MAT 145 : Homework Solutions

Michael Williams

Last Updated: June 6, 2009

Homework 1 Solutions

Problems from *Review of Set Theory* Notes

- 3 (c) We prove that $A \times (B C) = (A \times B) (A \times C)$. We show that $A \times (B C) \subset (A \times B) (A \times C)$, and $(A \times B) (A \times C) \subset A \times (B C)$. For the first containment, let $x \in A \times (B C)$. Then x = (a, b) where $a \in A$ and $b \in B C$. We certainly have $x \in A \times B$, and since the second coordinate of x is not in C, we conclude that $x \notin A \times C$. For the second containment, let $x \in (A \times B) (A \times C)$. Then x = (a, b) where $a \in A$ and $b \in B$, but $x \notin A \times C$. Hence $b \notin C$. Therefore $x \in A \times (B C)$.
- 3 (d) We prove that $(A-C) \times (B-D) \subset (A \times B) (C \times D)$. Let $x \in (A-C) \times (B-D)$. Then x = (a, b) where $a \in A - C$ and $b \in B - D$. We certainly have $x \in A \times B$. Since $a \notin C$, we conclude that $x = (a, b) \notin C \times D$. Therefore, $x \in (A \times B) - (C \times D)$. A counter-example for the reverse containment can be obtained by setting $A = \{1\}, B = \{2\}, C = \{3\}, \text{ and } D = B$. Then $(A \times B) - (C \times D) = \{(1, 2)\},$ while $(A - C) \times (B - D) = \emptyset$. Therefore, the reverse containment does not hold.
- 5 (e) Let $X \subset A$. To show that $X \subset f^{-1}(f(X))$, let $x \in X$ be given. Then $f(x) \in f(X)$, by definition of f(X). By definition of pre-image of f, we may conclude that $x \in f^{-1}(f(X))$.
- 5 (f) Suppose that $f(f^{-1}(U)) = U$ for every $U \subset B$. To show that f is surjective, we show that f(A) = B. We set U = B and use our hypothesis. Thus $f(f^{-1}(B)) = B$. Since A is the domain of f, we have $f^{-1}(B) = A$. Hence f(A) = B. Therefore, f is surjective.

Alternatively, we prove that f is surjective by showing that for each $b \in B$, there exists an $a \in A$ such that f(a) = b. Let $b \in B$ be given. Set $U = \{b\}$; by hypothesis, $f(f^{-1}(\{b\})) = \{b\}$. This implies that $f^{-1}(\{b\}) \neq \emptyset$; so there is some element $a \in f^{-1}(\{b\})$. Then f(a) = b. Therefore f is surjective.

5 (g) Suppose that $f^{-1}(f(X)) = X$ for every $X \subset A$. To show that f is injective, we show that $f(a_1) \neq f(a_2)$ whenever $a_1 \neq a_2$. Let $a_1, a_2 \in A$ be given with $a_1 \neq a_2$. Set $X = \{a_1\}$. By hypothesis, $f^{-1}(f(\{a_1\})) = \{a_1\}$. Thus $a_2 \notin f^{-1}(f(\{a_1\}))$; so $f(a_2) \notin f(\{a_1\})$ by definition of pre-image of f. Hence $f(a_2) \neq f(a_1)$. Therefore f is injective.

Homework 2 Solutions

Problem from Crossley's Book

3.5 Let $\mathcal{T} = \{\emptyset\} \cup \{A \subset X : \text{ for every } a \in A, B_{\delta}(a) \subset A \text{ for some } \delta > 0\}$. We show that \mathcal{T} is a topology on \mathbb{R}^2 .

By definition of $\mathcal{T}, \emptyset \in \mathcal{T}$. Since each $a \in \mathbb{R}^2$ is contained in $B_1(a) \subset \mathbb{R}^2$, we conclude that $\mathbb{R}^2 \in \mathcal{T}$.

Let $\{A_{\alpha}\}_{\alpha \in J} \subset \mathcal{T}$. Set $A = (\bigcup_{\alpha \in J} A_{\alpha})$; we show that $A \in \mathcal{T}$. Let $a \in A$. Then $a \in A_{\alpha}$ for some α . Since $A_{\alpha} \in \mathcal{T}$, there is a $\delta > 0$ such that $B_{\delta}(a) \subset A_{\alpha} \subset A$. This shows that $A \in \mathcal{T}$. Therefore, arbitrary unions of elements of \mathcal{T} are in \mathcal{T} .

