ORDER INDEPENDENCE IN ASYNCHRONOUS CELLULAR AUTOMATA
M. MACAULEY J. MCCAMMOND H.S. MORTVEIT

ABSTRACT. A sequential dynamical systeonr SDS, consists of an undirected graph a vertex-
indexed list of local functiongy, and a wordv over the vertex set, containing each vertex at least
once, that describes the order in which these local functions are to be applied. In this article
we investigate the special case whéfds a circular graph withn vertices and all of the local
functions are identical. Th256 possible local functions are known #lfram rulesand the re-
sulting sequential dynamical systems are cdilaite asynchronous elementary cellular automata

or ACAs, since they resemble classical elementary cellular automata, but with the important dis-
tinction that the vertex functions are applied sequentially rather than in paralléhACinis said

to bew-independenitf the set of periodic states does not depend on the choige afid our main

result is that for alln > 3 exactly104 of the 256 Wolfram rules give rise to aw-independent

ACA. In 2005 Hansson, Mortveit and Reidys classifieditheymmetric Wolfram rules with this
property. In addition to reproving and extending this earlier result, our proafsinflependence

also provide significant insight into the dynamics of these systems.

Our main result, as recorded in Theor@r8, is a complete classification of the Wolfram rules
that for alln > 3 lead to anwv-independent finite asynchronous elementary cellular automaton,
or ACA. The structure of the article is relatively straightforward. The first two sections briefly
describe how a\CA can be viewed as either a special type of sequential dynamical system
or as a modified version of a classical elementary cellular automaton. These two sections also
contain the background definitions and notations needed to carefully state our main result. Next,
we introduce several new notations for Wolfram rules in order to make certain patterns easier to
discern, and we significantly reduce the number of cases we need to consider by invoking the
notion of dynamical equivalence. Sectidghgnd6 contain the heart of the proof. The former
covers four large classes of rules whose members-dneependent for similar reasons, and the
latter finishes off three pairs of unusual cases that exhibit more intricate behavior requiring more
delicate proofs. The final section contains remarks about directions for future research.

1. SEQUENTIAL DYNAMICAL SYSTEMS

Cellular automata, o€CAs, are discrete dynamical systems that have been thoroughly studied
by both professional and amateur mathematictafibey are defined over regular grids of cells
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IStanislaw Ulam and John von Neumann were the first to study such systems, which they did while working at
Los Alamos National Laboratory in the 194®.[ The German computer scientist Konrad Zuse proposed in 1969
that the universe is essentially one big cellular automat&h [In the 1970s, John Conway invented the Game of
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and each cell can take on one of a finite number of states. In addition, each cell inadade
rule that takes its own state and the states of its neighbors as input, and at each discrete time step,
the rules are applied and all vertex states are simultaneously updated.

In the late 1990s, a group of scientists at Los Alamos invented a new type of discrete dy-
namical system that they callsgquential dynamical systepm SDSs. In anSDS the regular
grids used to define cellular automata are replaced by arbitrary undirected graphs, and the lo-
cal functions are applied sequentially rather than in parallel. Their initial motivation was to
develop a mathematical foundation for the analysis, simulation and implementation of various
socio-technological systems, [2, 3, 4].

An SDS has three components: an undirected grapfa list of local functionsgy, and an
update ordew. Start with a simple undirected graphwith n vertices, label the vertices froin
to n, and recall that theeighborsof a vertex are those vertices connected to it by an edge. If
is a finite field and every vertex is assigned a value figrthen a global state of the system is
described by an-tupley whosei'" coordinate indicates the current state of the veit&he set
of all possible states is the vector sp&te

Definition 1.1 (Local functions) A function F': F" — F" is calledY-local at: if (1) for each
y € ", F(y) only alters the'® coordinate ofy and (2) the new value of th&" coordinate only
depends on the coordinatesyo€orresponding té and its neighbors if". Other names for such
a function includdocal functionandupdate rule We use§y to denote a list of local functions
that includes one for each vertex 6t More preciselygy = (F1, Fy, ..., F,) whereF} is a
function that isY -local at;.

It is sometimes convenient to convert a local functiointo another function with a severely
restricted domain and range.

Definition 1.2 (Restricted local functions)if i is a vertex withk neighbors inY’, then corre-
sponding to each functiof that isY -local ati, we define a functiorf : F**! — F where the
domain is restricted to the coordinates correspondingtal its neighbors, and the output is the
new valueF’ would assign to thé'" coordinate under these conditions. It should be clearfhat

and f contain the same information but packaged in different ways. Each determines the other
and both have their uses. Functions sucli'asan be readily composed, but functions suclf as

are easier to describe explicitly since irrelevant and redundant information has been eliminated.

The local functions that are easiest to describe are those with extra symmetries.

Definition 1.3 (Symmetric and quasi-symmetric ruletet: be a vertex int” with £ neighbors,

let F: F» — F" be aY-local function ati and letf: F¥*! — F be its restricted form. If the
output of f only depends on the multiset of inputs and not their order, in other words, if the
states ofi and its neighbors can be arbitrarily permuted without changing the outpiyttbén

f (and F) are calledsymmetridocal functions. If they satisfy the weaker condition that at least
the states of the neighborso€an be arbitrarily permuted without changing the output, then

Life, a two-dimensionaCA, that was later popularized by Martin Gardnglr Beginning in 1983, Stephen Wolfram
published a series of papers devoted to developing a thedDAsfand their role in scienc&[10, 11, 12]. This is
also a central theme in WolframI280-page bookA New Kind of Scien¢gublished in 2002.
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and f arequasi-symmetricA list of local functionsgy is symmetric or quasi-symmetric when
every function in the list has this property.

