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Abstract When Daan Krammer and Stephen Bigelow independently proved that
braid groups are linear, they used the Lawrence–Krammer–Bigelow representation
for generic values of its variables q and t. The t variable is closely connected to the
traditional Garside structure of the braid group and plays a major role in Krammer’s
algebraic proof. The q variable, associated with the dual Garside structure of the
braid group, has received less attention.

In this article we give a geometric interpretation of the q portion of the LKB
representation in terms of an action of the braid group on the space of non-
degenerate euclidean simplices. In our interpretation, braid group elements act
by systematically reshaping (and relabeling) euclidean simplices. The reshapings
associated to the simple elements in the dual Garside structure of the braid group
are of an especially elementary type that we call relabeling and rescaling.

Keywords Braid groups • Dual Garside structures • Euclidean simplices •
Lawrence-Krammer-Bigelow representation • Non-crossing partitions

At the turn of the millenium three papers on the linearity of braid groups appeared in
rapid succession and all three used what is now known as the Lawrence–Krammer–
Bigelow or LKB representation [3, 10, 11]. Its two variables, q and t, are connected
to two different Garside structures on the braid group. The t variable is closely
connected to the traditional Garside structure of the braid group and plays a major
role in Krammer’s algebraic proof [11]. The q variable is associated with the dual
Garside structure and has received less attention. In this article, we introduce an
elegant geometric interpretation of the q variable in the special case where t D
1, q is real, and the matrices of the representation are written with respect to the
original basis used by Krammer in [10]. We call this special case the simplicial
representation because of our first main result.

E.L. Chisholm • J. McCammond (�)
Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
e-mail: eeleyton@math.ucsb.edu; jon.mccammond@math.ucsb.edu

© Springer International Publishing Switzerland 2016
F. Callegaro et al. (eds.), Configuration Spaces, Springer INdAM Series 14,
DOI 10.1007/978-3-319-31580-5_12

291

mailto:eeleyton@math.ucsb.edu
mailto:jon.mccammond@math.ucsb.edu


292 E.L. Chisholm and J. McCammond

Theorem 1 (Braids Reshape Simplices) The simplicial representation of the n-
string braid group preserves the set of

�n
2

�
-tuples of positive reals that represent the

squared edge lengths of a nondegenerate euclidean simplex with n labeled vertices.

Thus braid group elements can be viewed as acting on and systematically
reshaping the space of all nondegenerate euclidean simplices. Moreover, the dual
simple braids in the braid group reshape simplices in an extremely elementary way
that we call relabeling and rescaling. In this language we prove the following result;
for a more precise statement, see Sect. 3.

Theorem 2 (Dual Simple Braids Relabel and Rescale) Under the simplicial
representation of the braid group, each dual simple braid acts by relabeling the
vertices and rescaling specific edges.

The article is structured around the three distinct contexts that play a role in
these results: discs, simplices and matrices. In Sect. 1 convexly punctured discs are
used to define noncrossing partitions and dual simple braids. In Sect. 2 we describe
various ways to systematically reshape euclidean simplices, including the type of
reshaping that we call edge rescaling. In Sect. 3 we connect these two relatively
elementary discussions with the explicit matrices of the simplicial representation of
the braid group to establish our main results. Finally, Sect. 4 explains our motivation
for pursuing this line of investigation and some ideas for future work.

1 Discs

In this section metric discs with a finite number of labeled points are used to define
the lattice of noncrossing partitions and the finite set of dual simple braids. We begin
by recalling the notion of a convexly punctured disc.

Definition 1 (Convexly Punctured Disc) Let Dn be a topological disc in the
euclidean plane with a distinguished n-element subset that we call its punctures
or vertices. When the disc Dn is a convex subset of R2 and the convex hull of its
n punctures is an n-gon (i.e. every puncture occurs as a vertex of the convex hull)
then we say that Dn is a convexly punctured disc. There is a natural cyclic ordering
of the vertices corresponding to the clockwise orientation of the boundary cycle
of the n-gon. A labeling of the vertices is said to be standard if it uses the set
Œn� WD f1; 2; : : : ; ng (or better yet Z=nZ) and the vertices are labeled in the natural
cyclic order. More generally, when the vertices pi are bijectively labeled by elements
i in a finite set A, we refer to the convexly punctured disc as DA.

The 2-elements subsets are of particular interest.

Definition 2 (Edges) Let Dn be a convexly punctured disc. For each two element
subset fi; jg � Œn�, the convex hull of the corresponding points pi and pj in Dn is
called an edge and denoted ei;j D ej;i, or even eij when the comma is not needed for
clarity. When a standard name is needed we insist i < j. The number of edges is

�n
2

�

and we consistently use N for this number throughout the article. For later use, it is
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also convenient to impose a standard order on the set of all N D �n
2

�
edges. We do

so by lexicographically ordering them by their standard names. In D4, for example,
the standard names of its 6 D �

4
2

�
edges in their standard order are e12, e13, e14, e23,

e24 and e34.

We also need words to describe the position of one edge relative to another.

Definition 3 (Pairs of Edges) Let .eij; ekl/ be an ordered pair of edges in a convexly
punctured disc Dn and let B D fi; j; k; lg. If we restrict our attention to the
convex subdisc DB (where DB is an �-neighborhood of the convex hull of the
vertices indexed by the elements in B) then there are exactly five distinct possible
configurations. We call the possibilities crossing, noncrossing, identical, clockwise
and counterclockwise. When all four endpoints are distinct (i.e. when jBj D 4)
these edges are either crossing or noncrossing depending on whether or not they
intersect. At the other extreme, when eij and ekl have both endpoints in common,
they are identical. Finally, when these edges have exactly one endpoint in common,
the convex hull of the three endpoints is a triangle and the edges occur as consecutive
edges in its boundary cycle. We call this arrangement clockwise or counterclockwise
depending on the orientation of the boundary which ensures that ekl is the edge that
occurs immediately after eij. More colloquially we say that ekl is to the right (left)
of eij and eij is to the left (right) of ekl when the ordered pair .eij; ekl/ is clockwise
(counterclockwise). Examples are shown in Fig. 1.