Let $A_1, A_2 \in \mathcal{T}$. We show that $A_1 \cap A_2 \in \mathcal{T}$. Let $a \in A_1 \cap A_2$. Then there exists $\delta_1, \delta_2 > 0$, such that $B_{\delta_i}(a) \subset A_i$ for i = 1, 2. Set $\delta = \min\{\delta_1, \delta_2\}$; it is easy to see that $B_{\delta}(a) \subset B_{\delta_i}(a)$ for each i = 1, 2. So $B_{\delta}(a) \subset A_1 \cap A_2$. Therefore $A_1 \cap A_2 \in \mathcal{T}$. A straightforward induction argument shows that finite intersections of elements of \mathcal{T} are in \mathcal{T} .¹

This completes the proof that \mathcal{T} is a topology on \mathbb{R}^2 .

Problems from Hatcher's Notes

5.(a) In order to prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$, we prove the containments

 $^{^{1}}$ As discussed in class, we do not have to give the induction argument. Showing that the intersection of two open sets is open suffices.

- 1. $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$, and
- 2. $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

For the first containment, let $x \in \overline{A} \cup \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$. Thus every neighborhood of x intersects A, or every neighborhood of x intersects B. Since $A \subset A \cup B$ and $B \subset A \cup B$, we conclude that every neighborhood of x intersects $A \cup B$. Thus $x \in \overline{A \cup B}$.

For the second containment, it is convenient to proceed by contradiction. Assume that $x \in \overline{A \cup B}$, but $x \notin \overline{A} \cup \overline{B}$. Then $x \notin \overline{A}$ and $x \notin \overline{B}$. So x has neighborhoods O_A and O_B so that $O_A \cap A = O_B \cap B = \emptyset$. Therefore $O_A \cap O_B$ is a neighborhood of x with the property that $(O_A \cap O_B) \cap (A \cup B) = \emptyset$. This contradicts the assumption that $x \in \overline{A \cup B}$.

5.(d) We establish the containment $int(A) \cup int(B) \subset int(A \cup B)$. Let $x \in int(A) \cup int(B)$. Then $x \in int(A)$ or $x \in int(B)$. So there exists a neighborhood O of x such that $x \in O \subset A$ or $x \in O \subset B$. In either case, O is a neighborhood of x such that $x \in O \subset A \cup B$. Therefore $x \in int(A \cup B)$.

To show that $\operatorname{int}(A) \cup \operatorname{int}(B) \neq \operatorname{int}(A \cup B)$, we could set $A = (-\infty, 0]$ and $B = [0, \infty)$. Then $\operatorname{int}(A) = (-\infty, 0)$ and $\operatorname{int}(B) = (0, \infty)$. So $\operatorname{int}(A) \cup \operatorname{int}(B) = \mathbb{R} - \{0\}$, while $\operatorname{int}(A \cup B) = \operatorname{int}(\mathbb{R}) = \mathbb{R}$.

9. Let \mathcal{T}_X denote the given topology on X and let \mathcal{T}_Y denote the (induced) subspace topology on Y. We show that $\operatorname{int}_X(A) \subset \operatorname{int}_Y(A)$. Let $b \in \operatorname{int}_X(A)$. Then there is a neighborhood $O_X \in \mathcal{T}_X$ of b such that $b \in O_X \subset A$. Since $O_X \subset A \subset Y$, we see that $O_X = O_X \cap Y$. So $O_X \in \mathcal{T}_Y$ by definition of subspace topology on Y. Therefore $b \in \operatorname{int}_Y(A)$. This establishes that $\operatorname{int}_X(A) \subset \operatorname{int}_Y(A)$.

To show that $\operatorname{int}_X(A) \neq \operatorname{int}_Y(A)$, we could set $X = \mathbb{R}$, $Y = (-\infty, 0]$ and A = (-1, 0]. Then $\operatorname{int}_Y(A) = A$, while $\operatorname{int}_X(A) = (-1, 0) \neq A$.