The last component of @DS is an update order.

Definition 1.4 (Update orders)An update ordeww is a finite sequence of numbers chosen from
the set{1,...,n} such that every numbdr < i < n occurs at least once. If every number

1 < i < n occurs exactly once, then the update ordesingple Let Iy denote the collection

of all update orders and I, denote the subset of simple update orders. The subscript
indicates that we are thinking of the numbers in these sequences as vertices in th& graph
When considering an arbitrary update order, we tend to use the notationiw,,ws, . .., w,)

with m = |w| (andm > n, of course), but when we restrict our attention to simple update orders,
we switch to the notation = (71, 7o, ..., 7).

Definition 1.5 (Sequential dynamical system# sequential dynamical systemr SDS, is a
triple (Y, §y,w) consisting of an undirected graph, a list local functionsg,, and an up-
date orderw € Wy. If wis the sequencéu;,ws,...,w,), then we construct th8DS map
[§y,w]: F* — F" as the compositiof§y,w| := F,,, o--- o F,,.

With the usual abuse of notation, we sometimes le&B& map|§y, w] stand in for the entire
SDS. The goal is to study the behavior of the mdp , w] under iteration. In this article we focus
on the set of states ifi" that are periodic and we u&er|§y,w] C F" to denote this collection
of periodic states. The set of periodic states is of interest both because it is the codomain of high
iterates of theSDS map and the largest subset of states that are permuted by the map.

Definition 1.6 (w-independence)A list of Y-local functionsgy is called w-independenif
Per[§y,w] = Per[Fy,w'] for all update orders),w’ € Wy andn-independentf Per[§y, 7] =
Per[§y, 7] for all simple update orders, 7’ € Sy.

Everyw-independengy is trivially 7-independent. More surprisingly, Reidys has shown that
these two conditions are, in fact, equivalent.

Theorem 1.7([8]). A list §y of Y-local functions isu-independent iff it ist-independent.

Even thoughu-independence is too strong to expect generically, there are nonetheless many
interesting classes &DSs that have this property, including two classes whermedependence
is relatively easy to establish.

Proposition 1.8. If for every simple update order € Sy, every state irPer[Fy, 7] is fixed by
the SDS map[§y, 7|, thenFy is r-independent and thusindependent.

Proof. If y is fixed by[Fy, 7], theny is fixed by each¥; in §y (the simplicity of = means that
were F; to change thé'" coordinate, there would not be an opportunity for it to change back).
Being fixed by eaclf;, y is also fixed by[§y,w] for all w € Wy, which includes all ofSy.
Since this argument is reversible, t8®S maps with simple update orders share a common set
of fixed states. If, as hypothesized, these are the only periodic states for these mafs, ithen
m-independent, and by Theorehv, w-independent. O

In our second example;-independence is essentially immediate.



4 M. MACAULEY J. MCCAMMOND H.S. MORTVEIT

Proposition 1.9 (Bijective functions) If every local functionF; in §y is a bijection, then for
every update order € Wy, Per[§y,w] = F". As a consequeng®y is w-independent.

Proof. Since everyF; is a bijection, so is th&DS map|[Fy, w| and a sufficiently high iterate is
the identity permutation. O

This last result highlights the fact thatindependence focuses on sets rather than cycles, since
w-independenSDSs with different update orders quite often organize their common periodic
states into different cycle configurations. In fact, the restrictions-ofdependenSDS maps
with different update orders to their common periodic states can be used to construct a group
encoding the possible dynamics over this $gt [

Collections ofw-independen8DSs also form a natural starting point for the study of stochas-
tic sequential dynamical systems. Stochastic finite dynamical systems are often studied through
Markov chains over their state space but in general this leads to Markov chains with exponen-
tially many states as measured by the number of cells or vertices.-FafependenSDSs one
is typically able to reduce the number of states in such a Markov chain significantly, at least when
focusing on their periodic behavior.

2. ASYNCHRONOUSCELLULAR AUTOMATA

Some of the simplest (classical) cellular automata are the one-dimenslésaknown as
elementary cellular automatdn an elementarfCA, every vertex has precisely two neighbors,
the only possible vertex states drer 1, and all local functions are identically defined. Since
every vertex has two neighbors, the underlying graph is either a line or a circle and the restricted
form of its common local function is a mafy F* — F whereF = F, = {0, 1} is the field with
two elements. There ag = 256 such functions, known a#/olfram rules and thus256 types
of elementary cellular automata. Even in such a restrictive situation there are many interesting
dynamical effects to be observed. The focus here is on the sequential dynamical systems that
correspond to these classical elementary cellular automata.

Let Y = Circ, denote a circular graph with vertices labeled consecutively frointo n,
and to avoid trivialities assume > 3. (The sequential nature of the update rules irfSB5
makes infinite graphs such as lines unsuitable in this context.) Since these are the only graphs
considered in the remainder of the article, we replace notations suéh as Sy with 1W,, and
S,, etc. InCirc,, we view the vertex labels as residue classes m@w that there is an edge
connecting to i + 1 for everyi.

Definition 2.1 (Wolfram rules) Let F;: F* — F" be aCirc,-local function at and letf;: F3 —

F be its restricted form. Since the neighborsi @ire: — 1 and: + 1, it is standard to list these
coordinates in ascending orderfit. Thus, a statg € F" corresponds to a tripl@y; 1, i, ¥i+1)

in the domain off;. Call this alocal state configuratiorand keep in mind that all subscripts
are viewed moch. In order to completely specify the functidi it is sufficient to list how the
i*h coordinate is updated for each of th@ossible local state configurations. More specifically,
let (y;—1, s, yir1) denote a local state configuration and(lgt 1, z;, y;+1) be the local state con-
figuration after applying”;. The local functionF;, henceforth referred to as\dolfram rule is
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completely described by the following table.