Noncrossing partitions are defined in a convexly punctured disc.

Definition 4 (Noncrossing Partitions) Let Dn be a convexly punctured disc. We
say that two subsets B; B0 � Œn� are noncrossing when the convex hulls of the
corresponding sets of vertices in Dn are completely disjoint. See Fig. 2. More
generally, a partition � of the set Œn� is noncrossing when its blocks are pairwise
noncrossing. Noncrossing partitions are usually ordered by refinement, so that
� < � if and only if each block of � is contained in some block of � . Under this
ordering, the set of all noncrossing partitions form a bounded graded lattice denoted
NCn. The poset NC4 is shown in Fig. 3. The number of noncrossing partitions in
NCn is given by the n-th Catalan number Cn D 1

nC1

�
2n
n

�
. For further information

about noncrossing partitions see [1, 13, 15].

To each noncrossing partition there is a corresponding permutation.

Fig. 1 The edges e34, e49 and
e67 are to the left of the edge
e47 and the edges e27, e78 and
e45 are to the right. This is
because ordered pairs such as
.e34; e47/ and .e67; e47/ are
clockwise while the ordered
pair .e27; e47/ is
counterclockwise
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Fig. 2 The subsets f1; 2; 4; 5g and f3; 7; 8g are crossing. The subsets f1; 2; 4; 5g and f7; 8; 9g are
noncrossing

Fig. 3 Noncrossing partition lattice NC4

Definition 5 (Noncrossing Permutations) To every subset B � Œn� with at least
two elements we associate a permutation in SYMn obtained by linearly ordering
the elements in B. More generally, we associate a permutation to each noncrossing
partition by multiplying the permutations associated to each block and we call the
result a noncrossing permutation. Since distinct blocks are disjoint, their permuta-
tions commute and the product is well-defined. Thus B D f1; 3; 4g becomes the
permutation .1; 3; 4/ and the partition � D ff1; 3; 4g; f2g; f5; 6; 7; 8; 9gg becomes
the permutation .1; 3; 4/.5; 6; 7; 8; 9/. We identify each noncrossing partition with
its corresponding noncrossing permutation, using the same symbol for both. The
permutation associated to the full set Œn� is an important n-cycle that we call ı.

As is well-known, the elements of the braid group can be identified with
(equivalence classes of) motions of n distinct labeled points in a disc such as Dn. The
dual simple braids are a finite set of braids indexed by the noncrossing permutations
as follows.

Definition 6 (Rotations) The dual Garside element sı of the n-string braid group
is the motion where each labeled point in Dn moves clockwise along the boundary
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of the convex hull of all n points to the next vertex. More generally, for each set
B � f1; : : : ; ng, let PB be the convex hull of the vertices indexed by B and let DB be
an �-neighborhood of PB. The braid group element sB is a similar motion restricted
to the subdisc DB, i.e. the vertices in the subdisc move clockwise along one side of
the polygon PB to the next vertex, leaving all other vertices fixed. See Fig. 4. When B
has at most one element, the motion is trivial. When B has two elements, the points
avoid collisions by passing on the left.

Rotations can be used to assign a braid to each noncrossing partition.

Definition 7 (Dual Simple Braids) The dual simple braids are elements of the
braid group in one-to-one correspondence with the set of noncrossing partitions
NCn. More precisely, for each noncrossing partition � , we associate the product
of the rotations corresponding to each of its blocks and call the result s� . Because
rotations of noncrossing blocks take place in disjoint subdiscs they commute and
the resulting element in the braid group is well-defined. Note that the noncrossing
permutation � is the permutation of the vertices induced by s� . The dual simple
braids in BRAID4 written as products of rotations are shown in Fig. 5.

It is useful to have specific names for four sets of dual simple braids.
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Fig. 4 The rotation s137
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Fig. 5 The dual simple elements in BRAID4
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Definition 8 (Four Sets of Simple Braids) The standard generating set for the
braid group BRAIDn consists of the n � 1 rotations of the form sij with 1 � i < n
and j D i C 1. The dual generators of BRAIDn are the set of all N D �n

2

�
rotations

sB where B has exactly two elements. The rotations sB with jBj ¤ 1 form a third
set, and the full set of all dual simple braids form a fourth set. We write STDn �
GENn � ROTn � SIMPn for these four nested sets, whose sizes are n � 1, N, 2n � n
and Cn (the n-th Catalan number). When n D 4, these sets have 3, 6, 11 and 14

elements.

The multiplication in the symmetric group can be used to extract other informa-
tion about noncrossing partitions.

Definition 9 (Multiplication) For consistency with our latter conventions we view
permutations as functions and thus we multiply them from right to left. For example,
the product .1; 2; 3/ � .3; 4; 5/ is .1; 2; 3; 4; 5/. More generally, if B, fig and C are
pairwise disjoint subsets of Œn� such that there is a place to start reading the boundary
cycle of the convex hull of the points corresponding to the elements in B [ fig [ C
so that, reading clockwise, one encounters all of the vertices indexed by elements in
B, followed by pi, followed by all of the vertices indexed by the elements in C, then
sBisiC D sBiC. Here we follow the conventions of [12], removing parentheses from
singletons, and using juxtaposition to indicate union.