14. In order to show that $f: X \to Y$ is continuous, we prove that the pre-image of each open set of Y is open in X. Let U be an open set in Y. By assumption, the restricted function $f_{\alpha}: O_{\alpha} \to Y$ is continuous for each α . Since $X = \bigcup O_{\alpha}$, we observe that if $x \in X$, then $x \in O_{\alpha}$ for some α .

An element-chasing argument shows that $f^{-1}(U) = \bigcup f_{\alpha}^{-1}(U)$:

$$x \in f^{-1}(U) \iff f(x) \in U \iff f_{\alpha}(x) \in U$$
 for some $\alpha \iff x \in f_{\alpha}^{-1}(U)$ for some α

We can now finish the proof. Since each $f_{\alpha}^{-1}(U)$ is open in O_{α} , and O_{α} is an open set in X, we have that $f_{\alpha}^{-1}(U)$ is an open set in X by Problem 10 (in Chapter 1 of [Ha]).² So $f^{-1}(U)$ is a union of open sets in X; thus $f^{-1}(U)$ is open in X. Since U was arbitrary, we conclude that f is continuous.

Homework 3 Solutions

Problems from Crossley's Book

- 4.1 We proceed by contradiction. Assume that there exists a continuous function $f:[0,1] \to S$. Since U and V are open in S, the sets $f^{-1}(U)$ and $f^{-1}(V)$ are open in [0,1]. Also, $0 \in f^{-1}(U)$ and $1 \in f^{-1}(V)$; so $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty. Since $S = U \cup V$, we have $[0,1] = f^{-1}(S) = f^{-1}(U) \cup f^{-1}(V)$. Thus [0,1] is the union of two disjoint nonempty open subsets, implying that [0,1] is disconnected; this is a contradiction.
- 4.8 Note that this result is trivial for the cases n = 1 and n = 2. We proceed by induction. Let $n \in \mathbb{N}$ with $n \geq 3$ be given.

(*) Assume that for every list of n-1 distinct points x_1, \ldots, x_{n-1} in T, there are open sets U_1, \ldots, U_{n-1} each containing one, and only one, of the points x_1, \ldots, x_{n-1} . We show that the same phenomenon occurs for any list of n distinct points.

Let x_1, \ldots, x_n be distinct points in T. Since T is Hausdorff, for each $i = 1, \ldots, n-1$, there are neighborhoods V'_i and V''_i of x_i and x_n , respectively, such that $V'_i \cap V''_i = \emptyset$. Define $V_i = U_i \cap V'_i$ (U_i defined from the induction hypothesis (\star)) for each $i = 1, \ldots, n-1$; then define

$$V_n = \bigcap_{i=1}^{n-1} V_i'' \, .$$

We claim that V_1, \ldots, V_n are open sets in T such that each V_i contains one, and only one of the points x_1, \ldots, x_n . By definition of our sets V_1, \ldots, V_n , the following is true for each $i = 1, \ldots, n - 1$:

²Problem 10 (in Chapter 1 of [Ha]) was done in class, so it may be assumed for this problem.

- $-V_i$ is an intersection of open sets U_i and V'_i , so V_i is open.
- $-V_n$ is the finite intersection of open sets, so V_n is open.
- $-x_i \in V_i$, and $x_n \in V_n$.
- $-x_i \notin V_n$, and $x_n \notin V_i$.
- $-x_j \notin U_i$ for any $j \in \{1, \ldots, n-1\} \{i\}$; hence $x_j \notin V_i$ for any such j.

Therefore, for each $i \in \{1, ..., n\}$, we have $x_i \in V_i$, V_i is open, and $x_j \notin V_j$ whenever $j \neq i$. This shows that each V_i contains one, and only one of the points $x_1, ..., x_n$.

4.10 Let L denote the real line with a double point at 0 (see page 52). We consider L as $\mathbb{R} \cup \{0'\}$. Then we may describe the (proposed) topology \mathcal{T}_L of L as follows. Consider the function $p: L \to \mathbb{R}$ defined by p(0') = 0 and p(t) = t for $t \neq 0'$; then $U \in \mathcal{T}_L$ if and only if $p(U) \in \mathcal{T}$. We now verify the four axioms for \mathcal{T}_L to be a topology.