Yi—1Yi¥is1 || 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
Zi HCL7‘CL6‘CL5‘CL4‘CL3‘CL2‘CL1‘ao

(2.1)

More concisely, th@® = 256 possible Wolfram rules can be indexed bygadigit binary number
a7agas5a4a30201 09, O by its decimal equivalerit = Z::o a;2'. There is thus on&olfram rule
k for each integef) < k < 255. For each such, k£ andi let Wolfl(k) denote theCirc,-local

function F;: F" — " just defined, Iet/volfl(.’“) denote its restricted fornf;: 3 — F, and let
Wolf*) denote the list of local function8Nolf'™ Wolf® ... Wolf®)). We say that Wolfram
rule k is w-independent whenevebolj*) is w-independent for alh > 3.

For each update order there is anSDS (Circ,,, olf¥), w) that can be thought of as an
elementaryCA, but with the update functions applied asynchronously (and possibly more than
once). For this reason, such systems are caltgehchronous cellular automata ACAs. We
now state our main result.

Theorem 2.2. There are exactly04 Wolfram rules that are-independent. More precisely,
Wolf*) is w-independent for ath > 3iff k € {0, 1, 4,5, 8,9, 12, 13, 28, 29, 32, 40, 51, 54, 57,

60, 64, 65, 68, 69, 70, 71, 72,73, 76, 77,78, 79, 92, 93, 94, 95, 96, 99, 102, 105, 108, 109, 110,
111, 124, 125, 126, 127, 128, 129, 132, 133, 136, 137, 140, 141, 147, 150, 152, 153, 156, 157,
160, 164, 168, 172, 184, 188, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205,
206, 207, 216, 218, 220, 221, 222, 223, 224, 226, 228, 230, 232, 234, 235, 236, 237, 238, 239,
248, 249, 250, 251, 252, 253, 254, 255

The main result of §] states that precisely 11 of the BymmetricWolfram rules arew-
independent ove€irc, for all n > 3. Theorem2.2 significantly extends this result, reproving
it in the process. In addition to identifying a large classveihdependenACAs, the proof also
provides further insight into the dynamics of these systems at both periodic and transient states
and thus serves as a foundation for the future study of their stochastic properties. We conclude
this section with two remarks about the role played by computer investigations of these systems.

Remark 2.3 (Unlisted numbers)The “only if” portion of this theorem was established experi-
mentally. For each < n < 9, for each0 < k < 255, and for each simple update ordee S,

a computer program written by the first and third authors calculated th&g880 [f;’“), w|. For

each of the 152 values éfnot listed above, there were distinct simple update orders that led to
distinct sets of periodic states, leaving the remaining 104 rules as the only ones with the potential
to bew-independent for alh > 3. Moreover, since a counterexample for one value téads

to similar counterexamples for all multiples of thesel04 rules are also the only ones that are
eventuallyw-independent for all sufficiently large valuesraf Because these brute-force calcu-
lations are explicit yet tedious they have been omitted, but the interested reader should feel free
to contact the third author for a copy of the software that performed the calculations.

Remark 2.4 (Computational guidance)fhese early computer-aided investigations also had a
major impact on the “if” portion of the proof. Once the computer results highlighted the 104
rules that werev-independent for small values ef we identified patterns and clusters among
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FIGURE 1. Grid notation for Wolfram rules

the 104 rules, which led to conjectured lemmas, and eventually to proofs that our conjectures
were correct. The computer calculations thus provided crucial data that both prompted ideas and
tempered our search for intermediate results.

3. WOLFRAM RULE NOTATIONS

Patterns among the 104 numbers listed in Theo2ePrare difficult to discern because the
conversion from binary to decimal obscures many structural details. In this section we intro-
duce other ways to describe the Wolfram rules that makes their similarities and differences more
immediately apparent.

Definition 3.1 (Grid notation) For each binary numbér = aragasasazasaiag We arrange its

digits in a grid. The8 local state configurations can be viewed as the vertices3efwbe and

we arrange them according to the conventional projection &tabe into the plane. See the
left-hand side of Figur&. Next, we can place the binary digits bfat these positions as shown

in the center of Figuré. The boxes have been added because the local state configurations come
in pairs. When a local function is applied, the states of the neighbarsua left unchanged,

so that the resulting local state configuration is located in the same box. We call tigsdhe
notationfor k. The grid notation for Wolfram rule 29 = 00011101 is shown on the left-hand side
of Figure2.

Because grid notation is sometimes cumbersome to work with we also define a very doncise
symbol tag for each Wolfram rule that respects the box structure of the grid.

Definition 3.2 (Tags) When we look at the grid notation for a Wolfram rule, in each box we see

a pair of numbersl 1, 00, 10, or 01, and we encode these configurations by the symbdls -,

andx, respectively. In other wordd' = 0" = ,f- = ,and X’ =[0 1]

The symbols are meant to indicate that when the states of the neighbors place us in this box, the
local function updates th&" coordinate by converting it to & converting it to &), leaving it
unchanged, or always changing it. We label the symbols for the four hoxes, p; andp, as

shown on the right-hand side of Figuteand we define théag of k£ to be the stringpspspap;.

The numbering and the order of thgs has been chosen to match the binary representation as
closely as possible, with the hope of easing conversions between binary and tag representations.
The process of converting Wolfram rulé to its tagOx-1 is illustrated in Figure.

