# MAT 145 : Odds and Ends 

Michael Williams

Last Updated: June 1, 2009

## Example 5.8 in Crossley's Book

This example establishes a particular homeomorphism between the closed unit disk $D^{2}$ and the square $[-1,1]^{2}$, both considered as subspaces of $\mathbb{R}^{2}$. Recall the definitions

$$
\begin{aligned}
D^{2} & =\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\} \\
{[-1,1]^{2} } & =\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq x, y \leq 1\right\} .
\end{aligned}
$$

## The functions $f$ and $g$ are well-defined

One begins by defining a function $f: D^{2} \rightarrow[-1,1]^{2}$ by $f(0,0)=(0,0)$, and

$$
f(x, y)=\left(\frac{\sqrt{x^{2}+y^{2}}}{\max \{|x|,|y|\}}\right)(x, y) \text { otherwise }
$$

We actually need to check that the co-domain for $f$ is correct, that is, $f(x, y) \in[-1,1]^{2}$ for every $(x, y) \in D^{2}$; this it is not so obvious from the formula for $f(x, y)$. Let $(x, y) \in D^{2}$ be given. Let $r=\sqrt{x^{2}+y^{2}}$; so $0 \leq r \leq 1$. Furthermore, assume that $(x, y) \neq(0,0)$; so $r \neq 0$. Now, $\max \{|x|,|y|\}=|x|$ if and only if $|x| \geq|y|$. Suppose that this is the case. Then

$$
\begin{aligned}
f(x, y) & =\frac{r}{|x|}(x, y) \\
& =\left(\frac{r x}{|x|}, \frac{r y}{|x|}\right) .
\end{aligned}
$$

So both coordinates of $f(x, y)$ are in the interval $[-r, r] \subset[-1,1]$; keep in mind that we are assuming $|x| \geq|y|$, so $\frac{r y}{|x|} \in[-r, r]$. Therefore $f(x, y) \in[-r, r]^{2} \subset[-1,1]^{2}$. In the case that $|x| \leq|y|$, a similar calculation that shows that $f(x, y) \in[-r, r]^{2} \subset[-1,1]^{2}$. In fact, we
showed that $f\left(\mathbb{S}_{r}^{1}\right) \subset C_{r}$ where $\mathbb{S}_{r}^{1}=\partial\left(B_{r}(0,0)\right)$ and $C_{r}=\partial\left([-r, r]^{2}\right), 0<r \leq 1$. A similar calculation shows that the function $g:[-1,1] \rightarrow D^{2}$, defined by $g(0,0)=(0,0)$ and

$$
g(x, y)=\left(\frac{\max \{|x|,|y|\}}{\sqrt{x^{2}+y^{2}}}\right)(x, y) \text { otherwise }
$$

satisfies $g\left(C_{r}\right) \subset \mathbb{S}_{r}^{1}$ for every $r \in(0,1]$. It follows that $g$ has the correct co-domain.

## The functions $f$ and $g$ are inverses of each other

We show that $(g \circ f)(x, y)=(x, y)$ for all $(x, y) \in D^{2}$ with $|x| \geq|y|$; the calculation for $|x| \leq|y|$ is similar.

$$
\begin{aligned}
(g \circ f)(x, y) & =g\left(\frac{r x}{|x|}, \frac{r y}{|x|}\right) \\
& =\left(\frac{\left|\frac{r x}{|x|}\right|}{\sqrt{\left(\frac{r x}{\mid x)^{2}}+\left(\frac{r y}{|x|}\right)^{2}\right.}}\right)\left(\frac{r x}{|x|}, \frac{r y}{|x|}\right) \\
& =\left(\frac{r}{\sqrt{\frac{r^{4}}{|x|^{2}}}}\right)\left(\frac{r x}{|x|}, \frac{r y}{|x|}\right) \\
& =\frac{|x|}{r}\left(\frac{r x}{|x|}, \frac{r y}{|x|}\right) \\
& =(x, y) .
\end{aligned}
$$

Then a similar calculation shows that $(f \circ g)(x, y)=(x, y)$ for all $(x, y) \in[-1,1]^{2}$. Therefore $f$ and $g$ are inverses of each other. Therefore, we can promote the mere containment $f\left(\mathbb{S}_{r}^{1}\right) \subset C_{r}$ to the equality $f\left(\mathbb{S}_{r}^{1}\right)=C_{r}$ for all $0<r \leq 1$. We deduce that $f\left(\overline{B_{r}(0,0)}\right)=[-r, r]^{2}$ for every $0<r \leq 1$.

