac{\sqrt{x^2 + y^2}}{\max\{|x|, |y|\}}\right)(x, y) \text{ otherwise }.$$

We actually need to check that the co-domain for f is correct, that is, $f(x, y) \in [-1, 1]^2$ for every $(x, y) \in D^2$; this it is not so obvious from the formula for f(x, y). Let $(x, y) \in D^2$ be given. Let $r = \sqrt{x^2 + y^2}$; so $0 \le r \le 1$. Furthermore, assume that $(x, y) \ne (0, 0)$; so $r \ne 0$. Now, max $\{|x|, |y|\} = |x|$ if and only if $|x| \ge |y|$. Suppose that this is the case. Then

$$f(x,y) = \frac{r}{|x|} (x,y)$$
$$= \left(\frac{rx}{|x|}, \frac{ry}{|x|}\right)$$

So both coordinates of f(x, y) are in the interval $[-r, r] \subset [-1, 1]$; keep in mind that we are assuming $|x| \ge |y|$, so $\frac{ry}{|x|} \in [-r, r]$. Therefore $f(x, y) \in [-r, r]^2 \subset [-1, 1]^2$. In the case that $|x| \le |y|$, a similar calculation that shows that $f(x, y) \in [-r, r]^2 \subset [-1, 1]^2$. In fact, we

showed that $f(\mathbb{S}_r^1) \subset C_r$ where $\mathbb{S}_r^1 = \partial (B_r(0,0))$ and $C_r = \partial ([-r,r]^2)$, $0 < r \leq 1$. A similar calculation shows that the function $g: [-1,1] \to D^2$, defined by g(0,0) = (0,0) and

$$g(x,y) = \left(\frac{\max\{|x|,|y|\}}{\sqrt{x^2 + y^2}}\right)(x,y) \text{ otherwise },$$

satisfies $g(C_r) \subset \mathbb{S}^1_r$ for every $r \in (0,1]$. It follows that g has the correct co-domain.

The functions f and g are inverses of each other

We show that $(g \circ f)(x, y) = (x, y)$ for all $(x, y) \in D^2$ with $|x| \ge |y|$; the calculation for $|x| \le |y|$ is similar.

$$\begin{split} (g \circ f)(x,y) &= g\left(\frac{rx}{|x|}, \frac{ry}{|x|}\right) \\ &= \left(\frac{\left|\frac{rx}{|x|}\right|}{\sqrt{\left(\frac{rx}{|x|}\right)^2 + \left(\frac{ry}{|x|}\right)^2}}\right) \left(\frac{rx}{|x|}, \frac{ry}{|x|}\right) \\ &= \left(\frac{r}{\sqrt{\frac{r^4}{|x|^2}}}\right) \left(\frac{rx}{|x|}, \frac{ry}{|x|}\right) \\ &= \frac{|x|}{r} \left(\frac{rx}{|x|}, \frac{ry}{|x|}\right) \\ &= (x,y) \;. \end{split}$$

Then a similar calculation shows that $(f \circ g)(x, y) = (x, y)$ for all $(x, y) \in [-1, 1]^2$. Therefore f and g are inverses of each other. Therefore, we can promote the mere containment $f(\mathbb{S}_r^1) \subset C_r$ to the equality $f(\mathbb{S}_r^1) = C_r$ for all $0 < r \leq 1$. We deduce that $f(\overline{B_r(0, 0)}) = [-r, r]^2$ for every $0 < r \leq 1$.

The functions f and g are continuous

We first show that f is continuous at (0,0). Let $\epsilon > 0$ be given; we show that there is a $\delta > 0$ for which $f(B_{\delta}(0,0)) \subset B_{\epsilon}(0,0)$. We set $\delta = \frac{\epsilon}{\sqrt{2}}$. Then $f(\overline{B_{\delta}(0,0)}) = [-\delta,\delta]^2 \subset \overline{B_{\epsilon}(0,0)}$; indeed, C_{δ} is circumscribed by \mathbb{S}^1_{ϵ} (draw a picture in \mathbb{R}^2).