The reader should be careful to note that our multiplication convention differs
from much of the literature on the braid groups where multiplication is from left to
right. Thus extra vigilance is required. The general multiplication rule given above,
for example, is stated in a slightly different form in [12]. The multiplication can be
used to define left and right complements of noncrossing permutations.

Definition 10 (Complements) Let � be a noncrossing permutation in SYMn and
recall that ı is the n-cycle .1; 2; : : : ; n/. The left complement of � is the unique
element � 0 such that � 0� D ı and its right complement is the unique element � 00
such that �� 00 D ı. We denote these permutations by � 0 D lc.�/ and � 00 D rc.�/.
The permutation lc.�/ is always also a noncrossing permutation and, in fact, the
edges in its blocks are precisely those that are to the left or noncrossing with respect
to each of the edges in the blocks of � . Similarly rc.�/ is a noncrossing permutation
whose blocks are formed by the edges that are to the right or noncrossing with
respect to each edge in a block of � . See Fig. 6.

The following observation is not crucial to our results, but we sometimes use this
language.

Remark 1 (Hypertrees) A hypergraph is a generalization of a graph where its
hyperedges are allowed to span more than two vertices, and a hypertree is the
natural generalization of a tree. As can be seen in Fig. 6, the blocks of the
noncrossing partition associated to a dual simple element and the blocks of one
of its complements together form the hyperedges of a planar hypertree.
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Fig. 6 .23/.456/.1789/ is the left complement of .136/ in SYM9 and .12/.345/.6789/ is its right
complement
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Fig. 7 If �1 D .2; 3; 4; 5/ and �2 D .5; 6; 7/, then the permutations �3, �4 and �5 defined in
Definition 11 are �3 D .1; 7; 8; 9/, �4 D .1; 5; 8; 9/ and �5 D .1; 2; 8; 9/

The Hasse diagram of the noncrossing partition lattice can actually be viewed
as a portion of the Cayley graph of SYMn with respect the generating set of all
transpositions, specifically the portion between the identity and the element ı. This
way of looking at the noncrossing partition lattice combined with the fact that the
set of transpositions in SYMn is closed under conjugation, helps to explain why
factorizations of ı as a product of noncrossing permutations are so flexible. The
only aspect of this flexibility that we need here is the following.

Definition 11 (Five Permutations) If �1 and �2 are permutations in SYMn such
that �1, �2 and their product �1�2 are all three noncrossing, then there exist
noncrossing permutations �3, �4 and �5 such that ı D �1�2�3 D �1�4�2 D �5�1�2.
The permutations �5 and �3 are simply the left and right complements of the product
�1�2, while �4 is obtained by conjugation. An example is shown in Fig. 7.

2 Simplices

In this section we discuss the geometry of euclidean simplices with n labeled
vertices and, in particular, how this geometry changes under certain carefully
controlled deformations. As in [6], we start by distinguishing between points and
vectors.
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Definition 12 (Points) Let V be an .n � 1/-dimensional real vector space with a
fixed positive definite inner product but no fixed basis and let E be an .n � 1/-
dimensional euclidean space, which may be defined as a set with a fixed simply-
transitive action of the additive group of V . The structure of E is essentially that of
V but the location of the origin has been forgotten. The elements of V are vectors,
the elements of E are points, and we write hu; vi for the inner product of vectors
u and v. Two points p and p0 determine a line segment e called an edge and p and
p0 are its endpoints. By the simply-transitive action of V on E, they also determine
two vectors: the unique vector v that sends p to p0 and the vector �v which sends p0
to p. The pair ˙v is a lax vector. When the points involved are labeled, say pi and
pj, we write eij D eji for the edge they span, and v D vij and �v D vji for the two
vectors they determine. The norm of a vector v is hv; vi, which is also the square of
the length of the corresponding edge e. We write NORM W V ! R for the norm map.
Note that the norm of a lax vector is well-defined since NORM.v/ D NORM.�v/

and the norm of an edge is the norm of the lax vector determined by its endpoints.
When the points involved are labeled we write aij for NORM.vij/.

Definition 13 (Simplices) A set fpig of n labeled points in E is in general position
if this set is not contained in any proper affine subspace of E, and the convex hull
of such a set is a labeled euclidean simplex � of dimension .n � 1/. For any such
labeled euclidean simplex � we use subsets of punctures in the convexly punctured
disc Dn to describe various simplicial faces of � via their vertex labelings. For
example, the three blocks of the left complement of s136 shown in Fig. 6 correspond
to an edge, a triangle and a tetrahedron in any 8-dimensional simplex � with nine
labeled vertices.

We are primarily interested in the isometry class of a labeled euclidean simplex
� and this is completely determined by the ordered list of the norms of its edges.

Definition 14 (Edge Norm Vectors) Let � be a labeled euclidean simplex with n
vertices. The edge norm vector of � is a column vector v of the N D �n

2

�
positive real

numbers aij which are the norms of its edges eij, listed in the standard lexicographic
order of the edges as discussed in Definition 2.

Edge norm vectors characterize isometry classes of labeled euclidean simplices
and as a result when we reshape a labeled euclidean simplex, these changes to its
geometry are captured by the modifications that occur in its edge norm vector. The
well-known formula 2hu; vi D NORM.u C v/ � NORM.u/ � NORM.v/ shows that
inner products of vectors can be calculated in terms of their norms, but we need
a slightly more general formula that computes the inner product of two vectors
determined by four possibly distinct points in a euclidean space E.