## The functions $f$ and $g$ are continuous

We first show that $f$ is continuous at $(0,0)$. Let $\epsilon>0$ be given; we show that there is a $\delta>0$ for which $f\left(B_{\delta}(0,0)\right) \subset B_{\epsilon}(0,0)$. We set $\delta=\frac{\epsilon}{\sqrt{2}}$. Then $f\left(\overline{B_{\delta}(0,0)}\right)=[-\delta, \delta]^{2} \subset \overline{B_{\epsilon}(0,0)}$; indeed, $C_{\delta}$ is circumscribed by $\mathbb{S}_{\epsilon}^{1}$ (draw a picture in $\mathbb{R}^{2}$ ).

We now finish the proof that $f$ is continuous. Let $X$ be the union of the lines $\{y=x\}$ and $\{y=-x\}$ in $\mathbb{R}^{2}$. Define $A=\left\{(x, y) \in D^{2}:|x| \geq|y|\right\}$ and $B=\left\{(x, y) \in D^{2}:|x| \leq|y|\right\}$; note that $A \cap B=\partial A=\partial B=X \cap D^{2}$ (draw these regions in $\mathbb{R}^{2}$ ). For any $(x, y) \in D^{2}$, it is
easy to see that

$$
\begin{aligned}
& \max \{|x|,|y|\}=|x| \Longleftrightarrow(x, y) \in A, \text { and } \\
& \max \{|x|,|y|\}=|y| \Longleftrightarrow(x, y) \in B
\end{aligned}
$$

The restriction of the function $f(x, y)$ to $A$ has the formula

$$
f(x, y)=\left(\frac{\sqrt{x^{2}+y^{2}}}{|x|}\right)(x, y), \text { for }(x, y) \neq(0,0)
$$

The restriction of the function $f(x, y)$ to $B$ has the formula

$$
f(x, y)=\left(\frac{\sqrt{x^{2}+y^{2}}}{|y|}\right)(x, y), \text { for }(x, y) \neq(0,0)
$$

We explain why the restriction of $f(x, y)$ to $A$ is continuous; the reasoning is similar for B. $A$ consists of two regions

$$
\begin{aligned}
& A_{+}=A \cap\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right\}, \text { and } \\
& A_{-}=A \cap\left\{(x, y) \in \mathbb{R}^{2}: x \leq 0\right\}
\end{aligned}
$$

with $A_{+} \cap A_{-}=(0,0)$. It is not difficult to see that $A_{+}$and $A_{-}$are closed in $A$. In $A_{+}$, the formula for $f(x, y)$ is simply

$$
f(x, y)=\left(\frac{\sqrt{x^{2}+y^{2}}}{x}\right)(x, y), \text { for }(x, y) \neq(0,0)
$$

The scaler function $(x, y) \mapsto \frac{\sqrt{x^{2}+y^{2}}}{x}$ is continuous, and scaler multiplication is continuous (as you can check). So the restriction of $f$ to $A_{+}$is continuous, Similarly, the restriction of $f$ to $A_{-}$is continuous. Since $f$ is also continuous at $(0,0)$, we conclude that $f$ is continuous on all of $A$. Similarly, $f$ is continuous on $B$.

The sets $A$ and $B$ are closed in $\mathbb{R}^{2}$ (hence closed in $D^{2}$ ), so $f$ is continuous on all of $D^{2}$ (by the Pasting Lemma). The function $g$ is continuous by a similar argument. It follows that $f$ is a homeomorphism.

## Metrizability of $\mathbb{R}_{\text {product }}^{\infty}$ and Nonmetrizability of $\mathbb{R}_{\text {box }}^{\infty}$

The material in this section is taken from the book "Topology: A first course" by James R. Munkres; in that book, the set of infinite sequences in $\mathbb{R}$ is denoted by $\mathbb{R}^{\omega}$. In these notes, the set of infinite sequences in $\mathbb{R}$ is denoted by $\mathbb{R}^{\infty}$.

Theorem (Metrizability of $\mathbb{R}_{\text {product }}^{\infty}$ ). There exists a metric on $\mathbb{R}^{\infty}$ whose metric topology is the same as $\mathbb{R}_{\text {product }}^{\infty}$. Hence $\mathbb{R}_{\text {product }}^{\infty}$ is metrizable.
Proof. First, define a bounded metric on $\mathbb{R}$. Define $\bar{d}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\bar{d}(a, b)=\min \{|a-b|, 1\}
$$

To check that $\bar{d}$ is a metric on $\mathbb{R}$, it suffices to check the triangle inequality; the other criteria for $\bar{d}$ to be a metric are trivial to check. Let $a, b, c \in \mathbb{R}$. By the triangle inequality of the usual metric on $\mathbb{R}$, we have that

$$
|a-c| \leq|a-b|+|b-c| .
$$

There are two cases:

1. $\bar{d}(a, b)=|a-b|$ and $\bar{d}(b, c)=|b-c|$.
2. $\bar{d}(a, b)=1$ or $\bar{d}(b, c)=1$.