We now finish the proof that f is continuous. Let X be the union of the lines $\{y = x\}$ and $\{y = -x\}$ in \mathbb{R}^2 . Define $A = \{(x, y) \in D^2 : |x| \ge |y|\}$ and $B = \{(x, y) \in D^2 : |x| \le |y|\}$; note that $A \cap B = \partial A = \partial B = X \cap D^2$ (draw these regions in \mathbb{R}^2). For any $(x, y) \in D^2$, it is easy to see that

$$\max\{|x|, |y|\} = |x| \iff (x, y) \in A , \text{ and}$$
$$\max\{|x|, |y|\} = |y| \iff (x, y) \in B .$$

The restriction of the function f(x, y) to A has the formula

$$f(x,y) = \left(\frac{\sqrt{x^2 + y^2}}{|x|}\right)(x,y), \text{ for } (x,y) \neq (0,0) .$$

The restriction of the function f(x, y) to B has the formula

$$f(x,y) = \left(\frac{\sqrt{x^2 + y^2}}{|y|}\right)(x,y), \text{ for } (x,y) \neq (0,0)$$

We explain why the restriction of f(x, y) to A is continuous; the reasoning is similar for B. A consists of two regions

$$A_{+} = A \cap \{(x, y) \in \mathbb{R}^{2} : x \ge 0\} , \text{ and} \\ A_{-} = A \cap \{(x, y) \in \mathbb{R}^{2} : x \le 0\}$$

with $A_+ \cap A_- = (0,0)$. It is not difficult to see that A_+ and A_- are closed in A. In A_+ , the formula for f(x,y) is simply

$$f(x,y) = \left(\frac{\sqrt{x^2 + y^2}}{x}\right)(x,y), \text{ for } (x,y) \neq (0,0)$$

The scaler function $(x, y) \mapsto \frac{\sqrt{x^2+y^2}}{x}$ is continuous, and scaler multiplication is continuous (as you can check). So the restriction of f to A_+ is continuous, Similarly, the restriction of f to A_- is continuous. Since f is also continuous at (0,0), we conclude that f is continuous on all of A. Similarly, f is continuous on B.

The sets A and B are closed in \mathbb{R}^2 (hence closed in D^2), so f is continuous on all of D^2 (by the Pasting Lemma). The function g is continuous by a similar argument. It follows that f is a homeomorphism.

Metrizability of $\mathbb{R}_{product}^{\infty}$ and Nonmetrizability of $\mathbb{R}_{box}^{\infty}$

The material in this section is taken from the book "Topology: A first course" by James R. Munkres; in that book, the set of infinite sequences in \mathbb{R} is denoted by \mathbb{R}^{ω} . In these notes, the set of infinite sequences in \mathbb{R} is denoted by \mathbb{R}^{∞} .

Theorem (Metrizability of $\mathbb{R}_{product}^{\infty}$). There exists a metric on \mathbb{R}^{∞} whose metric topology is the same as $\mathbb{R}_{product}^{\infty}$. Hence $\mathbb{R}_{product}^{\infty}$ is metrizable.

Proof. First, define a bounded metric on \mathbb{R} . Define $\overline{d} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$\bar{d}(a,b) = \min\{|a-b|,1\}$$

To check that \overline{d} is a metric on \mathbb{R} , it suffices to check the triangle inequality; the other criteria for \overline{d} to be a metric are trivial to check. Let $a, b, c \in \mathbb{R}$. By the triangle inequality of the usual metric on \mathbb{R} , we have that

$$|a - c| \le |a - b| + |b - c|$$
.

There are two cases:

1. $\bar{d}(a,b) = |a-b|$ and $\bar{d}(b,c) = |b-c|$. 2. $\bar{d}(a,b) = 1$ or $\bar{d}(b,c) = 1$.