 $\emptyset \in \mathcal{T}_L$ because $p(\emptyset) = \emptyset \in \mathcal{T}$.

 $L \in \mathcal{T}_L$ because $p(L) = \mathbb{R} \in \mathcal{T}$.

As for arbitrary unions: Let $\{O_{\alpha}\} \subset \mathcal{T}_{L}$ be a collection of elements of \mathcal{T}_{L} . Set $O = \bigcup O_{\alpha}$. We show that $O \in \mathcal{T}_{L}$. Well, $p(O) = p(\bigcup O_{\alpha}) = \bigcup p(O_{\alpha})$ from set theory. Since $p(O_{\alpha}) \in \mathcal{T}$ and \mathcal{T} is a topology on \mathbb{R} , $p(O) = \bigcup p(O_{\alpha}) \in \mathcal{T}$. Thus $O \in \mathcal{T}_{L}$.

As for finite intersections: The following lemma will be useful.

Lemma. For any two subsets $A, B \subset L$, we have

 $p(A \cap B) = p(A) \cap p(B)$ or $p(A \cap B) = (p(A) \cap p(B)) - \{0\}$.

Proof of Lemma. First we show that $(p(A) \cap p(B)) - \{0\} \subset p(A \cap B)$. Let $t \in (p(A) \cap p(B)) - \{0\}$. Thus $t \in p(A) \cap p(B)$, $t \in \mathbb{R} - \{0\}$ and p(t) = t. The conditions $t \in p(A) \cap p(B)$ and p(t) = t imply that $t \in A$ and $t \in B$; hence $t \in A \cap B$.³ Since p(t) = t, we conclude that $t \in p(A \cap B)$.

From basic set theory, we always have $p(A \cap B) \subset p(A) \cap p(B)$.

³We are not saying that p(A) = A or p(B) = B. We are concerned only with t.

There are now two cases: either $0 \notin p(A \cap B)$ or $0 \in p(A \cap B)$. If $0 \notin p(A \cap B)$, then $(p(A) \cap p(B)) - \{0\} = p(A \cap B) - \{0\} = p(A \cap B)$. If $0 \in p(A \cap B)$, then $\{0\} \cup ((p(A) \cap p(B)) - \{0\}) \subset p(A \cap B)$; therefore $p(A) \cap p(B) = p(A \cap B)$. \Box

To finish the problem, we let $O_1, O_2 \in \mathcal{T}_L$. By the above lemma, we have $p(O_1 \cap O_2) = p(O_1) \cap p(O_2)$ or $p(O_1 \cap O_2) = (p(O_1) \cap p(O_2)) - \{0\} = p(O_1) \cap p(O_2) \cap (\mathbb{R} - \{0\})$. Since $p(O_1), p(O_2), \mathbb{R} - \{0\} \in \mathcal{T}$, we see that $p(O_1 \cap O_2)$ is an intersection of elements of \mathcal{T} . Thus $p(O_1 \cap O_2) \in \mathcal{T}$.

Problems from Hatcher's Notes

For Problem 15, let \mathcal{T} denote the usual topology on \mathbb{R} , and let \mathcal{T}_h denote the half-open interval topology on \mathbb{R} .

15(a) Let $A \subset \mathbb{R}$. We will prove that the following are equivalent.

- (i) $x \in \overline{A}$ (with respect to \mathcal{T}_h).
- (ii) There is a sequence $\{x_n\} \subset A$ such that $x_n \geq x$ for every $n \in \mathbb{N}$, and $\lim_{n\to\infty} |x_n x| = 0.$

First we show that (i) \Rightarrow (ii). Let $x \in \overline{A}$ (with respect to \mathcal{T}_h). Then for each $n \in \mathbb{N}$, there exists $x_n \in [x, x + 1/n) \cap A$; note that $x_n \ge x$. Thus $0 \le |x_n - x| \le 1/n$ for all $x_n \in A$. By the "Squeeze Law"⁴ (from Calculus), we conclude that $\lim_{n\to\infty} |x_n - x| = 0$, where $x_n \ge x$ and $x_n \in A$ for every $n \in \mathbb{N}$. Therefore (ii) holds.

