MAT 145 : Midterm Solutions

Michael Williams

Each problem is worth 15 points.

1. Let X be the set $\{a, b, c, d\}$ with the topology $\mathcal{T}_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, and let Y be the (same) set $\{a, b, c, d\}$ with the topology $\mathcal{T}_Y = \{\emptyset, Y, \{b\}, \{d\}, \{b, d\}\}$. Consider the function $f : X \to Y$ defined by f(a) = b, f(b) = d, f(c) = a, and f(d) = a. Prove that $f : X \to Y$ is continuous.

<u>Solution</u>: All we need to do is verify that the pre-image of every open set of Y is open in X. We calculate the relevant pre-images directly:

- $f^{-1}(\emptyset) = \emptyset \in \mathcal{T}_X$ (is automatic).
- $f^{-1}(Y) = X \in \mathcal{T}_X$ (is automatic).
- $f^{-1}(\{b\}) = \{a\} \in \mathcal{T}_X.$
- $f^{-1}(\{d\}) = \{b\} \in \mathcal{T}_X.$
- $f^{-1}(\{b,d\}) = \{a,b\} \in \mathcal{T}_X.$

We have shown that $f^{-1}(O) \in \mathcal{T}_X$ for every $O \in \mathcal{T}_Y$, so f is continuous.

2. Let X be a connected space, and let $Y = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ be considered as a subspace of \mathbb{R} (with its usual topology). Prove that any continuous function $f: X \to Y$ is constant.

<u>Solution</u>: We show that $f(x_1) = f(x_2)$ for every $x_1, x_2 \in X$; this will establish that f(X) consists of a single point. We actually proceed by contradiction: suppose that some pair $x_1, x_2 \in X$ have different values under f, say, $f(x_1) < f(x_2)$. To simplify things, we extend the co-domain of f to \mathbb{R} ; so $f : X \to \mathbb{R}$ is continuous with $f(X) \subset Y \subset \mathbb{R}$.

One approach is to apply the Intermediate Value Theorem. For any $r \in \mathbb{R}$ with $f(x_1) < r < f(x_2)$, we can apply the Intermediate Value Theorem to conclude that $r \in f(X)$. Doing this for every $r \in (f(x_1), f(x_2))$ establishes that

 $[f(x_1), f(x_2)] \subset f(X)$. It is obvious that Y does not contain any intervals, so f(X) cannot contain the interval $[f(x_1), f(x_2)]$; this gives a contradiction. Therefore, f must be a constant function.

Another approach is to use a basic connectedness argument as in the proof of the Intermediate Value Theorem. There exists a number $r \in \mathbb{R} - Y$ (an irrational number will suffice) such that $f(x_1) < r < f(x_2)$. Then $X = f^{-1}(-\infty, r) \cup f^{-1}(r, \infty)$ is a separation of X (by continuity of f and the containments $f(x_1) \in (-\infty, r)$ and $f(x_2) \in (r, \infty)$). This contradicts that X is connected. Therefore, f must be a constant function.

3. Let X be a Hausdorff space, and suppose that x_1, x_2, x_3 are three distinct points in X. Prove that there exist open sets V_1, V_2, V_3 each containing one, and only one, of the points x_1, x_2, x_3 .

<u>Solution</u>: We first construct disjoint neighborhoods for each pair of points in $\{x_1, x_2, x_3\}$ using the fact that X is a Hausdorff space:

- There are disjoint neighborhoods U_1, U_2 of x_1, x_2 respectively.
- There are disjoint neighborhoods U'_1, U'_3 of x_1, x_3 respectively.
- There are disjoint neighborhoods U_2'', U_3'' of x_2, x_3 respectively.

Now set $V_1 = U_1 \cap U'_1$, $V_2 = U_2 \cap U''_2$, and $V_3 = U'_3 \cap U''_3$. We easily see that V_i is a neighborhood of x_i for i = 1, 2, 3, because finite intersections of open sets are open. Furthermore, $x_1 \notin U_2$ and $x_1 \notin U'_3$ implies that $x_1 \notin V_2$ and $x_1 \notin V_3$; $x_2 \notin U_1$ and $x_2 \notin U''_3$ implies that $x_2 \notin V_1$ and $x_2 \notin V_3$; $x_3 \notin U'_1$ and $x_3 \notin U''_2$ implies that $x_3 \notin V_1$ and $x_3 \notin V_2$. Therefore each open set V_i contains one, and only one, of the points x_1, x_2, x_3 .

4. Consider the interval [0, 1] with its usual topology. Give a self-contained proof that any continuous function $f : [0, 1] \rightarrow [0, 1]$ has a *fixed point*, that is, f(x) = x for some $x \in [0, 1]$.

You may use the fact that sums and differences of real-valued continuous functions are continuous.

Solution: If f(0) = 0 or f(1) = 1, then there would be nothing to prove. So we may assume that $f(0) \neq 0$ and $f(1) \neq 1$. Since $f([0,1]) \subset [0,1]$, we deduce that 0 < f(0) and f(1) < 1. Define a function $g : [0,1] \to \mathbb{R}$ by g(x) = x - f(x).

The function g is the difference of two real-valued continuous functions, so g is continuous. Our previous observations about f(0) and f(1) allow us to conclude that g(0) < 0 < g(1). We apply the Intermediate Value Theorem to the function g(x): we conclude that there exists some $x \in [0, 1]$ for which g(x) = 0; hence f(x) = x. This establishes that f has a fixed point.

5. Let X and Y be topological spaces, and let $f: X \to Y$ be a continuous function. Prove that $f(\overline{A}) \subset \overline{f(A)}$ for any subset $A \subset X$.

<u>Solution</u>: An element-chasing argument will suffice. Let $A \subset X$ be given, and suppose $x \in \overline{A}$; we want to show that $f(x) \in \overline{f(A)}$. Let O be a neighborhood of f(x) in Y; we will show that $O \cap f(A) \neq \emptyset$. By continuity of f, the pre-image $f^{-1}(O)$ is a neighborhood of x in X. Since $x \in \overline{A}$, we must have $f^{-1}(O) \cap A \neq \emptyset$; so there exists an element $a \in f^{-1}(O) \cap A$. Thus $f(a) \in O \cap f(A)$; this follows by definitions of $f^{-1}(O)$ and f(A). This shows that $O \cap f(A) \neq \emptyset$. Since O was an arbitrary neighborhood of f(x), we conclude that $f(x) \in \overline{f(A)}$. This establishes that $f(\overline{A}) \subset \overline{f(A)}$.