In the first case,

$$d(a,c) \leq |a-c|$$

$$\leq |a-b| + |b-c|$$

$$= \bar{d}(a,b) + \bar{d}(b,c).$$

In the second case, say, $\bar{d}(a, b) = 1$,

$$\begin{aligned} \bar{d}(a,c) &\leq 1 \\ &= \bar{d}(a,b) \\ &\leq \bar{d}(a,b) + \bar{d}(b,c) \end{aligned}$$

If $\bar{d}(b,c) = 1$, we arrive at the same conclusion. Therefore, \bar{d} is a metric on \mathbb{R} . Now define $D : \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \to \mathbb{R}$ by

$$D(x,y) = \operatorname{lub}\left\{\frac{\overline{d}(x_i,y_i)}{i}\right\}_{i\in\mathbb{N}}$$

where $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$; D(x, y) is defined because $\frac{\overline{d}(x_i, y_i)}{i}$ is bounded above by 1, for all $i \in \mathbb{N}$.

To show that D is a metric on \mathbb{R}^{∞} , it suffices to establish the triangle inequality; the other criteria for D to be a metric are trivial to check. Let $x, y, z \in \mathbb{R}^{\infty}$. Let $i \in \mathbb{N}$ be given. Since \overline{d} is a metric on \mathbb{R} , we have

$$\bar{d}(x_i, y_i) \le \bar{d}(x_i, y_i) + \bar{d}(y_i, z_i)$$

Dividing by i yields

$$\frac{\overline{d}(x_i, z_i)}{i} \le \frac{\overline{d}(x_i, y_i)}{i} + \frac{\overline{d}(y_i, z_i)}{i}$$
$$\le D(x, y) + D(y, z) .$$

Therefore, $D(x, z) \leq D(x, y) + D(y, z)$. This establishes that D is a metric on \mathbb{R}^{∞} .

Let \mathcal{T}_P denote the product topology on \mathbb{R}^{∞} , and let \mathcal{T}_D denote the metric topology induced by D. We show that $\mathcal{T}_P = \mathcal{T}_D$.

The first thing to show is that $\mathcal{T}_D \subset \mathcal{T}_P$. It suffices to show that every metric ball lies in \mathcal{T}_P . Let $z \in \mathbb{R}^\infty$ and let r > 0; our strategy will be to show that every point of $B_r(z)$ is an interior point. Let $x \in B_r(z)$. Since $B_r(z) \in T_D$, there exists an $\epsilon > 0$ such that $B_\epsilon(x) \subset B_r(z)^{-1}$. There exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. Now set

$$V = (x_1 - \epsilon, x_1 + \epsilon) \times (x_2 - \epsilon, x_2 + \epsilon) \times \cdots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

It is easy to see that $V \in \mathcal{T}_P$ is a neighborhood of x. We now assert that $V \subset B_{\epsilon}(x)$. Let $y \in V$. Then for all i > N, we have

$$\bar{d}(x_i, y_i) \le 1 \Longrightarrow \frac{\bar{d}(x_i, y_i)}{i} < \frac{1}{N}$$

Since $y \in V$, we have $\frac{\bar{d}(x_i, y_i)}{i} < \frac{\epsilon}{i} \le \epsilon$ for all i = 1, ..., N; we also have $\frac{\bar{d}(x_i, y_i)}{i} < \frac{1}{N} < \epsilon$ for all i > N. So $D(x, y) < \epsilon$; hence $y \in B_{\epsilon}(x)$. This establishes that $V \subset B_{\epsilon}(x)$. Clearly $x \in V$, so x has a neighborhood $V \in \mathcal{T}_P$ such that $x \in V \subset B_r(z)$. Therefore, $B_r(z) \in \mathcal{T}_P$.