We now show that (ii) \Rightarrow (i). Suppose that $x \in \mathbb{R}$ and (ii) holds. So there is a sequence $\{x_n\} \subset A$ such that $x_n \geq x$ for every $n \in \mathbb{N}$, and $\lim_{n\to\infty} |x_n-x| = 0$. Let U be a neighborhood of x; we will show that $U \cap A \neq \emptyset$. Since U is a neighborhood of x, there exists a basis element $[a, b) \in \mathcal{T}_h$ with $x \in [a, b) \subset U$. Since $x \neq b$, there is a $k \in \mathbb{N}$ such that $[x, x + 1/k) \subset [a, b]$. Since $\lim_{n\to\infty} |x_n - x| = 0$ where $x_n \geq x$ for all $n \in \mathbb{N}$, there is some $N \in \mathbb{N}$ for which $x_N \in [x, x + 1/k)$. So $x_N \in U \cap A$. Since U was an arbitrary neighborhood of x, we conclude that $x \in \overline{A}$ (with respect to \mathcal{T}_h). Therefore (i) holds.

15(b) Here, we let \mathbb{R}_h denote the real line with the half-open interval topology. We will show that the following are equivalent

⁴also known as the "Sandwich Law"

- (i) $f : \mathbb{R}_h \to \mathbb{R}$ is continuous.
- (ii) $\lim_{\epsilon \to 0^+} f(x+\epsilon) = f(x)$ (i.e. f is continuous on the right) for every $x \in \mathbb{R}_h$.

First, we show that (i) \Rightarrow (ii). Let $x \in \mathbb{R}_h$ be fixed. Let $\epsilon' > 0$ be given. We want to show that there exists a D > 0, so that $|f(x + \epsilon) - f(x)| < \epsilon'$ for every $0 < \epsilon < D$; this will establish (ii). By (i), the pre-image of the open set $(f(x) - \epsilon', f(x) + \epsilon') \in \mathcal{T}$ is open in \mathcal{T}_h . So there is a basis element $[a, b) \in \mathcal{T}_h$ such that $x \in [a, b) \subset f^{-1}(f(x) - \epsilon', f(x) + \epsilon')$. Set D = b - x. Then [x, x + D) = $[x, b) \subset [a, b) \subset f^{-1}(f(x) - \epsilon', f(x) + \epsilon')$. Note that for every $0 < \epsilon < D$, we have $x + \epsilon \in [x, x + D) = [x, b)$; it is now clear that $|f(x + \epsilon) - f(x)| < \epsilon'$ for every $0 < \epsilon < D$. So (ii) holds.

We now show that (ii) \Rightarrow (i). Suppose that (ii) holds for each $x \in \mathbb{R}_h$. Let $U \in \mathcal{T}$; we will show that $f^{-1}(U) \in \mathcal{T}_h$. We may as well assume that $f^{-1}(U) \neq \emptyset$. For each $x \in f^{-1}(U)$, consider f(x). Since $U \in \mathcal{T}$, there exists $\epsilon' > 0$ such that $(f(x) - \epsilon', f(x) + \epsilon') \subset U$. By (ii), there exists a D > 0, so that $|f(x+\epsilon) - f(x)| < \epsilon'$ for every $0 < \epsilon < D$; in other words, $[x, x+D) \subset f^{-1}(f(x) - \epsilon', f(x) + \epsilon') \subset f^{-1}(U)$. Set $N_x = [x, x + D/2)$. Then $N_x \subset f^{-1}(U)$ and $N_x \in \mathcal{T}_h$. We define N_x for every $x \in \mathbb{R}_h$ in this way. Therefore

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} N_x$$

is a union of elements of \mathcal{T}_h . Thus $f^{-1}(U) \in \mathcal{T}_h$. So (i) holds.

Homework 4 Solutions

Problems from Crossley's Book

5.1 We construct a homeomorphism $f : [1,2) \to (-1,0]$. Construct the line in \mathbb{R}^2 passing through the points (1,0) and (2,-1); this will contain the graph of f(x). We calculate an equation for this line as y = -x+1. So define f(x) = -x+1. This clearly defines a continuous function; the only thing to check is that $f([1,2)) \subset$ (-1,0]. Indeed, basic algebra shows that $1 \leq x < 2$ implies $-1 < -x+1 \leq 0$. Solving the equation y = -x+1 for x produces the inverse function $g : (-1,0] \to$ [1,2) defined by g(y) = 1 - y. It is straightforward to see that g is continuous, $(g \circ f)(x) = x$ for all $x \in [1,2)$, and $(f \circ g)(y) = y$ for all $y \in (-1,0]$. This shows that f is a homeomorphism. Therefore, the intervals [1,2) and (-1,0] are homeomorphic.