Proposition 1 (Inner Products and Norms) If pi; pj; pk and pl are four not nec-
essarily distinct points in a euclidean space E, then the inner product 2hvij; vkli D
ail C ajk � aik � ajl.
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Fig. 8 Tetrahedron
determined by four points,
edges labeled by norm
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fpi

p j

pk

pl

Proof To improve readability, we write a, b, c, d, e and f for the norms aij, aik,
ail, ajk, ajl and akl, respectively. The situation under discussion is shown in Fig. 8.
Expanding the norms of vik D vij C vjk and vjl D vjk C vkl produces the identities
b D a C d C 2hvij; vjki and e D d C f C 2hvjk; vkli. Expanding the norm of vil D
vij C vjk C vkl produces c D a C d C f C 2hvij; vjki C 2hvjk; vkli C 2hvij; vkli. Thus
2hvij; vjki D b � a � d, 2hvjk; vkli D e � d � f , and 2hvij; vkli D c � a � d � f � .b �
a � d/ � .e � d � f / D c C d � b � e. ut

The following definition identifies a class of geometric reshapings of labeled
euclidean simplices that are particularly elegant and easy to describe. We call them
edge rescalings and, as far as we are aware, they have not been previously discussed
in the literature.

Definition 15 (Edge Rescaling) Let � and �0 be two labeled euclidean simplices
with n vertices situated in a common euclidean space. We say that an edge eij in � is
merely rescaled if it and the corresponding edge e0ij in �0 point in the same direction.
More generally, we say that �0 is an edge rescaling of � if there exist enough pairs
of corresponding edges pointing in the same direction (but with possibly different
lengths) to form a basis for the vector space out of these common direction vectors.

Remark 2 (Spanning Trees) Let �0 be a labeled euclidean simplex which is an edge
rescaling of �. By definition there are sufficiently many edges that are merely
rescaled to form a basis out of the corresponding vectors and a minimal set of
rescaled edges in the 1-skeleton of � would form a spanning tree in this complete
graph. There might, however, be more than one such spanning tree of merely
rescaled edges. When two edges in � share a common endpoint and are both
rescaled by the same scale factor, the triangle they span, and in particular the third
edge in that triangle, is also rescaled by the same scale factor. Thus any two of
these three edges could be included in the spanning tree. In fact, it would be more
canonical to identify the maximal simplicial faces that are merely rescaled. For each
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scale factor, there would be a partition of the vertices into maximal subsimplices
rescaled by that factor and the blocks in all of these partitions together would form
a spanning hypertree in the sense of Remark 1. The full variety of spanning trees
which satisfy the edge rescaling definition are selected from the edges inside the
blocks of such a canonical spanning hypertree.

Definition 16 (Edge Rescaling Maps) One thing to note is that for every spanning
tree T in the 1-skeleton of a labeled euclidean simplex � and for every set of
positive real scale factors for these edges, there does exist a rescaled simplex �0 in
which these edges are rescaled by these factors since the rescaled tree T 0 formed by
assembling the rescaled edges as before tells us how the vertices should be arranged.
In particular, the rescaling of � only depends on the set of merely rescaled edges and
the scale factors used to rescale them. Thus there is a well-defined edge rescaling
map R from the space of labeled euclidean simplices to itself which, based only on
such data, rescales each � in the set to a new simplex �0. Such a map R is clearly
invertible since rescaling the same edges by the multiplicative inverse of each scale
factor returns each �0 to �. The edge rescaling maps we are primarily interested
in are those where every scale factor is 1 or q. We call these q-rescalings and we
introduce a special notation for them. Let R D R�

� denote the q-rescaling where the
blocks of the partition � index the subsimplices rescaled by q and the blocks of the
partition � index the subsimplices which are fixed, i.e. rescaled by a factor of 1.

The next proposition shows that the effect of R is encoded in a matrix.

Proposition 2 (Edge Rescaling Matrices) The effect of an edge rescaling map R
on an edge norm vector v for a labeled euclidean simplex � is captured by an N by
N matrix M whose entries only depend on the map R and not on the vector v or the
simplex �. In particular, R.v/ D M � v for all v and �.

Proof Let T be a spanning set of edges that are rescaled by R. For each edge eij

we can use paths in the spanning tree T to find a linear combination of vectors
associated with rescaled edges whose sum is vij. The new vector v0

ij, by definition,
is a similar sum where the vectors in the sum are rescaled according to the scale
factors of R. Thus the norm of v0

ij can be expanded as a linear combination of
inner products of vectors whose edges belong to the tree T and the coefficients
of this linear combination are independent of the original edge norms. Next, by
Proposition 1, the inner products can be rewritten as linear combinations of the
original edge norms. Substituting these in produces a formula for each new edge
norm a0

ij as a linear combination of the old edge norms in v with coefficients that are
independent of v. The matrix M is formed by collecting these coefficients. ut

For simplicity we use the same symbol R to denote both the edge rescaling map
and the edge rescaling matrix that was called M in the proposition. As an explicit
example of this process, consider the q-rescaling of a triangle shown in Fig. 9.