Definition 3.3 (Symmetric and asymmetriclhe middle row of the grid contains the positions
where the states of the neighbors are equal and the top and bottom rows contain the positions
where the states of the neighbors are different. We call the middle rosythmetrigoortion of
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FIGURE 2. Converting Wolfram rule 29 = 00011101 into its 1 .

the grid and the top and bottom rows tymmetrigortion. In the tag representation, the begin-
ning and end of a tag describes how the rule responds to a symmetric neighborhood configuration
and the middle of a tag describes how it responds to an asymmetric neighborhood configuration.
With this in mind we callp,p; the symmetric parbf the tagk = pspspop; and we callpzp, its
asymmetric part

Tablel shows thel 04 w-independent Wolfram rules listed in Theor@m arranged according
to the symmetric and asymmetric parts of their tags. The rows list all 16 possibilities for the
symmetric part of the tag while the columns list only 10 of the 16 possibilities for the asymmetric
part since only these 10 occur among the 104 rules. In addition, each row and column label has
a decimal equivalent, listed next to the row and column headings, that addcupntthis format
the benefits of the tag representation should be clear. Far from being distributed haphazardly, the
w-independent rules appear clustered together in large blocks. Tabkeals a lot of structure,
but some patterns remain slightly hidden due to the order in which the rows and columns are
listed. For example, there isdaby-4 block of bijective rules obtained by restricting attention to
the four rows that show up in the last column and the four columns that show up in the last row.

Proposition 3.4 (Bijective rules) Wolfram rules 51, 54, 57, 60, 99, 102, 105, 108, 147, 150,
153, 156, 195, 198, 201 and 204 aréndependent.

Proof. The 16 rules listed have tags where eachs either- or x. These (and only these)
Wolfram rules correspond to bijective local functions and by Propositi@rthe ACAs these
rules define are-independent. O

4. DYNAMICAL EQUIVALENCE

In this section we use the notion of dynamical equivalence to reduce the proof of The@em
to a more manageable size. Two sequential dynamical sy$€@is, w) and(Y, 5, ') defined
over the same graphi are said to belynamically equivalent there is a bijection : F* — F”
between their states such théto [§y,w] = [§},w'] o H. The key fact about dynamically
equivalentSDSs, which is also easy to show, is thAt establishes a bijection between their
periodic states. In particulaf (Per[§y,w]) = Per[§},w’]. Thus, if§ is anw-independent
SDS and for eachv € Wy there exists an’ € Wy such thatY, §y,w) and (Y, §},w’) are
dynamically equivalent usintpe same functio®/, thengy is alsow-independent.

Although there ar@56 Wolfram rules, many give rise to dynamically equival&@As. In
particular, there are three relatively elementary ways to altehk@A to produce another one
that appears different on the surface, but which is easily seen to be dynamically equivalent to the
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D3 - - 0 0 - 1 1 - x X
Do - o - 0 1 - 1 x - X
Pap1 72 64 8 0O 74 88 90 66 24 18
-- 132|204 196 140 132 206 220 222 198 156 150
0- 4 |76 68 12 4 78 92 94 70 28
-0 [128| 200 192 136 128 202 216 218 194 152
1- 1164|236 228 172 164 238 252 254 230 188
-1 133|205 197 141 133 207 221 223 199 157
10 1160|232 224 168 160 234 248 250 226 184
01 | 5|77 69 13 5 79 93 95 71 29
00 | O || 72 64 8 0
x0 | 32 96 40 32
Ox | 1 |73 65 9 1
-Xx 129|201 193 137 129 195 153 147
X- | 36 || 108 110 124 126 102 60 54
x1 | 37 || 109 111 125 127
1x | 161 235 249 251
11 | 165} 237 239 253 255
xx | 33 || 105 99 57 51

TABLE 1. Thel04 w-independent Wolfram rules arranged by the symmetric and
asymmetric parts of their tags.

original. These are obtained by (1) renumbering the vertices in the opposite direction, (2) sys-
tematically switching alls to0Os and0s to1s, or (3) doing both at once. We call these alterations
reflection inversionandreflection-inversiorof the ACA, respectively. The term reflection high-
lights the fact that this alteration makes it appear as though we picked up the circular graph and
flipped it over. We begin by describing the effect renumbering has on individual local functions.

Definition 4.1 (Renumbering) The renumbering of the vertices we have in mind is achieved
by the mapr: Circ, — Circ, that sends vertexto vertexn + 1 — i. For later use we extend
this to a mapr: W,, — W, on update orders by applyingto each entry in the sequence.

More specifically, ifw = (wq,ws, ... ,
on the level of states we define a m&p " — F" that sends sends = (y1, v, - -
, Y2, Y1), and we note thaR is an involution.

(Yns - - -

,Wn), thenr(w)

(r(wy), r(ws), ...

r(wm))-

Finally,
., Yn) tO

Definition 4.2 (Reflected rules)If the vertices ofCirc,, are renumbered, rule/olff.k) is applied,

and then the renumbering is reversed, the net effect is the same as if a different Wolfram rule
were applied to the vertexi). Let ¢ be the number that represents this other Wolfram rule. The
differences betweeh and/ are best seen in grid notation. The renumbering not only changes
the vertex at which the rule seems to be applied, but it also reverses the order in which the
coordinates are listed in the restricted local form. Only the asymmetric local state configurations,
i.e. the top and bottom rows of the grid, are altered by this change so that the gtriddés like
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a reflection of the grid fok across a horizontal line. We cdlkthereflectionof k£ and we define
a maprefl: {0,...,255} — {0,...,255} with refl(k) = ¢. On the level of tags, the only change
is to switch order op, andps, so, for examplé=01-x is the reflection ok=0-1x .

