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Example 5.8 in Crossley’s Book

This example establishes a particular homeomorphism between the closed unit disk D? and

the square [—1,1]?, both considered as subspaces of R?. Recall the definitions

(z,y) e R? 1 2* + 9> < 1}
1,1 ={(z,y) eR*: =1 < 2,y < 1} .

The functions f and ¢ are well-defined

One begins by defining a function f : D* — [—1,1]? by f(0,0) = (0,0), and

flz,y) = (ﬂ) (x,y) otherwise .

max{|z, |y[}

We actually need to check that the co-domain for f is correct, that is, f(z,y) € [—1,1]?
for every (z,y) € D?; this it is not so obvious from the formula for f(z,y). Let (x,y) € D?
be given. Let r = \/m; so 0 < r < 1. Furthermore, assume that (z,y) # (0,0); so
r # 0. Now, max{|z|, |y|} = |z| if and only if |z| > |y|. Suppose that this is the case. Then

r

f(x,y) =7 (ZL’,y)

=
B (rx ry)
| |z )

So both coordinates of f(z,y) are in the interval [—r,r] C [—1,1]; keep in mind that we

are assuming |x| >| y|, so % € [—r,r]. Therefore f(z,y) € [—r,r]*> C [-1,1]?. In the case

||

that |z| <| y|, a similar calculation that shows that f(z,y) € [-r,r]> C [-1,1]*. In fact, we



showed that f(S}) C C, where S! = 9(B,(0,0)) and C, = d([-r,r]*), 0 <r < 1. A similar
calculation shows that the function g : [—1,1] — D? | defined by ¢(0,0) = (0,0) and

max{|z|, |y|} :
T,Y) = x, otherwise |,
9(x,y) < Ty g (z,y)

satisfies g(C,) C S! for every r € (0,1]. It follows that g has the correct co-domain.

The functions f and ¢ are inverses of each other

We show that (g o f)(x,y) = (x,y) for all (z,y) € D* with |z| > |y|; the calculation for

|z| <] y| is similar.

(g0 f)a,y) =g (E ﬂ)

Then a similar calculation shows that (f o g)(z,y) = (z,y) for all (z,y) € [—1,1]%
Therefore f and g are inverses of each other. Therefore, we can promote the mere containment
F(SI) € C, to the equality f(S!) = C, for all 0 < r < 1. We deduce that f(B,(0,0)) = [—r, r]?
for every 0 < r < 1.

The functions f and ¢ are continuous

We first show that f is continuous at (0,0). Let € > 0 be given; we show that thereisa d > 0
for which f(Bs(0,0)) C Be(0,0). We set § = —=. Then f(Bs(0,0)) = [, 6> C B.(0,0);
indeed, Cj is circumscribed by S! (draw a picture in R?).

We now finish the proof that f is continuous. Let X be the union of the lines {y = x}
and {y = —z} in R?. Define A = {(z,y) € D*: |z| > |y|} and B = {(z,y) € D?: |z| < |y|};

note that AN B = dA = OB = X N D? (draw these regions in R?). For any (z,y) € D?, it is



easy to see that

max{|z|, |y|} = |z| < (z,y) € A, and

max{[a], [y} = |yl < (z.y) € B.

The restriction of the function f(x,y) to A has the formula

Fle,y) = (V - “’2) (e,9), for (z.) # (0,0)

]

The restriction of the function f(x,y) to B has the formula

f(e,y) = (V ﬁ W) (2.9), for (2,y) # (0,0 .

Y|

We explain why the restriction of f(z,y) to A is continuous; the reasoning is similar for

B. A consists of two regions

Ay = An{(z,y) €R*:2 >0}, and
A-=An{(z,y) eR*: 2 <0}

with Ay N A_ = (0,0). It is not difficult to see that A, and A_ are closed in A. In A, the

formula for f(x,y) is simply

lr.y) = (—V“J> (

z,y), for (z,y) # (0,0) .

. $2+y2
The scaler function (z,y) — Y——

is continuous, and scaler multiplication is continuous
(as you can check). So the restriction of f to A, is continuous, Similarly, the restriction of
f to A_ is continuous. Since f is also continuous at (0,0), we conclude that f is continuous
on all of A. Similarly, f is continuous on B.

The sets A and B are closed in R? (hence closed in D?), so f is continuous on all of D?
(by the Pasting Lemma). The function g is continuous by a similar argument. It follows that

f is a homeomorphism.



Metrizability of R>* . . and Nonmetrizability of R;°

produc box

The material in this section is taken from the book “Topology: A first course” by James R.
Munkres; in that book, the set of infinite sequences in R is denoted by R“. In these notes,

the set of infinite sequences in R is denoted by R>.

Theorem (Metrizability of RS

voduct)+ Lhere exists a metric on R whose metric topology is

the same as R

product - Hence R;ﬁoduct 18 metrizable.