Proposition 3 (Edge Rescaling a Triangle) If � is a labeled euclidean triangle
and �0 is the labeled euclidean triangle obtained by the edge rescaling R D R12

23,
then the edge norms of �0 can be computed from the edge norms of � as follows:
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p3

Fig. 9 An edge reshaping R D R12
23 that rescales e12 by a factor of q and fixes e23 (i.e. rescales e23

by a factor of 1)

a0
12 D q2a12, a0

13 D .q2 � q/a12 C qa13 C .1 � q/a23, and a0
23 D a23. In particular,

R has the effect of multiplying the edge norm vector of � by a matrix with entries in
ZŒq�.

v0 D
2

4
a0

12

a0
13

a0
23

3

5 D
2

4
q2 0 0

q2 � q q 1 � q
0 0 1

3

5 �
2

4
a12

a13

a23

3

5 D R �
2

4
a12

a13

a23

3

5 D R � v: (1)

Proof For clarity let a, b and c be the edge norms a12, a13 and a23 in � and add
primes for the corresponding edge norms in �0. In the original triangle we have
a D hv12; v12i, c D hv23; v23i and b D hv13; v13i D hv12 C v23; v12 C v23i D
a C 2hv12; v23i C c. Thus 2hv12; v23i D b � a � c. In the new triangle we have
c0 D hv23; v23i D c, a0 D hq�v12; q�v12i D q2a, and b0 D hq�v12Cv23; q�v12Cv23i D
q2a C 2qhv12; v23i C c D q2a C q.b � a � c/ C c D .q2 � q/a C qb C .1 � q/c as
required. ut

Many of the properties of the matrix R D R12
23 extend to all q-rescalings.

Proposition 4 (Quadratic Matrices) Let R D R�
� be a q-rescaling of a labeled

euclidean simplex � with n vertices. The effect of R on the edge norm vector v of
� is to multiply from the left by an N by N matrix with entries in ZŒq� of degree at
most 2.

Proof The proof is the same as that of Proposition 2 but with the additional
observation that the coefficients are at most quadratic polynomials in q since there
is at most one q coming from each side of the inner product. ut

Our second example is very similar to the first.

Example 1 (Rescaling a Tetrahedron) Consider the edge rescaling R12
234 as shown in

Fig. 10 and note that we can compute all of the new edge norms using Proposition 3.
For clarity we write a through f for a12 through a34 in lexicographic order. The effect
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Fig. 10 The edge rescaling R12
234 which fixes the triangle �234 and rescales edge e12 by a factor

of q

of the map R D R12
234 is as follows:

R �

2

6
6
66
6
6
6
4

a
b
c
d
e
f

3

7
7
77
7
7
7
5

D

2

6
6
66
6
6
6
4

q2a
.q2 � q/a C qb C .1 � q/d
.q2 � q/a C qc C .1 � q/e

d
e
f

3

7
7
77
7
7
7
5

D

2

6
6
66
6
6
6
4

a0
b0
c0
d0
e0
f 0

3

7
7
77
7
7
7
5

: (2)

Thus the matrix that encodes the rescaling R is

R D

2

6
66
6
6
6
6
4

q2 0 0 0 0 0

q2 � q q 0 1 � q 0 0

q2 � q 0 q 0 1 � q 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7
77
7
7
7
7
5

: (3)

When the simplices are higher-dimensional, additional notation is needed.

Definition 17 (Row Descriptions) Since the new edge norms are determined by
the rows of the matrix R D R�

� , we introduce a way to describe these rows. Recall
that eij denotes an edge in the punctured disc Dn and an edge in a labeled euclidean
simplex �. We now add a third interpretation: as an element of the canonical basis of
the vector space RN containing the edge norm vectors. Using this interpretation of eij

as basis vectors, the second row of the matrix for R D R12
23 as given in Proposition 3

is the row vector .q2 � q; q; 1 � q/ or, equivalently, it is the linear combination
.q2 � q/e12 C qe13 C .1 � q/e23. To select the second row one would multiply the
matrix R on the right by the row vector .0; 1; 0/ which is just the vector e13. In other
words, .e13/R D .q2 � q/e12 C qe13 C .1 � q/e23.
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Remark 3 (Left and Right) The linear combination that describes the image of a
basis vector acted on by a rescaling matrix R from the right looks very similar
to the corresponding entry in the edge norm vector when acted on by R from the
left precisely because both are essentially encoding the entries in one row of R.
Nevertheless, this switch between left and right has the potential to be slightly
confusing.

It turns out that the linear combination that describes the ekl row of the matrix
Rij

rc.ij/ (or Rij
lc.ij/) only depends on the geometric relationship between the edges eij

and ekl in the punctured disc Dn. Thus, in our row descriptions of these matrices the
final column uses the language of Definition 3 to describe how ekl is situated relative
to eij.

Example 2 (Rescaling a Boundary Edge) In this example we give explicit row
descriptions for the q-rescalings which stretch a single boundary edge (i.e. an edge
that corresponds to an edge in the boundary of the convex polygon in the disk) while
fixing either its left or its right complement. We start with the row description of the
matrix R D R12

rc.12/.

.ekl/R D

8
ˆ̂<

ˆ̂
:

q2ekl identical (k D 1; l D 2)
ekl noncrossing (k; l > 2)
ekl to the right (k D 2)

.q2 � q/e12 C qekl C .1 � q/e2l to the left (k D 1):

(4)

This is a natural generalization of the triangular and tetrahedral examples in the new
notation. The row description of R D Rij

rc.ij/ with j D i C 1 mod n is only slightly
more complicated. We write enew for the third edge of the triangle when eij and ekl

have exactly one endpoint in common.

.ekl/R D

8
ˆ̂
<

ˆ̂
:

q2ekl identical
ekl noncrossing
ekl to the right

.q2 � q/eij C qekl C .1 � q/enew to the left:

(5)

Switching from the right complement to the left complement causes only very minor
changes. The row description of the matrix R D R12

lc.12/ is as follows

.ekl/R D

8
ˆ̂
<

ˆ̂
:

q2ekl identical (k D 1; l D 2)
ekl noncrossing (k; l > 2)
ekl to the left (k D 1)

.q2 � q/e12 C qekl C .1 � q/e1l to the right (k D 2):

(6)

And finally, we list the row description of Rij
lc.ij/ with j D i C 1 mod n, with the

same convention that enew denotes the third edge of the triangle when eij and ekl
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b
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e

fp1

p2

p3

p4

R24
rc(24)

a

b

c

d

e

f
p1

p2

p3

p4

Fig. 11 The edge rescaling R24
rc.24/ which rescales the edge e24 while fixing the edges e23 and e14

have exactly one endpoint in common.