5.5 For stereographic projection of \mathbb{S}^1 : Consider \mathbb{R}^2 as $\{(x_1, x_2) : x_1, x_2 \in \mathbb{R}\}$. Let (x, y) be a point in $\mathbb{S}^1 - \{(0, 1)\}$. An equation for the line passing through (0, 1) and (x, y) is

$$x_2 - 1 = \left(\frac{y - 1}{x}\right) x_1 \; .$$

The intersection point of this line with the projection line $\{(x_1, -1) : x_1 \in \mathbb{R}\}$ is obtained by solving

$$-1 - 1 = \left(\frac{y - 1}{x}\right) x_1$$

for x_1 ; hence (2x/(1-y), -1) is the intersection point. Therefore, stereographic projection $f : \mathbb{S}^1 - \{(0,1)\} \to \mathbb{R}$ (as in Example 5.7) is given by the formula f(x,y) = 2x/(1-y).

For stereographic projection of \mathbb{S}^2 : Consider \mathbb{R}^3 as $\{(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R}\}$. Let (x, y, z) be a point in $\mathbb{S}^2 - \{(0, 0, 1)\}$. The straight line containing (0, 0, 1) and (x, y, z) can be parametrized by

$$\boldsymbol{r}: \mathbb{R} \to \mathbb{R}^3$$
, $\boldsymbol{r}(t) = (1-t)(0,0,1) + t(x,y,z)$.

Associated parametric equations for this line are

$$x_1 = tx$$
, $x_2 = ty$, $x_3 = (1 - t) + tz$.

To find the intersection of this line with the projection plane $\{(x_1, x_2, -1) : x_1, x_2 \in \mathbb{R}\}$, we solve $x_3 = -1$ for t, then use this t-value to find the intersection point. We see that $x_3 = -1$ has solution t = 2/(1-z). So the intersection point is (2x/(1-z), 2y/(1-z), -1). Therefore, stereographic projection $f : \mathbb{S}^2 - \{(0,0,1)\} \to \mathbb{R}^2$ (as in Example 5.7) is given by the formula f(x, y, z) = (2x/(1-z), 2y/(1-z)).

Problems from Hatcher's Notes

- 3. Let X be the real-line with the finite complement topology. We show that X is compact. Let $\{O_{\alpha}\}$ be an open covering of X; we find a finite subcovering. Let O_{α_0} be a nonempty element of the covering. Then $O_{\alpha_0} = X - \{x_1, \ldots, x_n\}$, where $x_1, \ldots, x_n \in X$. Since $\{O_{\alpha}\}$ is a covering of X, there exists elements $O_{\alpha_1}, \ldots, O_{\alpha_n}$ of the covering such that $x_i \in O_{\alpha_i}$ for each $i = 1, \ldots, n$. It is now clear that $\{O_{\alpha_0}, O_{\alpha_1}, \ldots, O_{\alpha_n}\}$ is a finite subcovering of $\{O_{\alpha}\}$. It follows that X is compact.
- 5. Let $x_1, x_2 \in X$ be distinct points; we show that there are disjoint neighborhoods of x_1 and x_2 , respectively, in X. Consider $f(x_1), f(x_2) \in Y$. Since f is injective, the values $f(x_1)$ and $f(x_2)$ are distinct. Since Y is Hausdorff, there are disjoint neighborhoods V_1 and V_2 of $f(x_1)$ and $f(x_2)$, respectively, in Y. Since f is continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are neighborhoods of x_1 and x_2 , respectively, in X. Furthermore, by definition of pre-image and the fact that $V_1 \cap V_2 = \emptyset$, it is clear that $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. This establishes that X is Hausdorff.
- 6. We consider $A, B, A \cup B$ and $A \cap B$ to be subspaces of X. We also use that fact that the subspace topology that $A \cap B$ inherits from $A \cup B$ is the same topology that $A \cap B$ inherits from X.