In the first case,

$$
\begin{aligned}
\bar{d}(a, c) & \leq|a-c| \\
& \leq|a-b|+|b-c| \\
& =\bar{d}(a, b)+\bar{d}(b, c) .
\end{aligned}
$$

In the second case, say, $\bar{d}(a, b)=1$,

$$
\begin{aligned}
\bar{d}(a, c) & \leq 1 \\
& =\bar{d}(a, b) \\
& \leq \bar{d}(a, b)+\bar{d}(b, c)
\end{aligned}
$$

If $\bar{d}(b, c)=1$, we arrive at the same conclusion. Therefore, $\bar{d}$ is a metric on $\mathbb{R}$.
Now define $D: \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}$ by

$$
D(x, y)=\operatorname{lub}\left\{\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}\right\}_{i \in \mathbb{N}}
$$

where $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right) ; D(x, y)$ is defined because $\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}$ is bounded above by 1 , for all $i \in \mathbb{N}$.

To show that $D$ is a metric on $\mathbb{R}^{\infty}$, it suffices to establish the triangle inequality; the other criteria for $D$ to be a metric are trivial to check. Let $x, y, z \in \mathbb{R}^{\infty}$. Let $i \in \mathbb{N}$ be given. Since $\bar{d}$ is a metric on $\mathbb{R}$, we have

$$
\bar{d}\left(x_{i}, y_{i}\right) \leq \bar{d}\left(x_{i}, y_{i}\right)+\bar{d}\left(y_{i}, z_{i}\right) .
$$

Dividing by $i$ yields

$$
\begin{aligned}
\frac{\bar{d}\left(x_{i}, z_{i}\right)}{i} & \leq \frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}+\frac{\bar{d}\left(y_{i}, z_{i}\right)}{i} \\
& \leq D(x, y)+D(y, z)
\end{aligned}
$$

Therefore, $D(x, z) \leq D(x, y)+D(y, z)$. This establishes that $D$ is a metric on $\mathbb{R}^{\infty}$.
Let $\mathcal{T}_{P}$ denote the product topology on $\mathbb{R}^{\infty}$, and let $\mathcal{T}_{D}$ denote the metric topology induced by $D$. We show that $\mathcal{T}_{P}=\mathcal{T}_{D}$.

The first thing to show is that $\mathcal{T}_{D} \subset \mathcal{T}_{P}$. It suffices to show that every metric ball lies in $\mathcal{T}_{P}$. Let $z \in \mathbb{R}^{\infty}$ and let $r>0$; our strategy will be to show that every point of $B_{r}(z)$ is an interior point. Let $x \in B_{r}(z)$. Since $B_{r}(z) \in T_{D}$, there exists an $\epsilon>0$ such that $B_{\epsilon}(x) \subset B_{r}(z)^{1}$. There exists $N \in \mathbb{N}$ such that $1 / N<\epsilon$. Now set

$$
V=\left(x_{1}-\epsilon, x_{1}+\epsilon\right) \times\left(x_{2}-\epsilon, x_{2}+\epsilon\right) \times \cdots \times\left(x_{N}-\epsilon, x_{N}+\epsilon\right) \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

It is easy to see that $V \in \mathcal{T}_{P}$ is a neighborhood of $x$. We now assert that $V \subset B_{\epsilon}(x)$. Let $y \in V$. Then for all $i>N$, we have

$$
\bar{d}\left(x_{i}, y_{i}\right) \leq 1 \Longrightarrow \frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}<\frac{1}{N}
$$

Since $y \in V$, we have $\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}<\frac{\epsilon}{i} \leq \epsilon$ for all $i=1, \ldots, N$; we also have $\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}<\frac{1}{N}<\epsilon$ for all $i>N$. So $D(x, y)<\epsilon$; hence $y \in B_{\epsilon}(x)$. This establishes that $V \subset B_{\epsilon}(x)$. Clearly $x \in V$, so $x$ has a neighborhood $V \in \mathcal{T}_{P}$ such that $x \in V \subset B_{r}(z)$. Therefore, $B_{r}(z) \in \mathcal{T}_{P}$.