.ekl/R D

8
ˆ̂<

ˆ̂
:

q2ekl identical
ekl noncrossing
ekl to the left

.q2 � q/eij C qekl C .1 � q/enew to the right:

(7)

In order to extend Example 2 to more general situations, we need one more
computation that is illustrated in (Fig. 11).

Proposition 5 (Diagonal Edges) Let � be a labeled euclidean tetrahedron. If �0 is
the labeled euclidean tetrahedron obtained by the edge rescaling R D R24

rc.24/, then
the new edge norm a0

13 can be computed from the edge norms of � as follows:

a0
13 D a13 C .q � 1/2a24 C .q � 1/.a14 C a23/ C .1 � q/.a12 C a34/

Proof Since v13 D v12 C v24 C v43, we have v0
13 D v12 C qv24 C v43. Expanding

a0
13 D hv0

13; v0
13i we find that a0

13 is equal to a12 C q2a24 C a34 C 2qhv12; v24i C
2qhv24; v43i C 2hv12; v34i. Using Proposition 1 we find that hv12; v24i D a14 � a12 �
a24, hv24; v43i D a23 � a24 � a34 and hv12; v43i D a13 C a24 � a14 � a23. Substituting
and simplifying yields the result. ut
Example 3 (Rescaling a Diagonal Edge) The row description for the rescaling
matrix Rij

rc.ij/ is essentially identical to the one listed in Example 2. In particular,
the formulas for the cases where ekl is identical to, noncrossing, to the left or to the
right of eij are the same as before. The final geometric configuration that is possible
when eij is not a boundary edge is that eij and ekl might be crossing. When this
happens .ekl/R

ij
rc.ij/ can be computed using Proposition 5. If the clockwise ordering

of i, j, k and l is .k; i; l; j/ then the answer is ekl C .q � 1/2eij C .q � 1/ekj C .q �
1/eil C .1 � q/eki C .1 � q/elj. A more intrinsic geometric description would use the
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convex hull of fpi; pj; pk; plg in Dn. The answer obtained is ekl plus .q � 1/2eij plus
.q � 1/ times the two boundary edges of the convex hull which are simultaneously
to the right of eij and to the left of ekl plus .1 � q/ times the two boundary edges
which are simultaneously to the right of eij and to the left of ekl. A row description
for Rij

lc.ij/ for arbitrary i and j can be computed in a similar fashion.

3 Matrices

In this section, we define three explicit representations of the braid group and then
we prove our main results. The first representation, and the most complicated, is the
Lawrence–Krammer–Bigelow or LKB representation.

Definition 18 (LKB Representation) Let q and t be nonzero positive real num-
bers, let E be the set feijg with 1 � i < j � n of size N D �n

2

�
and let RN be

the N D �n
2

�
-dimensional real vector space with E as its ordered basis. The LKB

representation of the braid group is the map � W BRAIDn ! GLN.R/ defined by
the following action (from the right) of the standard braid group generators sij (with
j D i C 1 and 1 � i < n) on elements of E.

.ekl/�.sij/ D

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

tq2ekl i D k; j D l
ekl i; j … fk; lg
ejl i D k; j < l
ekj i D l

t.q2 � q/eij C qeki C .1 � q/ekl k < i; j D l
.q2 � q/eij C qeil C .1 � q/ekl j D k:

(8)

We make two remarks about this definition.

Remark 4 (Left/Right Actions) In the literature, this action is written as an action
from the left but our alteration only has the effect of transposing the relevant
matrices. Our choice is dictated by our desire to match up (a simplified version of)
this representation with the obviously very similar edge rescaling matrices discussed
in the previous section.

Remark 5 (The t Variable and Its Sign) The t variable depends on the linear
ordering of the vertices, it is associated the standard presentation of the braid
group, and its presence obscures the fundamentally cyclically symmetric nature
of the dependence on q. To highlight this cyclic symmetry, we shall consider the
specialization with t D 1 below. We should also note, however, that there are
inconsistencies in the literature regarding the sign of t. The variable t in [10]
corresponds to �t in [3] (with an additional sign correction in [4]) and [9]. We
have written the LKB representation using Krammer’s sign convention. If we had
followed Bigelow’s we would be setting t equal to �1.
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In light of our first main theorem, we call the simplified LKB representation the
simplicial representation of the braid group.

Definition 19 (Simplicial Representation) The simplicial representation of the
braid group is the specialization of the LKB representation with t set equal to 1.
Concretely, let q be a nonzero positive real number, let E be the set feijg with
1 � i < j � n in lexicographic order and let RN be the N D �n

2

�
-dimensional

real vector space with E as its ordered basis. The simplicial representation of the
braid group is defined by the following action (from the right) of the standard braid
group generators sij (with j D i C 1 and 1 � i < n) on elements of E. We write
S� for the matrix that represents s� with respect to the ordered basis E and we have
introduced the notation enew to denote the third side of the triangle when eij and ekl

have exactly one endpoint in common as in the previous section.