In short, wher? = refl(k), R o Wolf" o R = Wolfffg) and, sincef? is an involution, this can
be rewritten asiz o Wolf{" = Wolf{) o R.

Proposition 4.3. If £ = refl(k), then2olf* is w-independent ifolf") is w-independent.

Proof. The value of was defined so thatoWolf*) = Wolfffg) oR. As aresult, forany € W,
the ACA (Circ,,, Wolf¥), w) is dynamically equivalent to th&CA (Circ,,, Wolf\ r(w)) since

Ro [Wolf", w] = RoWolf*) o-..oWolf") o Wolf*
= Wolf(? 0---0 Wolf%l&) o Wolfgédl) oR

r(wm)

[20(§9 7(w)] o R.

The argument at the beginning of the section now shows thattimelependence oIUo[fﬁf)
implies that of20olf*), but sincel = refl(k) impliesk = refl(¢), the converse also holds. [

Similar results hold for inversions as we now show.

Definition 4.4 (Inverting). Let 1 and0 denote the special statés 1, ..., 1) and(0,0,...,0) in
. Since the functiofi(a) = 1 — a changed to 0 and0 to 1, the map/ : F* — F" sendingy to
1 — y, has this effect on each coordinateyofThe mapl/ is an involution likeR, and from their
definitions it is easy to check that they commute with each other.

Definition 4.5 (Inverted rules) If the states ofirc, are inverted, ruI@VoIfEk) is applied, and then

the inversion is reversed, the net effect is the same as if a different Wolfram rule were applied at
vertexi. Let ¢ be the number that represents this other Wolfram rule. The differences between
k and/¢ are again best seen in grid notation. The pre-inversion of states effects the local state
configurations as though the grid had been rotatd. The second inversion merely changes
every entry so thats become$s and0s becomels. Thus the grid fo¥ can be obtained from

the grid fork by rotating the grid and altering every entry. We daleinversionof £ and define

a mapinv: {0,...,255} — {0,...,255} with inv(k) = ¢. On the level of tags, there are two
changes that take place. Boxgsandp, switch places as do boxgs andps, but in process the
boxes are turned over and the numbers changed. If we look at what this does to the entries in
a box,11 becomeg)0, 00 becomesl 1, while 10 and01 are left unchanged. To formalize this,
define a conjugation map {1,0, —,x} — {1,0, —,x} with¢(1) = 0,¢(0) = 1, ¢(—) = —, and

c(x) = x. Whenk has tag,pspap1, £ has tag:(py)c(p2)c(ps)c(ps), so, for examplel = x0-1 is

the inversion oft = 0-1x .

In short, wher? = inv(k), I o Wolfgk) ol = Wolfgé) and, since is an involution, this can be
rewritten as/ o Wolf*) = Wolf{ o I.

Proposition 4.6. If £ = inv(k), then2olf*) is w-independent if20ol§") is w-independent.
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D3 0 0

p2 || O - p3 || - X X
PaP1 0 8 D2 : 3 X
-- 1321 132 140 PaP1 72 24 18
0- 4 4 12 -- 132|204 156 150
-0 | 128|128 136 X- 36 |108 60 54
00 0 0 8 xx | 33 105 57 51
-1 | 133|133 141 -0 | 128} 200 152
01 5 5 13 10 | 160 232 184
-X | 129| 129 137 0- 4 76 28
0Ox 1 1 9 01 5 77 29
1- 164|164 172 00 0 72
10 | 160 160 168 Ox 1 73
x0 | 32 || 32 40

FIGURE 3. The4l w-independent Wolfram rules up to equivalence, separated
into two tables by their behavior in asymmetric contexts.

Proof. The value off was defined so thdto Wolfgk) = wo|f§f> o I. As in the proof of Proposi-
tion 4.3this implies that for anw € W,,, theACA (Circ,,, Wolf¥) w) is dynamically equivalent

to the ACA (Circ,, Qﬁo[fff),w). The argument at the beginning of the section and the fact that
¢ = inv(k) impliesk = inv(¢), complete the proof as before. O

As an immediate corollary of PropositioAs3and4.6, when? = refl(inv(k)) = inv(refl(k)),
Wolf*) is w-independent ifWolf¥) is w-independent. If we partition th256 Wolfram rules
into equivalence classes of rules related by reflection, inversion or both, then thegedetnct
equivalence classes and thet rules listed in Theorerd.2 are the union ofi1 of them.

Figure 3 displays representatives of theskeclasses in pared down versions of TableWe
used reflection and inversion to elimindtef the 10 columns. Every rule with & in the asym-
metric portion of its tag is the inversion of a rule wittDanstead. In particular, the entries in
the3 columns headedl , 1- and11 are inversions of the entries in the columns heddled0
andO00, respectively. Next, since reflections switghandp; we can also eliminate the columns
headedO , -x as redundant. This leaves theolumns heade@O, O- , -- , x- andxx. Since
the last3 do not contain0s or 1s, further inversions, or inversion-reflections can be used to
identify redundant rows in these columns.

As mentioned above, the rules listed in Figur@ are representatives of the distinct equiv-
alence classes of rules whasdndependence needs to be established in order to prove Theo-
rem2.2. The rows in each table have been arranged to correspond as closely as possible with the
structure of the proof. For example, the first three rows of the table on the right-hand side are the
9 equivalence classes shown todyéndependent by Propositidn.
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FIGURE 4. Four major classes af-independent Wolfram rules.