First we show that $A \cup B$ is compact. Let $\{O_{\alpha}\}$ be an open covering of $A \cup B$. Then $\{O_{\alpha} \cap A\}$ (resp. $\{O_{\beta} \cap B\}$) is an open covering of A (resp. B). By compactness of A (resp. B), there exists a subcovering $\{O_{\alpha_1} \cap A, \ldots, O_{\alpha_m} \cap A\}$ (resp. $\{O_{\beta_1} \cap B, \ldots, O_{\beta_n} \cap B\}$) of A (resp. B). It follows that

$$\{O_{\alpha_1},\ldots,O_{\alpha_m},O_{\beta_1},\ldots,O_{\beta_n}\}$$

forms a subcovering of $\{O_{\alpha}\}$ for $A \cup B$.

Now assume that X is a Hausdorff space, so A and B are Hausdorff subspaces; we show that $A \cap B$ is compact. Since A and B are compact subspaces of the Hausdorff space X, we conclude that A and B are closed in X.⁵ Thus the finite intersection $A \cap B$ is closed in X; hence $A \cap B$ is closed in A.⁶ Since $A \cap B$ is a closed subspace of the compact space A, we conclude that $A \cap B$ is a compact subspace of A.⁷ Since the subspace topology that $A \cap B$ inherits from A is the

⁵This follows from the proposition on page 35 of Hatcher's notes.

⁶This follows from the lemma on page 11 of Hatcher's notes.

⁷This follows from a proposition on page 32 of Hatcher's notes.

same topology that $A \cap B$ inherits from X; it follows that $A \cap B$ is a compact subspace of X.

Homework 5 Solutions

Problems from Crossley's Book

5.9 Suppose that S and T are Hausdorff spaces; we show that the product $S \times T$ is a Hausdorff space. Let $(s_1, t_1), (s_2, t_2) \in S \times T$ be distinct points. Then $s_1 \neq s_2$ or $t_1 \neq t_2$. Let's assume that $s_1 \neq s_2$; the proof under the assumption $t_1 \neq t_2$ is similar. Since $s_1 \neq s_2$ and S is Hausdorff, there exists disjoint neighborhoods $U_1 \subset S$ and $U_2 \subset S$ of s_1 and s_2 respectively. Set $V_1 = U_1 \times T$ and $V_2 = U_2 \times T$. Then V_1 and V_2 are disjoint neighborhoods of (s_1, t_1) and (s_2, t_2) respectively.

Let S and T be spaces, and let $S \times T$ be the product space. Suppose that $S \times T$ is *connected*; we show that S and T are both *connected*:

<u>Solution 1:</u> Let $p_S : S \times T \to S$ and $p_T : S \times T \to T$ be the associated projection functions; in class it was established that these functions are continuous and surjective. Then S is the image of a connected space under the continuous function; therefore, S is connected. Similarly, we can prove that T is connected.

Solution 2: We proceed by contradiction. Suppose that $S = A \cup B$ were a separation of S. Then A and B are disjoint nonempty open sets in S. Consequently, $A \times T$ and $B \times T$ are disjoint nonempty open sets in $S \times T$: For any $a \in A$ and $t \in T$, we have $(a, t) \in A \times T$; so $A \times T \neq \emptyset$. For any $b \in B$ and $t \in T$, we have $(b, t) \in B \times T$; so $B \times T \neq \emptyset$. The sets $A \times T$ and $B \times T$ are basis elements for the product topology on $S \times T$, so they are open. Lastly, $(A \times T) \cap (B \times T) = (A \cap B) \times T = \emptyset \times T = \emptyset$; hence $A \times T$ and $B \times T$ are disjoint. Since $S = A \cup B$, it is straightforward to see that $S \times T = (A \times T) \cup (B \times T)$. Therefore $S \times T = (A \times T) \cup (B \times T)$ is a separation of $S \times T$, a contradiction to the assumption that $S \times T$ is connnected. Similarly, we can prove that T is connected.

Let S and T be spaces, and let $S \times T$ be the product space. Suppose that $S \times T$ is *compact*; we show that S and T are both *compact*.