.ekl/Sij D

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

q2ekl i D k; j D l
ekl i; j … fk; lg

enew i D k; j < l
enew i D l

.q2 � q/eij C qenew C .1 � q/ekl k < i; j D l

.q2 � q/eij C qenew C .1 � q/ekl j D k:

(9)

Now that the t variable has been eliminated, some of the rows are identical and they
can be rewritten more elegantly using the language of Definition 3.

.ekl/Sij D

8
ˆ̂
<

ˆ̂
:

q2ekl identical
ekl noncrossing

enew to the left
.q2 � q/eij C qenew C .1 � q/ekl to the right:

(10)

Our third representation is obtained by also eliminating the q variable.

Definition 20 (Permutation Representation) The permutation representation of
the braid group that we are interested in is the one obtained from the simplicial
representation by setting q D 1 (or both t D q D 1 in the LKB representation). This
encodes the permutation of the edges induced by the corresponding permutation of
the vertices. We write P� for the matrix corresponding to s� . Its row description is
as follows.

.ekl/Pij D
�

ekl identical, crossing or noncrossing
enew to the left or right:

(11)

It should be clear that the simplicial representation matrix Sij is very closely
connected, but not quite identical to the rescaling matrix Rij

rc.ij/ given in Example 2.
The difference is the permutation matrix Pij.
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Example 4 (Geometry of S12) The matrices corresponding to the first standard
generator s12 of the four string braid group in the simplicial representation and the
permutation representation are as follows:

S12 D

2

6
6
6
6
6
66
4

q2 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

q2 � q q 0 1 � q 0 0

q2 � q 0 q 0 1 � q 0

0 0 0 0 0 1

3

7
7
7
7
7
77
5

P12 D

2

6
6
6
6
6
66
4

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
77
5

: (12)

It is now straightforward to check that S12 D P12R12
234 D R12

134P12. The matrix R12
234 D

R12
rc.12/ is listed explicitly in Example 1 and the row description of R12

134 D R12
lc.12/ is

given in Example 2.

Before proceeding to the proofs of our main results, we introduce one final
definition which makes our precise results easier to state.

Definition 21 (Relabeling and Rescaling) Let � be a noncrossing permutation
in SYMn and let S� be the explicit matrix representing s� under the simplicial
representation. We say that S� relabels and rescales if S� D P� R�

rc.�/ D R�
lc.�/P� ,

where lc.�/ and rc.�/ are the left/right complements of � .

For clarity we also say what this definition means geometrically. To say that the
matrix S� relabels and rescales means that the effect it has on labeled euclidean
simplices (keeping in mind that we multiply from right to left) is to first rescale the
edges (fixing the length and direction of the edges in the right complement of �

while multiplying the lengths of the edges in � by a factor of q) followed by the
edge relabeling induced by the way � permutes the vertices. Alternatively, the edge
relabeling P� can be performed first (i.e. on the right), in which case it is the edges
of the left complement of � whose length and direction are fixed while the lengths
of the edges in � are multiplied by a factor of q. In this language, Example 4 shows
that the matrix S12 in the simplicial representation of BRAID4 relabels and rescales.
The next proposition shows that the standard generators in all of the braid groups
share this property.

Proposition 6 (Standard Generators) For every standard generator sij of the
braid group BRAIDn, the corresponding matrix Sij in the simplicial representation
relabels and rescales.

Proof This is essentially immediate at this point once we compare the row
description of Sij in Definition 19 with the row descriptions of Rij

rc.ij/ and Rij
lc.ij/ in

Example 2 and note that multiplying by Pij on the left switches the rows to the left
of eij with the rows to the right of eij (which has the effect of switching which edge
is denoted ekl and which is enew), while multiplying by Pij on the right permutes
columns and thus the subscripts on the e’s that occur in the various terms of the row
descriptions. ut
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From Proposition 6 we deduce our first result.

Theorem 3 (Braids Reshape Simplices) The simplicial representation of the n-
string braid group preserves the set of

�n
2

�
-tuples of positive reals that represent the

squared edge lengths of a nondegenerate euclidean simplex with n labeled vertices.

Proof First note that it suffices to prove that this holds for some generating set of
BRAIDn. Next, both vertex relabelings and edge rescalings clearly preserve the set
of

�n
2

�
-tuples that describe the squared edge lengths of a nondegenerate euclidean

simplex with n labeled vertices, so Proposition 6 completes the proof. ut
Once we know that some dual simple braids relabel and rescale, it is straightfor-

ward to show that their products (at least those which remain dual simple braids) do
so as well.

Proposition 7 (Products) Let �1 and �2 be noncrossing permutations in SYMn

such that s�1 , s�2 and s�1�2 are dual simple braids. If both S�1 and S�2 relabel and
rescale, then S�1�2 relabels and rescales.

Proof One consequence of the fact that s�1 , s�2 and s�1�2 are dual simple braids is
that there are noncrossing permutations �3, �4 and �5 such that ı D �1�2�3 D
�1�4�2 D �5�1�2 (Definition 11). For S�1�2 D S�1S�2 we have the following
equalities.

S�1S�2 D .P�1R�1
�4�2

/.R�2
�1�4

P�2/

D P�1R�1�2
�4

P�2

D P�1P�2R�1�2
�3

D R�1�2
�5

P�1P�2 :

The first line uses the hypotheses on S�1 and S�2 . The second combines the two edge
scalings into a single rescaling. In particular, the rescaling R�1

�4�2
rescales the edges

in �1 by q and fixes the edges in �4 and �2, as well as the rest of the edges in the
product �4�2. Similarly, the rescaling R�2

�1�4
fixes the edges in �1 and �4 and rescales

those in �2 by a factor of q. Thus, in the product of these two edge rescalings, the
edges in �1 and �2 are rescaled by q and those in �4 are fixed. The third and fourth
lines simply conjugate the points involved. Since P�1P�2 D P�1�2 and �5 and �3 are
the left/right complements of �1�2, this completes the proof. ut

Note that the same equalities used in the proof, slightly rearranged, would show
that if any two of S�1 , S�2 and S�1�2 relabel and rescale then so does the third.
Propositions 6 and 7 are not quite enough to prove our second main result because
not all dual simple braids are products of standard generators. We need to extend
Proposition 6 to the full set of dual generators.