5. MAJORCLASSES

In this section we prove that four large sets of Wolfram rules.aiedependent. All of the
proofs are similar and, when combined with Propositlo® leave only6 equivalence classes
of Wolfram rules that need to be discussed separately. The main tool we use is the notion of a
potential function.

Definition 5.1 (Potential functions)Let F': X — X be a map whose dynamics we wish to
understand. Apotential function forF" is any mapp: X — R such thap(F(z)) < p(z) for all

x € X. A potential function narrows our search for periodic points since any elemeiith

p(F(z)) < p(z) cannot be periodic: further applications Bfcan never return to its original
potential, hence the name. The only elementX ithat are possibly periodic undér are those
whose potential under never drops at all. If we call the inverse image of a numbék mlevel

set ofp, then to find all periodic points of’, we only need to examine its behavior on each of
these level sets. Finally, it should be clear that when non-decreasing functions are used in the
definition instead of non-increasing ones, the effect is the same.

Definition 5.2 (SDS potential functions) A potential function for arSDS such aqY, §y, w)

is a mapp: F* — R that is a potential function, in the sense defined above, fo6H8 map
[§v,w]. The easiest way to create such a function is to find one that is a potential function for
every local functionF; in §y. Of coursep should be either a non-decreasing potential function
for eachF; or a non-increasing potential function for eakh rather than a mixture of the two,

for the inequalities to work out. Whemhas this stronger property we call ipatential function

for §y since such a is a potential function fofY’, §y,w) for every choice of update order.

Proposition 5.3. Rules 0, 4, 8, 12, 72, 76, 128, 132, 136, 140 and 20Q,arelependent.

Proof. If k£ is one of the numbers listed above, then its grid notation matches the leftmost form
shown in Figured. (Eachx is to be interpreted as eitherfaor a1 so that 16 rules share this
form, the 11 listed in the statement and 5 that are equivalent to the listed rules or to previously
known cases.) Théspecified values mean that local functions never remevé@hus, the map
sendingy € F" to the number ofs it contains is a non-decreasing potential functior2far(f*.
Moreover, the local functiorfﬁ/olfgk) cannot changg without raisingp(y), so all periodic states

are fixed states (for any update order), and by Propositi®ayolf* is w-independent. OJ

For the next potential function, additional definitions are needed.

Definition 5.4 (Blocks). A statey € F” is thought of as a cyclic binarg-bit string with the
indices taken moa, and asubstringof y corresponds to a set of consecutive indices. We refer
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to maximal substrings of alls asO-blocksand maximal substrings of alls as1-blocks If

a block contains only a single number itigolatedand if it contains more than one number
it is non-isolated The statey = 010110, for example contains one isolatéeblock and one
non-isolated)-block of length2 that wraps across the end of the word.

We study how these blocks evolve as the local functions are applied. The decomposition of a
Wolfram rule into its symmetric and asymmetric parts is particularly well adapted to the study
of these evolutions. The asymmetric rules either make no change or shrink a non-igelated
block or0-block from the left or the right, depending on which of thasymmetric rules we are
considering. Similarly, thé symmetric rules either do nothing, they remove an isolated block or
they create an isolated block in the interior of a long block.

Proposition 5.5. Rules 160, 164, 168, 172 and 232 arendependent.

Proof. If £ is one of the numbers listed above, then its grid notation matches the second form
shown in Figuret. The specified values mean that (1) the adgyever removed are the isolated

0s and (2) isolateds are never added. In particular, non-isolated blocksqfersist indefinitely,

they might grow but they never shrink or split, and the isoldat®donce removed, never return.
Thus, the map that sendy to the number of non-isolatdéid iny minus the number of isolated

0s iny is a non-decreasing potential function fmo[fﬁf). As before, the local functiorm\ﬁ/olfgk)
cannot changg without raisingp(y), so all periodic states are fixed states (for any update order),
and by Propositior.8 200(f*) is w-independent. O

Proposition 5.6. Rules 5, 13, 77, 133 and 141 aveindependent.

Proof. If k£ is one of the numbers listed above, then its grid notation matches the third form
shown in Figured. This time the specified values mean that (1) the @slythat are removed
create isolateds, and (2) isolatedls are never removed and they never stop being isolated. Thus
the mapp that sends/ to the number ofis iny plustwicethe number of isolateds iny is a
non-decreasing potential function fﬁﬁo[fﬁf). Once again, the local functiorWoIfEk) cannot
changey without raisingp(y), so all periodic states are fixed states (for any update order), and
by Propositionl.8 2ol§*) is w-independent. O

The argument for the fourth collection is slightly more complicated.
Proposition 5.7. Rules 1, 9, 73, 129 and 137 aveindependent.

Proof. If k£ is one of the numbers listed above, then its grid notation matches the rightmost form
shown in Figured. This time the specified values mean that (1) the @slythat are removed
create isolateds, but (2) isolateds can also be removed. The mafhat sends to the number

of 0s iny plus the number of isolateis iny is a non-decreasing potential function il

but the difficulty is that there are local changes \Aﬁ(NVoIfE’“) (y) = p(y). This is true for the

local changeh00 — 010 and for the local changel0 — 000. All other local changes raise

the potential, but the existence of these two equalities indicates that there might be (and there
are) states that are periodic under the action of SBBD® map[2o [fﬁf),w] without being fixed.
Rather than appeal to a general theorem, we calculate its periodic states explicitly in this case.