We now show that $\mathcal{T}_{P} \subset \mathcal{T}_{D}$. It suffices to prove that every basis element of $\mathcal{T}_{P}$ lies in $\mathcal{T}_{D}$. So let $V=V_{1} \times V_{2} \times \cdots$ be a basis element of $\mathcal{T}_{P}$; so $V_{i}=\mathbb{R}$ for every $i$ except for finitely values $i \in\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset \mathbb{N}$. Let $x \in V$. For each $i=1, \ldots, N$, choose $\epsilon_{\alpha_{i}}>0$ small enough so that $\epsilon_{\alpha_{i}}<1$ and $\left(x_{\alpha_{i}}-\epsilon_{\alpha_{i}}, x_{\alpha_{i}}+\epsilon_{\alpha_{i}}\right) \subset V_{\alpha_{i}}$. Set $\epsilon=\min \left\{\frac{\epsilon_{\alpha_{i}}}{\alpha_{i}}: i=1, \ldots, N\right\}$. We

[^0]now assert that $B_{\epsilon}(x) \subset V$. Let $y \in B_{\epsilon}(x)$. Then $\frac{\bar{d}\left(x_{\alpha_{i}}, y_{\alpha_{i}}\right)}{\alpha_{i}}<\epsilon$ for all $i=1, \ldots, N$. Thus $\bar{d}\left(x_{\alpha_{i}}, y_{\alpha_{i}}\right)<\epsilon_{\alpha_{i}}<1$ for all $i=1, \ldots, N$; hence $\left|x_{\alpha_{i}}-y_{\alpha_{i}}\right|<\epsilon_{\alpha_{i}}$ for all $i=1, \ldots, N$. It now follows that $y \in V$; thus $B_{\epsilon}(x) \subset V$. Therefore $V \in \mathcal{T}_{D}$.

This establishes that $\mathcal{T}_{P}=\mathcal{T}_{D}$.
The story for $\mathbb{R}_{b o x}^{\infty}$ is different.
Theorem (Nonmetrizability of $\mathbb{R}_{b o x}^{\infty}$ ). There exists no metric on $\mathbb{R}^{\infty}$ whose metric topology gives $\mathbb{R}_{\text {box }}^{\infty}$. Hence $\mathbb{R}_{\text {box }}^{\infty}$ is not metrizable.

Proof. The strategy here is to show that the Sequence Lemma ${ }^{2}$ does not hold. Define the subspace

$$
A=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i}>0 \text { for all } i \in \mathbb{N}\right\} \subset \mathbb{R}_{\text {box }}^{\infty}
$$

Let $x \in \mathbb{R}_{\text {box }}^{\infty}$ denote the zero-element, that is, $x=(0,0, \ldots)$.
First, note that $x \in \bar{A}$ : any basis-element neighborhood

$$
V=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \cdots
$$

of $x$ must satisfy $a_{i}<0<b_{i}$ for all $i \in \mathbb{N}$; thus $\left(\frac{b_{1}}{2}, \frac{b_{2}}{2}, \ldots\right) \in V \cap A$.
Now we show that no sequence $\left\{x_{n}\right\} \subset A$ converges to $x$; in fact, we will show that $x$ has a neighborhood $V^{\prime}$ so that $x_{n} \notin V^{\prime}$ for all $n \in \mathbb{N}$. Suppose that $\left\{x_{n}\right\} \subset A$ is a sequence. For each $n \in \mathbb{N}$, we write $x_{n}$ as $x_{n}=\left(b_{n, 1}, b_{n, 2}, \ldots\right)$. Now set

$$
V^{\prime}=\left(-b_{1,1}, b_{1,1}\right) \times\left(-b_{2,2}, b_{2,2}\right) \times \cdots
$$

It is clear that $V^{\prime}$ is a neighborhood of $x$. Since $b_{n, n} \notin\left(-b_{n, n}, b_{n, n}\right)$, it follows that $x_{n} \notin V^{\prime}$ for any $n \in \mathbb{N}$. So the sequence $\left\{x_{n}\right\}$ does not converge to $x$. Therefore, the Sequence Lemma does not hold in $\mathbb{R}_{\text {box }}^{\infty}$. We conclude that $\mathbb{R}_{\text {box }}^{\infty}$ is not metrizable.

[^1]
[^0]:    ${ }^{1}$ It suffices to set $\epsilon=r-D(x, z)$.

[^1]:    ${ }^{2}$ Recall that the Sequence Lemma asserts that if $X$ is a metric space and $A \subset X$ is subset with $x \in \bar{A}$, then there exists a sequence $\left\{x_{n}\right\} \subset A$ for which $x_{n} \rightarrow x$.