Proposition 8 (Dual Generators) For every dual generator sij 2 GENn of the
braid group BRAIDn, the corresponding matrix Sij in the simplicial representation
relabels and rescales.
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Proof An explicit description of the matrix for sij under the LKB representation is
given in Krammer’s earlier paper [10]. If we set t D 1 in that description, we find
that the matrix Sij has the exact same description as it does when j D i C 1 as given
in Definition 19 except that a new case must be added that gives the result of .ekl/Sij

when eij and ekl cross. This simplification of the answer listed in [10] agrees with
the corresponding row of PijR

ij
rc.ij/, which is the same as the corresponding row of

Rij
lc.ij/Pij obtained by combining Example 3 and Definition 20. ut

Our second main result is an immediate corollary.

Theorem 4 (Dual Simple Braids Relabel and Rescale) Under the simplicial
representation of the braid group, each dual simple braid relabels and rescales.
Concretely, for each � 2 NCn, we have S� D P� R�

rc.�/ D R�
lc.�/P� .

Proof Proposition 8 shows that the assertion is true for each dual generator. Then
Proposition 7 and a simple induction extends this fact to all of the dual simple braids.

ut

4 Final Remarks

In this final section we make a few remarks about the origins of these results and
some promising directions for further investigation.

To explain how we stumbled upon this point of view, we first need to review
the differences between the three papers by Krammer and Bigelow establishing
the linearity of the braid groups. In his earlier article Daan Krammer used a ping-
pong type argument on the dual Garside structure of the 4 string braid group to
establish that the LKB representation is faithful for suitably generic values of q and
t [10]. Next Stephen Bigelow replaced Krammer’s algebraic approach with a more
topological one and succeeded in showing that these representations are faithful for
all n [3]. In his later article Krammer used an alternative version of his original
approach that also succeeded in establishing linearity for every n [11]. The main
difference between the two papers by Krammer is that the first uses the dual Garside
presentation of the braid groups (indexed by the q variable and closely related to
the Birman–Ko–Lee presentation introduced in [5]) while the second reverts to the
standard presentation of the braid group (indexed by the t variable).

Shortly after these articles appeared, their results were extended to prove linearity
results for various other Artin groups, all based more or less on the approach used
in Krammer’s second article [11]. François Digne extended linearity to the Artin
groups of crystallographic type [8] and Arjeh Cohen and David Wales proved
linearity for all spherical Artin groups [7]. Finally Luis Paris generalized these
results further by proving that the Artin monoid is linear for all Artin groups [14].
In fact, all of these proofs establish the linearity of the positive monoid. When the
Artin group is spherical, the Artin group is the group of fractions of the positive
monoid and thus linearity of the positive monoid implies linearity for the group.
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For general Artin groups it is known that the positive monoid generated by the
standard minimal generating set is not large enough for this implication to hold.
On the other hand, the positive monoid generated by the larger dual generating set
might have this property. This led us to attempt to generalize Krammer’s initial
argument using the dual generating set. If one could find a proof of linearity for
all the braid groups focused on the q variable as in [10], then there is a chance
that it might generalize as in the papers by Digne, Cohen and Wales and Paris to
eventually produce linearity results for non-spherical Artin groups. This was our
initial motivation.

We first wrote code in sage to investigate the properties of the LKB matrices
and found, experimentally, nice ways to decompose them and we began to isolate the
changes that each factor was making. The interpretation of the simplified version as
modifications of edge norms of simplices was one of the final steps in our evolving
understanding of these representations.

We conclude this article with three directions for additional research.

Problem 1 (Linearity) The simplified simplicial representation is known not to
be faithful for large n because it is also known as the symmetric tensor square of
the Burau representation (which is known to not be faithful for n � 5 [2]). Thus,
establishing a new q based proof of braid group linearity requires the variable t to
remain generic. One project is to find a way to extend the geometric interpretation
given here so that the t variable can remain generic and then to use this extended
interpretation to give an alternative proof of braid group linearity focused on the q
variable. In particular, one should try to show directly that the dual positive monoid
generated by full dual generating set acts faithfully using a ping-pong type argument
similar to the one in the original Krammer article on BRAID4 [10].

Problem 2 (Dual Garside Length) The q variable in the LKB representation has
received very little attention since Krammer’s earlier paper primarily because it was
the t variable which was the focus for the more general proof. Recently, however,
Tetsuya Ito and Bert Wiest posted an article that proves one of the facts originally
conjectured by Krammer in [10], namely, that the highest power of q in the LKB
representation of a dual positive braid is twice its dual Garside length [9]. It seems
quite likely that one could give an alternative and elementary proof of their results
using the geometric understanding of the q variable introduced in this article.

Problem 3 (Spherical Artin Groups) The set of labeled euclidean simplices, with
dilated simplices identified, is one of the standard parameterizations of the higher
rank symmetric space SL.V/=SO.V/ and the simplicial representation appears to act
on this space by isometries. Once this action is made explicit, it should be possible
to define a similar construction and to give a similar interpretation for all of the
spherical Artin groups once the focus on labeled euclidean simplices is replaced by
linear transformations of root systems.
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