ORDER INDEPENDENCE INACAs 13

Fix an update ordex € W, and, for convenience, l€t: F* — F" denote theSDS map
[Wolf®) w]: F* — F™. If a3 = 0 andy contains a substring of the forfi1, thenp(F(y)) >
p(y) andy is not periodic undef'. This is because either (1) the substring remains unaltered
until its central coordinate is updated, at which point it changésandp is raised, or (2) it is
altered ahead of time by switching then the right to & (also raising), or by switching the)
on the left to al (impossible since; = a; = 0). Analogous arguments show thatif = 0 and
y contains the substringl0, or if a; = 0 andy contains the substringl 1, theny is not periodic
underF'. Let P be the subset di” where these situations do not occur. More specifically, if
a3 = 0 remove the states withl 1 substrings, ifag = 0 remove the states withl0 substrings,
and ifa; = 0 remove the states withl 1 substrings. If all three are equal tpthenP = F".

We claim thatP = Per[200l§¥). w], independent of the choice of We have already shown
P C Per[200lf®) w]. Note thatP is invariant undei” (in the sense thaf'(P) c P) since the
allowed local changes are not able to create the forbidden substrings when they do not already
exist. Moreover,F' restricted toP agrees with rule 201 =-x , the rule of this form with
as = ag = a7 = 1, since whenevets, ag Or a; is 0, P has been suitably restricted to make this
fact irrelevant. Finally, for every rule 201 is bijective, thug’ is injective onP, F' permutes the
states inP and a sufficiently high power of is the identity, showing every state inis periodic
independent of our choice af. O

6. EXCEPTIONAL CASES

At this point there are onlg remaining rules whoseg-independence needs to be established
and they come in pairs: 28 and 29, 32 and 40, and 152 and 184. These filat exhibit
more intricate dynamics and the proofs are, of necessity, more delicate. We treat them in order
of difficulty.

Proposition 6.1. Rules 32 and 40 are-independent.

Proof. Let & be 32 or 40, letr = (my,ms,...,m,) € S, be a simple update order, and let
F: F" — F" denote theSDS map [2olf¥) x]: F* — F*. The listed rules share the leftmost
form shown in Figures and it is easy to see thétis the only fixed statel(is not fixed and
as = ag = 0 means the rightmosgtin any 1-block converts t@ when updated). We also clain

is the only periodic state af’. Once this is established, theindependence dIUo[fﬁL’“) follows
immediately from Propositio.8.

The valuesiy = a; = a4 = 0 mean non-isolated-blocks persist indefinitely, they do not
shrink or split. Moreoverg, = ag = 0 means that each non-isolateédblock adds at least orte
on its left-hand side with each application/of In particular, any state # 0 with a non-isolated
0-block eventually becomes the fixed pointThus no sucly is periodic.

The rest of the argument is by contradiction. Supposestlisa periodic point of” other than
0 and consider thé" coordinates iry, F(y) and F(F(y)). We claim that at least one of these
coordinates i$ and at least one of thesels This is because at leastout of the5 local state
configurations that do not involve non-isolatézichange the coordinate (and whegs- 32 all 5
of them make a change). The only way thatloes not change value #(y) is if immediately

prior to the application oWoIfEk), the local state configuration (4 1. Between this application
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FIGURE 5. Three final pairs af-independent Wolfram rules.

of Wolfgk) and the next, the to the left is updated. It either is no longer isolated at this point
(contradicting the periodicity of) or it now becomes a. In the latter case, the application of

Wolfgk) during the second iteration df changes thé'" coordinate froml to 0. Note that we

used the simplicity of the update order to ensure that each coordinate is updated only once during
each pass through. Finally, suppose that= 7; and choose, F(y) or F(F(y)) so the(i+1)
coordinate is &. As soon aSNoIfﬁr’? is applied, there is a non-isolatéeblock, contradicting the

claim thaty # 0 is a periodic point. O

Since it was easy to show that every state is periodic under the bijective Wolfram rule 156 (with
tag-x-- ), we did not examine the evolution of its blocks. We do so now since its behavior is
relevant to our study of théremaining rules.

Example 6.2 (Wolfram rule 156) Because the symmetric part of rule 156-is no isolated
blocks are ever created or destroyed and thus the number of blocks is invariant under iteration.
Moreover, the four valueg, = a; = 0 anda; = a3 = 1 mean that substrings of the forin
are fixed indefinitely, leaving the right end of eveénblock and the left end of everi+block
permanently unchanged. The other type of boundary can and does movessingeand it is
its behavior that we want to examine. et S, be a simple update order and fét F* — "
denote theSDS map [20lf*® 7]: F* — F". So long agy is not0 or 1, there is al-block
followed by a0-block and a corresponding substring of the fopin -- 10---01. (If y only
contains on®-block and ond-block, then the first two digits are the same as the last two digits,
but that is irrelevant here.) As remarked above, the beginning of-tsleck and the end of the
0-block are fixed, but the boundary between them can vary.

Suppose both blocks are non-isolated and consider the central sulistahgositions; and
1 + 1. These are the only positions in the entire substring that can vary and the first one to
be updatedvill change value. Assume tlieis updated first. Thé-block grows, thed-block
shrinks and the boundary shifts one step to the right. As we cycle through the local functions, the
simplicity of = guarantees that the + 2)"¢ coordinate is updated before thet+ 1)s* coordinate
is updated a second time. Thus the boundary shifts one more step to the right. This argument
continues to be applicable until tleblock shrinks to an isolate@ At this point, the0 is still
updated before thé to its left is updated again, but this time th@emains unchanged. When
the1 to its left is updated it changes back t0,ahe 1-block shrinks, thé-block grows and the
boundary shifts to the left. The same argument with left and right reversed shows that now the
0-block continues to grow until thé-block shrinks to an isolatet], at which point the shifting
stops and the boundary starts shifting back in the other direction.