We now show that $\mathcal{T}_P \subset \mathcal{T}_D$. It suffices to prove that every basis element of \mathcal{T}_P lies in \mathcal{T}_D . So let $V = V_1 \times V_2 \times \cdots$ be a basis element of \mathcal{T}_P ; so $V_i = \mathbb{R}$ for every *i* except for finitely values $i \in \{\alpha_1, \ldots, \alpha_N\} \subset \mathbb{N}$. Let $x \in V$. For each $i = 1, \ldots, N$, choose $\epsilon_{\alpha_i} > 0$ small enough so that $\epsilon_{\alpha_i} < 1$ and $(x_{\alpha_i} - \epsilon_{\alpha_i}, x_{\alpha_i} + \epsilon_{\alpha_i}) \subset V_{\alpha_i}$. Set $\epsilon = \min\left\{\frac{\epsilon_{\alpha_i}}{\alpha_i} : i = 1, \ldots, N\right\}$. We

¹It suffices to set $\epsilon = r - D(x, z)$.

now assert that $B_{\epsilon}(x) \subset V$. Let $y \in B_{\epsilon}(x)$. Then $\frac{\overline{d}(x_{\alpha_i}, y_{\alpha_i})}{\alpha_i} < \epsilon$ for all $i = 1, \ldots, N$. Thus $\overline{d}(x_{\alpha_i}, y_{\alpha_i}) < \epsilon_{\alpha_i} < 1$ for all $i = 1, \ldots, N$; hence $|x_{\alpha_i} - y_{\alpha_i}| < \epsilon_{\alpha_i}$ for all $i = 1, \ldots, N$. It now follows that $y \in V$; thus $B_{\epsilon}(x) \subset V$. Therefore $V \in \mathcal{T}_D$.

This establishes that $T_P = T_D$.

The story for $\mathbb{R}^{\infty}_{box}$ is different.

Theorem (Nonmetrizability of $\mathbb{R}_{box}^{\infty}$). There exists no metric on \mathbb{R}^{∞} whose metric topology gives $\mathbb{R}_{box}^{\infty}$. Hence $\mathbb{R}_{box}^{\infty}$ is not metrizable.

Proof. The strategy here is to show that the Sequence Lemma² does not hold. Define the subspace

$$A = \{(x_1, x_2, \dots) : x_i > 0 \text{ for all } i \in \mathbb{N}\} \subset \mathbb{R}_{box}^{\infty}$$

Let $x \in \mathbb{R}^{\infty}_{box}$ denote the zero-element, that is, x = (0, 0, ...).

First, note that $x \in \overline{A}$: any basis-element neighborhood

$$V = (a_1, b_1) \times (a_2, b_2) \times \cdots$$

of x must satisfy $a_i < 0 < b_i$ for all $i \in \mathbb{N}$; thus $(\frac{b_1}{2}, \frac{b_2}{2}, \dots) \in V \cap A$.

Now we show that no sequence $\{x_n\} \subset A$ converges to x; in fact, we will show that x has a neighborhood V' so that $x_n \notin V'$ for all $n \in \mathbb{N}$. Suppose that $\{x_n\} \subset A$ is a sequence. For each $n \in \mathbb{N}$, we write x_n as $x_n = (b_{n,1}, b_{n,2}, ...)$. Now set

$$V' = (-b_{1,1}, b_{1,1}) \times (-b_{2,2}, b_{2,2}) \times \cdots$$

It is clear that V' is a neighborhood of x. Since $b_{n,n} \notin (-b_{n,n}, b_{n,n})$, it follows that $x_n \notin V'$ for any $n \in \mathbb{N}$. So the sequence $\{x_n\}$ does not converge to x. Therefore, the Sequence Lemma does not hold in $\mathbb{R}^{\infty}_{box}$. We conclude that $\mathbb{R}^{\infty}_{box}$ is not metrizable.

²Recall that the Sequence Lemma asserts that if X is a metric space and $A \subset X$ is subset with $x \in \overline{A}$, then there exists a sequence $\{x_n\} \subset A$ for which $x_n \to x$.