Solution 1: Let $p_S : S \times T \to S$ and $p_T : S \times T \to T$ be the associated projection functions; in class it was established that these functions are continuous and surjective. Then S is the image of a compact space under the continuous function; therefore, S is compact. Similarly, we can prove that T is compact.

Solution 2: Let $\{O_{\alpha}\}$ be an open covering of S; we show that there is a finite subcovering. Since each O_{α} is open in S, the subset $O_{\alpha} \times T$ is open in $S \times T$. It follows that $\{O_{\alpha} \times T\}$ is an open covering of $S \times T$. By compactness of $S \times T$, there is a finite subcovering $\{O_{\alpha_1} \times T, \ldots, O_{\alpha_n} \times T\}$ of $S \times T$. Consequently, the collection $\{O_{\alpha_1}, \ldots, O_{\alpha_n}\}$ forms a subcovering of S. Therefore S is compact. Similarly, we can prove that T is compact.

Problems from Hatcher's Notes

7. Let $A \subset X$ and $B \subset Y$ be subspaces. We show that $\overline{A \times B} = \overline{A} \times \overline{B}$ and $\operatorname{int}(A \times B) = \operatorname{int}(A) \times \operatorname{int}(B)$. The equality $\overline{A \times B} = \overline{A} \times \overline{B}$ follows from

$$(x, y) \in \overline{A \times B} \iff$$
 every basis-element neighborhood $U \times V$ of (x, y) intersects $A \times B$
 \iff every neighborhood U of x intersects A , and
every neighborhood V of y intersects B
 $\iff x \in \overline{A}$ and $y \in \overline{B}$
 $\iff (x, y) \in \overline{A} \times \overline{B}$.

The equality $int(A \times B) = int(A) \times int(B)$ follows from

$$(x, y) \in \operatorname{int}(A \times B) \iff$$
 there is a basis-element neighborhood $U \times V \subset A \times B$ of (x, y)
 \iff there is a neighborhood U of x contained in A , and
there is a neighborhood V of y contained in B
 $\iff x \in \operatorname{int}(A)$ and $y \in \operatorname{int}(B)$
 $\iff (x, y) \in \operatorname{int}(A) \times \operatorname{int}(B)$.

14. To show that the function $d: X \times X \to \mathbb{R}$ is continuous, we show that $d^{-1}(\alpha, \beta)$ is open for every basis element $(\alpha, \beta) \subset \mathbb{R}$. So let (α, β) be an open interval in \mathbb{R} . We may as well assume that $d^{-1}(\alpha, \beta) \neq \emptyset$; so $\beta > 0$. Now let $(x, x') \in d^{-1}(\alpha, \beta)$; we show that (x, x') is an interior point. It will be convenient to set a = d(x, x'). Since $\alpha < a < \beta$, there exists a number r > 0 for which $\alpha < a - 2r < a < a + 2r < \beta$. Define $V = B_r(x)$ and $V' = B_r(x')$; then $V \times V'$ is a neighborhood of (x, x') in $X \times X$. We show that $V \times V' \subset d^{-1}(\alpha, \beta)$ by an element-chasing argument. Let $(y, y') \in V \times V'$; we will show that $\alpha < d(y, y') < \beta$.

To see that $d(y, y') < \beta$, we use the triangle inequality:

$$d(y, y') \leq d(y, x) + d(x, y')$$

$$\leq d(y, x) + d(x, x') + d(x', y')$$

$$< r + a + r$$

$$= a + 2r$$

$$< \beta$$
.

We similarly show that $\alpha < d(y, y')$:

$$a = d(x, x') \le d(x, y) + d(y, x')$$

$$\le d(x, y) + d(y, y') + d(y', x')$$

$$< r + d(y, y') + r$$

$$= d(y, y') + 2r .$$

Therefore a < d(y, y')+2r. Subtracting 2r from both sides of this inequality yields a - 2r < d(y, y'); hence $\alpha < d(y, y')$. This establishes that $V \times V' \subset d^{-1}(\alpha, \beta)$. So (x, x') is an interior point of $d^{-1}(\alpha, \beta)$. Since (x, x') was an arbitrary point of $d^{-1}(\alpha, \beta)$, we conclude that $d^{-1}(\alpha, \beta)$ is open in $X \times X$. Therefore, $d : X \times X \to \mathbb{R}$ is a continuous function.