Proposition 6.3. Rules 152 and 184 ate-independent.
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Proof. Let k£ be 152 or 184, letr = (7, m,...,m,) € S, be a simple update order, and let
F: F" — F" denote th&DS map[2olf¥), 7] : F* — F". The listed rules share the second form
shown in Figureb and it is easy to see th@tand1 are the only fixed states (sinag = ag = 0
means the rightmosdt in any 1-block converts td) when updated). We also claihand1 are
the only periodic states df'. Once this is established, theindependence dIBo[fﬁL’“) follows
immediately from Propositiofi.8.

Since isolated blocks are never created, the mapat sendsy to the number of blocks it
contains is a non-increasing potential functionBo!j*). Moreover, since the only differences
between rule 156 and rules 152 and 184 are that rule 152 removes isblaltezks and rule 184
removes both isolatet+blocks and isolated-blocks, the mapF agrees with20ol§{1%% 7] so
long as it is not called upon to update an isolatdalock (or an isolated-block whenk = 184).
The long-term behavior of rule 156, however, as described in Exafpleshows that under
iteration everyy not equal tad or 1 eventually updates such an isolated block, removing it and
decreasing, thus showing that suchyais not periodic. OJ

Finally, the argument for Wolfram rules 28 and 29 is a combination of the difficulties found in
the proofs of Propositions.7and6.3.

Proposition 6.4. Rules 28 and 29 are-independent.

Proof. Let & be 28 or 29, letr = (my,m9,...,m,) € S, be a simple update order, and let
F: F" — F" denote theSDS map[2Wol§¥) x]: F» — F*. The listed rules share the rightmost
form shown in Figures and the values; = 0 anda, = 1 mean that isolated blocks are never
removed. Thus the mapthat sendsy to the number of blocks it contains is a non-decreasing
potential function forﬂno[fﬁl’“). The four values;; = a5 = 0 anday, = a3 = 1 mean that
substrings of the fornd1 persist indefinitely, as in Wolfram rule 156. In fact, so longpais
unchanged, the behavior &f under iteration is indistinguishable from iterations of the map
[Qlio[fg‘r’ﬁ), 7|. Consider a substring of the forfi ---10---01 and suppose that the length of
the 1-block on the left plus the length of tlieblock on the right is at least We claim that any
y containing such a substring is not periodic underif it were, the evolution of this substring
would oscillate as described in Exam@e2 and at the point where th&block shrinks to an
isolated0, the1-block on the left contains the substriigl. Moreover, between the point when
that penultimate) becomes d and the point when it is to switch back, the substriig is
updated, increasing Whenk is 29, a similar increase incan occur when thé-block shrinks
to an isolated and theD-block contains the substrirg@0. In neither case can a state containing
a 1-block followed by aD-block with combined length at least 4 be periodic ungéer

Next, note that whek = 29 both of the special stat@sand1 are not fixed, but that fok =
281 is not fixed, while0 is fixed. LetP be the set of states containing bdghandls that do
not contain al-block followed by a)-block with combined length at least 4, and, whien 28,
include the special stateas well. Because we understand the way that such stateB evolve
under Wolfram rule 156 (Exampk2), we know that at no point in the future does a descendent
of y ever contain a substring of the forim1 or 000. ThusP has been restricted enough to make
the values ofz; anday irrelevant, andF' sendsP into itself. Moreover, sincé” agrees with
(2015159 7] on P, and this map is injectives is injective onP, F' permutes the states idand
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Number of flips 0 1 2 3 4 5 6 7 8

Number ofw-independent rules 1 8 26 | 34 26 4| 4 0 1

Number of rules 1 8 28| 56 70 56| 28 8 1
Percentage 100% 100% 93%61% 37% 7% 14% 0% 100%

TABLE 2. The number of flips and the probability ©findependence.

a sufficiently high power of’ is the identity, showing every state inis periodic, independent
of our choice ofr. Now that we know thaﬁno[fﬁf) Is m-independentw-independent follows
from Theoreml.7. OJ

7. CONCLUDING REMARKS

Now that the proof of Theore.2is complete, we pause to make a few comments about it and
the 104w-independent Wolfram rules it identifies. For each of 8Hecal state configurations,
Wolfram rulek either leaves the central coordinate unchanged or it “flips” its value. The number
of local state configurations that are flipped in this way is strongly correlated with the probability
that a given rule is-independent. See Tahke The numbers in the third row are the binomial
coefficients(f), since they clearly count the number of Wolfram rules with exacfljps. The
key facts illustrated by Tabl@ are that virtually all of the rules with at mog&tflips arew-
independent, the percentage drops off rapidly betvesmd6 flips, andw-independence is very
rare among rules with or more flips. In fact, alb such rules are-independent because they are
bijective. It would interesting to know whether this observation can be quantitatively (or even
gualitatively) extended to a rigorous assertion about more ge8&xas.

Next, there are two aspects of Theor2rdthat we found slightly surprising. First, we did not
initially expect the set of rules that weseindependent for small values afto match exactly
the set of rules that were-independent for all values af > 3. The second surprise was that the
during the course of the proof we found that the Wolfram rules truly are local rules, in the sense
that their set of periodic points tended to have essentially local characterizations.

Finally, although the focus of this article was solely the classification of thesliddependent
Wolfram rules, and not the dynamics of these rules per se, many interesting dynamical properties
arose in the course of the proof. We are currently studying the dynamics and periodic sets for all
256 Wolfram rules in greater detail, as well as examining how the sets of periodic states under
anw-independent Wolfram rule get permuted as the update order is altered. The latter situation
involves an object called thdynamics groupf anw-independenSDSs. We plan on publishing
these further results in a future article that builds on the results described here.
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