Proof. First, define a bounded metric on R. Define d : R x R — R by

d(a,b) = min{|a — b|,1} .

To check that d is a metric on R, it suffices to check the triangle inequality; the other criteria
for d to be a metric are trivial to check. Let a,b,c € R. By the triangle inequality of the

usual metric on R, we have that
la—c| <|a—0b+|b—¢|.

There are two cases:

1. d(a,b) = |a—b| and d(b,c) = |b—c|.

2. d(a,b) =1 or d(b,c)=1.
In the first case,

d(CL,C) < ‘(I - C|
<la—"bl+|b—¢|
= d(a,b) + d(b,c).

In the second case, say, d(a,b) =1,

< d(a,b) +d(b,c).

If d(b, c) = 1, we arrive at the same conclusion. Therefore, d is a metric on R.

Now define D : R* x R* — R by

D(r.g) =tub{ AL

1

4



where © = (x1,29,...) and y = (y1,¥2,...); D(x,y) is defined because M is bounded
above by 1, for all 7 € N.

To show that D is a metric on R*>, it suffices to establish the triangle inequality; the
other criteria for D to be a metric are trivial to check. Let z,y, 2z € R>. Let ¢ € N be given.

Since d is a metric on R, we have

Dividing by i yields

Cz(miazi) J(mi,yz-) + J(?/mzz‘)
< D(z,y) + D(y,2) .

IN

Therefore, D(x,2) < D(z,y) + D(y, z). This establishes that D is a metric on R*.

Let 7p denote the product topology on R, and let 7p denote the metric topology induced
by D. We show that 7p = 7p.

The first thing to show is that 7p C 7p. It suffices to show that every metric ball lies
in 7p. Let z € R*® and let r > 0; our strategy will be to show that every point of B,(z)
is an interior point. Let z € B,(z). Since B,(z) € Tp, there exists an ¢ > 0 such that
B.(z) C B.(z) !. There exists N € N such that 1/N < e. Now set

V=(ri—€6r1+€e)x(xa—€,x94+€) X - X(zy—€,xy+€) X RXRX---.

It is easy to see that V' € 7p is a neighborhood of x. We now assert that V' C B(x). Let
y € V. Then for all i > N, we have

_ T
d($iayi)§1:M<

1

i N
Since y € V', we have M <¢<eforalli=1,...,N; we also have M < % < € for all
i> N. So D(z,y) < ¢; hence y € B.(z). This establishes that V' C B(x). Clearly z € V, so
x has a neighborhood V' € 7p such that x € V C B,(z). Therefore, B,(z) € Tp.

We now show that 7p C 7p. It suffices to prove that every basis element of 7p lies in
Tp. Solet V. =1V; x Vo x --- be a basis element of 7p; so V; = R for every i except for
finitely values i € {a1,...,any} C N. Let z € V. For each i =1,..., N, choose €,, > 0 small

enough so that €,, < 1 and (x4, — €q4,, Ta, + €a;) C Via,. Set € = min{eo‘j—i 1=1,... ,N}. We

i

Tt suffices to set € = r — D(x, 2).



now assert that B.(z) C V. Let y € Be(x). Then M < eforalli=1,...,N. Thus

i

A(To;s Yo;) < €a, < Lforalli=1,...,N; hence |zn, — Ya,| < €4, for all i =1,..., N. It now
follows that y € V; thus B.(z) C V. Therefore V € Tp.
This establishes that 7p = Tp. O

The story for Ry° is different.

box

Theorem (Nonmetrizability of Ry® ). There exists no metric on R> whose metric topology

gwes RpS . Hence Rp° is not metrizable.

Proof. The strategy here is to show that the Sequence Lemma? does not hold. Define the
subspace
A={(z1,29,...) :2; >0 for all i € N} C Ry,

box *

Let x € Ry denote the zero-element, that is, z = (0,0, ... ).

box

First, note that « € A: any basis-element neighborhood
V= (al,bl) X (CLQ,bg) X
of x must satisfy a; < 0 < b; for all 7 € N; thus (%1, %2, L) EeEVNA
Now we show that no sequence {z,,} C A converges to x; in fact, we will show that z has

a neighborhood V' so that z,, ¢ V' for all n € N. Suppose that {z,} C A is a sequence. For

each n € N, we write z,, as x,, = (bp1,bn2,...). Now set
V= (—51,1751,1) X (—52,2,172,2) X

It is clear that V' is a neighborhood of x. Since by, ,, € (—bn.n, bnr), it follows that z,, ¢ V' for
any n € N. So the sequence {x,} does not converge to x. Therefore, the Sequence Lemma

does not hold in Ry . We conclude that Ry is not metrizable. O

2Recall that the Sequence Lemma asserts that if X is a metric space and A C X is subset with = € A4,
then there exists a sequence {z,} C A for which z,, — «.



